
Discreet Log Contracts

Thaddeus Dryja

MIT Digital Currency Initiative

Abstract

Smart contracts [1] are an often touted feature of cryptographic currency
systems such as Bitcoin, but they have yet to see widespread financial use.
Two of the biggest hurdles to their implementation and adoption have been
scalability of the smart contracts, and the difficulty in getting data external
to the curency system into the smart contract. Privacy of the contract has
been another issue to date. Discreet Log Contracts are a system which
addresses the scalability and privacy concerns and seeks to minimize the
trust required in the oracle which provides external data. The contracts are
discreet in that external observers cannot detect the presence of the contract
in the transaction log. They also hinge on knowledge of a discrete logarithm,
which is a plus.

Model

There are 3 parties involved in the contract process: Alice, Bob, and Olivia.
Alice and Bob are contract counterparties, while Olivia is the oracle. Al-
ice and Bob do not trust each other and do not need to know any legal
identifying information about each other, but they must be able to commu-
nicate over an authenticated channel, and they must be able to persistently
recognize each other. Alice and Bob also must be able to receive signed
broadcast messages from Olivia. Olivia does not need to be aware of Alice
and Bob, and ideally she has no contact other than broacasting information.
The information is compact enough that broadcast could take place over the
Bitcoin network itself, though this should not be necessary.

The DLC protocol can be used for a wide variety of contracts, cover-
ing most cases where payouts between parties depend on a publicly known
number in the future. In this example, Alice and Bob make and execute

1



a currency future contract. They start on Wednesday, when the Japanese
Yen is worth 1000 satoshis. The contract closes on Friday, at which time
the Yen is worth 1050 satoshis.

Comitted R-point Signatures

Discreet Log Contracts use the well-known Schnorr signature[2], but in an
unusual way. Normally users create a private scalar a, compute A = aG by
repeated addition of the group generator G, and publish A as their public
key. When signing a message, they create another random private scalar k,
compute R = kG, and then compute

s = k − h(m,R)a

where h() is a hash function, and m is the message to be signed. The
signature is (R, s).

A verifier, given (A,m,R, s) can compute

sG = R− h(m,R)A

= kG− h(m,R)aG

In Discreet Log Contracts, we instead call the pair (A,R) the public key,
leaving only s as the signature. The equation is the same, but R has been
re-classified as part of the public key instead of as part of the signature.
Use of a similar construction in an attempt to prevent double-spends was
recently published in [3].

Olivia publishes point V , which is her public key vG. Olivia will use
this public key multiple times and should keep v safe. v can be made up of
different keys held by different parties. Olivia also publishes another point,
R = kG. k is a random nonce, and R is a one-time-use signing key. This
is the same k and R used in normal Schnorr signatures, but the R value
is committed in advance of the signature being calculated; the message to
be signed is not yet known, but a nonce has been chosen and and R point
published. (This prevents the use of some deterministic nonce schemes such
as RFC6979).

Olivia also publishes the description metadata associated with R. Every
R has an asset type and closing time associated with it. In this example, R
is associated with the price of the Japanese Yen at Friday market close. As
R is 33 bytes in length, the metadata will likely be larger than R itself.

Because R is known, sG can be computed for any given m before s is
computed by the signer.

2



Contract creation

Contracts exist as a single output on the blockchain with all the funds to
be paid out upon contract execution held for the duration of the contract.
(This output can be optimized away in many cases; see Optimizations below)
Before contract setup can begin, Alice and Bob must first find each other,
and agree on the terms of the contract. Alice is “buying” Yen for delivery
Friday, while Bob is “selling” Yen.

In order to establish a contract, both parties must have funds in a shared
multisignature address. The establishment of this fund output does not
differ substantially from the process of channel funding in the Lightning
Network. Alice and Bob initially agree on the funding txid and index, so
that they may create child transactions spending from this output before it
is broadcast to the network and confirmed in a block.

Alice and Bob then proceed to create the contract, which consists of
a large number of transactions spending the funding output. The output
can only be spent once, so only one of the transactions which make up the
contract will ever appear on the blockchain; Alice and Bob do not yet know
which and so multiple transactions need to be signed and stored by both of
them.

Each closing transaction is based on a different possible price at closing
time. In this example, the price is that of the Japanese Yen, expressed in
satoshis. Alice and Bob will create 2000 transactions, each for a different
closing price.

Similar to the currently developing Lightning Network software [4], par-
ties agree on the contract state but hold variations of the same transaction.
Alice holds transactions signed by Bob, which have two outputs: one which
pays to Bob directly, and the other which pays to either Alice or Bob. Bob
holds the reverse: transactions signed by Alice, which pay directly to Alice,
and pay to a script which either Bob or Alice may redeem.

While in the Lightning Network these scripts are used to maintain con-
sistency in a payment channel such that either party broadcasting an old
state allows the other party to take all the funds from both outputs, in DLC
the same output script is used for a different purpose. Alice and Bob do
not reveal secrets to each other; rather it is Olivia who reveals a secret to
everyone.

3



Transactions within the contract

Alice and Bob have thousands of signed Contract Execution Transactions,
which they store on their computers. Each of these CETs spends from the
contract funding outpoint, and sends to two outputs: the counterparty’s
pubkey hash, and one’s own script hash. The script is the same sequence of
opcodes as used in Lightning Network channels. Alice holds

PubAi ∨ (PubBi ∧ TimeDelay)

while Bob holds

PubBi ∨ (PubAi ∧ TimeDelay)

The latter allows a user with Key PubBi to spend the ouput immediately,
and allowing a user with Key PubAi to spend the output after some time
has elapsed. In the Lightning Network, this is used to enforce revocation
of a previously valid channel state, while here it enforces that users only
broadcast the transaction which the oracle has indirectly endorsed as the
correct state.

Alice holds transactions TX1...TXn which send to

PubAi = PubAlice + siG

where

siG = R− h(i, R)V

and PubB is just Bob’s public key.
Bob holds the inverse: transactions which send to PubA, Alice’s public

key, with a time delay and

PubBi = PubBob + siG

without the time delay.
While verifiers can compute the point siG, they do not know what si

will be for any given i. When Olivia signs, she reveals the discrete log of a
point that Alice and Bob have already computed.

4



Oracle Signing

The oracle’s job is straightforward: wait until Friday market close, observe
the closing price of the Yen, and sign that number with the pre-commited
nonce.

The oracle sets m to be the observed price, in this example, 1050 yen
per satoshi. The oracle computes

s = k − h(1050, R)v

Here, the price of Yen rose to 1050 satoshis per Yen, so m = 1050. (In
practice the message m is a hash output but for clarity here it’s left as the
raw number being signed)

This reveals s1050 which Alice and Bob have previously used to derive
keys for their transactions.

s1050G = R− h(1050, R)V

Once the oracle reveals s1050, the private scalar for PubB1050 is fully
known to Bob as it is b+s1050. Alice similarly knows the scalar for PubA1050 .

Contract Execution

Both Alice and Bob now have the option of unilaterally closing the con-
tract at the correct state by broadcasting their TX1050. Immediately upon
broadcast, they spend the sighash output, sending that to an address they
fully control. As this results in two on-chain transactions, it would be more
efficient if the parties agree to create a new transaction, TXgg, sending di-
rectly to pubkey hash outputs for both parties with the same amounts as in
the contract execution transaction. They also must be careful to spend the
script hash output immediately; if they wait longer than the delay period,
before spending it, their counterparty could claim those funds.

If either party prematurely broadcasts an execution transaction, or broad-
casts the wrong transaction (for example, broadcasting TX950, they will not
be able to spend the script hash output. Their counterparty, after the delay
time has elapsed, will be able to claim the script hash output. Since they
have sole access to the the pubkey hash output this allows them to claim the
entire value of the contract. In this way, violating the rules of the contract
forfeits all value in the contract to the opposite party.

5



Risk of the Trusted Oracle

The oracle, Olivia, can mis-report the price. If the oracle does mis-report,
all users of the system will be able to identify this error and stop using the
oracle. If the oracle attempts to report two different prices (in order to as-
sume the role of a counterparty in a contract, and “win” the bet regardless
of the true outcome), they will reveal their permanent private key, as well
as the k-value for the particular contract they attempted to double-report.
This attack will fail because anyone is able to sign any message with the
oracle’s key, making the oracle no more likely to win than the counterparty
they are trying to defraud. All further use of the oracle is similarly imfea-
sible. Essentially, the oracle has one chance to mis-report, and then will
immediately lose the trust of all users.

Multiple oracles can be used by counterparties in a contract. If two or-
acle signatures are desired, counterparties simply add the oracle sG points
together before adding them to their pubkeys. This has some risks for data
which may not have exact consensus; if Oracle1 reports 1050 and Oracle2 re-
ports 1049, no commited transaction may be used and a pre-arraged timeout
transaction can eventually become valid.

Another risk is that a party that has lost all or substantially all of their
position in a contract may broadcast an invalid Contract Execution Trans-
action in order to delay the rightful owner of the funds. Ultimately the funds
can be recovered by the correct party, but they will have to wait a timeout
period before gaining access to the funds. This is an annoyance which can
be mitigated by over-colaterallizing the contract, and will hopefully be rare
in practice.

Optimizations

Several optimizations can reduce computation and data requirements. There
are undoubtely many optimizations to be found when implementing the
system, but several basic ideas are listed here.

Base and Exponent R values

When Alice and Bob create their contract, they need to send and store
signatures for every possible message mi that Olivia may sign. There may
be many possible prices for an asset, and many thousands of signatures to be
verified and stored. While transactions with differing payouts to Alice and
Bob are useful and provide precision, there may be many different prices

6



m1,m2, ...,mq which result in identical payout amounts that nevertheless
must be anticipated. Most likely there will be “knock-in” and “knock-out”
prices below which, or above which, a single party receives all the money in
the contract. For example, if the price of Yen falls below 10 satoshis, Alice
and Bob agree that Bob gets all the money, regardless of whether the final
price is 4 or 5 satoshis. Similarly, Alice gets all the money when the price
goes above 5,000, whether it’s 6,000 or 77,000.

Since prices can range over many orders of magnitude, Alice and Bob can
optimize for these knock-in and knock-out prices by creating fewer trans-
actions in these extreme ranges. This is possible if Olivia commits to two
R-values instead of one: Rmantissa and Rexponent. Olivia then promises to
sign two messages representing the price: instead of signing “1050”, she
signs “.050” using Rmantissa, and 3 using Rexponent. The decimal base and
mantissa’s leading 1 are implied; 1.050 ∗ 103 = 1050

Alice and Bob can construct transactions the same way by calculating
the sum of the smantissaG and sbaseG points. When Olivia signs the pair
of mantissa and base messages, she reveals the s values which can then
be added together to get the scalar needed. The optimization lies in the
fact that Alice and Bob don’t need precision if the exponent is 4; they can
ignore Rmantissa when Rexponent is 4, 5, 6... and only sign a handful of
transactions dealing with many possible unlikely outcomes.

This could be extended to 3 or 4 R-points to allow further granularity.
Also, 10 is not an optimal base for exponentiation; 2 is probably a better
choice.

Contracts within channels

If contracts each have an individual outpoint and p2wsh address, then every
contract will take up space on the blockchain. Instead, contracts can be
created within an already existing Lightning Network channel. In addition
to the direct and HTLC outputs that exist in the commitment transaction
spending a channel funding outpoint, there may be multiple, 2 of 2 multisig
outputs which are their own channels or in this case, contracts. This way if
both parties are online and acknowledge the results of a contract, they may
remove the contract output from the channel and update both balances to
reflect the changes the contract made. If either party is un-cooperative the
other party can close the parent channel, and immediately close the contract
as well using the oracle supplied s values.

7



Further work

Novation

Futures contracts are useful, but typically traders want to enter and exit
positions before the closing times. If both parties are online and agree, they
may be able to negotiate an end to the contract based on the current price,
rather than the future price. One party may, quite reasonably, not agree
to cut the contract short. In the case where Bob wants to leave early, but
Alice wants to see the contract through to the end, Bob may be able to swap
places with Carol, another user who wants to take the position Bob held.
Bob may offer a fee for Alice to change nothing about her contract except
for the public keys of her counterparty. This seems to require all 3 parties
to be online simultaneously and seems to be an interesting area of research.

Decentralized Matching

Before Alice and Bob can create a contract, they need to find each other. Ini-
tially this can be done with centralized matching engines, which would hold
no custody of user funds. Fair decentralized peer discovery and matching is
another topic for future research.

Conclusion

Discreet Log Contracts have the potential to enhance the use cases of Bitcoin
and other cryptographic currency networks by allowing users to discreetly
enter in to futures contracts for a wide variety of assets, trusting oracles only
to sign the correct price. As the transactions look the same as Lightning
Network transactions, it will remain difficult to estimate the total usage of
DLCs across the network, and they should allow extensive complex smart
contracts to occur without unduly taxing the global network.

References

[1] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[2] Claus Schnorr. Efficient identification and signatures for smart cards.
pages 239–252, 1990.

8



[3] Cristina Prez-Sol, Sergi Delgado-Segura, Guillermo Navarro-Arribas,
and Jordi Herrera-Joancomart. Double-spending prevention for bit-
coin zero-confirmation transactions. Cryptology ePrint Archive, Report
2017/394, 2017. http://eprint.iacr.org/2017/394.

[4] Thaddeus Dryja Joseph Poon. The bitcoin lightning network: Scalable
off-chain instant payments. Technical Report (draft), 2015.

9


