
Costs of an Attack Against Proof-of-Work
Loïc Etienne, PwC Zürich, loic.etienne@pwc.ch

October 30, 2020

Abstract

Bitcoin is a blockchain whose immutability relies on Proof-of-Work: Be-
fore appending a new block, some so-called miner has to solve a crypto-
graphic challenge by brute force. The blockchain is spread over a network
of faithful miners, whose cumulated computing power is assumed to be
so large that, among other things, it should be too expensive for an at-
tacker to mine a secret fork n blocks longer than the main blockchain,
provided that n is big enough. For a given targeted advance of n blocks,
we investigate the expected time for the attacker to mine such a secret
fork, the underlying cumulative distribution function, and some related
optimization problems.
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1 Introduction
An attack not considered here In Bitcoin’s original white paper, the following
attack is quantified: The attacker has to rewrite the history, launching his secret fork
from a given block in the past, initially n blocks behind the topmost block. He then
wins whenever he catches up. This is the well-known gambler’s ruin problem: If the
attacker has less computing power than the main blockchain’s miners, his probability
of eventually winning decreases exponentially with n. The question is thus: What is
the probability that the attacker wins eventually?

The attack considered here The attack we consider here, essentially less diffi-
cult, is also mentioned in Bitcoin’s original white paper, but not properly quantified
there. In this attack, the attacker has to forewrite the future, launching his secret fork
from any block. He then wins whenever he has mined a fork which is n blocks longer
than the main blockchain. He never has to catch up, because he is allowed, at any
time, to drop his current secret fork and begin a new one, from the main blockchain’s
current topmost block. As we will show, this restart rule ensures that his probability
of eventually winning is 1, independently of his computing power. The question is
thus: What is the expected time for the attacker to win?

Some practical considerations This is arguably the most powerful attack
purely against Proof-of-Work, that is: The attacker first mines a secret fork until
it is n blocks longer than the main blockchain; subsequently, he executes a payment
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on the main blockchain; finally, later on, he spreads his secret fork, while it is still
longer than the main blockchain, such that it prevails and thus erases the payment in
question, whose amount can then be double-spent.

The average costs of doing so are proportional to the average time needed (in
addition, perhaps, to the fixed costs of the initial setup), whereas the gains are the
amount of the payment in question; comparing both yields whether the attack is
profitable or not, on average, for a given number n of blocks. For a given amount, the
respective computing powers being given as well, since the profitability decreases as n
increases, the minimal n can be determined such that the attack is not profitable. For
this minimal n, the payment in question is secure (in our model) if it lays n blocks
behind the current top of the main blockchain (such a payment is also said to have n
confirmations).

Out of scope matters The costs of the attack per time unit, expressed in the
crypto-currency, is an essential parameter which, however, is not considered here. It
depends, among other things, on the value of the crypto-currency (which is typically
volatile, and may be affected by a successful attack), on the costs per time unit of
the attack with a given computing power, and on the mining rewards and fees (to be
deducted from the costs).

Whenever the attacker and the honest miners mine a block simultaneously, it is
indifferent, in our model, whether the attacker chooses to restarts or not, such that
the fees and rewards of such a block are not taken into account.

During the attack, the attacker may receive payments on the main blockchain.
Our model assumes that the attacker is able to include such payments into his secret
fork, such that they are immaterial.

The most simple fork choice rule is assumed: The longer fork prevails and orphaned
blocks are discarded. More sophisticated algorithms and their possible impact on the
considered attack are not considered.

A successful attack may erase a given payment unintentionally, as a side effect:
Indeed, the proper target of an attack may be any set of payments, whose total amount
is possibly much greater than the amount of a given payment whose security is to be
assessed, and which may or may not belong to the set of payments targeted by the
attacker. For instance, the payment of a mere coffee may be erased because some
earlier multi-million payment has been successfully attacked. Thus, the expected time
of the attack considered here is only one of many factors which may be taken into
account for assessing the security of a given payment.

In the following, the main results are summarized, whereas their proofs are given later.

1.1 Expected time in the continuous-time model
The expected time for the attacker to win is a function of, among other, the respective
computing powers of the attacker and the attackee.

Definition 1.1.1 (Variables for the continuous-time model).
n Targeted advance, in blocks, of the attacker’s secret fork, integer, 0 ≤ n.
a Average time for the attacker to mine one block, a > 1.
b Average time for the attackee (the honest miners) to mine one block, b > 1.
s a / b.
E Expected time for the attacker to mine a fork with the targeted advance.
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Theorem 1.1.2 (Expected time in the continuous-time model).
For a ̸= b : E = a · b · (a · (sn − 1)− (a− b) · n) / (a− b)2

For a = b : E = a · n · (n+ 1) / 2

Notice that if a > b (that is, s > 1), then the attacker is slower and thus has less
computing power than the attackee. Thus, the asymptotic growth of E as function of
n is: exponential if the attacker has less computing power than the attackee; quadratic
if he has the same computing power; linear if he has more computing power.

Examples In the following examples, b is set to 600, because it is the average
number of seconds for the honest miners to mine a single block on Bitcoin. Then, the
expected time E for a successful attack is displayed for: a faster attacker (a = 450),
an equally fast attacker (a = 600), and a slower attacker (a = 800). The expected
mining time b · n for the honest miners to mine n blocks is also given, as a reference
value.

E (expected time for a successful attack)
n Honest miners Attacker faster Attacker as fast Attacker slower

(b = 600 secs) (a = 450 secs) (a = 600 secs) (a = 800 secs)
1 10.00 min 7.51 min 10.02 min 13.36 min
2 20.00 min 20.66 min 30.05 min 44.53 min
3 30.00 min 38.02 min 1.00 h 1.66 h
4 40.00 min 58.55 min 1.67 h 3.10 h
5 50.00 min 1.36 h 2.50 h 5.25 h
6 1.00 h 1.77 h 3.51 h 8.34 h
7 1.17 h 2.20 h 4.67 h 12.68 h
8 1.33 h 2.65 h 6.01 h 18.70 h
9 1.50 h 3.12 h 7.51 h 1.12 days

10 1.67 h 3.59 h 9.18 h 1.59 days
15 2.50 h 6.02 h 20.03 h 7.83 days
20 3.33 h 8.51 h 1.46 days 34.62 days
25 4.17 h 11.00 h 2.26 days 148.20 days
30 5.00 h 13.50 h 3.23 days 1.72 years
40 6.67 h 18.50 h 5.70 days 30.72 years
50 8.33 h 23.50 h 8.87 days 5.48e+02 years

100 16.67 h 2.02 days 35.13 days 9.88e+08 years
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Notice that the faster attacker is not necessarily asymptotically slower than the honest
miners: The respective asymptotic slopes depend on a (in particular, they agree if
a = b / 2).

Limitations The respective computing powers and the difficulty of the crypto-
graphic challenge to be solved for mining a block are assumed to remain the same for
the whole duration of the attack; that is, a and b are assumed to be constant. Further-
more, although mining is actually a discrete-time stochastic process (the frequency of
the mining process, at which one guess, or several guesses in parallel, can be vali-
dated, is limited, ultimately by the clock rate of the underlying hardware), the attack
is modeled here as a continuous-time stochastic process (where the respective aver-
age times for mining a block are given), because, in a practical setup, the frequency
of the mining process is high in comparison to a and b. Doing so is acceptable for
assessing the security of the attackee, because the continuous-time model (arbitrary
high frequency) yields lesser an expected time than the discrete-time model (any finite
frequency), as we will show in Claim 2.5; in other words, the efficiency of the attacker
is slightly overestimated in the continuous-time model.

1.2 Optimal computing power in the discrete-time model
In the formulae above, the computing power of the attacker resp. of the attackee is
implicitly given by a resp. b, the average time for the attacker resp. for the attackee
to mine a block. For determining the optimal computing power of the attacker, we
assume that both the attacker and the attackee use the same kind of hardware units,
in parallel, and that the attacker has κ times as many of them as the attackee. Thus,
the relative computing power κ can be chosen freely by the attacker, but is assumed
to remain the same for the whole duration of the attack. Then, the average costs of
a successful attack are, up to the initial setup, proportional to κ · E (where E also
depends on κ, decreasingly), which are to be minimized as a function of κ.

For the optimization problem to be well-posed, we model the race as a simplistic
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discrete-time stochastic process, whose time unit is the duration d of the period of the
frequency, assumed common to both the attacker and the attackee, at which they are
notified upon the progress of the race, where the probability of success per period of
duration d is, for the attacker, c = d / b (geometric distribution), whereas it is, for
the attackee, 1 − (1 − c)κ = d / a. In this discrete-time model, the optimal relative
computing power κopt is then well-defined (as we will show later on): For κ > 0 (or
κ ≥ 0 if n = 1), κ ·E(κ) has, as a function of κ, a unique minimum, taken at κ = κopt.

Theorem 1.2.1 (Expected costs in the discrete-time model). For b, d, n given and
κ > 0 (or κ ≥ 0 if n = 1): costs(κ) = κ · E(κ) is strictly convex function of κ having
a unique minimum, where
c = d / b

s(κ) = (c / (1− c)) · (1− c)κ / (1− (1− c)κ)

f(s) = (s · (sn − 1)− n · (s− 1)) / (s− 1)2

E(κ) = b · (s(κ) + c / (1− c)) · f(s(κ))

Estimation of the frequency period A reasonable estimate for the order of
magnitude of the frequency period d may be one second. Indeed, whereas the amount
of time needed by a single hardware unit for guessing and validating a single solu-
tion of a given cryptographic challenge may be much shorter, the synchronization
overhead prevails, because, several hardware units, running in parallel, must be coor-
dinated: They all work on the same cryptographic challenge until one of them guesses
a correct solution, on which event (whose propagation is not immediate) the attacker
determines the next cryptographic challenge, and subsequently notifies all hardware
units accordingly (which also takes time). Furthermore, the main blockchain must be
monitored as well (involving even slower internet communication), and, whenever it
becomes longer, the attacker then drops his secret fork and restarts anew, again by
notifying all hardware units accordingly. Hence, the communication and coordination
overhead limits the maximal frequency at which hardware units can be notified, that
is, ultimately, the maximal frequency (if each guess happens to be correct) at which
blocks can be produced.

Further considerations upon the frequency period Thus, we assume that
both the attacker and the attackee mine at the same frequency, but with different
probabilities of success per period of duration d. It is arguably an over-simplification, in
particular because the frequency at which the attacker coordinates its hardware units
and the frequency at which he is notified about the progress of the main blockchain
may be very different. The former prevails whenever the attacker is ahead, whereas
the latter prevails whenever the attacker has no advance yet.

Examples For the special case n = 1, the costs are, for κ ≥ 0, a strictly increasing
and convex function of κ, such that κopt = 0. This case pertains to a miner, which
is indeed an attacker targeting an advance of only one block, if the the most simple
fork management strategy is assumed, where a miner restarts (dropping his own fork)
whenever another miner wins the race by spreading a new block. Which is arguably
not the best strategy, in particular in the event that the attacker and another miner
spread a block about simultaneously (in this case, in our model, it is indifferent whether
the attacker drops his secret fork or not, whereas, in practice, he should keep working
on it, because of the associated rewards, which are not considered separately in our
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model). Up to this simplification, κopt = 0 means that, in our model, the return of
investment (not the absolute revenue per time unit) of a mining pool drops with its
size. Miners are not investigated any further here, they just happen to be related to
the special case n = 1, which is otherwise not relevant for a practical attack.

For n ≥ 2, the costs are, for κ > 0, a strictly convex function of κ, and κopt >
1. Furthermore the costs are unbounded for κ arbitrarily small, and have a linear
asymptote (of slope n · b · d / (b− d)) for κ arbitrarily big.

costs for n = 10 and b = 600

r d = 0 d = 0.1 d = 1 d = 10

1 33000.00 33005.50 33055.09 33559.32
2 10801.17 10803.17 10821.20 11004.47
3 8550.01 8552.26 8572.55 8779.49
4 7733.33 7736.00 7760.06 8006.09
5 7312.50 7315.63 7343.83 7633.03

10 6592.59 6598.15 6648.37 7170.36
15 6382.65 6390.69 6463.44 7229.79
20 6282.55 6293.08 6388.52 7407.18
25 6223.96 6236.99 6355.22 7633.54
30 6185.49 6201.03 6342.14 7887.22
40 6138.07 6158.61 6345.71 8445.14
50 6109.95 6135.50 6368.90 9049.83
75 6072.86 6110.95 6461.30 10709.64

100 6054.48 6105.14 6574.17 12540.72
125 6043.51 6106.74 6696.18 14514.80
150 6036.21 6112.04 6823.62 16609.57
200 6027.12 6128.19 7089.16 21081.36

For n ≥ 2, the optimal computing power κopt is an increasing function of n, which
is, for n → +∞, bounded by a constant depending decreasingly on d (the frequency
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period), and significantly greater than 1 for d small. This means that, in our model,
the frequency (of period d) limits the attacker’s computing power, if his goal is to
minimize the costs of the attack. Of course, there are also practical limitations to the
computing power the attacker may have at his disposal, as well as to the time (not
arbitrarily short) he may use it.

κopt for b = 600 sec
n d = 0.1 sec d = 1 sec d = 10 sec

2 77.29 24.33 7.59
3 89.72 28.55 9.18
4 95.28 30.41 9.87
5 98.46 31.46 10.25

10 104.51 33.44 10.95
15 106.44 34.07 11.17
20 107.40 34.38 11.27
50 109.09 34.93 11.46

100 109.65 35.12 11.52
+∞ 110.21 35.30 11.59

For n ≥ 2, the optimal costs costs(κopt) are an increasing function of n, as well as
the ratio costs(κopt) / (b · n), the optimal average costs relative to the average costs
for the main block chain to mine n blocks. This ratio is, for n → +∞, bounded by a
constant, depending increasingly on d (the frequency period), and, in a practical setup
(d much smaller than b), not much greater than 1. This means that a payment with
n confirmations is secure, in our model, only if costs for the miners to mine those n
blocks are about as high as the total amount of the payment(s) in question.
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costs(κopt) for b = 600 sec
n d = 0.1 sec d = 1 sec d = 10 sec

2 1.0130 1.0419 1.1410
3 1.0151 1.0486 1.1657
4 1.0160 1.0517 1.1766
5 1.0165 1.0534 1.1827

10 1.0175 1.0567 1.1941
15 1.0178 1.0577 1.1978
20 1.0180 1.0582 1.1996
50 1.0183 1.0592 1.2027

100 1.0184 1.0595 1.2038
+∞ 1.0185 1.0598 1.2048

1.3 Cumulative distribution function in the continuous-
time model

The probability that the attacker wins in a given time t (or less) is given by an
exponential polynomial P (t), as given by the following theorem, which is a special
case of Claim 4.10 and Claim 4.13.

Theorem 1.3.1 (Cumulative distribution function in the continuous-time model).

P (t) = 1−
n−1∑
j=0

cj · µt
j

where
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n, a and b are those of Definition 1.1.1
Ui(z) are the Chebyshev polynomials of the second kind
zj are the n roots of Un(z)−

√
a / b · Un−1(z)

µj = exp

(
2 ·

√
a · b · zj − (a+ b)

a · b

)

cj = 4 ·
(
√

b / a)n−1 · Un−1(zj)

− ln(µj) · a
·

z2j − 1

U2·n(zj)− U2·n(1)

Also, the roots zj are real, pairwise distinct, and, by convention, indexed in decreasing
order (z0 is the greatest root), and thus the eigenvalues µj are indexed in decreasing
order (µ0 is the greatest root). Furthermore, z0 > 0 and, for 0 < j < n, |zj | < 1, and, if
z0 = 1, by singularity removal, (z20−1)/(U2·n(z0)−U2·n(1)) = 3/(2·n·(n+1)·(2·n+1)).
Moreover, 0 < µj < 1, c0 > 0, cj ̸= 0, and the j-ordered coefficients cj have alternating
signs.

Furthermore, P (t) is strictly increasing, from 0 (at t = 0) to 1 (for t → +∞),
and is, for t big enough, strictly concave; also, P (t) has, for t > 0, a unique convexity
change if n > 1, and no convexity change if n = 1.

P (t) is illustrated below for a = 600, b = 600 and n = 10, where the expectation
E is 33000 and the standard deviation SD is 27066.585.

Cumulative Distribution Function
t P (t)

0 0.000
20000 0.399
33000 0.629 t = E
40000 0.714
60000 0.864
60067 0.865 t = E + 1 · SD
80000 0.936
87133 0.951 t = E + 2 · SD

100000 0.969
+∞ 1.000
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An attacker may have a given amount of time t at his disposal for an attack, where
the attacked amount, the costs per time unit, and the initial setup costs are given,
such that the expected gains can be computed from P (t). Two variants are possible:
A fixed-time attack ends when t time units have elapsed (whether the attacker wins
earlier or not), whereas a bounded-time attack ends when t time units have elapsed or
when the attacker wins (whichever happens first). The expected gains for a fixed-time
attack are positive if t > 0 belongs to a bounded (or empty) interval (see Section 5);
furthermore, if this interval is not empty, there is a unique optimal t on this interval.
The expected gains for a bounded-time attack are positive if t > 0 blongs to a right-
unbounded (or empty) interval (see Section 6); furthermore, if this interval is not
empty, the expected gains grow with t on this interval.

These attacks are illustrated below for a = 600, b = 600, n = 10, where the
attacked amount is 1000, the costs per time unit are 0.01 and the costs of the initial
setup are 30.

Expected gains
Time Fixed-time attack Bounded-time attack

0 -30.000 -30.000
9158 -3.025 0.008
9335 0.011 3.257

20000 168.683 200.326
40000 284.162 430.937
41671 284.692 443.547
60000 234.250 540.712
80000 105.530 592.846
93031 0.002 610.972

100000 -60.618 617.606
+∞ −∞ 640.000
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2 Time Expectation and Variance
Sequential mining at a given frequency Mining a block is a discrete-time
stochastic process where a cryptographic challenge needs to be solved by brute force,
that is, by repeated guessing and validating until success. Each attempt requires a
fixed amount of time, depending on the underlying hardware. This also holds in a
parallelized computing environment, where several guesses can be validated at once,
because blocks are chained: The cryptographic challenge for a block depends on a
particular solution of the challenge for the previous block. In other words, whereas
several guesses can be validated in parallel, different blocks cannot be mined in parallel.
Except perhaps if the computing power is so huge that guessing correctly at once for
several consecutive blocks has a non-negligible probability of success, which we deem,
however, unrealistic. Thus, the mining process has a given frequency, at which, with
a given probability, a new block is appended to the blockchain.

We assume that both the attacker and the attackee mine at the same frequency (but
with possibly different computing powers, that is, different probabilities of guessing
correctly in a frequency period of duration d) and that this common frequency is high
in comparison to the amount of time the attacker or the attackee needs on average to
mine one block.

The frequency is not known a priori, and has thus, in principle, to be estimated.
Whereas one guess or several guesses in parallel per second may be a reasonable
estimate (taking into account the synchronization between several hardware units, and
also with the main blockchain being attacked), the estimate is actually not essential
in the current context: As we will show in Claim 2.5, higher an estimated frequency
(the respective average times for mining a block remaining the same) yields lesser
an expected time for a successful attack. This can also be understood intuitively:
Assuming higher a frequency, the attacker is notified earlier whenever he has guessed
a valid solution of the current cryptographic challenge, or whenever he lays behind the
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main blockchain, to the extent of which he can thus avoid wasting computing power
on an obsolete cryptographic challenge.

In the following discrete-time model, we first assume, for the sake of simplicity, that
the frequency period matches the time unit: One guess, or several guesses in parallel,
are validated in one time unit. Also, we say that the attacker resp. the attackee wins
a single round whenever he guesses, in one frequency period, a valid solution of the
cryptographic challenge.

Definition 2.1 (Variables for the discrete-time model).
n Targeted advance, in blocks, of the attacker’s secret fork, integer, 1 ≤ n.
m Initial advance, in blocks, of the attacker’s secret fork, integer, 0 ≤ m < n.
a Average time for the attacker to mine one block, a > 1.
b Average time for the attackee (the honest miners) to mine one block, b > 1.
P Probability that the attacker wins a single round.
Q Probability that the attackee wins a single round.
p Probability that the attacker wins a single round alone (no draws).
q Probability that the attackee wins a single round alone (no draws).
s q / p.
N n · (n+ 1).
M m · (m+ 1).

Notice that this definition of s (pertaining to the discrete-time model) does not agree
with Definition 1.1.1 (pertaining to the continuous-time model, investigated later on).
However, they agree in the limit case of arbitrarily short a frequency period.

The probabilities P and Q are assumed to be constant, such that the mining process
follows the geometric distribution, and thus P = 1 / a and Q = 1 / b. Accordingly, the
probability that the attacker resp. the attackee wins a single round alone (excluding
draws) is: p = P · (1 − Q) resp. q = Q · (1 − P ). Notice that the latter probabilities,
for a and b remaining the same, depend non-linearly on the frequency period. This
dependency is investigated later on, but for the time being, the frequency period (the
duration of a single round) and the time unit agree.

Claim 2.2 (Bounds for p+q). For p and q of Definition 2.1, the following inequalities
holds:

2 · √p · q ≤ p+ q ≤ 1− 2 · √p · q

Proof. Using twice the inequality between the arithmetic and geometric mean yields:
2 ·√p · q ≤ p+ q = 1− (P ·Q+(1−P ) · (1−Q)) ≤ 1− 2 ·

√
P ·Q · (1− P ) · (1−Q) =

1− 2 · √p · q

With a single round having the duration of one time unit, let T (m) (a random
variable) be the time the attacker needs to increase the number of blocks his secret
fork is longer than the attackee’s chain, from initially m blocks to n blocks. Let
A resp. B be the Bernoulli variable indicating that the attacker resp. the attackee
wins a single round alone, that is: E(A) = p, E(B) = q (A and B match the given
probabilities), A · B = 0 (A and B are mutually exclusive, since the attacker and the
attackee cannot both win the same single round alone), A and B are independent of
T (m) (the respective probabilities of guessing correctly are constant).

Thus, T (m) is uniquely defined by the first of the following constrained linear
recurrence relations (the time unit being a single round), from which those for its
expectation E(T (m)) and its variance V ar(T (m)) can be derived by using standard
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formulae for computing the expectation and the variance of composite random vari-
ables. The derivation of the variance is not immediate, but presents no particular
difficulty, and is thus left to the reader.

Constrained linear recurrence relations For 0 < m < n:
T (m) = 1 +A · T (m+ 1) + (1−A−B) · T (m) +B · T (m− 1)

T (0) = 1 +A · T (1) + (1−A) · T (0)
T (n) = 0

E(T (m)) = 1 + p · E(T (m+ 1)) + (1− p− q) · E(T (m)) + q · E(T (m− 1))

E(T (0)) = 1 + p · E(T (1)) + (1− p) · E(T (0))

E(T (n)) = 0

V ar(T (m)) = p · V ar(T (m+ 1)) + (1− p− q) · V ar(T (m)) + q · V ar(T (m− 1))

+ p · (1− p) · (E(T (m))− E(T (m+ 1)))2

+ q · (1− q) · (E(T (m− 1))− E(T (m)))2

+ 2 · p · q · (E(T (m))− E(T (m+ 1))) · (E(T (m− 1))− E(T (m)))

V ar(T (0)) = p · V ar(T (1)) + (1− p) · V ar(T (0)) + (1− p) / p

V ar(T (n)) = 0

Solutions of the constrained linear recurrence relations These con-
strained linear recurrence relations can be solved by using standard techniques (in-
volving roots of the characteristic equation), which requires quite some work. We give
the solutions without their formal derivation, since they are unique (as many con-
straints as degrees of freedom) and can be verified without particular difficulty.
For a ̸= b:
p = (b− 1) / (a · b)
s = (a− 1) / (b− 1)

E(T (m)) = (1 / p) · (s · (sn − sm)− (n−m) · (s− 1)) / (s− 1)2

V ar(T (m)) = (1 / p)2 · (
s2 · (s2·n − s2·m)

− 4 · s · (s− 1) · (n · sn −m · sm)

+ s · (4− p · (s− 1)2) · (sn − sm)

− (n−m) · ((s+ 1)− p · (s− 1)2) · (s− 1)

) / (s− 1)4

For a = b:
E(T (m)) = (1 / p) · (N −M) / 2

V ar(T (m)) = (1 / p)2 · (N · (N + 1− 3 · p)−M · (M + 1− 3 · p)) / 6

Dependency on the estimated frequency The above results depend on the
frequency period, that is, the duration of a single round: Given are the durations a and
b (the average times for the attacker resp. the attackee to mine one block), which do
not depend on the frequency period, whereas probabilities p and q (that the attacker
resp. the attackee wins a single round alone) depend non-linearly on the frequency
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period.
Now, we refine the discrete-time model and consider more generally a single round

of arbitrary but given duration d (instead of 1 heretofore), with 0 < d < min(a, b).
Consequently: Pd = d/a and Qd = d/b. Substituting these d-parameterized definitions
of P and Q in the above formulae and scaling the time values back to the original time
unit yields Td(m) = d ·T (m), with corresponding factors d resp. d2 for the expectation
resp. the variance.

First, d-parameterized formulae for the time expectation and variance are given.
Then it is shown that the time expectation is an increasing function of d, such that
the time expectation in the continuous-time model (the limit case of arbitrarily short
a frequency period), is a lower bound, that is, an overestimation the attacker’s power,
which is acceptable for assessing the security of the attackee. Also, the continuous-
time model yields simpler formulae, which agree, for m = 0, with those of Theorem
1.1.2, and which are good approximations if d is much smaller than a and b (which is
likely in a practical setup).

Expectation and variance parameterized with d

For a ̸= b:
s = q / p = (a− d) / (b− d)

E(Td(m)) = (a · b / (a− b)) · (s · (sn − sm)− (n−m) · (s− 1)) / (s− 1)

V ar(Td(m)) = (a · b / (a− b))2 · (
s2 · (s2·n − s2·m)

− 4 · s · (s− 1) · (n · sn −m · sm)

+ 4 · s · (sn − sm)

− (n−m) · (s2 − 1)

) / (s− 1)2 − d · E(Td(m))

For a = b:
E(Td(m)) = (a2 / (a− d)) · (N −M) / 2

V ar(Td(m)) = (a2 / (a− d))2 · (N −M) · (N +M + 1) / 6− d · E(Td(m))

For a ̸= b, the analysis of the expectation E(Td(m)) as function of d is facilitated
by redefining it as a function of s, which s is in turn a function of d.

Definition 2.3 (E(Td(m)) with function composition).
s(d) = (a− d) / (b− d)

f(s) = (s · (sn − sm)− (n−m) · (s− 1)) / (s− 1)2

E(Td(m)) = (a · b / (a− b)) · (s(d)− 1) · f(s(d))

Claim 2.4 (Analysis of f(s)). For 0 ≤ m < n, f(s) is a polynomial of degree n−1 with
positive coefficients. The same holds for f(s)+(s−1) ·f ′(s), too. Furthermore, f(0) =
(n−m), f(1) = (n−m) ·((n+m)+1)/2 and f ′(1) = (n−m) ·((n2+n ·m+m2)−1)/6.

Proof. The formula for geometric sums and some rearrangements yields: f(s) =
(
∑m−1

i=0 (n−m) ·si)+(
∑n−1

i=m(n− i) ·si), and by calculus follows: f(s)+(s−1) ·f ′(s) =∑n−1
i=m(i+1) · si. Both are thus polynomials with the claimed properties. The compu-

tation of f(0), f(1) and f ′(1) presents no particular difficulty, and is thus left to the
reader.
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Claim 2.5 (Time expectation relatively to d). For d with 0 < d < min(a, b), E(Td(m))
is a strictly increasing function of d.

Proof.
For a ̸= b, s is positive, such that, with g(s) = (s− 1) · f(s):
E = (a · b / (a− b)) · g(s(d))
∂g/∂s = f + (s− 1) · ∂f/∂s > 0 (by Claim 2.4)
∂s/∂d = (a− b) / (b− d)2

∂E/∂d = (a · b / (a− b)) · ∂g/∂s · ∂s/∂d = (a · b / (b− d)2) · ∂g/∂s > 0

For a = b:
E = (a2 / (a− d)) · (N −M) / 2

∂E/∂d = (a2 / (a− d)2) · (N −M) / 2 > 0

Now, we can compute the formulae for the continuous-time model, which is, by
Claim 2.5, the lower-bound of the discrete-time model for d → 0. In particular, with
m = 0, this proves Theorem 1.1.2 and the related considerations of Section 1.1. Also,
in the limit case, the Definitions 1.1.1 and 2.1 agree.

Limits of the expectation and the variance for d → 0

For a ̸= b:
s = a / b

E(T0(m)) = a · b · (a · (sn − sm)− (a− b) · (n−m)) / (a− b)2

V ar(T0(m)) = a2 · b2 · (
a2 · (s2·n − s2·m)

− 4 · a · (a− b) · (n · sn −m · sm)

+ 4 · a · b · (sn − sm)

− (a2 − b2) · (n−m)

) / (a− b)4

For a = b:
E(T0(m)) = a · (N −M) / 2

V ar(T0(m)) = (2 / 3) · E(T0(m))2 · (N +M + 1) / (N −M)

3 Optimal Computing Power
Summary of the previous considerations Given the computing infrastruc-
tures of the attackee resp. the attacker, which both have a basic cycle of computation
of duration d, after which (but not before) it is known whether a solution of the cryp-
tographic challenge has been guessed correctly or not, we have given a formula for the
expected time E for the attacker to win, starting being m blocks longer and aiming
to be n blocks longer (m and n are integers with 0 ≤ m < n), with the computing
powers of the attacker resp. the attackee given by the average time a resp. b needed
to successfully mine a single block. For the duration d of a basic computing cycle,
0 < d < min(a, b) must hold, which is implicitly assumed from now on.
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Arbitrarily powerful attacker Now we consider an ideal attacker having as
much computing power as he wants, under the sole condition that it has to pay for
it proportionally. The attacker has thus κ times as many computing resources as
the attackee, in parallel. The higher the relative computing power κ, the lower the
expected time E, and the total costs are then, up to the initial setup, proportional
to κ · E (where E also depends on κ, decreasingly), which should be minimized as
function of κ. We will show that this minimum exists and is unique (Claim 3.2),
depends noticeably on d, and is bounded below by b ·(n−m), the limit for d arbitrarily
small and κ arbitrarily big (Claim 3.3 and 3.4).

The attacker’s costs as function of its computing power κ Let c be the
probability for the attackee to mine a block in one basic computation cycle of duration
d. Then, in regard to the mining time, the cumulative distribution function (CDF ) and
mean for the attackee to successfully mine a block follow the geometric distribution:
CDF = 1 − (1 − c)t/d and b = mean = d / c. Analogously, for the attacker, having
κ times as much computing power in parallel, this yields: CDF = 1 − ((1 − c)κ)t/d

and a = mean = d / (1− (1− c)κ). For b and d given, the adaptation of the previous
formulae yield thus:
c = d / b (thus 0 < c < 1)
s(κ) = (a− d) / (b− d) = (c / (1− c)) · (1− c)κ / (1− (1− c)κ) (thus 0 < s)
f(s) = (s · (sn − sm)− (n−m) · (s− 1)) / (s− 1)2

E(κ) = b · (s(κ) + c / (1− c)) · f(s(κ))
costs(κ) = κ · E(κ)

Furthermore, by elementary algebra and calculus:
s(κ) = s(κ) / (1− c)κ − c / (1− c)

s′(κ) = (c / (1− c)) · ln(1− c) · (1− c)κ / (1− (1− c)κ)2

s′(κ) = s(κ) · ln(1− c) / (1− (1− c)κ)

s′′(κ) = (c / (1− c)) · ln(1− c)2 · (1− c)κ · (1 + (1− c)κ) / (1− (1− c)κ)3

Claim 3.1 (Observation about s(κ)). For κ > 0 and 0 < c < 1: 2·s′(κ)+κ·s′′(κ) > 0.

Proof. For 0 < c < 1, 2 · s′(κ) + κ · s′′(κ) has the same sign as 2 · ((1 − c)κ − 1) −
κ · ln(1 − c) · ((1 − c)κ + 1). With the substitution v = −κ · ln(1 − c), the claim is
equivalent to: For v > 0, v + 2 + (v − 2) · exp(v) is strictly positive. Which is true,
because it has a root of multiplicity 3 at v = 0 and is strictly convex for v > 0.

Claim 3.2 (κ-optimal costs well-defined). For κ > 0 (or κ ≥ 0 if n = 1) and
0 < c < 1, costs(κ) is a strictly convex function of κ having a unique minimum. If
n = 1, the minimum is taken at κ = 0. If n ≥ 2, the minimum is taken at some κ
with κ > 1.

Proof. Let g(s) = (s+ c / (1− c)) · f(s), such that
costs(κ) = b · κ · g(s(κ))
costs′(κ) = b · (g(s(κ)) + κ · g′(s(κ)) · s′(κ))
costs′′(κ) = b · ((2 · s′(κ) + κ · s′′(κ)) · g′(s(κ)) + κ · g′′(s(κ)) · s′(κ)2)

Since 0 < c < 1, c / (1 − c) is strictly positive, and thus, by Claim 2.4, g(s) is the
product of two polynomials in s with strictly positive coefficients, and its degree is at
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least 1. Hence, for s ≥ 0, g(s) > 0, g′(s) > 0 and g′′(s) ≥ 0, such that, by Claim 3.1,
for κ > 0, costs′′(κ) is strictly positive.

Furthermore, b · g(0) · κ, that is, by Claim 2.4, b · (c / (1 − c)) · (n −m) · κ, is an
asymptote of costs(κ) for κ → +∞; indeed, s(κ) is exponentially decreasing in κ, and
thus, for κ → +∞, κ · s(κ) = 0 and s(κ) = 0, such that, for κ → +∞:

costs(κ)− b · g(0) · κ
= b · (κ · s(κ)) · (g(s(κ))− g(0)) / s(κ)

= b · 0 · g′(0)
Thus, costs(κ) is strictly convex for κ > 0 and unbounded for κ → +∞, such that, for
κ ≥ 0, it has a unique minimum (notice that for n ≥ 2, its limit for κ → 0 is +∞).

If n = 1, then f(s) = 1, such that costs(κ) = b · (c / (1− c)) · κ / (1− (1− c)κ). By
calculus, for 0 < c < 1, costs′(κ) has the same sign as 1− (1− κ · ln(1− c)) · (1− c)κ,
which is strictly positive, because, with the substitution v = −κ · ln(1− c), it has the
same sign as exp(v) − (1 + v), which is, for v ̸= 0 (that is, for κ > 0 and 0 < c < 1),
strictly positive, since 1 + v < exp(v). Thus, for 0 ≤ κ, costs(κ) takes its minimum
b · c / (− ln(1− c) · (1− c)) at κ = 0.

It remains to prove the claim for n ≥ 2, which is assumed from now on. Since
costs(κ) is strictly convex, it is enough to show costs′(1) < 0. By rearrangement,
costs′(1) < 0 is equivalent to −c / ln(1− c)− (1− c) < f ′(1) / f(1). Thus it is enough
to show: −c / ln(1− c)− (1− c) < 1 / 3 and 1 / 3 ≤ f ′(1) / f(1).

For 0 < c < 1, −c / ln(1− c)− (1− c) < 1 / 3 is equivalent to 4 / (4− 3 · c)− 1 <
− ln(1 − c), which is true because the equality is reached at c = 0, since the strict
inequality holds for the respective derivatives if 0 < (3 · c− 2)2 and 0 < c < 1.

For 0 ≤ m < n, by Claim 2.4, f ′(1) / f(1) = (1 / 3) · (n2 + n ·m+m2 − 1) / (n+
m+1), which is, by calculus, an increasing function of m and thus takes, its minimum
(1 / 3) · (n − 1) at m = 0, which establishes the lower bound 1 / 3, since n ≥ 2 is
assumed.

With m = 0, the above proves Theorem 1.2.1, and the related considerations of Section
1.2 are implicitly proved below.

The special case n = 1 is interesting, because it almost corresponds to a miner,
considered as an attacker targeting an advance of one block only, up to the draws where
both the attacker and the attackee win simultaneously, in which case the miner would
keep growing his fork (of the same length), such that, should he eventually be the first
to win alone, he would then additionally receive the rewards of such draws. However, in
a practical setup (high frequency in comparison to the average time for mining a block),
such draws are very unlikely, and thus we do not expect that they affect the gains of the
attacker significantly (however, it should be investigated properly, but it is not in the
scope of this paper, reason why we limit ourselves merely to plausible considerations
for interpreting the case n = 1). Under this likely but unproved assumption, Claim
3.2 shows that, in our model, the return on investment of a miner is achieved with as
few computing power as possible, that is, one hardware unit, assuming that the other
participants have similar hardware units in parallel; otherwise, faster hardware units
would be an obvious advantage, but it is not considered in our model. Despite the
limitations of our model, this may be an incentive for smaller miners: They may be
viable, even more than bigger ones, although they mine fewer blocks in a given time.
Intuitively, this is due to the fact that, in a parallelized computing environment, the
hardware units are competing against each other, which is not amortized if an advance
of one block only is targeted.
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As to the case n ≥ 2, the fact that there is a basic computing cycle of non-zero
duration d makes the costs increase linearly with κ, asymptotically, for κ big enough,
such that there is a unique minimum of the costs as function of κ, which can be
computed numerically. The dependency on d is investigated further in the following.

Claim 3.3 (Costs relatively to d). For 0 < d < b and the other parameters being
given, ∂costs/∂d > 0.

Proof. costs can be considered as a function of c: costs(c) = b·κ·u(c)·f(s(c)), with the
auxiliary functions s(c) = (c / (1− c)) · (1− c)κ / (1− (1− c)κ), u(c) = s(c)+ c / (1− c),
and f(s) as defined above. Since c is an increasing function of d, costs′(c) > 0 is
equivalently to be shown.

If κ = 1, then s = 1 and thus costs = b · f(1) / (1− c), such that costs′(c) > 0. It
remains to prove the claim for κ ̸= 1, which is assumed from now on.

By calculus, u′(c) and κ · (1− c)κ+1 − (κ+1) · (1− c)κ +1 have the same sign; the
latter has a root of multiplicity 2 at c = 0, and, by Descartes’ rule of signs, no other
root with 0 < c < 1, such that u′(c) is strictly positive. For n = 1, f(s) = 1 and thus
costs = b · κ · u(c), such that costs′(c) > 0. It remains to prove the claim for n ≥ 2,
which is assumed from now on.

By calculus, s′(c) and (1− c)κ −κ · (1− c)+ (κ− 1) have opposite signs; the latter
has a root of multiplicity 2 at c = 0, and, by Descartes’ rule of signs, no other root
with 0 < c < 1. Hence, s′(c) and κ− 1 have opposite signs.

By calculus, costs′(c) and u′(c) · f(s(c)) / f ′(s(c))+u(c) · s′(c) have the same sign.
For κ < 1, s′(c) and thus all factors of the latter are positive, and its first term is
strictly positive. It remains to prove the claim for κ > 1, which is assumed from now
on; in particular, s < 1 holds.

By Claim 2.4, f(s) + (s− 1) · f ′(s) is strictly positive for s > 0, and since 1 < n is
assumed and thus f ′(s) ̸= 0, (1− s) < f(s) / f ′(s) follows. Therefore, for κ > 1, it is
enough to show that u′(c) · (1− s(c)) + u(c) · s′(c) is positive. By calculus, it has the
same sign as (κ− 1) · (1− c)κ − κ · (1− c)κ−1 + 1, which has a root of multiplicity 2
at c = 0, and, by Descartes’ rule of signs, no other root with 0 < c < 1, such that it
is positive in this range.

Thus, by Claim 3.2, for any d with 0 < d < min(a, b), the other parameters except
κ being constants, there exist a unique κ, which we define as κopt(d), for which costs,
as function of κ, is minimal. Furthermore, by to Claim 3.3, costs is, for any κ given,
an increasing function of d, such that costs(κopt(d)) is an increasing function of d as
well. In the following, costs for d → 0 is investigated, for a better understanding of
κopt(d) and costs(κopt(d)).

Claim 3.4 (Costs for d arbitrarily small). limd→0 costs(κ) = b · f(1 / κ), which is a
decreasing function of κ, with horizontal asymptote limκ→+∞ b · f(1 / κ) = b · (n−m).

Proof. Since c is an increasing function of d, d → 0 and c → 0 are equivalent. By
calculus, limc→0 s(κ) = 1 / κ, such that limd→0 costs(κ) = b · f(1 / κ), as claimed
(see the auxiliary functions used in the proof of Claim 3.3 for details). For n = 1,
f(s) = 1 = n−m, such that b ·f(1/κ) = b · (n−m), independently of κ. For n ≥ 2, by
Claim 2.4, f(s) is a strictly increasing function of s (since s > 0) and f(0) = n −m,
such that b · f(1 / κ) is a strictly decreasing function of κ whose limit for κ → +∞ is
b · (n−m), as claimed.
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Thus, Claim 3.4 shows that, for any d and κ with 0 < d < min(a, b) and 0 < κ, the
function costs has the tight lower bound b · (n−m), which is also the average costs of
the attackee for mining the n−m blocks missing to the attacker. That is, d determines
how more expensive it is, on average, for the attacker with arbitrary computing power
(he has, however, to pay for) to increase its block advance from m to n blocks, than
for the attackee to mine n−m blocks. In our idealized model, for practical values, it
is not order of magnitudes more expensive, such that the attackee’s costs has to be
about as high (or at least of the same order of magnitude) as the amount supposed to
be secured by Proof-of-Work.

Also, Claim 3.4 shows that limd→0 κopt(d) = +∞. Indeed, costs(κopt(d)) has a
unique preimage κlo(d) under b · f(1 / κ), which is a decreasing function of κ and
strictly less than costs(κ), such that κlo(d) < κopt(d). Furthermore, κlo(d) increases
indefinitely for d → 0, since, by Claim 3.3, costs(κopt(d)) is an increasing function of
d, whose limit for d → 0 is, by Claim 3.4, b · (n−m).

But κopt(d) is most likely not in decreasing function of d. Indeed, we observed
numerically that, for b = 1, n = 2, m = 0 and 0.84005 < d < 0.99750, it is an
increasing function of d. We found no other counter-example and have no explanation
for this unexpected behavior.

In the following, for d (that is, c) given, we define κup as the unique positive solution
of a suitable equation, such that it is an upper bound of κopt depending on d only (that
is, independent of n), and show it is the limit of κopt for n → +∞. Then, assuming
that the attacker and the attackee both use the same kind of hardware units (the
underlying discrete-time stochastic processes having then the same frequency period
d), but in possibly different numbers, in parallel, and that the costs of running them
for a given duration are equally proportional to their number and to the duration in
question, we investigate the average costs of the attacker (for increasing from m to n
the number of blocks his secret fork is longer than the attackee’s chain, which is κ ·E)
relatively to the average costs of the attackee (for mining n − m blocks, which is by
definition b · (n−m)), and show that the ratio of the attacker’s costs by the attackee’s
costs has a tight upper bound independent of n, too, and which can be computed from
κup. The ratio in question is, in a practical setup (d much smaller than b), not much
greater than 1, as we already mentioned above, without, however, quantifying it.

Claim 3.5 (Upper bound for κopt). For n ≥ 2, 0 ≤ m < n and 0 < c < 1 given,
κopt < κup, where κup is the unique positive solution of 1− κ · ln(1− c) = (1− c)1−κ,
and is also the limit of κopt for n → +∞. Furthermore, the closed form approximation
1 +

√
−2 / ln(1− c) is an upper bound of κup.

Proof. For κ > 0, costs(κ) is, by Claim 3.2, convex and has a single minimum at
κ = κopt, and κopt > 1. Hence, the upper bound condition κopt < κ holds if and
only if 0 < costs′(κ), which is equivalent, by calculus, and using the substitution
v = −κ · ln(1− c) (and thus s(v) = (exp(v / κ)− 1) / (exp(v)− 1)), to:

s(v) · f ′(s(v)) / f(s(v)) < (exp(v)− (v + 1)) / (v · exp(v))

Since κopt > 1, then κ > 1 (i.e. 0 < s < 1) can be assumed as well. Then, by Claim
2.4, f ′(s) / f(s) < 1 / (1− s), such that a sufficient condition for κopt < κ is:

s(v) / (1− s(v)) ≤ (exp(v)− (v + 1)) / (v · exp(v))

That is, after due simplification:

v + 1 ≤ exp(v − v / κ)
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By substituting back v = −κ · ln(1− c), this yields:

1− κ · ln(1− c) ≤ (1− c)1−κ

The equality case in the latter equation has a unique positive solution (which
defines κup), because the left-hand side is an affine function of κ whereas the right-
hand side is an increasing exponential function of κ, and because the former is strictly
greater than the latter at κ = 0. Also, for v > 0, exp(v − v / κ) is greater than its
Taylor polynomial of degree 2, which yields, after substituting back v = −κ · ln(1− c),
the stronger condition:

1 +
√

−2 / ln(1− c) ≤ κ

The upper bound f ′(s(v)) / f(s(v)) < 1 / (1− s) used above is tight for n → +∞.
By calculus, limn→+∞

∂
∂κ

costs = ∂
∂κ

limn→+∞ costs, with κ-uniform convergence on
closed κ-intervals strictly left-bounded by 1, and the limit in question has, for κ > 1,
a unique root at κ = κup, such that limn→+∞ κopt = κup.

Claim 3.6 (Relative costs relatively to n). For 0 ≤ m < n and κ > 1 (i.e. 0 < s < 1),
costs(κ) / (b · (n−m)) is a positive, increasing and concave function of n, whose limit
for n → +∞ is c · κ / ((1− c)− (1− c)κ), which has a single minimum at κ = κup (as
defined in Claim 3.5).
Proof. Since costs(κ) / (b · (n −m)) = κ · (s(κ) + c / (1 − c)) · f(s(κ)) / (n −m), the
analysis of f(s)/(n−m) suffices, the other factor being independent of n. By calculus,
∂
∂n

f(s) / (n − m) has the same sign as sm − sn · (1 − ln(s) · (n − m)), which has a
unique minimum, 0, at n = m, and is thus strictly positive for n ̸= m. By calculus,
( ∂
∂n

)2f(s)/(n−m) has the same sign as (sn ·((ln(s)·(n−m)−1)2+1)−2·sm)/(n−m),
which, by further analysis, has the same sign as ln(s), and is thus strictly negative,
since 0 < s < 1 is assumed.

By rearrangement, 1/(1−s)−f(s)/(n−m) = sm+1 ·(1−sn−m)/((1−s)2 ·(n−m)),
which, for n → +∞ and after due simplifications, yields: limn→+∞ costs(κ) / (b ·
(n − m)) = c · κ / ((1 − c) − (1 − c)κ). As the limit of a κ-convex function, the
latter is κ-convex as well, and its κ-derivative has, by calculus, the same sign as
(1 − c)1−κ − (1 − κ · ln(1 − c)), which has, according to Claim 3.5, a unique root at
κ = κup. Thus, at κ = κup, the function in question, being convex, has a unique
minimum.

It follows that the κ-optimal relative costs costs(κopt) / (b · (n − m)), being the
minimum of an increasing function of n, are an increasing function of n, too.
Claim 3.7 (κup relatively to c). κup (as defined in Claim 3.5) is a decreasing function
of c.
Proof. For 0 < c < 1, κup is the implicit function of c defined by 1 − κup · ln(1 −
c) = (1 − c)1−κup . With the substitution v = −κup · ln(1 − c), it is equivalent to:
v + 1 = exp(v − v / κup). Observing that ln(1 − c) = −v / κup yields the following
v-parameterization:

c = (exp(v)− (1 + v)) / exp(v)

κup = v / (v − ln(1 + v))

The v-derivatives of c and κup are then:
∂c/∂v = v / exp(v) > 0

∂κup/∂v = (v / (v + 1)− ln(v + 1)) / (v − ln(v + 1))2 < 0

Thus, ∂κup/∂c = (∂κup/∂v) / (∂c/∂v) < 0.
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Claim 3.8 (κopt relatively to n). For n ≥ 2, κopt is a strictly increasing function of
n.

Proof. Since, by Claim 3.2, κopt > 1, and thus 0 < s < 1. Let g(n, s) be defined as
in the proof of Claim 3.2 (with n, notationally, as an explicit parameter). Assuming
∂
∂κ

costs(n, κ0) = 0, it is enough to show ∂
∂κ

costs(n+ 1, κ0) < 0, since costs(n+ 1, κ)
is, by Claim 3.2, κ-convex and has a unique κ-minimum, which must then be greater
than κ0. Equivalently, ∂

∂κ
(costs(n + 1, κ0) − costs(n, κ0)) < 0 is to be shown, that

is, after rearrangements and simplifications (using the positivity, shown below, of the
numerator and denominator of the left-hand side of the following inequality):

g(n+ 1, s(κ0))− g(n, s(κ0))

s(κ0) · ∂
∂s

(g(n+ 1, s(κ0))− g(n, s(κ0)))
< −κ0 ·

s′(κ0)

s(κ0)

This is true because, for any strictly positive κ (not only at κ = κ0), the left-hand side
is strictly less than 1, whereas the right-hand side is strictly greater than 1, as shown
below.

By elementary algebra and calculus:

g(n+ 1, s)− g(n, s)

s
=

sn+1 − 1

(s− 1) · (1− c)κ

∂

∂s
(g(n+ 1, s)− g(n, s)) =

(n+ 1) · sn+2 − (n+ 2) · sn+1 + 1

(s− 1)2 · (1− c)κ

Both are polynomials in s with strictly positive coefficients, such that they are strictly
positive for 0 < s; furthermore, since 0 < s < 1 is assumed (and thus (s − 1) < 0),
their quotient is strictly less than 1 if and only if 0 < n · sn+1 − (n+1) · sn +1, which
is true, because it has a zero of multiplicity 2 at s = 1 and, by Descartes’ rule of signs,
no other strictly positive root.

It remains to show 1 < −κ · s′(κ) / s(κ), that is, 1 − (1 − c)κ < −κ · ln(1 − c).
This is true, because equality holds at κ = 0, and, for κ > 0, inequality holds for the
respective κ-derivatives.

4 Attack success probability in a given time
The discrete-time stochastic process of Section 2 is a Markov chain, and can thus
be described as iterated matrix operations, which yields the cumulative distribution
function of the probability for the attacker to win in a given time or less. The variables
of Definition 2.1 are reused here and, additionally, we define r as the probability that
a single round is a draw. Thus, by definition and by Claim 2.2:

0 ≤ m < n (m and n are integer advances in blocks)
0 < p, q < 1 (p and q are probabilities)
p+ q + 2 · √p · q ≤ p+ q + r = 1 (Claim 2.2 and definition of r)

As is Section 2, the frequency period of the discrete-time model (the duration
of a single round) and the time unit are first assumed to agree. For each round,
the probabilities y(t) (a column vector) for the attacker to have a given advance, are
updated by multiplication by the transition matrix A, as illustrated below (with n = 5
and m = 0 for the sake of simplicity, the generalization for any integers n and m with
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0 ≤ m < n presenting no difficulty). Thus, for n = 5 and m = 0, after t rounds, the
probabilities are given by At · y(0) = y(t), that is:

1 p 0 0 0 0
0 r p 0 0 0
0 q r p 0 0
0 0 q r p 0
0 0 0 q r p
0 0 0 0 q r + q



t

·


0
0
0
0
0
1

 =


y0(t)
y1(t)
y2(t)
y3(t)
y4(t)
y5(t)


where yk(t) is the probability that the attacker has an advance of n − k blocks, such
that, for an attacker with an initial advance of m blocks, the initial value y(0) is en−m,
the (n−m)-th (0-based) vector of the standard basis of Rn+1.

Let T (m) (a random variable) be the time needed for a successful attack with a
given initial advance of m blocks. The probability for the attacker to win in t or less
rounds is thus y0(t) = P (T (m) ≤ t), which we abbreviate as Pm(t) in the following.
Since y0(t) = 1 −

∑n
i=1 yi(t), and since e0 (the first vector of the standard basis of

Rn+1) is an eigenvector of A, the first row and column of A need not be considered
explicitly, such that the submatrix B can be considered instead of A for computing
y0(t): 

r p 0 0 0
q r p 0 0
0 q r p 0
0 0 q r p
0 0 0 q r + q


t

·


0
0
0
0
1

 =


x0(t)
x1(t)
x2(t)
x3(t)
x4(t)


where xk(t) = yk+1(t), for the indices to remain 0-based, such that: y0(t) = 1 −∑n

i=1 yi(t) = 1−
∑n−1

i=0 xi(t) and the initial value x(0) is en−1−m, the (n− 1−m)-th
(0-based) vector of the standard basis of Rn. Thus, with k = n− 1−m, we have:

Pm(t) = P (T (m) ≤ t) = y0(t) = 1− ⟨1,x(t)⟩ = 1− ⟨1,Bt · ek⟩

Our goal is to give a matrix-free representation of y0(t), suitable for further anal-
ysis. To this end, we will first show that B has n pairwise distinct eigenvalues, which
are real numbers strictly between 0 and 1, and we denote thus these eigenvalues with
λj (for 0 ≤ j < n), indexed in decreasing order, that is, λj > λj+1. Also, for each
eigenvalue λj of B, we will compute the corresponding eigenvector vj of B and the
corresponding eigenvector wj of the transpose of B, which then yields the diagonal-
ization of B (since the eigenbases of B and of its transpose are, if scaled suitably,
dual), and, ultimately, the matrix-free representation of Pm(t) we are looking for.

By diagonalizing B, we will also consider some quantities related to the eigen-
vectors, needed later on for expressing y0(t), and simplify them with the following
formulae. Notice that, from now on, the symbol I denotes the imaginary unit (instead
of the more usual i, which is used here for denoting indices and exponents).

Claim 4.1 (Trigonometric summation formulae). For complex numbers c, ϕ and η:
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n−1∑
i=0

ci · cos(η + i · ϕ) =

[
cos(η)− c · cos(η − ϕ)

− cn · (cos(η + n · ϕ)− c · cos(η + (n− 1) · ϕ))

]
1− 2 · c · cos(ϕ) + c2

n−1∑
i=0

ci · sin(η + i · ϕ) =

[
sin(η)− c · sin(η − ϕ)

− cn · (sin(η + n · ϕ)− c · sin(η + (n− 1) · ϕ))

]
1− 2 · c · cos(ϕ) + c2

Furthermore, the equalities also hold if sin resp. cos are replaced by their hyperbolic
counterparts sinh resp. cosh.

Proof. Assuming first that c, ϕ and η are real, the sums in question are then, by Euler’s
formula, the imaginary part resp. the real part of the corresponding exponential sum:

n−1∑
i=0

ci · (cos(η + i · ϕ) + I · sin(η + i · ϕ))

=

n−1∑
i=0

ci · exp(I · (η + i · ϕ))

= exp(I · η) ·
n−1∑
i=0

(c · exp(I · ϕ))i

= exp(I · η) · (c · exp(I · ϕ))n − 1

c · exp(I · ϕ)− 1

= exp(I · η) · ((c · exp(I · n · ϕ))− 1) · (c · exp(−I · ϕ)− 1)

(c · exp(I · ϕ)− 1) · (c · exp(−I · ϕ)− 1)

Expanding all multiplications of the last expression and then splitting the exponential
functions into their real and imaginary parts (by Euler’s formula again) yields, after
suitable rearrangements, the claimed equalities (notice that the denominator, 1 − 2 ·
c · cos(ϕ) + c2, is real). Since the sums in question are holomorphic functions of each
of c, ϕ and η, the singularity at c = exp(±I · ϕ) is removable, and the equalities
hold for complex arguments as well. In particular, since sinh(ϕ) = −I · sin(I · ϕ) and
cosh(ϕ) = cos(I · ϕ), the equalities hold for the corresponding hyperbolic functions,
too.

Constraints for the eigenvalues of B The defining constraints for an eigen-
value λj and the corresponding eigenvector vj of B are (with n = 5 for the sake of
simplicity):

− (λj − r) · v0,j + p · v1,j = 0
q · v0,j − (λj − r) · v1,j + p · v2,j = 0
q · v1,j − (λj − r) · v2,j + p · v3,j = 0
q · v2,j − (λj − r) · v3,j + p · v4,j = 0
q · v3,j − (λj − r) · v4,j + q · v4,j = 0

such that, with the substitution lj = λj − r and the homogenization with the addi-
tional, constrained variables v−1,j and wn,j , the following constrained linear recurrence
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relation is to be solved:

v−1,j = 0

vn,j / vn−1,j = q / p

p · vi+1,j − lj · vi,j + q · vi−1,j = 0

whose characteristic polynomial is:

p · v2 − lj · v + q = p · (v − ζj) · (v − ξj)

A partial resolution of the linear recurrence relation, after applying the constraint
v−1,j = 0, yields the following, equivalent constraints (the eigenvector being scaled for
accommodating the limit case ζj = ξj):

vi,j = (ζi+1
j − ξi+1

j ) / (ζj − ξj)

vn,j / vn−1,j = q / p

ζj + ξj = lj / p

ζj · ξj = q / p

As roots of a real polynomial of degree two, ζj and ξj are both real, or otherwise
complex conjugates, and may agree or not, which cases are analyzed separately below
(and later on unified with Chebyshev polynomials of the second kind). In particular,
it is shown that there exists at most one solution where both ζj and ξj are real, and
that this solution, if it exists, yields the greatest eigenvalue, that is, by convention,
the λj with the lowest index. Anticipating this result, we denote accordingly the
real solutions, if they exists, with ζ0 and ξ0, and the corresponding eigenvalue with
λ0. Also notice that, for 0 ≤ i < n, vi,j ̸= 0 (which result is immediate if ζj ̸= ξj ,
and is otherwise established directly by the explicit formula given below for the case
ζj = ξj).

For the case that ζj and ξj are both real, we define the following auxiliary function.

qsh(ϕ) =
sinh((n+ 1) · ϕ)

sinh(n · ϕ)

Claim 4.2 (Analysis of qsh(ϕ)). For 0 < ϕ, qsh(ϕ) is strictly increasing.

Proof. By calculus and hyperbolic trigonometric identities, it is enough to show

n · sinh(ϕ) < cosh((n+ 1) · ϕ) · sinh(n · ϕ)

For 0 < ϕ, we observe that cosh((n+1)·ϕ) is strictly greater than 1 and that sinh(n·ϕ)
is strictly positive, such that, for the range in question, it is enough to show n·sinh(ϕ) ≤
sinh(n · ϕ). Since both sides agree at ϕ = 0, it is enough to show that their respective
ϕ-derivatives compare the same, that is, n · cosh(ϕ) ≤ n · cosh(n · ϕ), which is true,
because ϕ ≤ n · ϕ and cosh(ϕ) is increasing in the range in question.

Claim 4.3 (Bounds for qsh). For ϕ > 0:

exp(ϕ) < qsh(ϕ) < exp(ϕ) + 1 / (n · exp(n · ϕ)) < exp(ϕ) + 1 / n
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Proof. The first inequality is, by representing qsh(ϕ) with exponential functions and
after suitable simplifications and rearrangements, equivalent to 1 < exp(ϕ)2, which
is true for 0 < ϕ. The second inequality, by the same device, is equivalent to 0 <
exp(ϕ)2·n − n · exp(ϕ)n+1 + n · exp(ϕ)n−1 − 1, which is, by replacing exp(ϕ) by x, a
polynomial in x with a root of multiplicity 3 at x = 1 and has, by Descartes’ rule of
signs, no other strictly positive root, and which is thus, for x > 1 (that is, ϕ > 0),
strictly positive. The third inequality is immediate.

Case ζ0 and ξ0 real and ζ0 ̸= ξ0 Since ζ0 · ξ0 = q / p > 0, both ζ0 and ξ0 have
the same sign. Also, since vn,0 / vn−1,0 = q / p > 0, both ζ0 and ξ0 are positive, and
distinct by hypothesis, such that, by symmetry, ξ0 < ζ0 can be assumed without loss
of generality. Thus, a unique ϕ0 exists such that:

0 ≤ ϕ0

ζ0 =
√

q / p · exp(+ϕ0)

ξ0 =
√

q / p · exp(−ϕ0)

Then, the constraint vn,0 / vn−1,0 = q / p > 0 becomes qsh(ϕ0) =
√

q / p. For ϕ with
0 < ϕ, qsh(ϕ) is, by Claim 4.2 strictly increasing. Thus (n+1)/n = qsh(0) ≤ qsh(ϕ0),
such that the constraint qsh(ϕ0) =

√
q / p has a positive solution ϕ0 if and only if√

q / p ≥ (n+1)/n, which solution is then unique. Notice, however, that the solution
ϕ0 = 0 if

√
q / p = (n+ 1) / n is, by hypothesis (ζ0 ̸= ξ0), excluded. Furthermore, an

upper bound for cosh(ϕ0) can be derived from Claim 4.3:

qsh(ϕ0) =
√

q / p

=⇒ exp(ϕ0) <
√

q / p

⇐⇒ exp(ϕ0)− exp(−ϕ0) <
√

q / p−
√

p / q

⇐⇒ 2 · √p · q · sinh(ϕ0) < q − p

⇐⇒ 4 · p · q · sinh(ϕ0)
2 < (p− q)2

⇐⇒ 4 · p · q · cosh(ϕ0)
2 < (p+ q)2

⇐⇒ 2 · √p · q · cosh(ϕ0) < p+ q

Thus, for the corresponding eigenvalue λ0 of B, we have:

l0 = 2 · √p · q · cosh(ϕ0)

λ0 = r + 2 · √p · q · cosh(ϕ0)

0 < r + 2 · √p · q < λ0 < r + p+ q = 1

and, for the corresponding eigenvector v0 (for 0 ≤ i < n):

vi,0 = (
√

q / p)i · sinh((i+ 1) · ϕ0)

sinh(ϕ0)

⟨1,v0⟩ =
n−1∑
i=0

vi,0 =
p

1− λ0

where the last equation is established by applying Claim 4.1, and then by simplifying
the result using the constraint qsh(ϕ0) =

√
q / p. Notice that vi,0 is strictly positive

(because 0 < ϕ0 and thus sinh((i+ 1) · ϕ0) > 0) and that ⟨1,v0⟩ is strictly positive as
well (because 0 < λ0 < 1).
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Numerically, for 0 < ϕ0, qsh(ϕ0) =
√

q / p can be solved (assuming (n+ 1) / n <√
q / p) with the monotonically strictly decreasing substitution u = exp(−2 · ϕ0) and,

accordingly, u0 = exp(−2 · ϕ0). For 0 < ϕ0, by Claim 4.3, the inequality exp(ϕ0) <
qsh(ϕ0) < exp(ϕ0) + 1 / n holds, from which the following interval containing u0 can
be deduced: p/q < u0 < 1/ (

√
q / p−1/n)2. In particular, 0 < u0 < 1. Furthermore,

equivalent constraints are then (for ϕ ̸= 0, that is, u ̸= 1):

qsh(ϕ) =
√

q / p (resp. <)
⇐⇒ sinh((n+ 1) · ϕ) =

√
q / p · sinh(n · ϕ) (resp. <)

⇐⇒ un+1 +
√

q / p ·
√
u · (1− un)− 1 = 0 (resp. >)

The unique root u0 (with 0 < u0 < 1) of the left-hand side of the last condition is in
the interval given above, and the left-hand side of the last condition can be evaluated
at the boundaries of this interval, yielding non-zero values of opposite signs. Thus, the
conditions for a generic root-finding algorithm hold. The eigenvalue and eigenvector
can then be expressed as functions of u0 (with the auxiliary variables S and T ):

S =
√

p / q · ζ0 = 1 /
√
u0

T =
√

p / q · ξ0 =
√
u0

λ0 = r +
√
p · q · (S + T )

vi,0 = (
√

q / p)i · (Si+1 − T i+1) / (S − T )

Also, anticipating later developments, we define z0 and give further relations:

z0 = cosh(ϕ0) = (S + T ) / 2

z20 − 1 = (u0 − 1)2 / (4 · u0)

ϕ0 = ln(S)

sinh((i+ 1) · ϕ0) / sinh(ϕ0) = (Si+1 − T i+1) / (S − T )

For the case that ζj and ξj are complex conjugates, we define the following auxiliary
function.

qs(ϕ) =
sin((n+ 1) · ϕ)

sin(n · ϕ)

Claim 4.4 (Analysis of qs(ϕ)). For 0 < ϕ < π, qs(ϕ) is strictly decreasing (except at
its poles).

Proof. By calculus and trigonometric identities, it is enough to show

cos((n+ 1) · ϕ) · sin(n · ϕ) < n · sin(ϕ)

To this end, the range of 0 < ϕ < π is decomposed in three subranges.
For the first subrange, 0 < ϕ ≤ π / (2 · n), we observe that cos((n + 1) · ϕ)

is strictly less than 1 and that sin(n · ϕ) is strictly positive, such that, in the first
subrange, it is enough to show sin(n · ϕ) ≤ n · sin(ϕ). Since both sides agree at ϕ = 0,
it is enough to show that their respective ϕ-derivatives compare the same, that is,
n · cos(n · ϕ) ≤ n · cos(ϕ), which is true, because n · ϕ ≥ ϕ and cos(ϕ) is strictly
decreasing in the first subrange (as well as cos(n · ϕ)), such that the strict inequality
to be shown holds in the first subrange.

For the second subrange π / (2 · n) < ϕ ≤ π / 2, we observe that n · sin(ϕ) is
increasing and thus strictly greater than 1 (since this is true at ϕ = π / (2 · n), as
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shown above). But 1 is an upper bound of cos((n + 1) · ϕ) · sin(n · ϕ), such that the
strict inequality to be shown holds in the second subrange, too.

For the third subrange π / 2 < ϕ < π, we observe that, by trigonometric identities
(with the case analysis n odd or n even), both cos((n+1) ·ϕ) · sin(n ·ϕ) and n · sin(ϕ)
assume the same value at ϕ and at π−ϕ, and thus, by symmetry, the strict inequality
to be shown holds in the third subrange, too.

Case ζj and ξj complex conjugates and ζj ̸= ξj By symmetry, the real part
of ζj can be assumed to be positive without loss of generality. Thus, a unique ϕj exists
such that:

0 ≤ ϕj < π

ζj =
√

q / p · exp(+I · ϕj)

ξj =
√

q / p · exp(−I · ϕj)

Then, the constraint vn,j / vn−1,j = q / p > 0 becomes qs(ϕj) =
√

q / p. For ϕ with
0 < ϕ < π, qs(ϕ) is, by Claim 4.4, strictly decreasing (except at its poles), it at
has n roots at ϕ = π · (j + 1) / (n + 1) (for 0 ≤ j < n), and it has n − 1 poles at
ϕ = π · j / n (for 0 < j < n). In the open interval (0, π / (n + 1)) (at whose left
boundary qs assumes the value (n+ 1) / n and whose right boundary is the first root
of qs, with no root and no pole and thus no sign change in between, such that, since
qs is strictly decreasing, each value strictly between (n + 1) / n and 0 is assumed
exactly once), the constraint qs(ϕ) =

√
q / p has a positive solution ϕ0 if and only if√

q / p ≤ (n+1)/n, which solution is then unique. Notice, however, that the solution
ϕ0 = 0 if

√
q / p = (n+ 1) / n is, by hypothesis (ζj ̸= ξj), excluded. Furthermore, for

0 < j < n, in each of the disjoint open intervals (π ·j /n, π ·(j+1)/(n+1)) (whose left
boundary is a pole of qs and whose right boundary is a root of qs, with no root and
no pole and thus no sign change in between, such that, since qs is strictly decreasing,
each strictly positive value is assumed exactly once), the constraint qs(ϕ) =

√
q / p

has a unique solution ϕj .
Thus, B has, if

√
q / p < (n + 1) / n, n such eigenvalues (λj for 0 ≤ j < n),

and otherwise n − 1 such eigenvalues (λj for 0 < j < n, the solution ϕ0 = 0 if√
q / p = (n+1)/n being, by hypothesis, excluded). Furthermore, for these eigenvalues

λj , we have:

lj = 2 · √p · q · cos(ϕj)

λj = r + 2 · √p · q · cos(ϕj)

0 ≤ r − 2 · √p · q < λj < r + 2 · √p · q ≤ r + p+ q = 1

and, for the corresponding eigenvectors vj (for 0 ≤ i < n):

vi,j = (
√

q / p)i · sin((i+ 1) · ϕj)

sin(ϕj)

⟨1,vj⟩ =
n−1∑
i=0

vi,j =
p

1− λj

where the last equation is established by applying Claim 4.1, and then by simplifying
the result using the constraint qs(ϕ0) =

√
q / p. Notice that vi,0 (if defined here) is

strictly positive (because 0 < ϕ0 < π / (n+ 1) and thus sin((i+ 1) · ϕ0) > 0) and that
⟨1,vj⟩ is strictly positive as well (because 0 < λj < 1).
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Numerically, for 0 < ϕj < π, the constraint qs(ϕj) =
√

q / p can be be reformulated
as

sin((n+ 1) · ϕ)−
√

q / p · sin(n · ϕ) = 0

which is, for 0 < ϕ < π, an equivalent constraint. For j ̸= 0, each of the open intervals
(π·j/n, π·(j+1)/(n+1)) contains a solution ϕj , and the left-hand side of the constraint
above can be evaluated at the boundaries of these interval, yielding non-zero values
of opposite signs (since qs(ϕ) is positive in these intervals). Thus the conditions for a
generic root-finding algorithm hold. But, if ϕ0 exists (that is, if

√
q / p < (n+1) / n),

the interval (0, π / (n + 1)), containing ϕ0, is not suitable, because the left-hand side
of the constraint above yields 0 at ϕ = 0. The following derivation of a non-zero lower
bound for ϕ0 (using a Taylor polynomial of degree 3 resp. 1 as a lower resp. upper
bound for sin, which bounds are strict because, by hypothesis, ϕ0 ̸= 0) solves this
issue:

sin((n+ 1) · ϕ0)

sin(n · ϕ0)
=
√

q / p

=⇒ ((n+ 1) · ϕ0 − (n+ 1)3 · ϕ3
0 / 6)

n · ϕ0
<
√

q / p

⇐⇒

√
6 · (1−

√
q / p · n

n+1
)

n+ 1
< ϕ0

Case ζ0 = ξ0 This case corresponds to ϕ0 = 0 in either case above (ζ0 and ξ0 are
both real, but complex conjugates as well), such that:

ζ0 =
√

q / p

Then, the constraint vn,0 / vn−1,0 = q / p > 0 becomes (n+1) / n =
√

q / p. Thus, for
the corresponding eigenvalue λ0 of B, we have:

l0 = 2 · √p · q
λ0 = r + 2 · √p · q
0 < r + 2 · √p · q = λ0 < r + p+ q = 1

and, for the corresponding eigenvector v0 (for 0 ≤ i < n):

vi,0 = (
√

q / p)i · (i+ 1)

⟨1,v0⟩ =
n−1∑
i=0

vi,0 = n2 = p / (1− λ0)

Notice that vi,0 is strictly positive and that ⟨1,v0⟩ is strictly positive as well.

Summary of the previous results So far, we have computed, for 0 ≤ j < n, the
eigenvalues λj and the eigenvectors vj of B. We have also shown that the eigenvalues
are indexed in decreasing order. Indeed, if

√
q / p < (n+ 1) / n:

π · j / n < ϕj < π · (j + 1) / (n+ 1) for 0 ≤ j ≤ n− 1

λj = r + 2 · √p · q · cos(ϕj) < r + 2 · √p · q for 0 ≤ j ≤ n− 1

ϕj < ϕj+1 for 0 ≤ j < n− 1

λj+1 < λj for 0 ≤ j < n− 1
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and if otherwise
√

q / p ≥ (n+ 1) / n:

0 ≤ ϕ0

λ0 = r + 2 · √p · q · cosh(ϕ0) ≥ r + 2 · √p · q
π · j / n < ϕj < π · (j + 1) / (n+ 1) for 1 ≤ j ≤ n− 1

λj = r + 2 · √p · q · cos(ϕj) < r + 2 · √p · q for 1 ≤ j ≤ n− 1

ϕj < ϕj+1 for 1 ≤ j < n− 1

λj+1 < λj for 0 ≤ j < n− 1

For diagonalizing B, the eigenvectors wj of the transpose of B are needed, too, and
are computed below (the eigenvalues being the same).

Constraints for the eigenvalues of the transpose of B The transpose of
B is (with n = 5 for the sake of simplicity):

r q 0 0 0
p r q 0 0
0 p r q 0
0 0 p r q
0 0 0 p r + q


and the defining constraints for an eigenvalue λj and the corresponding eigenvector
wj are:

− (λj − r) · w0,j + q · w1,j = 0
p · w0,j − (λj − r) · w1,j + q · w2,j = 0
p · w1,j − (λj − r) · w2,j + q · w3,j = 0
p · w2,j − (λj − r) · w3,j + q · w4,j = 0
p · w3,j − (λj − r) · w4,j + q · w4,j = 0

such that, with the substitution lj = λj−r and the homogenization with the additional,
constrained variables w−1,j and wn,j , the following constrained linear recurrence rela-
tion is to be solved:

w−1,j = 0

wn / wn−1,j = 1

q · wi+1,j − lj · wi,j + p · wi−1,j = 0

whose characteristic polynomial is:

q · w2 − lj · w + p = q · (w − ζj) · (w − ξj)

A partial resolution of the linear recurrence relation, after applying the constraint
w−1,j = 0, yields the following, equivalent constraints (the eigenvector being scaled
for accommodating the limit case ζj = ξj):

wi,j = (ζi+1
j − ξi+1

j ) / (ζj − ξj)

wn / wn−1 = 1

ζj + ξj = lj / q

ζj · ξj = p / q

Notice that, for 0 ≤ i < n,wi,j ̸= 0 (which result is immediate if ζj ̸= ξj , and is
otherwise established directly by the explicit formula given below for the case ζj = ξj).
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Case ζ0 and ξ0 real and ζ0 ̸= ξ0 Since ζ0 · ξ0 = p / q > 0, both ζ0 and ξ0 have
the same sign. Also, since wn,0 / wn−1,0 = p / q > 0, both ζ0 and ξ0 are positive, and
distinct by hypothesis, such that, by symmetry, ξ0 < ζ0 can be assumed without loss
of generality. Thus, a unique ϕ0 exists such that:

0 ≤ ϕ0

ζ0 =
√

p / q · exp(+ϕ0)

ξ0 =
√

p / q · exp(−ϕ0)

Then, the constraint wn,0 / wn−1,0 = 1 > 0 becomes qsh(ϕ0) =
√

q / p, which is the
same as the corresponding constraint for B, such that ϕ0 and λ0 are the same as
well. Thus, for the corresponding eigenvector w0 of the transpose of B, we have (for
0 ≤ i < n):

wi,0 = (
√

p / q)i · sinh((i+ 1) · ϕ0)

sinh(ϕ0)

⟨w0,v0⟩ =
n−1∑
i=0

vi,0 · wi,0 =
sinh((2 · n+ 1) · ϕ0) / sinh(ϕ0)− (2 · n+ 1)

4 · cosh(ϕ0)2 − 4

where the last equation is established first by observing that vi,0 · wi,0 = sinh((i +
1) · ϕ0)

2 / sinh(ϕ0)
2 = 2 · (cosh(2 · (i + 1) · ϕ0) − 1) / (4 · cosh(ϕ0)

2 − 4), then by
applying Claim 4.1, and finally by simplifying the result with hyperbolic trigonometric
identities. Notice that wi,0 is strictly positive (by the same argument as for vi,0) and
that ⟨w0,v0⟩ ≥ 1, because it is a sum of squares, the first of which being 1.

Case ζj and ξj complex conjugates and ζj ̸= ξj By symmetry, the real part
of ζj can be assumed to be positive without loss of generality. Thus, a unique ϕj exists
such that:

0 ≤ ϕj < π

ζj =
√

p / q · exp(+I · ϕj)

ξj =
√

p / q · exp(−I · ϕj)

Then, the constraint wn,j / wn−1,j = 1 > 0 becomes qs(ϕj) =
√

q / p, which is the
same as the corresponding constraint for B, such that ϕj and λj are the same as
well. Thus, for the corresponding eigenvectors wj of the transpose of B, we have (for
0 ≤ i < n):

wi,j = (
√

p / q)i · sin((i+ 1) · ϕj)

sin(ϕj)

⟨wj ,vj⟩ =
n−1∑
i=0

vi,j · wi,j =
sin((2 · n+ 1) · ϕj) / sin(ϕj)− (2 · n+ 1)

4 · cos(ϕj)2 − 4

where the last equation is established first by observing that vi,j · wi,j = sin((i + 1) ·
ϕj)

2 / sin(ϕj)
2 = 2 · (cos(2 · (i + 1) · ϕj) − 1) / (4 · cos(ϕj)

2 − 4), then by applying
Claim 4.1, and finally by simplifying the result with trigonometric identities. Notice
that wi,0 is strictly positive (by the same argument as for vi,0) and that ⟨wj ,vj⟩ ≥ 1,
because it is a sum of squares, the first of which being 1.
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Case ζ0 = ξ0 This case corresponds to ϕ0 = 0 in either case above (ζ0 and ξ0 are
both real, but complex conjugates as well), such that:

ζ0 =
√

p / q

Then, the constraint wn,0 / wn−1,0 = 1 > 0 becomes (n + 1) / n =
√

q / p, which is
the same as the corresponding constraint for B, and λ0 = r+ 2 · √p · q is the same as
well. Thus, for the corresponding eigenvector w0 of the transpose of B, we have (for
0 ≤ i < n):

wi,0 = (
√

p / q)i · (i+ 1)

⟨w0,v0⟩ =
n−1∑
i=0

vi,0 · wi,0 = n · (n+ 1) · (2 · n+ 1) / 6

where the last equation is established by observing that vi,0 · wi,0 = (i + 1)2. Notice
that wi,0 is strictly positive and that ⟨w0,v0⟩ is strictly positive as well.

Matrix-free representation of Pm(t) Now, we have computed the quantities
necessary for diagonalizing B. Let V resp. W be the matrix whose columns are
vj resp. wj (the eigenvectors of B resp. of its transpose), such that S = W ∗ · V
(where ∗ denotes the transposition) is diagonal with entries ⟨wj ,vj⟩. In other words,
V ·S−1 ·W ∗ is the identity matrix. It follows that B = V ·L ·V −1 = V ·L ·S−1 ·W ∗,
where L is diagonal with entries λj (the eigenvalues of B).

Hence, with m the initial advance of the attacker, k = n− 1−m and ek the k-th
(0-based) standard basis vector of Rn, we have:

Pm(t) = 1− ⟨1,Bt · ek⟩ = 1− ⟨1,V ·Lt · S−1 ·W ∗ · ek⟩ = 1−
n−1∑
j=0

ck,j · λt
j

where ck,j =
⟨1,vj⟩
⟨wj ,vj⟩

· wk,j .

Unification with the Chebyshev polynomials Ui(z) The Chebyshev poly-
nomials of the second kind Ui(z) (for i integer with i ≥ 0) are defined recursively as:
U0(z) = 1

U1(z) = 2 · z
Ui(z) = 2 · z · Ui−1(z)− Ui−2(z)

such that
Ui(cosh(ϕ)) = sinh((i+ 1) · ϕ) / sinh(ϕ)
Ui(cos(ϕ)) = sin((i+ 1) · ϕ) / sin(ϕ)
Ui(1) = i+ 1

U ′
i(1) = i · (i+ 1) · (i+ 2) / 3

For 0 ≤ j < n, the eigenvalue λj and eigenvector vj resp. wj of B resp. of its transpose
depend, as we have shown above, upon a positive parameter ϕj , which corresponds
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bijectively to the parameter zj defined as follow:
z0 = cosh(ϕ0) if

√
q / p ≥ (n+ 1) / n with 0 ≤ ϕ0

z0 = cos(ϕ0) if
√

q / p < (n+ 1) / n with 0 < ϕj < π / (n+ 1)
zj = cos(ϕj) for 0 < j < n with π · j / n < ϕj < π · (j + 1) / (n+ 1)

Thus, the zj are indexed in decreasing order and z0 > 0. Furthermore, our previous
results can be reformulated without case analysis:
λj = r + 2 · √p · q · zj
vi,j = (

√
q / p)i · Ui(zj)

wi,j = (
√

p / q)i · Ui(zj)

⟨1,vj⟩ = p / (1− λj)

⟨wj ,vj⟩ = (U2·n(zj)− U2·n(1)) / (4 · z2j − 4)

where, for the limit case z0 = 1 (that is,
√

q / p = (n+ 1) / n):

⟨1,v0⟩ = n2

⟨w0,v0⟩ = n · (n+ 1) · (2 · n+ 1) / 6

Also, our previous results have established (for j each in the suitable range):
0 < λj+1 < λj < 1 (and thus zj+1 < zj)
wi,0 > 0

wi,j ̸= 0

⟨1,vj⟩ > 0

⟨wj ,vj⟩ ≥ 1

Furthermore, the defining constraints qsh(ϕj) =
√

q / p (for j = 0 and
√

q / p ≥
(n+1) / n) and qs(ϕj) =

√
q / p (otherwise) become: Un(zj)−

√
q / p ·Un−1(zj) = 0,

such that the parameters zj are the roots (in decreasing order) of the correspond-
ing polynomial in z, which yields, by replacing z with (λ − r) / (2 · √p · q), and by
multiplying the result with (

√
p · q)n, the characteristic polynomial in λ of B.

These results, pertaining to the discrete-time model, are recapitulated in the following
claim.

Claim 4.5 (Pm(t) in the discrete-time model). In the discrete-time model (with k =
n− 1−m):

Pm(t) = 1−
n−1∑
j=0

ck,j · λt
j

where

Ui(z) are the Chebyshev polynomials of the second kind
zj are the n roots of Un(z)−

√
q / p · Un−1(z)

λj = 1− (p+ q) + 2 · √p · q · zj

ck,j = 4 · (
√

p / q)k · Uk(zj) ·
p

1− λj
·

z2j − 1

U2·n(zj)− U2·n(1)

Also, the roots zj are real, pairwise distinct, and, by convention, indexed in decreasing
order (z0 is the greatest root), and thus the eigenvalues λj are indexed in decreasing
order (λ0 is the greatest root). Furthermore, z0 > 0 and, for 0 < j < n, |zj | < 1, and, if
z0 = 1, by singularity removal, (z20−1)/(U2·n(z0)−U2·n(1)) = 3/(2·n·(n+1)·(2·n+1)).
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Moreover, 0 < λj < 1, and ck,j has the same sign as Uk(zj), where ck,0 > 0 and
ck,j ̸= 0.

The expectation and variance of T (m) in the discrete-time model can be computed
with the formulae given in Section 2, but they can be computed from Pm(t) as well,
such that the results of an implementation can be cross-checked numerically.

Claim 4.6 (Expectation and variance of T (m) in the discrete-time model). In the
discrete-time model (with k = n − 1 − m), the time expectation and variance for the
attacker to win are:

E(T (m)) =

n−1∑
j=0

ck,j ·
1

1− λj

E(T (m)2) =

n−1∑
j=0

ck,j ·
1 + λj

(1− λj)2

V ar(T (m)) = E(T (m)2)− E(T (m))2

Proof. By definition:

E(T (m)) =

+∞∑
t=1

t · (Pm(t)− Pm(t− 1)) E(T (m)2) =

+∞∑
t=1

t2 · (Pm(t)− Pm(t− 1))

Observing that, for t ≥ 1, Pm(t)−Pm(t− 1) =
∑n−1

j=0 ck,j · (1− λj) · λt−1
j , the formula∑+∞

t=0 λt = 1
1−λ

(for 0 < λ < 1) and its λ-derivatives yield the claimed results.

Claim 4.7 (Analysis of Pm(t) in the discrete-time model). In the discrete-time model
(with k = n−1−m), Pm(t) has k+1 roots of multiplicity 1 at each integer in the closed
interval [0, k], and no other real root; also, the j-ordered coefficients ck,j of Pm(t) (see
Claim 4.5) have exactly k sign changes. For ℓ ≥ 1, ( ∂

∂t
)ℓPm(t) has k strictly positive

roots of multiplicity 1, and no other real root; furthermore, for ı̂ and ȷ̂ indexes with
0 ≤ ı̂ < ȷ̂ ≤ k, if 1 ≤ ℓ ≤ ȷ̂− ı̂, then ( ∂

∂t
)ℓPm(t) has at least ȷ̂− ı̂+ 1− ℓ roots in the

open interval (̂ı, ȷ̂).

Proof. By Claim 4.5, Pm(t) can be represented as an exponential polynomial:

Pm(t) = 1−
n−1∑
j=0

ck,j · exp(−t)− ln(λj)

where k = n−1−m, the exponents − ln(λj) are strictly positive and strictly increasing
with j, the coefficients ck,j have the same sign as Uk(zj), and ck,0 is strictly positive.

Pm(t) has at least k+1 roots, at each integer t with 0 ≤ t ≤ k, because the attacker
cannot possibly win in less than n −m (that is, k + 1) rounds, as can also be shown
by considering the matrix Pm(t) is obtained from. Also, the j-ordered coefficients ck,j
of the non-constant terms of Pm(t) have (since ck,j has the same sign as Uk(zj), and
the roots zj are indexed in decreasing order, and Uk(z) is a polynomial of degree k),
at most k sign changes, such that all coefficients (including now the constant term
1) of Pm(t) have at most k + 1 sign changes. Thus, by Descartes’ rule of signs, the
coefficients of Pm(t) have exactly k + 1 sign changes and Pm(t) has exactly k + 1 real
roots, each of multiplicity 1, at each integer t with 0 ≤ t ≤ k. Notice that this is
another proof that ck,0, the coefficient of the non-constant term of lowest degree, is
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strictly positive, since the constant term 1 and −ck,0 must have different signs for the
total number of sign changes k+ 1 to be reached; moreover, the j-ordered coefficients
ck,j have exactly k sign changes.

The first t-derivative of Pm(t) is:

P ′
m(t) = −

n−1∑
j=0

ck,j · ln(λj) · exp(−t)− ln(λj)

P ′
m(t) has at least k roots, one in each of the open intervals (t, t+1) for t integer with

0 ≤ t ≤ k − 1, because the boundaries of these intervals are roots of Pm(t). Also, the
coefficients of the non-constant terms of P ′

m(t) and the corresponding coefficients of
Pm(t) have opposite signs, and there is no constant term any longer (which induced a
sign change), such that the coefficients of P ′

m(t) have exactly k sign changes. Thus, by
Descartes’ rule of signs, P ′

m(t) has exactly k real roots, each of multiplicity 1 and in
the open interval (0, k). Furthermore, for ı̂ and ȷ̂ indexes with 0 ≤ ı̂ < ȷ̂ ≤ k, ∂

∂t
Pm(t)

has at least ȷ̂− ı̂ roots in the open interval (̂ı, ȷ̂), namely between the roots of Pm(t).
If k = 0, P ′

m(t) and higher derivatives have no real root, because their terms
have no sign change (by differentiation, the terms flip their sign and do not vanish).
If k ≥ 1, by induction, each higher derivative ( ∂

∂t
)ℓPm(t) (with ℓ ≥ 2) has at least

k − 1 distinct strictly positive roots strictly between the k such roots of the previous
derivative, and, moreover, a root strictly greater than the greatest root of the previous
derivative (because the latter, a weighted sum of decreasing exponentials, vanishes for
t → +∞), such that ( ∂

∂t
)ℓPm(t) has at least k distinct strictly positive roots, while its

terms have exactly k sign changes (by differentiation, the terms flip their sign and do
not vanish), such that, by Descartes’ rule of signs, it has exactly k real roots (counted
with multiplicity), and thus k strictly positive roots of multiplicity 1, and no other
real root. Furthermore, for ı̂ and ȷ̂ indexes with 0 ≤ ı̂ < ȷ̂ ≤ k, if ℓ ≤ ȷ̂ − ı̂, then
( ∂
∂t
)ℓPm(t) has at least ȷ̂− ı̂+ 1 − ℓ roots in the open interval (̂ı, ȷ̂), namely between

the ȷ̂− ı̂+ 2− ℓ roots of the previous derivative.

Claim 4.8 (Main features of Pm(t) in the discrete-time model). In the discrete-time
model (with k = n − 1 − m), Pm(k) = 0 and, for t ≥ k, Pm(t) is strictly increasing
towards 1. If k = 0, then Pm(t) is, for t real, strictly increasing and strictly concave.
If k ≥ 1, then Pm(t) has a greatest inflection point, at t = τinfl > 0, and it is, on the
open (and possibly empty) interval (k, τinfl), strictly convex, whereas it is, on the open
interval (τinfl,+∞), strictly concave.

Proof. limt→+∞ Pm(t) = 1, because the constant term of Pm(t) is 1 while the non-
constant terms (decreasing exponentials) vanish for t → +∞. By Claim 4.7, Pm(k) = 0
and ∂

∂t
Pm(t) has no root greater than or equal to k (and no real root if k = 0), such

that Pm(t) is, for t ≥ k (and for any t real if k = 0), strictly monotonic, and thus
strictly increasing, because Pm(k) = 0 and limt→+∞ Pm(t) = 1. Furthermore, by
Claim 4.7 again, ( ∂

∂t
)2Pm(t) has k roots, each of multiplicity 1, such that it is either

strictly convex or strictly concave for t big enough, and thus strictly concave for t big
enough, because Pm(k) is increasing and bounded. If k = 0, then Pm(t) has, for any t
real, no convexity change and is thus strictly concave. If k ≥ 1, then ( ∂

∂t
)2Pm(t) has

a greatest root, τinfl, of multiplicity 1, which is the only root possibly greater than
or equal to k (since it has k strictly positive roots, each of multiplicity 1, of which
at least k − 1 are in the open interval (0, k)), such that Pm(t) is, in the open (and
possibly empty) interval (k, τinfl), strictly convex, whereas it is, for t > τinfl, strictly
concave.
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Pm(t) in the continuous-time model So far, we have computed Pm(t) for the
discrete-time model, where the duration of a single round is 1 time unit. Now, we
will compute Pm(T ) for the continuous-time model. To this end, we introduce, as in
Section 2, a new parameter d (with 0 < d < min(a, b)), the duration of a single round,
whereas a resp. b (the average time needed by the attacker resp. the attackee for mining
a block) remain the same, such that the attacker resp. the attackee wins a single round
alone with probability p(d) = d · (b− d) / (a · b) resp. q(d) = d · (a− d) / (a · b). From
now on, we assume that these d-parameterized definitions of p and q are substituted
in Pm(t), which we will compute for d → 0.

Conjecture 4.9. Pm(t) is, for t ≥ k and 0 < d < 1, a strictly decreasing function of
d.

The parameters zj(d) are, by definition, the n roots of the polynomial Un(z) −√
q(d) / p(d) ·Un−1(z), which roots are real and of multiplicity 1, such that each zj(d)

depends analytically on the coefficients of this polynomial, and thus on d. Hence, for
d = 0, since q(0) / p(0) = a / b, the parameters zj(0) are the roots of:

Un(z)−
√

a / b · Un−1(z)

which are real and distinct, too, because we have shown that it is the case in the
discrete-time model, that is for Un(z) −

√
q / p · Un−1(z), where

√
q / p can assume

any strictly positive value. Also, by the same device, Uk(zj(0)) > 0 and Uk(zj(0)) ̸= 0,
and, since Uk(zj(d)) depends analytically on d and is non-zero, it has the same sign
as Uk(zj(0)).

The d-derivative at d = 0 of p(d) resp. q(d) is, by calculus, 1 / a resp. 1 / b, and we
define ln(µj) as the d-derivative at d = 0 of λj(d) = 1−p(d)−q(d)+2·

√
p(d) · q(d)·zj(d),

which is, by calculus, (2 ·
√
a · b ·zj(0)−(a+b))/(a ·b). Thus, for d = 0, by L’Hospital’s

rule:
ck,j(0) = 4 ·

(
√

b / a)k · Uk(zj(0))

− ln(µj) · a
· zj(0)

2 − 1

U2·n(zj(0))− U2·n(1)

which has, by the same device as in the discrete-time model, the same sign as Uk(zj(0)),
that is, as shown above, the same sign as in the discrete-time model, such that the
j-ordered coefficients ck,j have, by Claim 4.7, exactly k sign changes.

Thus, for d → 0, we have computed the constant coefficients of Pm(t). The
variables of Pm(t) are, by scaling t suitably, λj(d)

t/d, and their limit for d → 0 is,
by L’Hospital’s rule, λj(d)

t/d = exp(ln(λj(d)) / d)t = exp(λ′
j(0) / λj(0))

t = µt
j , such

that Pm(t) = 1−
∑n−1

j=0 ck,j(0) · µt
j .

These results, pertaining to the continuous-time model, are recapitulated in the fol-
lowing claim (which yields, with m = 0, Theorem 1.3.1).

Claim 4.10 (Pm(t) in the continuous-time model). In the continuous-time model
(with k = n− 1−m):

Pm(t) = 1−
n−1∑
j=0

ck,j · µt
j

where
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Ui(z) are the Chebyshev polynomials of the second kind
zj are the n roots of Un(z)−

√
a / b · Un−1(z)

µj = exp

(
2 ·

√
a · b · zj − (a+ b)

a · b

)

ck,j = 4 ·
(
√

b / a)k · Uk(zj)

− ln(µj) · a
·

z2j − 1

U2·n(zj)− U2·n(1)

Also, the roots zj are real, pairwise distinct, and, by convention, indexed in decreasing
order (z0 is the greatest root), and thus the eigenvalues µj are indexed in decreasing
order (µ0 is the greatest root). Furthermore, z0 > 0 and, for 0 < j < n, |zj | < 1, and, if
z0 = 1, by singularity removal, (z20−1)/(U2·n(z0)−U2·n(1)) = 3/(2·n·(n+1)·(2·n+1)).
Moreover, 0 < µj < 1, and ck,j has the same sign as Uk(zj), where ck,0 > 0, ck,j ̸= 0,
and ck,j has the same sign as in the discrete-time model, such that the j-ordered
coefficients ck,j have exactly k sign changes.

The expectation and variance of T (m) in the continuous-time model can be com-
puted with the formulae given in Section 2, but they can be computed from Pm(t) as
well, such that the results of an implementation can be cross-checked numerically.

Claim 4.11 (Expectation and variance of T (m) in the continuous-time model). In
the continuous-time model (with k = n − 1 − m), the time expectation and variance
for the attacker to win are:

E(T (m)) =

n−1∑
j=0

ck,j
− ln(µj)

E(T (m)2) =

n−1∑
j=0

2 · ck,j
ln(µj)2

V ar(T (m)) = E(T (m)2)− E(T (m))2

Proof. By definition:

E(T (m)) =

∫ +∞

0

t · ∂

∂t
Pm(t) dt E(T (m)2) =

∫ +∞

0

t2 · ∂

∂t
Pm(t) dt

Observing that ∂
∂t
Pm(t) =

∑n−1
j=0 −ck,j · ln(µj) ·µt

j , the formula
∫ +∞
0

µt dt = −1
ln(µ)

(for
0 < µ < 1) and its µ-derivative yield the claimed results.

Claim 4.12 (Analysis of Pm(t) in the continuous-time model). In the continuous-time
model (with k = n − 1 − m), Pm(t) has one root of multiplicity k + 1 at t = 0, and
no other real root; also, the j-ordered coefficients ck,j of Pm(t) (see Claim 4.10) have
exactly k sign changes. For 1 ≤ ℓ ≤ k, ( ∂

∂t
)ℓPm(t) has one root of multiplicity k+1− ℓ

at t = 0, and ℓ− 1 strictly positive roots of multiplicity 1, and no other real root. For
k < ℓ, ( ∂

∂t
)ℓPm(t) has k strictly positive roots of multiplicity 1, and no other real root.

Proof. For d → 0, Pm(t) and its derivatives converges uniformly in t in left-bounded
intervals. Indeed, zj and thus the coefficients ck,j(d) and the bases λd are analytic in
d, and the variables λj(d)

t/d are decreasing exponential functions. Furthermore, by
calculus, the d-limit and the t-derivative commute, such that limd→0 Pm(t) resp. its
derivatives have at least the k+1 resp. k real roots established by Claim 4.7 (mutatis
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mutandis, for d > 0 instead of d = 1), counted, however, with multiplicity. Indeed,
some roots may collapse, yielding thus a single root, whose multiplicity is then at least
the sum of the multiplicities of the collapsing roots in question, essentially because
there is some extremum between two real roots, which argument can then be applied
inductively to the derivatives.

By Claim 4.7 (mutatis mutandis, for d > 0 instead of d = 1), Pm(t) has k+1 roots
in the closed interval [0, d ·k], which, for d → 0, collapse into one root of multiplicity at
least k+1 at t = 0. By the same argument as in the proof of Claim 4.7, the j-ordered
coefficients 1 and ck,j of limd→0 Pm(t) (see Claim 4.10) have exactly k+1 sign changes
and limd→0 Pm(t) has exactly one real root, of multiplicity k+1, at t = 0. By the same
device, the j-ordered coefficients ck,j of the derivatives of limd→0 Pm(t) have exactly
k sign changes and exactly k real roots, counted with multiplicity.

Thus, for 1 ≤ ℓ ≤ k, ( ∂
∂t
)ℓ limd→0 Pm(t) have one root of multiplicity k + 1 − ℓ

at t = 0, and ℓ − 1 strictly positive roots, counted with multiplicity; and, for k < ℓ,
( ∂
∂t
)ℓ limd→0 Pm(t) have k strictly positive roots, counted with multiplicity.
Furthermore, the strictly positive roots of the derivatives of limd→0 Pm(t) do not

collapse, that is, equivalently: For 1 ≤ ℓ ≤ k, ( ∂
∂t
)ℓ limd→0 Pm(t) has at least (and thus

exactly) ℓ distinct real roots, and, for k < ℓ, at least (and thus exactly) k distinct real
roots. We prove it now by induction over ℓ. For k = 0, no real root exists, such that
k ≥ 1 can be assumed. For ℓ = 1, ∂

∂t
limd→0 Pm(t) has one root of multiplicity k at

t = 0, such that it has ℓ distinct real roots. For 2 ≤ ℓ ≤ k, ( ∂
∂t
)ℓ−1 limd→0 Pm(t) has,

by induction over ℓ, ℓ− 1 distinct real roots, and thus ℓ− 2 distinct extrema strictly
between them, and, moreover, an extremum strictly greater than the greatest of these
real roots (since the function in question, a weighted sum of decreasing exponentials,
vanishes for t → +∞), such that ( ∂

∂t
)ℓ limd→0 Pm(t) has ℓ− 1 distinct strictly positive

roots and one root of multiplicity k + 1− ℓ at t = 0, that is, ℓ distinct positive roots.
For k < ℓ, ( ∂

∂t
)ℓ−1 limd→0 Pm(t) has, by induction over ℓ, k distinct real roots, and

thus k−1 distinct extrema strictly between them, and, moreover, an extremum strictly
greater than the greatest of these real roots (since the function in question, a weighted
sum of decreasing exponentials, vanishes for t → +∞), such that ( ∂

∂t
)ℓ limd→0 Pm(t)

has k distinct strictly positive roots.

Claim 4.13 (Main features of Pm(t) in the continuous-time model). In the continuous-
time model (with k = n−1−m), Pm(0) = 0 and, for t > 0, Pm(t) is strictly increasing
towards 1. If k = 0, then Pm(t) is, for t real, strictly increasing and strictly concave.
If k ≥ 1, then ∂

∂t
Pm(0) = 0 and Pm(t) has, for t > 0, exactly one inflection point,

at t = τinfl > 0, and it is, on the open (and non-empty) interval (0, τinfl), strictly
convex, whereas it is on the open interval (τinfl,+∞), strictly concave.

Proof. limt→+∞ Pm(t) = 1, because the constant term of Pm(t) is 1 while the non-
constant terms (decreasing exponentials) vanish for t → +∞. By Claim 4.12, Pm(0) =
0 and ∂

∂t
Pm(t) has no strictly positive root (and no real root if k = 0), such that

Pm(t) is, for t > 0 (and for any t real if k = 0), strictly monotonic, and thus strictly
increasing, because Pm(0) = 0 and limt→+∞ Pm(t) = 1. Furthermore, by Claim 4.12
again, ( ∂

∂t
)2Pm(t) has k roots, counted with multiplicity, such that it is either strictly

convex or strictly concave for t big enough, and thus strictly concave for t big enough,
because Pm(k) is increasing and bounded. If k = 0, then Pm(t) has, for any t real, no
convexity change and is thus strictly concave. If k ≥ 1, then ( ∂

∂t
)2Pm(t) has exactly

one strictly positive root, τinfl, of multiplicity 1 (since it has k positive roots, counted
with multiplicity, of which one of multiplicity k−1 at t = 0), such that Pm(t) is, in the
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open (and non-empty) interval (0, τinfl), strictly convex, whereas it is, for t > τinfl,
strictly concave.

5 Fixed-Time Attack
Definition 5.1 (Fixed-time attack). If the duration of an attack is a fixed time t
(that is, the attack ends if t time units have elapsed, independently of the success of
the attack), then the expected gains are

Gfix(t) = amt · Pm(t)− cpu · t− ini

where amt > 0 is the amount being attacked, cpu > 0 are the costs per time unit,
and ini ≥ 0 are the costs of the initial setup, all expressed in the cryptocurrency in
question, and where Pm(t) is the probability of success of such an attack (according to
Claim 4.5 in the discrete-time model resp. Claim 4.10 in the continuous-time model).

Claim 5.2 (Boundaries of Gfix(t) in the discrete-time model). In the discrete-time
model (with k = n − 1 − m), Gfix(t) is, at t = k, negative (strictly if k ≥ 1).
Furthermore, Gfix(t) has, for t → +∞, a strictly decreasing affine asymptote amt −
cpu · t− ini.

Proof. By Claim 4.7, Pm(k) = 0, such that, by Definition 5.1, Gfix(k) = −cpu ·
k − ini, which is negative (strictly if k ≥ 1). By Claim 4.5, 0 < λj < 1, and thus
limt→+∞ Pm(t) = 1, such that, by Definition 5.1, limt→+∞ Gfix(t)− (amt− cpu · t−
ini) = 0.

Claim 5.3 (Boundaries of Gfix(t) in the continuous-time model). In the continuous-
time model (with k = n−1−m), Gfix(0) = −ini ≤ 0, and, if k ≥ 1, G′

fix(0) = −cpu <
0. Furthermore, Gfix(t) has, for t → +∞, a strictly decreasing affine asymptote
amt− cpu · t− ini.

Proof. By Claim 4.12, Pm(0) = 0, such that, by Definition 5.1, Gfix(0) = −ini. By
Claim 4.10, 0 < µj < 1, and thus limt→+∞ Pm(t) = 1, such that, by Definition 5.1,
limt→+∞ Gfix(t) − (amt − cpu · t − ini) = 0. Furthermore, if k ≥ 1, by Claim 4.12,
P ′
m(0) = 0, such that G′

fix(0) = −cpu.

Definition 5.4 (Strict unimodality). A function f(t) is strictly unimodal on a closed
interval I if tmax exists in I such that f(t) (restricted to I) is strictly increasing resp.
strictly decreasing for t < tmax resp. t > tmax.

Claim 5.2 resp. Claim 5.3 provides, for t ≥ k, boundary information about the
shape of Gfix(t), and the following claims show that, for t > k (in the discrete-time
model) resp. t > 0 (in the continuous-time model), Gfix(t) has at most two roots and is
strictly positive on an open, bounded and possibly empty interval, on which the fixed-
time attack is profitable, and on the closure of which Gfix(t) is strictly unimodal; also,
they give a procedure to decide the presence, for t > k resp. t > 0, of the roots and of
the positive maximum of Gfix(t), and for computing them, where the conditions for
generic root-finding and maximum-finding algorithms hold.

Claim 5.5 (Analysis of Gfix(t) in the discrete-time model). In the discrete-time model
(with k = n− 1−m), if k = 0, then Gfix(t) is, at t = 0, negative, and it is, for t ≥ 0,
strictly unimodal, with a unique local maximum at t = τmax ≥ 0; if moreover Gfix(t)
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has, for t ≥ 0, a maximum of strictly positive value, then it has, for t ≥ 0, exactly
two roots (one on each side of τmax), and it is, between these roots, strictly unimodal.
If k ≥ 1, then Gfix(t) is, at t = k, strictly negative, and it has, for t > k, at most
one local maximum; also, Pm(t) / t is, for t ≥ k, strictly unimodal, with a unique
local maximum at t = τcrit > k, and Gfix(t) is, for t ≥ τcrit, strictly unimodal;
furthermore, if Gfix(t) has, for t > k, a local maximum of positive value, at t = τmax,
then τmax ≥ τcrit (and Gfix(τcrit) ≥ −ini), and Gfix(t) has, for t ≥ k, exactly two
roots (one on each side of τmax), and it is, between these roots, strictly unimodal.

Proof. By calculus, Gfix(t) and Pm(t) have the same convexity.
If k = 0, by Claim 4.8, Gfix(t) is, for t real, strictly concave; furthermore, by Claim

5.2, Gfix(t) is, at t = 0, negative, and it has, for t → +∞, a strictly decreasing affine
asymptote; hence, Gfix(t) has, for t ≥ 0, a unique local maximum, at t = τmax ≥ 0,
and if this maximum is of strictly positive value, then Gfix(t) has, for t ≥ 0, exactly
two roots (one on each side of τmax), and is, between these roots, strictly unimodal.

If k ≥ 1, by Claim 4.8, Gfix(t) has a greatest inflection point at t = τinfl and it is,
for k < t < τinfl, strictly convex, and, for t > τinfl, strictly concave; furthermore, by
Claim 5.2 with k ≥ 1, Gfix(t) is, at t = k, strictly negative, and it has, for t → +∞,
a strictly decreasing affine asymptote; hence, Gfix(t) has, for t > k, at most one local
maximum, and if it has a local maximum of positive strictly value, at t = τmax, then
it has, for t ≥ k, exactly two roots (one on each side of τmax), and is, between these
roots, strictly unimodal.

If k ≥ 1, the derivative of Pm(t) / t has, for t ≥ k, by calculus, the same sign
as P ′

m(t) · t − Pm(t); the latter is, at t = k, strictly positive (since, by Claim 4.8,
P ′
m(k) > 0 and Pm(k) = 0) and has, for t ≥ k, by calculus, the same monotonicity as

P ′
m(t) and is thus, by Claim 4.8 with k ≥ 1, strictly unimodal, with a unique maximum

of strictly positive value at t = max(τinfl, k), while its limit for t → +∞ is −1 (see
Claim 4.5), such that it has, for t ≥ k, exactly one root, at t = τcrit > max(τinfl, k)
(with sign change from positive to negative); that is, Pm(t) / t is, for t ≥ k, strictly
unimodal, with a unique maximum at t = τcrit > k; also, P ′

m(τcrit) = Pm(τcrit)/ τcrit;
furthermore, Gfix(t) is, for t > τinfl (and thus in particular for t ≥ τcrit), by Claim
4.8 with k ≥ 1, strictly concave, and it has, for t → +∞, by Claim 5.2 a strictly
decreasing affine asymptote, such that it is, for t ≥ τcrit, strictly unimodal.

If k ≥ 1 and Gfix(t) has, for t > k, a local maximum of positive value, at t =
τmax > k, then P ′

m(τcrit) = Pm(τcrit) / τcrit ≥ Pm(τmax) / τmax ≥ cpu / amt (the first
inequality because, as shown above, Pm(t) / t is, for t ≥ k, maximal at t = τcrit, and
the second inequality because, by hypothesis, Gfix(τmax) ≥ 0, and, by Definition 5.1,
ini ≥ 0); thus, P ′

m(τcrit) ≥ cpu/amt, or, equivalently, by Definition 5.1, G′
fix(τcrit) ≥

0 and Gfix(τcrit) ≥ −ini; furthermore, as shown above, τcrit > max(τinfl, k), such
that Gfix(t) is, for t ≥ τcrit, strictly concave; also, Gfix(t) has, for t → +∞, by
Claim 5.2, a strictly decreasing affine asymptote, such that it has, for t > k, at a
local maximum at some t ≥ τcrit (where, equivalently, by strict concavity, G′

fix(t) has
a root), and since it has, for t > k, as shown above, at most one local maximum,
τmax ≥ τcrit.

Claim 5.6 (Analysis of Gfix(t) in the continuous-time model). In the continuous-
time model (with k = n − 1 − m), if k = 0, then Gfix(t) is, at t = 0, negative, and
it is, for t ≥ 0, strictly unimodal, with a unique local maximum at t = τmax ≥ 0; if
moreover Gfix(t) has, for t ≥ 0, a maximum of strictly positive value, then it has, for
t ≥ 0, exactly two roots (one on each side of τmax), and it is, between these roots,
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strictly unimodal. If k ≥ 1, then Gfix(t) is, at t = 0, negative (strictly if ini ̸= 0),
and it has, for t > 0, at most one local maximum; also, Pm(t) / t has, at t = 0, a
root (up to singularity removal) and it is, for t ≥ 0, strictly unimodal, with a unique
local maximum at t = τcrit > 0, and Gfix(t) is, for t ≥ τcrit, strictly unimodal;
furthermore, if Gfix(t) has, for t > 0, a local maximum of positive value, at t = τmax,
then τmax ≥ τcrit (and Gfix(τcrit) ≥ −ini), and Gfix(t) has, for t > 0, exactly two
roots (one on each side of τmax), and it is, between these roots, strictly unimodal (if
moreover ini = 0, then Gfix(t) has, at t = 0, an extra root, but Gfix(t) / t does not,
since, at t = 0, by singularity removal, Gfix(t) / t = −cpu < 0, such that the unique
root of Gfix(t) for 0 < t ≤ τmax is the unique root of Gfix(t) / t for 0 ≤ t ≤ τmax).

Proof. By calculus, Gfix(t) and Pm(t) have the same convexity.
If k = 0, by Claim 4.13, Gfix(t) is, for t real, strictly concave; furthermore, by

Claim 5.3, Gfix(t) is, at t = 0, negative, and it has, for t → +∞, a strictly decreasing
affine asymptote; hence, Gfix(t) has, for t ≥ 0, a unique local maximum, at t = τmax ≥
0, and if this maximum is of strictly positive value, then Gfix(t) has, for t ≥ 0, exactly
two roots (one on each side of τmax), and is, between these roots, strictly unimodal.

If k ≥ 1, by Claim 4.13, Gfix(t) has a greatest inflection point at t = τinfl and it
is, for 0 < t < τinfl, strictly convex, and, for t > τinfl, strictly concave; furthermore,
by Claim 5.3 with k ≥ 1, Gfix(t) is, at t = 0, negative (strictly if ini ̸= 0) and strictly
decreasing, and it has, for t → +∞, a strictly decreasing affine asymptote; hence,
Gfix(t) has, for t > 0, at most one local maximum, and if it has a local maximum of
positive strictly value, at t = τmax, then it has, for t > 0, exactly two roots (one on
each side of τmax), and is, between these roots, strictly unimodal (if moreover ini = 0,
then, by Definition 5.1, by Claim 4.13 with k ≥ 1 (Pm(0) = P ′

m(0) = 0), and by
L’Hospital’s rule, at t = 0, Gfix(t) = 0 and Gfix(t) / t = −cpu).

If k ≥ 1, the derivative of Pm(t) / t has, for t > 0, by calculus, the same sign as
P ′
m(t) · t − Pm(t); the latter has, at t = 0, a root (since, by Claim 4.13, Pm(0) = 0)

and has, for t > 0, by calculus, the same monotonicity as P ′
m(t) and is thus, by Claim

4.13 with k ≥ 1, strictly unimodal, with a unique maximum of strictly positive value
at t = τinfl > 0, while its limit for t → +∞ is −1 (see Claim 4.10), such that it has,
for t > 0, exactly one root, at t = τcrit > τinfl > 0 (with sign change from positive to
negative); that is, Pm(t)/ t is, for t ≥ 0, strictly unimodal, with a unique maximum at
t = τcrit > 0, and with a root at t = 0 (by L’Hospital’s rule, since, by Claim 4.13 with
k ≥ 1, Pm(0) = P ′

m(0) = 0); also, P ′
m(τcrit) = Pm(τcrit) / τcrit; furthermore, Gfix(t)

is, for t > τinfl (and thus in particular for t ≥ τcrit), by Claim 4.13 with k ≥ 1, strictly
concave, and it has, for t → +∞, by Claim 5.3 a strictly decreasing affine asymptote,
such that it is, for t ≥ τcrit, strictly unimodal.

If k ≥ 1 and Gfix(t) has, for t > 0, a local maximum of positive value, at t =
τmax > 0, then P ′

m(τcrit) = Pm(τcrit) / τcrit ≥ Pm(τmax) / τmax ≥ cpu / amt (the first
inequality because, as shown above, Pm(t) / t is, for t ≥ 0, maximal at t = τcrit, and
the second inequality because, by hypothesis, Gfix(τmax) ≥ 0, and, by Definition 5.1,
ini ≥ 0); thus, P ′

m(τcrit) ≥ cpu/amt, or, equivalently, by Definition 5.1, G′
fix(τcrit) ≥

0 and Gfix(τcrit) ≥ −ini; furthermore, as shown above, τcrit > τinfl > 0, such that
Gfix(t) is, for t ≥ τcrit, strictly concave; also, Gfix(t) has, for t → +∞, by Claim 5.3,
a strictly decreasing affine asymptote, such that it has, for t > 0, at a local maximum
at some t ≥ τcrit (where, equivalently, by strict concavity, G′

fix(t) has a root), and
since it has, for t > 0, as shown above, at most one local maximum, τmax ≥ τcrit.
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6 Bounded-Time Attack
Definition 6.1 (Bounded-time attack). If the duration of an attack is bounded by a
given time t (that is, the attack ends if t time units have elapsed, or if the attack is
successful, whichever happens first), then the expected gains are

Gbnd(t) = amt · Pm(t)− cpu · Em(t)− ini

where amt > 0 is the amount being attacked, cpu > 0 are the costs per time unit,
and ini ≥ 0 are the costs of the initial setup, all expressed in the cryptocurrency in
question, where Pm(t) is the probability of success of such an attack (according to
Claim 4.5 in the discrete-time model resp. Claim 4.10 in the continuous-time model),
and where Em(t) is the expected time of such and attack, that is,

Em(t) = E(min(t, T (m)))

In the following, the bounded-time attack is analyzed in the discrete-time model.
If an attack is time-bounded by k+1 or less time units, its duration always reaches this
bound, since an earlier win, ending the attack, is impossible, because at least k+1 time
units are required for the attacker to win (see Claim 6.2). Also, the expected duration
Em(t) of a time-bounded attack is a strictly increasing function of t (see Claim 6.6),
and converges, as t increases, to E(T (m)), the expected duration of a time-unbounded
attack (see Claim 4.6 and Claim 6.2).

Claim 6.2 (Em(t) in the discrete-time model). In the discrete-time model (with k =
n− 1−m):

Em(t) = E(T (m))−
n−1∑
j=0

ck,j
1− λj

· λt
j

where E(T (m)) is that of Claim 4.6, and where ck,j and λj are those of Claim 4.5.
Furthermore, for t integer with 0 ≤ t ≤ k + 1, Em(t) = t.

Proof. By the definition of the expectation, by Claim 4.5 (representation of Pm(t)),
by Claim 4.6 (representation of E(T (m))), and by the formula

∑+∞
t=0 λt = 1

1−λ
(for

0 < λ < 1) and its λ-derivative:
Em(t)

= E(min(t, T (m)))

=

+∞∑
T=1

min(t, T ) · (Pm(T )− Pm(T − 1))

=

+∞∑
T=1

T · (Pm(T )− Pm(T − 1))−
+∞∑

T=t+1

(T − t) · (Pm(T )− Pm(T − 1))

= E(T (m))−
+∞∑
T=1

T · (Pm(T + t)− Pm(T + t− 1))

= E(T (m))−
n−1∑
j=0

(1− λj) ·

(
+∞∑
T=1

T · λT−1
j

)
· ck,j · λt

j

= E(T (m))−
n−1∑
j=0

ck,j
1− λj

· λt
j

Furthermore, Pm(T ) − Pm(T − 1) decreases exponentially with T , and, for t integer
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with 0 ≤ t ≤ k, Pm(t) = 0, such that, for t integer with 0 ≤ t ≤ k + 1:
Em(t)

=

+∞∑
T=1

(Pm(T )− Pm(T − 1)) ·min(t, T )

=

+∞∑
T=k+1

(Pm(T )− Pm(T − 1)) · t

= lim
T→+∞

Pm(T ) · t

= t

In the discrete-time model, the analysis of Gbnd(t) resp. Em(t) is facilitated by con-
sidering Ĝm(α, t) resp. Êm(t), defined below, which have related convexities, but are
easier to analyze, because they have a high number of real roots, such that Descartes’s
rule of sign imposes strong constraints. In the following, knowledge about those func-
tions is built up, with the aim to describe and compute, for t ≥ k, the roots and
positive extrema of Gbnd(t), mainly from the knowledge of its convexity, which has,
for t ≥ k, at most two changes (see Claim 6.11), and from the fact that it is, at t = k,
negative, and that it it has, for t → +∞, a horizontal asymptote (see Claim 6.12).

Definition 6.3 (Êm(t) and Ĝm(α, t)).

α = cpu / amt

Êm(t) = t− Em(t)

Ĝm(α, t) = Pm(t) + α · Êm(t)

Also, ′ denotes ∂
∂t

when applied to Êm(t), Ĝm(α, t), Pm(t), or Gbnd(t).

By construction, the second derivative of Êm(t) resp. Ĝm(α, t) is closely related
to that of Em(t) resp. Gbnd(t). Also, Êm(t) and Ĝm(α, t) happen to fulfill a simple
functional equation, which facilitates further investigations.

Claim 6.4 (Relations with Êm(t) and Ĝm(α, t) in the discrete-time model). In the
discrete-time model (with k = n− 1−m):

Êm(t) = t− E(T (m)) +

n−1∑
j=0

(ck,j / (1− λj)) · λt
j

Pm(t) = Êm(t+ 1)− Êm(t)

Ĝm(α, t) = Êm(t+ 1)− (1− α) · Êm(t)

E′′
m(t) = −Ê′′

m(t)

G′′
bnd(t) = amt · Ĝ′′

m(α, t)

Proof. The first equality is established by Claim 6.2 and Definition 6.3. The second
equality is established by Claim 4.5 and by direct computation. The third equality
follows, by Definition 6.3 and elementary algebra, from the second. The fourth equality
is established by Definition 6.3. The fifth equality is established by Definition 6.1 and
Definition 6.3.

Claim 6.5 (Analysis of Êm(t) in the discrete-time model). In the discrete-time model
(with k = n−1−m), Êm(t) has k+2 roots of multiplicity 1, one at each integer in the
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closed interval [0, k+1], and no other real root; Ê′
m(t) has k+1 roots of multiplicity 1

in the open interval (0, k+1), and no other real root; Ê′′
m(t) has k roots of multiplicity

1 in the open interval (0, k + 1), and no other real root. If k = 0, Ê′′
m(t) is, for t real,

strictly positive. If k ≥ 1, Ê′′
m(t) assumes its greatest real root, of multiplicity 1, at

t = σinfl, with k − 1 < σinfl < k + 1, and is, for t > σinfl, strictly positive; also, for
α given and real, Ĝ′′

m(α, t) and has at least k − 1 distinct t-roots in the open interval
(0, k).

Proof. Êm(t) equals, by Definition 6.3, t − Em(t), such that it has, by Claim 6.2, at
least k + 2 distinct real roots, one at each integer in the closed interval [0, k + 1].

Ê′
m(T ) has at least k+1 distinct real roots in the open interval (0, k+1), namely

strictly between those of Êm(t), and, by Claim 6.4,

Ê′
m(t) = 1 +

n−1∑
j=0

(ck,j / (1− λj)) · ln(λj) · λt
j

such that Ê′
m(t) is an exponential polynomial whose j-ordered coefficients have, by

Descartes’ rule of signs, k+1 sign changes (indeed, by Claim 4.7, the j-ordered factors
ck,j have exactly k sign changes, and, by Claim 4.5, ck,0 > 0 and 0 < λj < 1, such
that, 0 < 1− λj < 1 and ln(λj) < 0); hence, Ê′

m(t) has k+1 real roots of multiplicity
1, and no other real root.

Consequently, Êm(t) has at most k + 2 real roots, counted with multiplicity (oth-
erwise Ê′

m(t) would have more than k + 1 real roots, counted with multiplicity), and
has thus exactly k + 2 real roots of multiplicity 1, and no other real root.

Ê′′
m(T ) has at least k distinct real roots in the open interval (0, k + 1), namely

strictly between those of Ê′
m(t), and, by Claim 6.4,

Ê′′
m(t) =

n−1∑
j=0

(ck,j / (1− λj)) · ln(λj)
2 · λt

j

such that Ê′′
m(t) is an exponential polynomial whose j-ordered coefficients have, by

Descartes’ rule of signs, k sign changes (by the same device as above); hence, Ê′′
m(t)

has k real roots of multiplicity 1, and no other real root.
If k ≥ 1, then Ê′′

m(t) has a greatest real root, at t = σinfl, with k−1 < σinfl < k+1
(indeed, σinfl lays strictly between the two greatest roots of Ê′

m(t), which in turn lay
strictly between k − 1 and k resp. k and k + 1); also, Ê′′

m(t) has, for t > σinfl, no
real root, and is thus strictly positive (indeed, by Claim 4.5, ck,0 > 0 and λ0 is the
greatest eigenvalue, such that, for t big enough, the most significant term of Ê′′

m(t) is
(ck,0 / (1− λ0)) · ln(λ0)

2 · λt
0, which is strictly positive).

If k = 0, Ê′′
m(t) has no real root and is, for the same reason as above, strictly

positive.
Also, Pm(t) has, by Claim 4.7, exactly k + 1 real roots, one of multiplicity 1 at

each integer in the closed interval [0, k], and thus Ĝm(α, t) (that is, by Definition 6.3,
Pm(t) + α · Êm(t)) has, for α given and real, at least the k + 1 distinct real t-roots
common to Pm(t) and Êm(t), that is, one at each integer in the closed interval [0, k];
hence, for α given and real, Ĝ′

m(α, t) has at least k distinct real t-roots in the open
interval (0, k) (between those of Ĝm(α, t)) and, if k ≥ 1, Ĝ′′

m(α, t) has at least k − 1
distinct real t-roots in the open interval (0, k) (between those of Ĝ′

m(α, t)).
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Claim 6.6 (Positivity of Em(t) and E′
m(t) in the discrete-time model). In the discrete-

time model (with k = n− 1−m), E′
m(t) is, for t ≥ k, strictly positive, and Em(t) is,

for t ≥ k and t ̸= 0, strictly positive. For amt, ini and t given with t ≥ k and t ̸= 0,
Gbnd(t) resp. G′

bnd(t) are strictly decreasing affine functions of cpu.

Proof. Since, by Definition 6.1, Gbnd(t) = amt · Pm(t)− cpu · Em(t)− ini, and since,
by Claim 6.2, Em(k) = k ≥ 0, it is enough to show that E′

m(t) is, for t ≥ k, strictly
positive. By Claim 4.8, P ′

m(t) is, for t ≥ k, positive, such that it is enough to show
E′

m(t)− P ′
m(t) > 0. By Claim 6.4, E′

m(t)− P ′
m(t) equals E′

m(t) + Ê′
m(t)− Ê′

m(t+ 1),
which, by Definition 6.3, equals E′

m(t+1). By Claim 6.5, Êm(t+1) is, for t > σinfl−1
(thus in particular for t ≥ k), strictly convex, such that Em(t+1), having, by Definition
6.3, the opposite convexity, is, for t ≥ k, strictly concave, and thus strictly increasing
(otherwise, its limit for t → +∞ would be −∞, in contradiction to Claim 6.2, by
which Em(t) has, for t → +∞, a horizontal asymptote).

Claim 6.7 (Convexity of Ĝm(α, t) in the discrete-time model). If k ≥ 1, then k−1 <
σinfl < τinfl (where σinfl is the greatest real root of Ê′′

m(t) and τinfl is the greatest real
root of P ′′

m(t)) and Ĝ′′
m(α, t) is, for t given with t > σinfl, a strictly increasing function

of α; also, for α ≥ 0 given, Ĝm(α, t) is, for σinfl ≤ t < τinfl, strictly t-convex. If
k = 0, Ĝ′′

m(α, t) is, for t given and real, a strictly increasing function of α.

Proof. If k ≥ 1, Ê′′
m(t) has, by Claim 6.5, a greatest real root, at t = σinfl > k − 1,

at with sign change from negative to positive, such that Ê′′
m(σinfl +1)− Ê′′

m(σinfl) =
Ê′′

m(σinfl +1) > 0, that is, by Claim 6.4, P ′′
m(σinfl) > 0; on the other hand, by Claim

4.8, P ′′
m(t) is, for t ≥ τinfl, negative or zero, such that σinfl < τinfl; also, by Definition

6.3, for ϵ real, Ĝ′′
m(α+ ϵ, t) = Ĝ′′

m(α, t) + ϵ · Ê′′
m(t), and, for t > σinfl, Ê′′

m(t) > 0, such
that Ĝ′′

m(α, t) is, for t given with t > σinfl, a strictly increasing function of α.
If k = 0, Ê′′

m(t) is, for t real, by Claim 6.5, strictly positive, such that, by the same
device, Ĝ′′

m(α, t) is, for t given and real, a strictly increasing function of α.
If k ≥ 1, as shown above, P ′′

m(t) is, at t = σinfl, strictly positive, and has, at
t = τinfl, by Claim 4.8, a sign change from positive to negative, such that it has, for
σinfl ≤ t ≤ τinfl, an odd number of roots, counted with multiplicity, and thus has
exactly one root of multiplicity 1, namely at t = τinfl (otherwise, it would have at least
three roots, counted with multiplicity, greater than σinfl, thus in particular greater
than k − 1, a contradiction to Claim 4.7, by which P ′′

m(t) has most two roots greater
than k−1); hence, P ′′

m(t) (that is, by Definition 6.3, Ĝ′′
m(0, t)) is, for σinfl ≤ t < τinfl,

strictly positive, while Ĝ′′
m(α, t) is, for t given with t > σinfl, a strictly increasing

function of α, such that, for α given and α ≥ 0, Ĝ′′
m(α, t) is, for σinfl ≤ t < τinfl,

strictly positive.

In the following, the dependency of Gbnd(t) upon its parameters amt, cpu and ini
(see Definition 6.1) is investigated. It will be shown that its shape depends essentially
on α = cpu / amt and, if k ≥ 1, on the sign of ck,1.

Definition 6.8 (Factors γj in the discrete-time model). For 0 ≤ j < n:

γj = amt− cpu / (1− λj)

Claim 6.9 (Gbnd(t) with the factors γj in the discrete-time model). In the discrete-
time model (with k = n− 1−m):
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Gbnd(t) = amt− cpu · E(T (m))− ini−
n−1∑
j=0

γj · ck,j · λt
j

Ĝ′′
m(α, t) =

n−1∑
j=0

(−γj · ck,j · ln(λj)
2 / amt) · λt

j

Proof. The first equality is established from Definition 6.1 by expanding Pm(t) (as
given by Claim 4.5) and Em(t) (as given by Claim 6.2), and then by using Definition
6.8. The second equality is established from the first and by Claim 6.4 (Ĝ′′

m(α, t) =
G′′

bnd(t) / amt).

Claim 6.10 (Basic facts about the factors γj in the discrete-time model). The factors
γj of Definition 6.8 are strictly increasing with j. Also, γj is positive resp. negative
if α = cpu / amt is smaller resp. greater than 1 − λj. Furthermore, the j-ordered
coefficients γj · ck,j of Gbnd(t) (see Claim 6.9) have at most k + 1 sign changes.

Proof. Since the eigenvalues λj are, by Claim 4.5, strictly between 0 and 1 and strictly
decreasing with j, the factors γj are, by elementary algebra, strictly increasing with
j, and γj is positive resp. negative if α = cpu / amt is smaller resp. greater than
1 − λj . Furthermore, by Claim 4.7, the j-ordered factors ck,j have exactly k sign
changes, while, by increasing α gradually (from zero onward), the j-ordered factors
γj successively flip their signs, such that the j-ordered coefficients ck,j · γj of Gbnd(t)
have at most k + 1 sign changes.

Claim 6.11 (Convexity of Gbnd(t) in the discrete-time model). In the discrete-time
model (with k = n − 1 − m), if k ≥ 1, then, for G′′

bnd(t) has, for t ≥ k, at most two
roots (counted with multiplicity). If n ≥ 2 (in particular if k ≥ 1), the sign of G′′

bnd(t)
is, for t big enough, the sign of its leading coefficient −γj · ck,j , where j = 0 if γ0 ̸= 0,
and j = 1 if γ0 = 0; also, ck,0 > 0.

Proof: If k ≥ 1, by Claim 6.10 and by Descartes’ rule of signs, G′′
bnd(t) has at most

k + 1 real roots (counted with multiplicity) and, by Claim 6.5, it has at least k − 1
real roots (counted with multiplicity) in the open interval (0, k), such that it has, for
t ≥ k, at most two real roots (counted with multiplicity). If n ≥ 2, by Claim 4.5, λ0

is the greatest eigenvalue, λ1 is the second greatest eigenvalue, and all λj are strictly
between 0 and 1, such that the most significant term of G′′

bnd(t) for t big enough is,
by Claim 6.9, −γj · ck,j · ln(λj)

2 · λt
j , where j = 0 if γ0 ̸= 0, and j = 1 if γ0 = 0. Also,

by Claim 4.5, ck,0 > 0.

Claim 6.12 (Boundaries of Gbnd(t) in the discrete-time model). In the discrete-time
model (with k = n − 1 −m), Gbnd(k) = −cpu · k − ini is negative (strictly if k ≥ 1),
and Gbnd(t) has, for t → +∞, a horizontal asymptote amt− cpu · E(T (m))− ini.

Proof. By Claim 4.7, Pm(k) = 0, and by Claim 6.2, Em(k) = k, such that, by Defini-
tion 6.1, Gbnd(k) = −cpu · k− ini, which is negative (strictly if k ≥ 1). By Claim 4.5,
0 < λj < 1, such that, by Claim 6.9, limt→+∞ Gbnd(t) = amt−cpu·E(T (m))−ini.

Claim 6.12 provides, for t ≥ k, boundary information about the shape of Gbnd(t),
and the following claims show that, for t > k, Gbnd(t) has at most two roots and is
strictly positive on an open and possibly empty interval, on which the bounded-time
attack is profitable, and on the closure of which Gbnd(t) is either strictly unimodal or
strictly increasing; also, they give a procedure to decide the presence, for t > k, of the
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roots and of the positive maximum of Gbnd(t), and for computing them, where the
conditions for generic root-finding and maximum-finding algorithms hold.

Claim 6.13 (Analysis of Gbnd(t) in the discrete-time model, case A). General hypoth-
esis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the discrete-time
model, with k = n− 1−m ≥ 1 and ck,1 < 0. In particular, by Claim 6.12 with k ≥ 1,
Gbnd(t) is, at t = k, strictly negative, and it has, for t → +∞, a horizontal asymptote
(simply referred to as asymptote in the following).

If Gbnd(t) has a strictly positive asymptote, then it has, for t ≥ k, a unique root,
at t = τroot > k, and it is, for t ≥ τroot, strictly increasing; whereas if Gbnd(t) has a
negative asymptote, then it is, for t ≥ k, strictly negative.

Notice that the conditions of Claim 6.13 hold if n ≥ 2 and m = 0, because the n
j-ordered factors ck,j have, by Claim 4.7, k = n− 1 sign changes, such that their signs
alternate, and thus ck,1 < 0 (since, by Claim 4.5, ck,0 > 0).

Proof. For α given with 0 ≤ α < 1 − λ0, γj is, for 0 ≤ j < n, strictly positive (see
Claim 6.10), such that the j-ordered coefficients −γj · ck,j · ln(λj)

2 / amt of Ĝ′′
m(α, t)

(see Claim 6.9) have as many sign changes than the j-ordered factors ck,j , that is, by
Claim 4.7, exactly k sign changes; furthermore, since Ĝ′′

m(α, t) has, by Claim 6.5 with
k ≥ 1, at least k − 1 distinct t-roots in the open interval (0, k), it has, by Descartes’
rule of signs, exactly k real t-roots (counted with multiplicity), and thus, for t ≥ k, at
most one t-root (counted with multiplicity).

Correspondingly (by Claim 6.4, G′′
bnd(t) = amt · Ĝ′′

m(α, t)), for amt, cpu and ini
given with 0 ≤ α = cpu / amt < 1 − λ0, G′′

bnd(t) has, for t ≥ k, at most one root,
counted with multiplicity, and Gbnd(t) is, for t big enough, by Claim 6.11 with k ≥ 1
and γ0 > 0, strictly concave, and thus strictly increasing (since it has, for t → +∞,
by Claim 6.12, a horizontal asymptote); hence, the maximal open subset Inc(α) of
(k,+∞), on which Gbnd(t) is strictly increasing, is not empty, and it consists of a
single open interval (since G′′

bnd(t) has, for t ≥ k, at most one root, counted with
multiplicity), which interval is right-unbounded (since Gbnd(t) is, for t big enough,
strictly increasing), such that Gbnd(t) has, for t ≥ k, a unique local minimum, at
t = τmin(α) ≥ k, the left bound of Inc(α); also, Gbnd(t) is, at t = k, by Claim 6.12,
strictly negative, and thus, at t = τmin(α), strictly negative as well, and it is, for
t > τmin(α), strictly increasing towards its horizontal asymptote (and has thus at
most one root, depending on the sign of the asymptote).

For α given with α = 1− λ0, γ0 = 0 and γj is, for 0 < j < n, strictly positive (see
Claim 6.10), while ck,0 is, by Claim 4.5, strictly positive, and ck,1 is, by hypothesis,
strictly negative, such that the j-ordered coefficients −γj ·ck,j ·ln(λj)

2/amt of Ĝ′′
m(α, t)

(see Claim 6.9) have one less sign change than the j-ordered factors ck,j , that is, by
Claim 4.7, exactly k − 1 sign changes; furthermore, since Ĝ′′

m(α, t) has, by Claim 6.5
with k ≥ 1, at least k−1 distinct t-roots in the open interval (0, k), it has, by Descartes’
rule of signs, exactly k−1 real t-roots (counted with multiplicity), and thus, for t ≥ k,
no t-root.

Correspondingly (by Claim 6.4, G′′
bnd(t) = amt · Ĝ′′

m(α, t)), for amt, cpu and ini
given with α = cpu / amt = 1− λ0, G′′

bnd(t) has, for t ≥ k, no root, and Gbnd(t) is, for
t big enough, by Claim 6.11 with k ≥ 1, γ0 = 0, γ1 > 0 and ck,1 < 0, strictly convex,
and thus strictly decreasing (since it has, for t → +∞, by Claim 6.12, a horizontal
asymptote); also, Gbnd(t) is, at t = k, by Claim 6.12, strictly negative, and it is, for
t ≥ k, strictly decreasing, and thus strictly negative as well; moreover, its horizontal
asymptote is strictly negative.
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For amt, ini and t given with t ≥ k, and for cpu such that cpu / amt ≥ 1 − λ0,
Gbnd(t) is, as shown above, strictly negative if cpu / amt = 1 − λ0, and, by Claim
6.6 with k ≥ 1, it is a strictly decreasing function of cpu, such that Gbnd(t) is strictly
negative for cpu / amt ≥ 1 − λ0, too; moreover, for amt, cpu and ini given with
cpu / amt ≥ 1 − λ0, by the same device, the horizontal asymptote of Gbnd(t) for
t → +∞ is strictly negative.

Claim 6.14 (Analysis of Gbnd(t) in the discrete-time model, case B). General hypoth-
esis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the discrete-time
model, with k = n− 1−m ≥ 1 and ck,1 > 0. In particular, by Claim 6.12 with k ≥ 1,
Gbnd(t) is, at t = k, strictly negative, and it has, for t → +∞, a horizontal asymptote
(simply referred to as asymptote in the following).

For cpu / amt ≤ 1 − λ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t ≥ k, a unique root, at t = τroot > k, and it is, for t ≥ τroot, strictly increasing;
whereas if Gbnd(t) has a negative asymptote, then it is, for t ≥ k, strictly negative.

For cpu / amt > 1 − λ0 and 1 / E(T (m)) ≤ 1 − λ0, Gbnd(t) is, for t ≥ k, strictly
negative.

For cpu / amt > 1 − λ0 and 1 / E(T (m)) > 1 − λ0, Gbnd(t) has, for t > k, at
most one local maximum; also, Pm(t) / Em(t) is, for t ≥ k, strictly unimodal, with a
unique local maximum at t = τcrit > k, and Gbnd(t) is, for t ≥ τcrit, strictly unimodal;
furthermore, if Gbnd(t) has, for t > k, a local maximum of positive value, at t = τmax,
then τmax ≥ τcrit (and Gbnd(τcrit) ≥ −ini), and Gbnd(t) has, for k ≤ t ≤ τmax, a
unique root, at t = τroot, and is, for t ≥ τroot, strictly unimodal, such that it has, for
t ≥ τmax, a unique root if its asymptote is strictly negative, and no real root otherwise.

Proof. For α given with 0 ≤ α ≤ 1 − λ0, γ0 ≥ 0 and γj is, for 0 < j < n, strictly
positive (see Claim 6.10), such that the j-ordered coefficients −γj · ck,j · ln(λj)

2 / amt
of Ĝ′′

m(α, t) (see Claim 6.9) have as many sign changes than the j-ordered factors ck,j
(also if γ0 = 0, because, by Claim 4.5, ck,0 > 0 and, by hypothesis, ck,1 > 0), that
is, by Claim 4.7, exactly k sign changes; furthermore, since Ĝ′′

m(α, t) has, by Claim
6.5 with k ≥ 1, at least k − 1 distinct t-roots in the open interval (0, k), it has, by
Descartes’ rule of signs, exactly k real t-roots counted with multiplicity, and thus, for
t ≥ k, at most one t-root counted with multiplicity.

Correspondingly (by Claim 6.4, G′′
bnd(t) = amt · Ĝ′′

m(α, t)), for amt, cpu and ini
given with 0 ≤ α = cpu / amt ≤ 1− λ0, G′′

bnd(t) has, for t ≥ k, at most one root, and
Gbnd(t) is, for t big enough, by Claim 6.11 with k ≥ 1, γ0 ≥ 0, γ1 > 0 and ck,1 > 0,
strictly concave, and thus strictly increasing (since it has, for t → +∞, by Claim 6.12,
a horizontal asymptote); hence, the maximal open subset Inc(α) of (k,+∞), on which
Gbnd(t) is strictly increasing, is not empty, and it consists of a single open interval
(since G′′

bnd(t) has, for t ≥ k, at most one root counted with multiplicity), which
interval is right-unbounded (since Gbnd(t) is, for t big enough, strictly increasing),
such that Gbnd(t) has, for t ≥ k, a unique local minimum, at t = τmin(α) ≥ k, the left
bound of Inc(α); also, Gbnd(t) is, at t = k, by Claim 6.12, strictly negative, and thus,
at t = τmin(α), strictly negative as well, and it is, for t > τmin(α), strictly increasing
towards its horizontal asymptote (and has thus at most one root, depending on the
sign of the asymptote).

If 1/E(T (m)) ≤ 1−λ0, then, for amt, cpu and ini given with α = cpu/amt = 1−λ0,
Gbnd(t) has, for t → +∞, a negative horizontal asymptote (indeed, by Claim 6.12,
its limit smaller than −ini), and is thus, for t ≥ k, as shown above, strictly negative;
hence, for amt, ini and t given with t ≥ k, and for cpu such that α = cpu/amt > 1−λ0,
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Gbnd(t) is, by Claim 6.6 with k ≥ 1, a strictly decreasing function of cpu, such that
Gbnd(t) is strictly negative, too.

From now on, 1− λ0 < α = cpu / amt and 1 /E(T (m)) > 1− λ0 is assumed, since
otherwise, for t ≥ k, the roots and positive extrema of Gbnd(t) are already described
by the above; furthermore, ini = 0 is assumed (the generalization for ini > 0, a mere
translation, which does not affect the monotonicity of Gbnd(t) this claim mainly is
about, presents no particular difficulty, and is left to the reader).

For amt, cpu and ini given with 1− λ0 < α = cpu / amt (in particular, by Claim
6.10, γ0 < 0) and ini = 0, by Claim 6.11 with k ≥ 1 and γ0 < 0, G′′

bnd(t) has, for
t ≥ k, at most two roots, counted with multiplicity, and Gbnd(t) is, for t big enough,
strictly convex, and thus strictly decreasing (since it has, for t → +∞, by Claim 6.12,
a horizontal asymptote); hence, the maximal open subset Inc(α) of (k,+∞), on which
Gbnd(t) is strictly increasing, is bounded (since Gbnd(t) is, for t big enough, strictly
decreasing), and it consists of a single interval (since G′′

bnd(t) has, for t ≥ k, at most
two roots, counted with multiplicity, and it is, for t big enough, strictly positive).

If Inc(α) is not empty, with left bound τmin(α) ≥ k and right bound τmax(α) > k,
then Gbnd(t) has, for t > k, a unique local maximum at t = τmax(α) (where its
derivative vanishes, since it is analytic and τmax(α) > k); furthermore, G′′

bnd(t) has,
at t = τmax(α), a root of even (possibly zero) multiplicity, from negative to negative,
and is, for t big enough, strictly positive, while it has, for t ≥ k, at most two roots,
counted with multiplicity; hence G′′

bnd(t) has, at t = τmax(α), no root, and it is thus
strictly negative, while it has, for t ≥ τmax(α), a unique root, of multiplicity 1, at
t = ρ(α) > τmax(α); therefore, Gbnd(t) is, for τmax(α) ≤ t < ρ(α), strictly concave,
and thus, for τmax(α) < t ≤ ρ(α), strictly decreasing, whereas it is, for t > ρ(α),
strictly convex, and thus strictly decreasing as well (since it has, for t → +∞, by
Claim 6.12, a horizontal asymptote); moreover, Gbnd(t) is, at t = k, by Claim 6.12
with k ≥ 1, strictly negative, and is, for k < t ≤ τmin(α), decreasing, and thus strictly
negative as well; if follows that G′

bnd(t) has, at t = τmax(α), a root of multiplicity 1,
and that Gbnd(t) = G′

bnd(t) = 0 has, for t ≥ k, a unique solution if Gbnd(τmax(α)) = 0,
and no solution otherwise.

Thus, the fact that Inc(α) is an open bounded interval, and that Gbnd(k) < 0,
provides already significant information about the shape of Gbnd(t) for t ≥ k, which
is classified and analyzed further in the following case analysis.

For amt, cpu and ini given with 1 − λ0 < α = cpu / amt and ini = 0, if Inc(α)
is not empty and Gbnd(τmax(α)) > 0, then Gbnd(t) has, for t > k, a unique local
maximum, of strictly positive value, at t = τmax(α), where Gbnd(t) > 0, G′

bnd(t) = 0
and G′′

bnd(t) < 0; also, Gbnd(t) is, for k ≤ t = τmin(α), strictly negative, and it is,
for τmin(α) < t < τmax(α) strictly increasing, and it has thus, for k ≤ t ≤ τmax(α),
a unique root, at t = τroot(α), where Gbnd(t) = 0 and G′

bnd(t) > 0; furthermore,
k < τroot(α) < τmax(α), and Gbnd(t) is, for τroot(α) ≤ t < τmax(α), strictly increasing,
and, for t > τmax(α), strictly decreasing, such that it is, for t ≥ τroot(α), strictly
unimodal.

For amt, cpu and ini given with 1−λ0 < α = cpu/amt and ini = 0, if Inc(α) is not
empty and Gbnd(τmax(α)) = 0, then Gbnd(t) has, for t > k, a unique local maximum,
of zero value, at t = τmax(α), where Gbnd(t) = 0, G′

bnd(t) = 0 and G′′
bnd(t) < 0;

also, Gbnd(t) is, for k ≤ t ≤ τmin(α), strictly negative, and it is, for τmin(α) < t <
τmax(α) strictly increasing, and it has thus, for k ≤ t ≤ τmax(α), a unique root, at
t = τroot(α) = τmax(α), and Gbnd(t) is, for t > τroot(α), strictly decreasing, and thus,
for t ≥ τroot(α), strictly unimodal.

For amt, cpu and ini given with 1− λ0 < α = cpu / amt and ini = 0, if Inc(α) is
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not empty and Gbnd(τmax(α)) < 0, or if Inc(α) is empty, then Gbnd(t) has, for t ≥ k,
no root, and is thus strictly negative.

There exist at most one α = cpu / amt such that Gbnd(t) has, for t > k, a
maximum of zero value; indeed, if α̂ exists such that, for amt, cpu and ini given
with α = cpu / amt = α̂ and ini = 0, Gbnd(t) has, for t > k, a unique local maximum
of zero value at t = τmax(α̂), then, for amt, ini and t given with ini = 0 and t ≥ k,
Gbnd(t) is, if α = cpu / amt = α̂, negative, and, by Claim 6.6 with k ≥ 1, it is a
strictly decreasing function of cpu, such that Gbnd(t) is, if α = cpu / amt > α̂, strictly
negative, and, if α = cpu / amt < α̂ and t = τmax(α̂), strictly positive.

Therefore, there exists at most one α̂ real and at most one t̂ ≥ k such that, for
amt, cpu and ini given with α = cpu / amt = α̂ and ini = 0, Gbnd(t̂) = G′

bnd(t̂) = 0;
furthermore, if such an α̂ exists, then the maximum of Gbnd(t) for t ≥ k is strictly
positive resp. negative if α < α̂ resp. α > α̂. In the following, such an α̂ and such a
t̂ are shown to exist (in the course of which the assumption 1 − λ0 < 1 / E(T (m)) is
essential), and a procedure is given to compute them.

For amt, cpu and ini given with 1 − λ0 < α = cpu / amt = 1 / E(T (m)) and
ini = 0, by Claim 6.12 with k ≥ 1 and ini = 0, Gbnd(t) is, at t = k, strictly negative,
and it has has, for t → +∞, a zero horizontal asymptote, such that Inc(α) is not
empty and Gbnd(t) has, for t > k, as shown above, a unique local maximum, at
t = τmax(α), of strictly positive value (since it converges, for t → +∞, to zero, and
it is, for t big enough, as shown above, strictly convex and decreasing), and it has,
for k ≤ t ≤ τmax(α), a unique root, at t = τroot(α), with k < τroot(α) < τmax(α);
furthermore, by Claim 6.6, Em(t) is, for t > k, strictly positive, such that, Pm(t)/Em(t)
has a maximum of value αcrit on the closed interval Icrit = [τroot(α), τmax(α)] (with
α = 1 / E(T (m))).

For amt, cpu and ini given with α = cpu / amt = αcrit and ini = 0, and for t in
Icrit, Gbnd(t) = amt·(Pm(t)/Em(t)−αcrit)·Em(t) ≤ 0, with equality at some t in Icrit;
by the same device, if α < αcrit resp. α > αcrit, then Gbnd(t) has a maximum of strictly
positive resp. strictly negative value on Icrit; in particular, if 1−λ0 < α = 1/E(T (m)),
then τmax(α) is the right bound of Icrit, where Gbnd(t) is, as shown above, strictly
positive, and thus Gbnd(t) has a maximum of strictly positive value on Icrit, such
that α = 1 / E(T (m)) < αcrit; furthermore, since 1 / E(T (m)) > 1 − λ0 is assumed,
1− λ0 < αcrit.

Now, our knowledge about Gbnd(t) for t ≥ k can be consolidated in order to give
a condition equivalent to the existence of a positive maximum (namely, as will be
shown: 1 − λ0 < α = cpu / amt ≤ αcrit, where, as assumed implicitly at this point,
1 / E(T (m)) > 1− λ0).

For amt, cpu and ini given with 1 − λ0 < α = cpu / amt < αcrit and ini = 0,
by Claim 6.12 with k ≥ 1, Gbnd(t) is, at t = k, strictly negative, and it is, as shown
above, strictly positive at some t in Icrit, such that Inc(α) is not empty, and thus, as
shown above, Gbnd(t) has, for t > k, a unique local maximum of strictly positive value,
at t = τmax(α) (where Gbnd(t) > 0, G′

bnd(t) = 0, and G′′
bnd(t) < 0), and it has, for

k ≤ t ≤ τmax(α), a unique root, at t = τroot(α) (where Gbnd(t) = 0 and G′
bnd(t) > 0),

with k < τroot(α) < τmax(α); in particular, τroot(α) resp. τmax(α) is (defined at a
root of multiplicity 1 of Gbnd(t) resp. G′

bnd(t)), by the implicit function theorem, an
analytic function of α, and, by Definition 6.1 and by calculus,

τ ′
root(α) = amt · Em(τroot(α)) / G

′
bnd(τroot(α))

τ ′
max(α) = amt · E′

m(τmax(α)) / G
′′
bnd(τmax(α))
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where, by Claim 6.6, Em(τroot(α)) > 0 and E′
m(τmax(α)) > 0, such that τroot(α) resp.

τmax(α) is a strictly increasing resp. strictly decreasing analytic function of α.
For amt, cpu and ini given with 1 − λ0 < α = cpu / amt = αcrit and ini = 0,

by Claim 6.12 with k ≥ 1, Gbnd(t) is, at t = k, strictly negative, and it is, as shown
above, zero at some t in Icrit, such that Inc(α) is not empty and Gbnd(t) has, for
t > k, a unique local maximum, of positive value, at t = τmax(α) (where Gbnd(t) ≥ 0,
G′

bnd(t) = 0 and G′′
bnd(t) < 0), such that τmax(α) is still analytical at α = αcrit,

and thus τmax(αcrit) = limα→αcrit τmax(α); also, for 1 − λ0 < α < αcrit, as shown
above, k < τroot(α) < τmax(α) and τroot(α) resp. τmax(α) is a strictly increasing resp.
strictly decreasing analytical function of α, such that the limit for α → αcrit of τroot(α)
resp. τmax(α) exists and belongs to Icrit, and is, by continuity, a root of Gbnd(t) resp.
G′

bnd(t); in particular, τmax(αcrit) belongs to Icrit, on which interval, for α = αcrit,
the maximum of Gbnd(t) is zero, such that Gbnd(τmax(αcrit)) = 0; hence, for α = αcrit,
as shown above, Gbnd(t) has, for k ≤ t ≤ τmax(α), a unique root, at t = τroot(αcrit)
(which thus agrees with limα→αcrit τroot(α)), and k < τroot(αcrit) = τmax(αcrit); in
the following, τmax(αcrit) is referred to as τcrit.

Therefore, for amt, cpu and ini given with 1 − λ0 < α = cpu / amt < αcrit and
ini = 0, by strict monotonicity of τroot(α) and τmax(α),

k < τroot(α) < τcrit < τmax(α)

such that, as shown above, Gbnd(t) is, at t = τcrit, strictly positive, and it is, for
t ≥ τroot(α), and thus in particular for t ≥ τcrit, strictly unimodal.

Furthermore, for amt, cpu and ini given with 1− λ0 < α = cpu / amt = αcrit and
ini = 0,

k < τroot(α) = τcrit = τmax(α)

such that, as shown above, Gbnd(t) has, at t = τcrit, a root, and it is, for t ≥ τcrit
strictly unimodal.

Finally, for amt, ini and t given with ini = 0 and t ≥ k, and for cpu such that
α = cpu / amt ≥ αcrit, if α = αcrit, Gbnd(t) is, as shown above, negative, and, by
Claim 6.6 with k ≥ 1, it is a strictly decreasing function of cpu, such that, if α > αcrit,
it is strictly negative; also, if α = cpu / amt = αcrit and t ≥ τcrit, G′

bnd(t) is, as shown
above, negative, and, by Claim 6.6, it is a strictly decreasing function of cpu, such
that, if α = cpu / amt > αcrit and t ≥ τcrit, it is strictly negative; thus, for amt,
cpu and ini given with α = cpu / amt > αcrit and ini = 0, Gbnd(t) is, for t ≥ k (in
particular at t = τcrit), strictly negative, and it is, for t ≥ τcrit, strictly decreasing,
and thus strictly unimodal.

It remains to give a procedure to compute τcrit and αcrit, that is to solve Gbnd(t) =
G′

bnd(t) = 0, which has, as shown above, a unique solution, for α real and t ≥ k, namely
α = αcrit and t = τcrit. By Definition 6.1 with ini = 0, and by observing that, by
Claim 6.6 with k ≥ 1, Em(t) and E′

m(t) are, for t ≥ k, strictly positive, the following
equivalences follow (where α real and t ≥ k is implicitly assumed):

Gbnd(t) = G′
bnd(t) = 0

⇐⇒ Pm(t)− α · Em(t) = P ′
m(t)− α · E′

m(t) = 0

⇐⇒ Pm(t) / Em(t) = P ′
m(t) / E′

m(t) = α

⇐⇒ P ′
m(t) · Em(t)− Pm(t) · E′

m(t) = 0

⇐⇒ ∂

∂t
Pm(t) / Em(t) = 0
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where the last condition is independent of α and has, for t ≥ k, a unique solution
t = τcrit (and αcrit is then Pm(τcrit) / Em(τcrit)); moreover, for amt, cpu and ini
given with α = cpu / amt = αcrit and ini = 0, Gbnd(t) is, for t in a punctured
neighborhood of τcrit, strictly negative, such that Pm(t)/Em(t) < α; hence, for t ≥ k,
Pm(t) / Em(t) has a unique local maximum (and its derivative has a unique root) at
t = τcrit > k, and it is thus strictly unimodal.

Claim 6.15 (Analysis of Gbnd(t) in the discrete-time model, case C). General hypoth-
esis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the discrete-time
model, with k = n − 1 −m = 0 and n ≥ 2. In particular, by Claim 6.12, Gbnd(t) is,
at t = 0, negative, and it has, for t → +∞, a horizontal asymptote (simply referred to
as asymptote in the following).

For cpu / amt ≤ 1 − λ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t ≥ 0, a unique root, at t = τroot ≥ 0, and it is, for t ≥ τroot, strictly increasing;
whereas if Gbnd(t) has a negative asymptote, then it is, for t ≥ 0, strictly negative.

For cpu / amt > 1 − λ0, Gbnd(t) is, for t ≥ 0, strictly unimodal; furthermore, if
Gbnd(t) has, for t ≥ 0, a local maximum of strictly positive value, at t = τmax, then it
has, for 0 ≤ t ≤ τmax > 0, a unique root (and it has, for t ≥ τmax, a unique root if its
asymptote is strictly negative, and no real root otherwise).

Proof. By Claim 4.5 and Claim 4.7 with k = 0, the factors ck,j are strictly positive.
For α given with 0 ≤ α ≤ 1 − λ0, γ0 ≥ 0 and γj is, for 0 < j < n, strictly

positive (see Claim 6.10), while the factors ck,j are strictly positive, such that the
terms (−γj · ck,j · ln(λj)

2 / amt) · λt
j of Ĝ′′

m(α, t) (see Claim 6.9) are negative, and
strictly negative for 0 < j < n, and, since n ≥ 2, at least one of them is strictly
negative.

Correspondingly (by Claim 6.4, G′′
bnd(t) = amt · Ĝ′′

m(α, t)), for amt, cpu and ini
given with 0 ≤ α = cpu / amt ≤ 1 − λ0, and for t real, Gbnd(t) is strictly concave,
and thus strictly increasing (since it has, for t → +∞, by Claim 6.12, a horizontal
asymptote).

For α given with 1−λ0 < α, γ0 < 0 and the j-ordered factors γj have at most one
sign change (see Claim 6.10), while the factors ck,j are strictly positive, such that the
j-ordered coefficients −γj · ck,j · ln(λj)

2 /amt of Ĝ′′
m(α, t) (see Claim 6.9) have at most

one sign change, and thus Ĝ′′
m(α, t) has, by Descartes’ rule of signs, at most one real

t-root.
Correspondingly (by Claim 6.4, G′′

bnd(t) = amt · Ĝ′′
m(α, t)), for amt, cpu and ini

given with 1− λ0 < α = cpu / amt, and for t real, G′′
bnd(t) has at most one root, and

Gbnd(t) is, for t big enough, by Claim 6.11 with n ≥ 2 and γ0 < 0, strictly convex,
and thus strictly decreasing (since it has, for t → +∞, by Claim 6.12, a horizontal
asymptote), therefore, Gbnd(t) is, for t ≥ k, strictly unimodal.

Claim 6.16 (Analysis of Gbnd(t) in the discrete-time model, case D). General hypoth-
esis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the discrete-time
model, with k = n − 1 −m = 0 and n = 1. In particular, by Claim 6.12, Gbnd(t) is,
at t = 0, negative, and it has, for t → +∞, a horizontal asymptote (simply referred to
as asymptote in the following).

For cpu / amt < 1 − λ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t ≥ 0, a unique root, at t = τroot ≥ 0, and it is, for t ≥ τroot, strictly increasing;
whereas if Gbnd(t) has a negative asymptote, then it is, for t ≥ 0, strictly negative.

For cpu / amt = 1− λ0, Gbnd(t) is, for t real, constantly equal to −ini ≤ 0.
For cpu / amt > 1− λ0, Gbnd(t) is, for t > 0, strictly negative.
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Notice that the conditions of Claim 6.16 hold if n = 1 (and thus m = 0).

Proof. By Claim 6.9 with n = 1, Gbnd(t) = amt−cpu·E(T (m))−ini−γ0 ·c0,0 ·λt
0, and,

by Claim 4.5, c0,0 > 0 and 0 < λ0 < 1 (or, more exactly, c0,0 = 1 and λ0 = 1−p), such
that, by Claim 6.10, Gbnd(t) is, for t real, strictly increasing if cpu/amt < 1−λ0 (that
is, γ0 > 0), constant if cpu / amt = 1− λ0 (that is, γ0 = 0), and strictly decreasing if
cpu / amt > 1− λ0 (that is, γ0 < 0).

By Definition 6.1, by Claim 4.7 (Pm(0) = 0), and by Claim 6.2 (Em(0) = 0),
Gbnd(0) = −ini; in particular, if Gbnd(t) is constant (γ0 = 0), then Gbnd(t) =
Gbnd(0) = −ini, and if Gbnd(t) is strictly decreasing (γ0 < 0), then Gbnd(t) is, for
t > k, strictly negative.

This concludes our investigation of the expected gains Gbnd(t) of a bounded-time
attack in the discrete-time model. Similar statements hold for the continuous-time
model (where, by Claim 4.12, the j-ordered factors ck,j have exactly k sign changes,
as in the discrete-time model), which can be established, mutatis mutandis, in the
same manner, as sketched in the following.

Claim 6.17 (Em(t) in the continuous-time model). In the continuous-time model
(with k = n− 1−m):

Em(t) = E(T (m))−
n−1∑
j=0

ck,j
− ln(µj)

· µt
j

where E(T (m)) is that of Claim 4.11, and where ck,j and µj are those of Claim 4.10.
Furthermore Em(t) = 0 and E′

m(t) = 1− Pm(t); in particular, E′
m(0) = 1, and Em(t)

is, for t > 0, strictly increasing and strictly concave, and its second derivative has, at
t = 0, a root of multiplicity k, and no other real root.

Proof. By the definition of the expectation, by Claim 4.10 (representation of Pm(t)),
by Claim 4.11 (representation of E(T (m))), and by the formula

∫ +∞
0

µt dt = −1
ln(µ)

(for
0 < µ < 1) and its µ-derivative:

Em(t)

= E(min(t, T (m)))

=

∫ +∞

0

min(t, T ) · P ′
m(T ) dT

=

∫ +∞

0

T · P ′
m(T ) dT −

∫ +∞

t

(T − t) · P ′
m(T ) dT

= E(T (m))−
∫ +∞

0

T · P ′
m(T + t) dT

= E(T (m))−
n−1∑
j=0

− ln(µj) ·
(∫ +∞

0

T · µT
j dT

)
· ck,j · µt

j

= E(T (m))−
n−1∑
j=0

ck,j
− ln(µj)

· µt
j

Furthermore, by Claim 4.11 and Claim 4.10, Em(0) = 0 and E′
m(t) = 1− Pm(t), such

that the remaining claimed properties of Em(t) follow from Claim 4.13 and Claim 4.12
(indeed, 1 − Pm(t) is, at t = 0, equal to 1, and it is, for t > 0, strictly positive and
strictly decreasing towards 0, and its derivative has, at t = 0, a root of multiplicity k,
and no other real root).
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Claim 6.18 (Convexity of Gbnd(t) in the continuous-time model). In the continuous-
time model (with k = n − 1 −m), if k ≥ 1, then G′′

bnd(t) has, for t > 0, at most two
roots (counted with multiplicity).

Proof. At t = 0, P ′′
m(t) has, by Claim 4.12 with k ≥ 1, a root of multiplicity k − 1,

and E′′
m(t) has, by Claim 6.17, a root of multiplicity k, such that G′′

bnd(t) = amt ·
P ′′
m(t)− cpu ·E′′

m(t) (see Definition 6.1) has root of multiplicity k− 1 or more. By the
same device as in the discrete-time model, the j-ordered coefficients of G′′

bnd(t) have at
most k+1 sign changes, such that G′′

bnd(t) has at most k+1 real roots (counted with
multiplicity), that is, for t > 0, at most two roots (counted with multiplicity).

Claim 6.19 (Boundaries of Gbnd(t) in the continuous-time model). In the continuous-
time model (with k = n − 1 − m), Gbnd(0) = −ini ≤ 0, and, if k ≥ 1, G′

bnd(0) =
−cpu < 0; furthermore, Gbnd(t) has, for t → +∞, a horizontal asymptote amt− cpu ·
E(T (m))− ini.

Proof. By Claim 4.10 (in particular 0 < µj < 1), Claim 4.12 and Claim 6.17, Pm(0) =
0, Em(0) = 0, limt→+∞ Pm(t) = 1, and limt→+∞ Em(t) = E(T (m)), such that, by
Definition 6.1, Gbnd(0) = −ini and limt→+∞ Gbnd(t) = amt − cpu · E(T (m)) − ini.
Furthermore, if k ≥ 1, by Claim 4.12 and Claim 6.17 , P ′

m(0) = 0 and E′
m(0) = 1,

such that G′
bnd(t) = −cpu.

The following claims about the roots and positive extrema of Gbnd(t) for t ≥ 0 in
the continuous-time model correspond closely to those about the roots and extrema of
Gbnd(t) for t ≥ k in the discrete-time model, and their proofs are essentially the same
(mainly based on the features of Gbnd(t) at t = k resp. t = 0, on its few convexity
changes for t ≥ k resp. t > 0, on its convexity for t big enough, and on the presence of
a horizontal asymptote for t → +∞). The adaptation of the proofs for the continuous-
time model present no particular difficulty, and is left to the reader.

Claim 6.20 (Analysis of Gbnd(t) in the continuous-time model, case A). General hy-
pothesis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the continuous-
time model, with k = n − 1 −m ≥ 1 and ck,1 < 0. In particular, by Claim 6.19 with
k ≥ 1, Gbnd(t) is, at t = 0, negative (strictly if ini ̸= 0) and strictly decreasing, and
it has, for t → +∞, a horizontal asymptote (simply referred to as asymptote in the
following).

If Gbnd(t) has a strictly positive asymptote, then it has, for t > 0, a unique root,
at t = τroot > 0, and it is, for t ≥ τroot, strictly increasing (if moreover ini = 0,
then Gbnd(t) has, at t = 0, an extra root, but Gbnd(t) / t does not, since, at t = 0, by
singularity removal, Gbnd(t) / t = −cpu < 0, such that the unique root of Gbnd(t) for
t > 0 is the unique root of Gbnd(t) / t for t ≥ 0); whereas if Gbnd(t) has a negative
asymptote, then it is, for t > 0, strictly negative.

Notice that the conditions of Claim 6.20 hold if n ≥ 2 and m = 0, because the
n j-ordered factors ck,j have, by Claim 4.12, k = n − 1 sign changes, such that their
signs alternate, and thus ck,1 < 0 (since, by Claim 4.10, ck,0 > 0). This corresponds,
for n ≥ 2, to the case considered in Section 1.3.

Claim 6.21 (Analysis of Gbnd(t) in the continuous-time model, case B). General hy-
pothesis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the continuous-
time model, with k = n − 1 −m ≥ 1 and ck,1 > 0. In particular, by Claim 6.19 with
k ≥ 1, Gbnd(t) is, at t = 0, negative (strictly if ini ̸= 0) and strictly decreasing, and
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it has, for t → +∞, a horizontal asymptote (simply referred to as asymptote in the
following).

For cpu / amt ≤ 1 − µ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t > 0, a unique root, at t = τroot > 0, and it is, for t ≥ τroot, strictly increasing (if
moreover ini = 0, then Gbnd(t) has, at t = 0, an extra root, but Gbnd(t) / t does not,
since, at t = 0, by singularity removal, Gbnd(t) / t = −cpu < 0, such that the unique
root of Gbnd(t) for t > 0 is the unique root of Gbnd(t) / t for t ≥ 0); whereas if Gbnd(t)
has a negative asymptote, then it is, for t > 0, strictly negative.

For cpu / amt > 1 − µ0 and 1 / E(T (m)) ≤ 1 − µ0, Gbnd(t) is, for t > 0, strictly
negative.

For cpu / amt > 1− µ0 and 1 / E(T (m)) > 1− µ0, Gbnd(t) has, for t > 0, at most
one local maximum; also, Pm(t) / Em(t) has, at t = 0, by singularity removal, a root,
and is, for t ≥ 0, strictly unimodal, with a unique local maximum at t = τcrit > 0, and
Gbnd(t) is, for t ≥ τcrit, strictly unimodal; furthermore, if Gbnd(t) has, for t > 0, a local
maximum of positive value, at t = τmax, then τmax ≥ τcrit (and Gbnd(τcrit) ≥ −ini),
and Gbnd(t) has, for 0 < t ≤ τmax, a unique root, at t = τroot, and is, for t ≥ τroot,
strictly unimodal, such that it has, for t ≥ τmax, a unique root if its asymptote is
strictly negative, and no real root otherwise (if moreover ini = 0, then Gbnd(t) has, at
t = 0, an extra root, but Gbnd(t) / t does not, since, at t = 0, by singularity removal,
Gbnd(t) / t = −cpu < 0, such that the unique root of Gbnd(t) for 0 < t ≤ τmax is the
unique root of Gbnd(t) / t for 0 ≤ t ≤ τmax).

Claim 6.22 (Analysis of Gbnd(t) in the continuous-time model, case C). General hy-
pothesis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the continuous-
time model, with k = n− 1−m = 0 and n ≥ 2. In particular, by Claim 6.19, Gbnd(t)
is, at t = 0, negative, and it has, for t → +∞, a horizontal asymptote (simply referred
to as asymptote in the following).

For cpu / amt ≤ 1 − µ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t ≥ 0, a unique root, at t = τroot ≥ 0, and it is, for t ≥ τroot, strictly increasing;
whereas if Gbnd(t) has a negative asymptote, then it is, for t ≥ 0, strictly negative.

For cpu / amt > 1 − µ0, Gbnd(t) is, for t ≥ 0, strictly unimodal; furthermore, if
Gbnd(t) has, for t ≥ 0, a local maximum of strictly positive value, at t = τmax > 0,
then it has, for 0 ≤ t ≤ τmax, a unique root (and it has, for t ≥ τmax, a unique root if
its asymptote is strictly negative, and no real root otherwise).

Claim 6.23 (Analysis of Gbnd(t) in the continuous-time model, case D). General hy-
pothesis: amt, cpu, ini and Gbnd(t) given according to Definition 6.1 in the continuous-
time model, with k = n− 1−m = 0 and n = 1. In particular, by Claim 6.19, Gbnd(t)
is, at t = 0, negative, and it has, for t → +∞, a horizontal asymptote (simply referred
to as asymptote in the following).

For cpu / amt < 1 − µ0, if Gbnd(t) has a strictly positive asymptote, then it has,
for t ≥ 0, a unique root, at t = τroot ≥ 0, and it is, for t ≥ τroot, strictly increasing;
whereas if Gbnd(t) has a negative asymptote, then it is, for t ≥ 0, strictly negative.

For cpu / amt = 1− µ0, Gbnd(t) is, for t real, constantly equal to −ini ≤ 0.
For cpu / amt > 1− µ0, Gbnd(t) is, for t > 0, strictly negative.

Notice that the conditions of Claim 6.23 hold if n = 1 (and thus m = 0). This
corresponds, for n = 1, to the case considered in Section 1.3.
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7 Further Research
Dependency of Pm(t) upon the frequency period We proved that, in the
discrete-time model, the expected time of the attack considered decreases as the fre-
quency period decreases (see Section 2 and Claim 2.5). But we were not able to prove
Conjecture 4.9, which states that, in the discrete-time model, the probability for the
attacker to win in a given time increases as the frequency period decreases. If this
conjecture is true, then the continuous-time model is a legitimate approximation in
the sense that the probability for the attacker to win in a given time is overestimated,
and not only in the sense that the expected time of an attack is underestimated.

Expected advance of the attacker after a given time The expected ad-
vance of the attacker after a given time has elapsed has not been investigated. This
could also be investigated in a different model, where the attack never ends (instead
of ending when a given advance of n blocks is reached). In particular, an attacker,
as weak a his computing power may be, is always able to reach a given advance of
n blocks, because he is allowed to restart whenever he is behind (we quantified the
expected time to do so, which is always finite, see Section 2). If the attacker is less
powerful than the attackee, he is most likely no able to stay ahead (and his expected
advance is thus most likely a bounded function of the elapsed time); if the attacker
is equally powerful or more powerful, it is unclear how the expected advance depends
on the elapsed time; if the attacker is more powerful, the dependency in question is
most likely asymptotically linear. A related question pertains to the expected number
of times the attacker restarts until he reaches an advance of n blocks.

Total length of a fork of given advance n When the attacker manages
to mine a secret fork n blocks ahead of the main blockchain, the forking point is, in
general, not the topmost block of the main blockchain. Thus, the total length of the
fork (measured from the fork point, not from the topmost block of the main blockchain)
is greater than or equal to n. The total length (including initial draws) of such a fork
has not been investigated; while it is irrelevant in the attack model considered, the
mining fees depend on it, and it has thus an impact on the profitability of the attack
considered, which impact has been neglected, under the assumption that the amount
attacked is significantly greater than the total of the mining fees.

Miners and mining fees However, for miners (n = 1), there is no amount
attacked, and the profitability depends mainly on the fees (which may be variable),
and thus on total length of the fork in question, too. Also, a miner could choose, unlike
in the attack model considered, not to drop his private fork as soon as another miner
is ahead, because of the mining fees he earns if he catches up; the optimal strategy
regarding this could be investigated as well.
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