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Abstract

In a proof-of-retrievability system, a data storage center must prove to a verifier that he is
actually storing all of a client’s data. The central challenge is to build systems that are both
efficient and provably secure — that is, it should be possible to extract the client’s data from
any prover that passes a verification check. In this paper, we give the first proof-of-retrievability
schemes with full proofs of security against arbitrary adversaries in the strongest model, that of
Juels and Kaliski.

Our first scheme, built from BLS signatures and secure in the random oracle model, features
a proof-of-retrievability protocol in which the client’s query and server’s response are both
extremely short. This scheme allows public verifiability: anyone can act as a verifier, not just the
file owner. Our second scheme, which builds on pseudorandom functions (PRFs) and is secure in
the standard model, allows only private verification. It features a proof-of-retrievability protocol
with an even shorter server’s response than our first scheme, but the client’s query is long. Both
schemes rely on homomorphic properties to aggregate a proof into one small authenticator value.

1 Introduction

Proofs of storage. Recent visions of “cloud computing” and “software as a service” call for data,
both personal and commercial, to be stored by third parties, but deployment has lagged. Users of
outsourced storage are at the mercy of their storage providers for the continued availability of their
data. Even Amazon’s S3, the best-known storage service, has experienced significant downtime.

The solution, as Shah et al. argue [30], is storage auditing: cryptographic systems that would
allow users of outsourced storage services (or their agents) to verify that their data is still available
and ready for retrieval if needed. Such a capability can be important to storage providers as well.
Users may be reluctant to entrust their data to an unknown startup; an auditing mechanism can
reassure them that their data is indeed still available.

Early proof-of-storage systems were proposed by Deswarte, Quisquater, and Säıdane [14], Gaz-
zoni Filho and Barreto [17], and Schwarz and Miller [29].

Evaluation: formal security models. Such proof-of-storage systems should be evaluated by
both “systems” and “crypto” criteria. Systems criteria include: (1) the system should be as efficient
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as possible in terms of both computational complexity and communication complexity of the proof-
of-storage protocol, and the storage overhead on the server should be as small as possible; (2) the
system should allow unbounded use rather than imposing a priori bound on the number of audit-
protocol interactions; (3) verifiers should be stateless, and not need to maintain and update state
between audits, since such state is difficult to maintain if the verifier’s machine crashes or if the
verifier’s role is delegated to third parties or distributed among multiple machines.1 Statelessness
and unbounded use are required for proof-of-storage systems with public verifiability, in which
anyone can undertake the role of verifier in the proof-of-storage protocol, not just the user who
originally stored the file. Public verifiability for proof-of-storage schemes was first proposed by
Ateniese et al. [3].

The most important crypto criterion is this: Whether the protocol actually establishes that any
server that passes a verification check for a file — even a malicious server that exhibits arbitrary,
Byzantine behavior — is actually storing the file. The early cryptographic papers lacked a formal
security model, let alone proofs. But provable security matters. Even reasonable-looking protocols
could in fact be insecure; see Appendix B for an example.

The first papers to consider formal models for proofs of storage were by Naor and Rothblum,
for “authenticators” [26], and by Juels and Kaliski, for “proofs of retrievability” [22]. Though the
details of the two models are different, the insight behind both is the same: in a secure system
if a server can pass an audit then a special extractor algorithm, interacting with the server, must
be able (w.h.p.) to extract the file. This is, of course, similar to the intuition behind proofs of
knowledge.

A simple MAC-based construction. In addition, the Naor-Rothblum and Juels-Kaliski papers
describe similar proof-of-retrievability protocols. The insight behind both is that checking that
most of a file is stored is easier than checking that all is. If the file to be stored is first encoded
redundantly, and each block of the encoded file is authenticated using a MAC, then it is sufficient
for the client to retrieve a few blocks together with their MACs and check, using his secret key, that
these blocks are correct. Naor and Rothblum prove their scheme secure in their model. Juels and
Kaliski do not give a proof of security against arbitrary adversaries, but this proof can be done
straightforwardly using the techniques we develop in this paper; for completeness, we give the
proof in Section 5. The simple protocol obtained here uses techniques similar to those proposed by
Lillibridge et al. [23]. Signatures can be used instead of MACs to obtain public verifiability.

The downside to this simple solution is that the server’s response consists of λ block-authenticator
pairs, where λ is the security parameter. If each authenticator is λ bits long, as required in the
Juels-Kaliski model, then the response is λ2 ·(s+1) bits, where the ratio of file block to authenticator
length is s : 1.2

Homomorphic authenticators. Ateniese et al. [3] describe a proof-of-storage scheme that im-
proves on the response length of the simple MAC-based scheme using homomorphic authenticators.
In their scheme, the authenticators σi on each file block mi are constructed in such a way that

1We note that the sentinel-based scheme of Juels and Kaliski [22], the scheme of Ateniese, Di Pietro, Mancini,
and Tsudik [4], and the scheme of Shah, Swaminathan and Baker [31] lack both unbounded use and statelessness.
We do not consider these schemes further in this paper.

2Naor and Rothblum show that one-bit MACs suffice for proving security in their less stringent model, for an
overall response length of λ · (s+ 1) bits. The Naor-Rothblum scheme is not secure in the Juels-Kaliski model.
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a verifier can be convinced that a linear combination of blocks
∑

i νimi (with arbitrary weights
{νi}) was correctly generated using an authenticator computed from {σi}. In the Ateniese et al.
construction, for example, the aggregate authenticator is

∏
i σ

νi
i mod N .

When using homomorphic authenticators, the server can combine the blocks and λ authentica-
tors in its response into a single aggregate block and authenticator, reducing the response length by
a factor of λ. As an additional benefit, the Ateniese et al. scheme is the first with public verifiability.
The homomorphic authenticators of Ateniese et al. are based on RSA and are thus relatively long.

Unfortunately, Ateniese et al. do not give a rigorous proof of security for their scheme. In
particular, they do not show that one can extract a file (or even a significant fraction of one) from
a prover that is able to answer auditing queries convincingly. The need for rigor in extraction
arguments applies equally to both the proof-of-retrievability model we consider and the weaker
proof of data possession model considered by Ateniese et al. For completeness, we give a correct
and fully proven Ateniese-et-al.–inspired, RSA-based scheme, together with a full proof of security,
in Section 6.

Our contributions. In this paper, we make two contributions.

1. We describe two new short, efficient homomorphic authenticators. The first, based on PRFs,
gives a proof-of-retrievability scheme secure in the standard model. The second, based on
BLS signatures [9], gives a proof-of-retrievability scheme with public verifiability secure in
the random oracle model.

2. We prove both of the resulting schemes secure in a variant of the Juels-Kaliski model. Our
schemes are the first with a security proof against arbitrary adversaries in this model.

The scheme with public retrievability features a proof-of-retrievability protocol in which the client’s
query and server’s response are both extremely short: 20 bytes and 40 bytes, respectively, at the 80-
bit security level. The scheme with private retrievability features a proof-of-retrievability protocol
with an even shorter server’s response than our first scheme: 20 bytes at the 80-bit security level,
matching the response length of the Naor-Rothblum scheme in a more stringent security model,
albeit at the cost of a longer query.

1.1 Our Schemes

In our schemes, the user breaks an erasure encoded file into n blocks m1, . . . ,mn ∈ Zp for some large
prime p. The erasure code should allow decoding in the presence of adversarial erasure. Erasure
codes derived from Reed-Solomon codes have this property, but decoding and encoding are slow for
large files. In Appendix A we discuss how to make use of more efficient codes secure only against
random erasures.

The user authenticates each block as follows. She chooses a random α ∈ Zp and PRF key k for
function f . These values serve as her secret key. She calculates an authentication value for each
block i as

σi = fk(i) + αmi ∈ Zp .
The blocks {mi} and authenticators {σi} are stored on the server. The proof of retrievability
protocol is as follows. The verifier chooses a random challenge set I of l indices along with l random
coefficients in Zp.3 Let Q be the set {(i, νi)} of challenge index–coefficient pairs. The verifier sends

3Or, more generally, from a subset B of Zp of appropriate size; see Section 1.1.
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Q to the prover. The prover then calculates the response, a pair (σ, µ), as

σ ←
∑

(i,νi)∈Q

νi · σi and µ←
∑

(i,νi)∈Q

νi ·mi .

Now verifier can check that the response was correctly formed by checking that

σ
?
= α · µ+

∑
(i,νi)∈Q

νi · fk(i) .

It is clear that our techniques admit short responses. But it is not clear that our new system
admits a simulator that can extract files. Proving that it does takes some work, as we discuss
below. In fact, unlike similar, seemingly correct schemes (see Appendix B), our scheme is provably
secure. Moreover, our proofs are in the standard model.

A scheme with public verifiability. Our second scheme is publicly verifiable. It follows the
same framework as the first, but instead uses BLS signatures [9] for authentication values that
can be publicly verified. The structure of these signatures allows for them to be aggregated into
linear combinations as above. We prove the security of this scheme under the Computational
Diffie-Hellman assumption over bilinear groups in the random oracle model.

Let e : G×G→ GT be a computable bilinear map with group G’s support being Zp. A user’s
private key is x ∈ Zp, and her public key is v = gx ∈ G along with another generator u ∈ G. The
signature on block i is σi =

[
H(i)umi

]x
. On receiving query Q = {(i, νi)}, the prover computes

and sends back σ ←
∏

(i,νi)∈Q σ
νi
i and µ←

∑
(i,νi)∈Q νi ·mi. The verification equation is:

e(σ, g)
?
= e
( ∏
(i,νi)∈Q

H(i)νi · uµ, v
)
.

This scheme has public verifiability: the private key x is required for generating the authenticators
{σi} but the public key v is sufficient for the verifier in the proof-of-retrievability protocol. As we
note below, the query can be generated from a short seed using a random oracle, and this short
seed can be transmitted instead of the longer query.

Parameter selection. Let λ be the security parameter; typically, λ = 80. For the scheme with
private verification, p should be a λ-bit prime. For the scheme with public verification, p should be
a 2λ-bit prime, and the curve should be chosen so that discrete logarithm is 2λ-secure. For values
of λ up to 128, Barreto-Naehrig curves [6] are the right choice; see the survey by Freeman, Scott,
and Teske [16].

Let n be the number of blocks in the file. We assume that n � λ. Suppose we use a rate-ρ
erasure code, i.e., one in which any ρ-fraction of the blocks suffices for decoding. (Encoding will
cause the file length to grow approximately (1/ρ)×.) Let l be the number of indices in the query Q,
and B ⊆ Zp be the set from which the challenge weights νi are drawn.

Our proofs — see Section 4.2 for the details — guarantee that extraction will succeed from any
adversary that convincingly answers an ε-fraction of queries, provided that ε − ρl − 1/#B is non-
negligible in λ. It is this requirement that guides the choice of parameters.

A conservative choice is ρ = 1/2, l = λ, and B = {0, 1}λ; this guarantees extraction against any
adversary. For applications that can tolerate a larger error rate these parameters can be reduced.
For example, if a 1-in-1,000,000 error is acceptable, we can take B to be the set of 22-bit strings
and l to be 22; alternatively, the coding expansion 1/ρ can be reduced.
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A tradeoff between storage and communication. As we have described our schemes above,
each file block is accompanied by an authenticator of equal length. This gives a 2× overhead
beyond that imposed by the erasure code, and the server’s response in the proof-of-retrievability
protocol is 2× the length of an authenticator. In the full schemes of Section 3, we introduce
a parameter s that gives a tradeoff between storage overhead and response length. Each block
consists of s elements of Zp that we call sectors. There is one authenticator per block, reducing
the overhead to (1 + 1/s)×. The server’s response is one aggregated block and authenticator, and
is (1 + s)× as long as an authenticator. Thus, a larger value of s gives less storage overhead at the
cost of higher communication. The choice s = 1 corresponds to our schemes as we described them
above and to the scheme given by Ateniese et al. [3].4

Compressing the request. A request, as we have seen, consists of an l element subset of [1, n]
together with l elements of the coefficient set B, chosen uniformly and independently at random. In
the conservative parametrization above, a request is thus λ ·

(
dlg ne+λ

)
bits long. One can reduce

the randomness required to generate the request using standard techniques5. This would reduce
the size of the client’s request only if the PRF keys were sent in place of the computed PRF output,
but we do not know how to prove this method secure in the standard model. By contrast, in the
random oracle model, the verifier can send a short (2λ bit) seed for the random oracle from which
the prover will generate the full query. Using this technique we can make the queries compact as
well as responses in our publicly verifiable scheme, which already relies on random oracles. Apply
the same trick to our PRF-based scheme would introduce a reliance on the random oracle heuristic.

We note that, by techniques similar to those discussed above, a PRF can be used to generate
the per-file secret values {αj} for our privately verifiable scheme and a random oracle seed can be
used to generate the per-file public generators {uj} in our publicly verifiable scheme. This allows
file tags for both schemes to be short: O(λ), asymptotically.

Followup work. The major problem left open by our work was to obtain short queries for schemes
whose analysis does not rely on the random oracle heuristic. Dodis, Vadhan, and Wichs [15] and,
independently, Bowers, Juels, and Oprea [10] both observed that the “B coefficients” in our queries
are a Hadamard code in disguise, and that more efficient error-correcting codes can substantially
reduce the query size. In addition, Dodis, Vadhan, and Wichs showed that it is possible to reduce
the query size further using hitting samplers [18]. The result is a proof-of-retrievability protocol
that is essentially optimal, with query and response size both linear in the security parameter, with
a formal proof in the standard model.

Ateniese, Kamara, and Katz [5] gave a framework for constructing a proof-of-retrievability
scheme with public verifiability (in the random oracle model) from any homomorphic identification
protocol. They showed how to fit the scheme of Ateniese et al. [3] (based on the RSA problem;
see Section 6) and our publicly verifiable scheme (based on the Diffie-Hellman problem in bilinear
groups; see Section 3.3) into their framework, and gave a new instantiation based on the factoring
problem.

4It would be possible to shorten the response further using knowledge-of-exponent assumptions, as Ateniese et al.
do, but such assumptions are strong and nonstandard; more importantly, their use means that the extractor can
never be implemented in the real world.

5For example, choose keys k′ and k′′ for PRFs with respective ranges [1, n] and B. The query indices are the first
l distinct values amongst f ′k′(1), f ′k′(2), . . .; the query coefficients are the l values f ′′k′′(1), . . . , f ′′k′′(l), not necessarily
all distinct.
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1.2 Our Proofs

We provide a modular proof framework for the security of our schemes. Our framework allows us
to argue about the systems’ unforgeability, extractability, and retrievability with these three parts
based respectively on cryptographic, combinatorial, and coding-theoretical techniques. Only the
first part differs between the four schemes we propose. The combinatorial techniques we develop
are nontrivial and we believe they will be of independent interest.

It is interesting to compare both our security model and our proof methodology to those in
related work.

The proof of retrievability model has two major distinctions from that used by Naor and Roth-
blum [26] (in addition to the public-key setting). First, the NR model assumes a checker can request
and receive specific memory locations from the prover. In the proof of retrievability model, the
prover consists of an arbitrary program as opposed to a simple memory layout and this program
may answer these questions in an arbitrary manner. We believe that this realistically represents
an adversary in the type of setting we are considering. In the NR setting the extractor needs to
retrieve the file given the server’s memory; in the POR setting the analogy is that the extractor
receives the adversary’s program.

Second, in the proof of retrievability model we allow the attacker to execute a polynomial
number of proof attempts before committing to how it will store memory. In the NR model the
adversary does not get to execute the protocol before committing its memory. This weaker model
is precisely what allows for the use of 1-bit MACs with error correcting codes in one NR variant.
One might argue that in many situations this is sufficient. If a storage server responds incorrectly
to an audit request we might assume that it is declared to be cheating and there is no need to
go further. However, this limited view overlooks several scenarios. In particular, we want to be
able to handle setups where there are several verifiers that do not communicate or several storage
servers handling the same encoded file that are audited independently. Only our stronger model
can correctly reflect these situations. In general, we believe that the strongest security model allows
for a system to be secure in the most contexts including those not previously considered.

One of the distinctive and challenging parts of our work is to argue extraction from homomor-
phically accumulated blocks. Extractability issues arise in several natural constructions. Proving
extraction from aggregated authenticator values can be challenging. In Appendix B we show an
attack on a natural but incorrect system that is very similar to the “E-PDP” efficient alternative
scheme given by Ateniese et al. For their E-PDP scheme, Ateniese et al. claim only that the pro-
tocol establishes that a cheating prover has the sum

∑
i∈I mi of the blocks. Our attack suggests

that this guarantee is insufficient for recovering file contents.
Finally, we argue that the POR is the “right” model for considering practical data storage

problems, since it provides a successful audit guarantees that all the data can be extracted. Other
work has advocated for a weaker model, Proof of Data Possession [3]. In this model, one only
wants to guarantee that a certain percentage (e.g., 90%) of data blocks are available. By offering
this weaker guarantee one might hope to avoid the overhead of applying erasure codes. However,
this weaker condition is unsatisfactory for most practical application demands. One might consider
how happy a user would be were 10% of an accounting data file lost. Or if, for a compressed file,
the compression tables were lost — and with them all useful data. Instead of hoping that there is
enough redundancy left to reconstruct important data in an ad-hoc way, it is much more desirable
to have a model that inherently provides this.

In another difference from previous work, we insist that files be recoverable from an adversary
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that correctly answers any small (but nonnegligible) fraction of queries. We believe that this frees
systems implementers from having to worry about whether a substantial error rate (for example,
due to an intermitent connection between auditor and server) invalidates the assumptions of the
underlying cryptographic protocol.

Our proofs show that a system that provably allows recovery of a constant fraction of file blocks
gives a secure POR scheme when combined with a suitable erasure code; the question is whether
the erasure coding can be omitted. We believe that provable full retrievability is crucial, especially
when when cryptographic storage is one building block in a larger system.

2 Security Model

We recall the security definition of Juels and Kaliski [22]. Our version differs from the original
definition in several details:

• we rule out any state (“α”) in key generation and in verification, because (as explained in
Section 1) we believe that verifiers in proof-of-retrievability schemes should be stateless;

• we allow the proof protocol to be arbitrary, rather than two-move, challenge-response; and

• our key generation emits a public key as well as a private key, to allow us to capture the
notion of public verifiability.

Note that any stateless scheme secure in the original Juels-Kaliski model will be secure in our
variant, and any scheme secure in our variant whose proof protocol can be cast as two-move,
challenge-response protocol will be secure in the Juels-Kaliski definition. In particular, our scheme
with private verifiability is secure in the original Juels-Kaliski model.6

A proof of retrievability scheme defines four algorithms, Kg, St, V, and P, which behave thus:

Kg(). This randomized algorithm generates a public-private keypair (pk, sk).

St(sk,M). This randomized file-storing algorithm takes a secret key sk and a file M ∈ {0, 1}∗ to
store. It processes M to produce and output M∗, which will be stored on the server, and a
tag τ . The tag contains information that names the file being stored; it could also contain
additional secret information encrypted under the secret key sk.

P, V. The randomized proving and verifying algorithms define a protocol for proving file retriev-
ability. During protocol execution, both algorithms take as input the public key pk and
the file tag τ output by St. The prover algorithm also takes as input the processed file
description M∗ that is output by St, and the verifier algorithm takes as input the secret
key. At the end of the protocol run, V outputs 0 or 1, where 1 means that the file is being
stored on the server. We can denote a run of two machines executing the algorithms as:

{0, 1} R←
(
V(pk, sk, τ) 
 P(pk, τ,M∗)

)
.

6In an additional minor difference, we do not specify the extraction algorithm as part of a scheme, because we
do not expect that the extract algorithm will be deployed in outsourced storage applications. Nevertheless, the
extract algorithm used in our proofs (cf. Section 4.2) is quite simple: undertake many random V interactions with
the cheating prover; keep track of those queries for which V accepts the cheating prover’s reply as valid; and continue
until enough information has been gathered to recover file blocks by means of linear algebra. The adversary A could
implement this algorithm by means of its proof-of-retrievability protocol access.
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We would like a proof-of-retrievability protocol to be correct and sound. Correctness requires
that, for all keypairs (pk, sk) output by Kg, for all files M ∈ {0, 1}∗, and for all (M∗, τ) output
by St(sk,M), the verification algorithm accepts when interacting with the valid prover:(

V(pk, sk, τ) 
 P(pk, τ,M∗)
)

= 1 .

A proof-of-retrievability protocol is sound if any cheating prover that convinces the verification
algorithm that it is storing a file M is actually storing that file, which we define in saying that it
yields up the file M to an extractor algorithm that interacts with it using the proof-of-retrievability
protocol. We formalize the notion of an extractor and then give a precise definition for soundness.

An extractor algorithm Extr(pk, sk, τ,P ′) takes the public and private keys, the file tag τ , and
the description of a machine implementing the prover’s role in the proof-of-retrievability protocol:
for example, the description of an interactive Turing machine, or of a circuit in an appropriately
augmented model. The algorithm’s output is the file M ∈ {0, 1}∗. Note that Extr is given non–
black-box access to P ′ and can, in particular, rewind it. The extraction algorithm must be efficient:
It must run in time polynomial in n and (1/ε). In an asymptotic formalization, Extr’s running time
must also be polynomial in the security parameter λ.

Consider the following setup game between an adversary A and an environment:

1. The environment generates a keypair (pk, sk) by running Kg, and provides pk to A.

2. The adversary can now interact with the environment. It can make queries to a store oracle,

providing, for each query, some file M . The environment computes (M∗, τ)
R← St(sk,M) and

returns both M∗ and τ to the adversary.

3. For any M on which it previously made a store query, the adversary can undertake executions
of the proof-of-retrievability protocol, by specifying the corresponding tag τ . In these protocol
executions, the environment plays the part of the verifier and the adversary plays the part
of the prover: V(pk, sk, τ) 
 A. When a protocol execution completes, the adversary is
provided with the output of V. These protocol executions can be arbitrarily interleaved with
each other and with the store queries described above.

4. Finally, the adversary outputs a challenge tag τ returned from some store query, and the
description of a prover P ′.

The cheating prover P ′ is ε-admissible if it convincingly answers an ε fraction of verification chal-
lenges, i.e., if Pr

[(
V(pk, sk, τ) 
 P ′

)
= 1
]
≥ ε. Here the probability is over the coins of the verifier

and the prover. Let M be the message input to the store query that returned the challenge tag τ
(along with a processed version M∗ of M).

Definition 2.1. We say a proof-of-retrievability scheme is ε-sound if there exists an efficient extrac-
tion algorithm Extr such that, for every adversary A, whenever A, playing the setup game, outputs
an ε-admissible cheating prover P ′ for a file M , the extraction algorithm recovers M from P ′— i.e.,
Extr(pk, sk, τ,P ′) = M — except possibly with negligible probability.

Note that it is okay for A to have engaged in the proof-of-retrievability protocol for M in its
interaction with the environment. Note also that each run of the proof-of-retrievability protocol is
independent: the verifier implemented by the environment is stateless.
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Finally, note that we require that extraction succeed (with all but negligible probability) from
an adversary that causes V to accept with any nonnegligible probability ε. An adversary that passes
the verification even a very small but nonnegligible fraction of the time — say, once in a million
interactions — is fair game. Intuitively, recovering enough blocks to reconstruct the original file
from such an adversary should take O(n/ε) interactions; our proofs achieve essentially this bound.

Concrete or asymptotic formalization. A proof-of-retrievability scheme is secure if no efficient
algorithm wins the game above except rarely, where the precise meaning of “efficient” and “rarely”
depends on whether we employ a concrete or asymptotic formalization.

In a concrete formalization, we require that each algorithm defining the proof-of-retrievability
scheme run in at most some number of steps, and that for any algorithm A that runs in time t steps,
that makes at most qS store queries, and that undertakes at most qP proof-of-retrievability protocol
executions, extraction from an ε-admissible prover succeeds except with some small probability δ.
In an asymptotic formalization, every algorithm is provided with an additional parameter 1λ for
security parameter λ, we require each algorithm to run in time polynomial in λ, and we require
that extraction fail from an ε-admissible prover with only negligible probability in λ, provided ε is
nonnegligible.

Public or private verification, public or private extraction. In the model above, the verifier
and extractor are provided with a secret that is not known to the prover or other parties. This is
a secret-verification, secret-extraction model. If the verification algorithm does not use the secret
key, any third party can check that a file is being stored, giving public verification. Similarly, if the
extraction algorithm does not use the secret key, any third party can extract the file from a server,
giving public extraction.

3 Constructions

In this section we give formal descriptions for both our private and public verification systems. The
systems here follow the constructions outlined in the introduction with a few added generalizations.
First, we allow blocks to contain s ≥ 1 elements of Zp. This allows for a tradeoff between storage
overhead and communication overhead. Roughly the communication complexity grows as s + 1
elements of Zp and the ratio of authentication overhead to data stored (post encoding) is 1 : s.
Second, we describe our systems where the set of coefficients sampled from B can be smaller than
all of Zp. This enables us to obtain more efficient systems in certain situations.

3.1 Common Notation

We will work in the group Zp. When we work in the bilinear setting, the group Zp is the support
of the bilinear group G, i.e., #G = p. In queries, coefficients will come from a set B ⊆ Zp. For
example, B could equal Zp, in which case query coefficients will be randomly chosen out of all of Zp.

After a file undergoes preliminary processing, the processed file is split into blocks, and each
block is split into sectors. Each sector is one element of Zp, and there are s sectors per block. If
the processed file is b bits long, then there are n = db/s lg pe blocks. We will refer to individual file
sectors as {mij}, with 1 ≤ i ≤ n and 1 ≤ j ≤ s.
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Queries. A query is an l-element set Q = {(i, νi)}. Each entry (i, νi) ∈ Q is such that i is a block
index in the range [1, n], and νi is a multiplier in B. The size l of Q is a system parameter, as is
the choice of the set B.

The verifier chooses a random query as follows. First, she chooses, uniformly at random, an
l-element subset I of [1, n]. Then, for each element i ∈ I she chooses, uniformly at random, an

element νi
R← B. We observe that this procedure implies selection of l elements from [1, n] without

replacement but a selection of l elements from B with replacement.
Although the set notation Q = {(i, νi)} is space-efficient and convenient for implementation,

we will also make use of a vector notation in the analysis. A query Q over indices I ⊂ [1, n] is
represented by a vector q ∈ (Zp)n where qi = νi for i ∈ I and qi = 0 for all i /∈ I. Equivalently,
letting u1, . . . ,un be the usual basis for (Zp)n, we have q =

∑
(i,νi)∈Q νiui.

7

If the set B does not contain 0 then a random query (according to the selection procedure defined
above) is a random weight-l vector in (Zp)n with coefficients in B. If B does contain 0, then a
similar argument can be made, but care must be taken to distinguish the case “i ∈ I and νi = 0”
from the case “i /∈ I.”

Aggregation. For its response, the server responds to a query Q by computing, for each j,
1 ≤ j ≤ s, the value

µj←
∑

(i,νi)∈Q

νimij .

That is, by combining sectorwise the blocks named in Q, each with its multiplier νi. Addition, of
course, is modulo p. The response is (µ1, . . . , µs) ∈

(
Zp
)s

.
Suppose we view the message blocks on the server as an n× s element matrix M = (mij), then,

using the vector notation for queries given above, the server’s response is given by qM .

3.2 Construction for Private Verification

Let f : {0, 1}∗ ×Kprf → Zp be a PRF.8 The construction of the private verification scheme Priv is:

Priv.Kg(). Choose a random symmetric encryption key kenc
R← Kenc and a random MAC key

kmac
R← Kmac. The secret key is sk = (kenc, kmac); there is no public key.

Priv.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′ into n

blocks (for some n), each s sectors long: {mij}1≤i≤n
1≤j≤s

. Now choose a PRF key kprf
R← Kprf

and s random numbers α1, . . . , αs
R← Zp. Let τ0 be n‖Enckenc(kprf‖α1‖ · · · ‖αs); the file tag is

τ = τ0‖MACkmac(τ0). Now, for each i, 1 ≤ i ≤ n, compute

σi ← fkprf
(i) +

s∑
j=1

αjmij .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

7We are using subscripts to denote vector elements (for q) and to choose a particular vector from a set (for u);
but no confusion should arise.

8In fact, the domain need only be dlgNe-bit strings, where N is a bound on the number of blocks in a file.
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Priv.V(pk, sk, τ). Parse sk as (kenc, kmac). Use kmac to verify the MAC on τ ; if the MAC is invalid,
reject by emitting 0 and halting. Otherwise, parse τ and use kenc to decrypt the encrypted
portions, recovering n, kprf, and α1, . . . , αs. Now pick a random l-element subset I of the set

[1, n], and, for each i ∈ I, a random element νi
R← B. Let Q be the set {(i, νi)}. Send Q to

the prover.

Parse the prover’s response to obtain µ1, . . . , µs and σ, all in Zp. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

σ
?
=
∑

(i,νi)∈Q

νifkprf
(i) +

s∑
j=1

αjµj ;

if so, output 1; otherwise, output 0.

Priv.P(pk, τ,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with the i’s
distinct, each i ∈ [1, n], and each νi ∈ B. Compute

µj ←
∑

(i,νi)∈Q

νimij for 1 ≤ j ≤ s, and σ ←
∑

(i,νi)∈Q

νiσi .

Send to the prover in response the values µ1, . . . , µs and σ.

A note on the field Zp. In our description, we specified that the output of the PRF and the
size of the file sectors {mij} be Zp for a prime p. In fact, any finite field will do, and F2k may be a
more convenient choice for some implementations.

Correctness. It is easy to see that the scheme is correct. Let the PRF key be kprf and the secret

coefficients be α1, . . . , αs
R← Zp. Let the file sectors be {mij}, so that the block authenticators are

σi = fkprf
(i) +

∑s
j=1 αjmij . For a prover who responds honestly to a query {(i, νi)}, so that each

µj =
∑

(i,νi)∈Q νimij and σ =
∑

(i,νi)∈Q νiσi, we have

σ =
∑

(i,νi)∈Q

νiσi =
∑

(i,νi)∈Q

(
νi
)(
fkprf

(i) +

s∑
j=1

αjmij

)
=
∑

(i,νi)∈Q

νifkprf
(i) +

∑
(i,νi)∈Q

νi

s∑
j=1

αjmij

=
∑

(i,νi)∈Q

νifkprf
(i) +

s∑
j=1

αj
∑

(i,νi)∈Q

νimij =
∑

(i,νi)∈Q

νifkprf
(i) +

s∑
j=1

αjµj ,

So the verification equation is satisfied.

3.3 Construction for Public Verification

Let e : G × G → GT be a bilinear map, let g be a generator of G, and let H : {0, 1}∗ → G be the
BLS hash, treated as a random oracle.9 The construction of the public verification scheme Pub is:

9For notational simplicity, we present our scheme using a symmetric bilinear map, but efficient implementations
will use an asymmetric map e : G1 × G2 → GT . Translating our scheme to this setting is simple. User public keys
v will live in G2; file generators uj will live in G1, as will the output of H; and security will be reduced to co-CDH [9].
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Pub.Kg(). Generate a random signing keypair (spk, ssk)
R← SKg. Choose a random α

R← Zp and
compute v ← gα. The secret key is sk = (α, ssk); the public key is pk = (v, spk).

Pub.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′ into
n blocks (for some n), each s sectors long: {mij}1≤i≤n

1≤j≤s
. Now parse sk as (α, ssk). Choose

a random file name name from some sufficiently large domain (e.g., Zp). Choose s random

elements u1, . . . , us
R← G. Let τ0 be “name‖n‖u1‖ · · · ‖us”; the file tag τ is τ0 together with a

signature on τ0 under private key ssk: τ ← τ0‖SSigssk(τ0). For each i, 1 ≤ i ≤ n, compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij
j

)α
.

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

Pub.V(pk, sk, τ). Parse pk as (v, spk). Use spk to verify the signature on τ ; if the signature
is invalid, reject by emitting 0 and halting. Otherwise, parse τ , recovering name, n, and
u1, . . . , us. Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I, a

random element νi
R← B. Let Q be the set {(i, νi)}. Send Q to the prover.

Parse the prover’s response to obtain (µ1, . . . , µs) ∈ (Zp)s and σ ∈ G. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

e(σ, g)
?
= e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj
j , v

)
;

if so, output 1; otherwise, output 0.

Pub.P(pk, τ,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with the i’s
distinct, each i ∈ [1, n], and each νi ∈ B. Compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Zp for 1 ≤ j ≤ s, and σ ←
∏

(i,νi)∈Q

σνii ∈ G .

Send to the prover in response the values µ1, . . . , µs and σ.

Correctness. Again, it is easy to see that the scheme is correct. Let the secret key be α and the
corresponding public key be v = gα. Let the public generators be u1, . . . , us. Let the file sectors
be {mij}, so that the block authenticators are σi =

(
H(name‖i) ·

∏s
j=1 u

mij
j

)α
. For a prover who

responds honestly to a query {(i, νi)}, so that each µj =
∑

(i,νi)∈Q νimij and σ =
∏

(i,νi)∈Q σ
νi
i , we

have

σ =
∏

(i,νi)∈Q

σνii =
∏

(i,νi)∈Q

(
H(name‖i) ·

s∏
j=1

u
mij
j

)νiα
=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
∏

(i,νi)∈Q

s∏
j=1

u
νimij
j

)α

=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u

(∑
(i,νi)∈Q

νimij

)
j

)α
=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u
µj
j

)α
,
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which means that

e
(
σ, g
)

= e

(( ∏
(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u
µj
j

)α
, g

)
= e
( ∏

(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u
µj
j , v

)
,

so the verification equation is satisfied.

4 Security Proofs

In this section we prove that both of our systems are secure under the model we provided. We
break our proof into three parts. Intutively, the first part shows that the attacker can never give a
forged response back to the a verifier. The second part of the proof shows that from any adversary
that passes the check a non-negligible amount of the time we will be able to extract a constant
fraction of the encoded blocks. The second step uses the fact that (w.h.p.) all verified responses
must be legitimate. Finally, we show that if this constant fraction of blocks is recovered we can use
the erasure code to reconstruct the original file.

The proof, for both schemes, is in three parts:

1. Prove that the verification algorithm will reject except when the prover’s {µj} are correctly
computed, i.e., are such that µj =

∑
(i,νi)∈Q νimij . This part of the proof uses cryptographic

techniques.

2. Prove that the extraction procedure can efficiently reconstruct a ρ fraction of the file blocks
when interacting with a prover that provides correctly-computed {µj} responses for a non-
negligible fraction of the query space. This part of the proof uses combinatorial techniques.

3. Prove that a ρ fraction of the blocks of the erasure-coded file suffice for reconstructing the
original file. This part of the proof uses coding theoretic techniques.

The crucial point is the second and third parts of the proof are identical for our two schemes; only
the first part is different.

4.1 Part-One Proofs

4.1.1 Scheme with Private Verifiability

Theorem 4.1. If the MAC scheme is unforgeable, the symmetric encryption scheme is semantically
secure, and the PRF is secure, then (except with negligible probability) no adversary against the
soundness of our private-verification scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {µj} and σ that are computed correctly, i.e., as
they would be by Priv.P.

We prove the theorem in a series of games. Note that the reductions are not tight. The reduction to
PRF security, for example, loses a factor of 1/(NqS), where N is a bound on the number of blocks in
the encoding of any file the adversary requests to have stored. In the proof below, we interleave the
game descriptions and the analysis limiting the difference in adversary behavior between successive
games.
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Game 0. The first game, Game 0, is simply the challenge game defined in Section 2.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
MAC-authenticated tags ever issued as part of a store query. If the adversary ever submits a tag τ
either in initiating a proof-of-retrievability protocol or as the challenge tag, that (1) verifies as valid
under kmac but (2) is not on the list of tags authenticated by the challenger, the challenger declares
failure and aborts.

Analysis. Clearly, if the adversary causes the challenger in Game 1 to abort with nonnegligible
probability, we can use the adversary to construct a forger against the MAC scheme.

If the adversary does not cause the challenger to abort, his view is identical in Game 0 and in
Game 1. With the modification made in Game 1, the verification and extraction algorithms will
never attempt to decrypt a tag except those generated by the challenger. To see why this is so,
observe that the first thing algorithm V does, given a tag τ , is to check that the MAC on the tag is
valid. If the MAC isn’t valid, V rejects immediately, without attempting to decrypt. Tags with a
valid MAC will be decrypted, and these could either (a) have been produced by the challenger or
(b) somehow mauled by the adversary; but, in Game 1, the challenger will abort if the adversary
ever produces a tag with a valid MAC but different from all tags generated by the challenger itself,
meaning that the verification and extraction algorithms will never deal with case (b). From now
on, we need not worry about decrypting adversarially generated tags.

Game 2. In Game 2, the challenger includes in the tags not the encryption of kprf‖α1‖ · · · ‖αs but
a random bit-string of the same length. When given a tag by the adversary whose MAC verifies as
correct, the challenger uses the values that would (in previous games) have been encrypted in the
tag, rather than attempting to decrypt the ciphertext.

Analysis. The changes made in Game 1 guarantee that the challenger will never attempt to
decrypt any ciphertext it did not generate, because the only tags with valid MACs the challenger
will see are those it itself generated. The challenger can thus keep a table of plaintext values
kprf‖α1‖ · · · ‖αs values and the corresponding bit string it emitted as their tags. Decryption is
replaced with table lookup.

If there is a difference in the adversary’s success probability between Games 1 and 2, we can
use the adversary to break the semantic security of the symmetric encryption scheme. Note that
the reduction so obtained will suffer a 1/qS security loss, where qS is the number of St queries made
by the adversary, because we must use a hybrid argument between “all valid encryptions” and “no
valid encryptions.”

Specifically, consider a challenger interacting with the adversary according to the game in
Definition 2.1. The challenger keeps track of the files stored by the adversary. If the adversary
succeeds in any proof-of-retrievability protocol interaction but sends values {µj} and σ that are
different from those values that would be by the (deterministic) Priv.P algorithm, the challenger
halts and outputs 1. Otherwise, the challenger outputs 0.

If this challenger’s behavior in interacting with adversary A is as specified in Game 0, then by
assumption it will output 1 with some nonnegligible probability ε0. By the analysis of Game 1, if
the challenger’s behavior is as specified by Game 1, then it will output 1 with some nonnegligible
probability ε1, because the difference between ε0 and ε1 is negligible assuming the MAC is secure.
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If the challenger’s behavior is as specified in Game 2, then it will output 1 with some probability ε3.
We will show that the difference between ε2 and ε3 is negligible assuming the symmetric encryption
scheme is secure.

In Game 2, the challenger includes the encryption of the values kprf‖α1‖ · · · ‖αs in each tag
it generates in response to a store query by A. In Game 3, the challenger encrypts a random
string of the same length instead in each tag it generates. Suppose that |ε3 − ε2| is nonnegligible.
Then consider the hybrids in which the challenger encrypts a random string in the first i tags, and
encrypts a random value in the remaining qS − i tags. Then there must be a value of i such that
the difference between the challenger’s output in hybrid i and hybrid i+ 1 is at least |ε3 − ε2|/qS,
which is nonnegligible. We will use this to construct an algorithm B that breaks the security of the
symmetric encryption scheme.

Algorithm B is given access to an encryption oracle for a key kenc, as well as a left-or-right
oracle that, given strings m0 and m1 of the same length, outputs the encryption of mb, where
b is a randomly chosen bit [7]. Algorithm B plays the part of the challenger, interacting with
adversary A. In answering A’s first i store queries, B uses its encryption oracle to obtain the
encryption of kprf‖α1‖ · · · ‖αs, which it includes in the tag. In answering A’s (i + 1)st query, B
computes the correct plaintext m0 = kprf‖α1‖ · · · ‖αs and a random plaintext m1 of the same length
and submits both to its left-or-right oracle, including the oracle’s response in the tag. In answering
A’s remaining store queries, B computes the correct plaintext, generates a random plaintext of the
same length, encrypts this random plaintext using its encryption oracle, and includes the result in
the tag. Algorithm B keeps track of the files stored by the adversary. If the adversary succeeds in
any proof-of-retrievability protocol interaction but sends values {µj} and σ that are different from
those values that would be by the (deterministic) Priv.P algorithm, B outputs 1, otherwise 0.

If the left-or-right oracle encrypts its left input, B is interacting with A according to hybrid i.
If the left-or-right oracle encrypts its right input, B is interacting with A according to hybrid i+ 1.
There is a nonnegligible difference in A’s behavior and therefore in B’s, which breaks the security
of the symmetric encryption scheme. Note that, because the values kprf‖α1‖ · · · ‖αs are chosen
independently at random for each file, the values given by algorithm B to its left-or-right oracle
coincide with a query it makes to its encryption oracle only with negligible probability.

Game 3. In Game 3, the challenger uses truly random values in Zp instead of PRF outputs,
remembering these values to use when verifying the adversary’s responses in proof-of-retrievability
protocol instances. More specifically, the challenger evaluates fkprf

(i) not by applying the PRF

algorithm but by generating a random value r
R← Zp and inserting an entry (kprf, i, r) in a table; it

consults this table when evaluating the PRF to ensure consistency.

Analysis. If there is a difference in the adversary’s success probability between Games 2 and
3, we can use the adversary to break the security of the PRF. It is important to note that, because
of the change made in Game 2, the tags given to the adversary no longer contain kprf, so the
simulator does not need to know this value. The adversary will therefore see only PRF outputs; if
it can distinguish these from random values it can be used to break the security of the PRF.

As in the analysis of Game 2, the difference in behavior we use to break the PRF security is
the event that the adversary succeeds in a proof-of-retrievability protocol interaction but sends
values {µj} and σ that are different from those values that would be by the (deterministic) Priv.P
algorithm.
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As before, a hybrid argument necessitates a security loss in the reduction; this time, the loss
is 1/(NqS), where N is a bound on the number of blocks in the encoding of any file the adversary
requests to have stored.

Game 4. In Game 4, the challenger handles proof-of-retrievability protocol executions initiated
by the adversary differently than in Game 3.

In each such proof-of-retrievability protcol execution, the challenger issues a challenge as before.
However, the challenger verifies the adversary’s response differently than is specified in algorithm V.

The challenger keeps a table of the St queries made by the adversary, and of its responses to those
queries; based on that table, the challenger knows the values {µj} and σ that the honest prover P
would have produced in response to the query it issued. (The honest prover is deterministic, so
there is no ambiguity about the response it would have generated.) If the values the adversary
sent were exactly these values, the challenger accepts the adversary’s response, returning a 1. If
the values the adversary sent were different from these honest values, the challenger rejects the
adversray’s response, returning a 0.

Analysis. The adversary’s view is different in Game 3 and Game 4 only when, in one of the
proof-of-retrievability protocol interactions, the adversary responds in a way that (1) passes the
verification algorithm but (2) is not what would have been computed by an honest prover, the
challenger. We will now show that the probability that this happens is negligible.

We first establish some notation. Suppose a protocol instance involves an n-block file with
secret values α1, . . . , αs and content sectors {mij}, and that the block signatures issued by St are
{σi}. Suppose Q = {(i, νi)} is the query issued by the challenger, and that the adversary’s response
to that query was µ′1, . . . , µ

′
s together with σ′. Let the expected response — i.e., the one that would

have been obtained from an honest prover — be µ1, . . . , µs and σ, where σ =
∑

(i,νi)∈Q νiσi and
µj =

∑
(i,νi)∈Q νimij for 1 ≤ j ≤ s. If the adversary’s response satisfies the verifier — i.e., if

σ′ =
∑

(i,νi)∈Q νirkprf,i +
∑s

j=1 αjµ
′
j , where rkprf,i is the random value substituted by Game 2 for

fkprf
(i), but µ′j 6= µj for at least one j, the challenger aborts. (If µ′j = µj for all j but σ′ 6= σ, it is

impossible that the verification equation holds, so we need not worry about this case.)
By the correctness of the scheme the expected values σ along with {µj} also satisfy the verifica-

tion equation, so we have σ =
∑

i∈I rkprf,i +
∑s

j=1 αjµj . Letting ∆σ
def
= σ′ − σ and ∆µj

def
= µ′j − µj

for 1 ≤ j ≤ s and subtracting the verification equation for σ from that for σ′, we have

∆σ =
s∑
j=1

αj∆µj . (1)

The bad event we are trying to rule out — the adversary’s submitting a convincing response
different from an honest prover’s response — occurs exactly when some ∆µj isn’t zero yet (1) holds.

However, with the Game 4 challenger, the values α1, . . . , αs for every file are independent of the
adversary’s view. They are no longer encrypted in the tag, and their only other appearance is in
computing σi = rkprf,i +

∑s
j=1 αjmij for 1 ≤ i ≤ n; but the random value rkprf,i replacing fkprf

(i)
(and used only there) means that σi is independent of α1, . . . , αs.

Accordingly, the probability that the bad event happens if the simulator first picks the val-
ues {αj} for each stored file and then undertakes the proof-of-retrievability interactions is the
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same as the probability that the bad event happens if the simulator first undertakes the proof-of-
retrievability interactions and only then chooses the values {αj} for each file.

Fix the sequence of values ∆µj and ∆σ in proof-of-retrievability responses by the adversary.
The probability (over the choice of {αj}) that (1) holds for a specific entry in this sequence is
1/p. The probability that (1) holds for a nonzero number of entries is at most qP/p, where qP is
the number of proof-of-retrievability protocol interactions initiated by the adversary. (This upper
bound is achieved only if all these interactions are for the same file.)

If the bound of qP/p holds for any fixed sequence of values ∆µj and ∆σ, it holds also over a
random choice of these values by the adversary. Except with negligible probability qP/p, then, the
adversary never generates a convincing response different from an honest prover’s response, so the
adversary’s view in Game 4 is identical to its view in Game 3 except with negligible probability.

Game 5. In Game 5, the challenger observes each instance of the proof-of-retrievability protocol
with the adversary — whether because of a proof-of-retrievability query made by the adversary, or
in the test made of P ′, or as part of the extraction attempt by Extr. It compares the response
made by the adversary to the response that would have been made by an honest prover. If in any
of these interactions the adversary responds in a way that (1) passes the verification algorithm but
(2) is not what would have been computed by an honest prover, the challenger sets a flag. At the
end of the game, if the flag is set, the challenger declares failure and aborts.

Analysis. In the analysis of Game 4, we argued that the secret values {αj} for each file
are independent of the adversary’s view until the adversary outputs the cheating prover P ′ for
the challenge file. Although the values {αj} for the challenge file are used by the extractor (in
particular, to make the adversary “polite,” as defined below), P ′ is rewound after each protocol
interaction, meaning that it cannot learn information about the values {αj}, which thus remain
independent of the adversary’s view for the entire game.

By the analysis of Game 4, the probability that any proof-of-retrievability interaction initiated
by the adversary causes an abort is at most qP/p, which is negligible. If there are k subsequent
proof-of-retrievability interactions initiated by the extraction algorithm, the probablity that any of
these causes the challenger to abort is at most k/p. This probability is also negligible, since the
extractor may make only polynomially many queries. The Game 5 challenger will thus abort only
with negligible probability.

(This argument is inspired by Cramer and Shoup’s analysis of their encryption scheme [13]. The
present version is simpler than the one we originally supplied, and was proposed by an anonymous
Journal of Cryptology reviewer.)

Wrapping up. In Game 5, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Priv.P. Yet we have argued that,
assuming the MAC, encryption scheme, and PRF are secure, there is only a negligible difference in
the success probability of the adversary in this game compared to Game 0, where the adversary is
not constrained in this manner. This completes the proof of Theorem 4.1.

4.1.2 Scheme with Public Verifiability

Theorem 4.2. If the signature scheme used for file tags is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then, in the random oracle model, except
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with negligible probability no adversary against the soundness of our public-verification scheme ever
causes V to accept in a proof-of-retrievability protocol instance, except by responding with values
{µj} and σ that are computed correctly, i.e., as they would be by Pub.P.

Once again, we prove the theorem as a series of games with interleaved analysis. In this case, the
reductions are tight.

Game 0. The first game, Game 0, is simply the challenge game defined in Section 2, with the
changes for public verifiability sketched at the end of that section.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag τ
either in initiating a proof-of-retrievability protocol or as the challenge tag, that (1) has a valid
signature under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and
aborts.

Analysis. Clearly, if the adversary causes the challenger in Game 1 to abort with nonnegligible
probability, we can use the adversary to construct a forger against the signature scheme.

If the adversary does not cause the challenger to abort, his view is identical in Game 0 and in
Game 1. With the modification made in Game 1, the verification and extraction algorithms will
never attempt to make use of values u1, . . . , us from a tag, except those generated by the challenger.
To see why this is so, observe that the first thing algorithm V does, given a tag τ , is to check that
the signature on the tag is valid. If the signature isn’t valid, V rejects immediately. Those tags with
a valid signature could either (a) have been produced by the challenger or (b) somehow mauled by
the adversary; but, in Game 1, the challenger will abort if the adversary ever produces a tag with
a valid signature but different from all tags generated by the challenger itself, meaning that the
verification and extraction algorithms will never deal with case (b). From now on, we can be sure
that any values u1, . . . , us used in proof-of-retrievability interactions with the adversary will have
been generated by the challenger.

Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-retrievability protocol with the adversary — whether because of a proof-of-retrievability
query made by the adversary, or in the test made of P ′, or as part of the extraction attempt by
Extr. If in any of these instances the adversary is successful (i.e., V outputs 1) but the adversary’s
aggregate signature σ is not equal to

∏
(i,νi)∈Q σ

νi
i (where Q is the challenge issued by the verifier

and σi are the signatures on the blocks of the file considered in the protocol instance) the challenger
declares failure and aborts.

Analysis. Before analyzing the difference in success probabilities between Games 1 and 2, we
will establish some notation and draw a few conclusions. Suppose the file that causes the abort
is n blocks long, has name name, has generating exponents {uj}, and contains sectors {mij}, and
that the block signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes
the challenger to abort, and that the adversary’s response to that query was µ′1, . . . , µ

′
s together

with σ′. Let the expected response — i.e., the one that would have been obtained from an honest
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prover — be µ1, . . . , µs and σ, where σ =
∏

(i,νi)∈Q σ
νi
i and µj =

∑
(i,νi)∈Q νimij for 1 ≤ j ≤ s.

By the correctness of the scheme, we know that the expected response satisfies the verification
equation, i.e., that

e(σ, g) = e
( ∏

(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj
j , v

)
;

Because the challenger aborted, we know that σ 6= σ′ and that σ′ passes the verification equation,
i.e., that

e(σ′, g) = e
( ∏

(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µ′j
j , v

)
,

where v = gα is part of the challenger’s public key. Observe that if µ′j = µj for each j, it follows
from the verification equation that σ′ = σ, which contradicts our assumption above. Therefore, if

we define ∆µj
def
= µ′j − µj for 1 ≤ j ≤ s, it must be the case that at least one of {∆µj} is nonzero.

With this in mind, we now show that if the adversary causes the challenger in Game 2 to
abort with nonnegligible probability we can construct a simulator that solves the computational
Diffie-Hellman problem.

The simulator is given as inputs values g, gα, h ∈ G; its goal is to output hα. The simulator
behaves like the Game 1 challenger, with the following differences:

• In generating a key, it sets the public key v to gα received in the challenge. This means that
it does not know the corresponding secret key α.

• The simulator programs the random oracle H. It keeps a list of queries and responses to

answers consistently. In answering the adversary’s queries it chooses a random r
R← Zp and

responds with gr ∈ G. It also answers queries of the form H(name‖i) in a special way, as we
will see below.

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves as follows. It chooses a name name at random.
Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at name‖i for any i.

For each j, 1 ≤ j ≤ s, the simulator chooses random values βj , γj
R← Zp and sets uj ← gβj ·hγj .

For each i, 1 ≤ i ≤ n, the simulator chooses a random value ri
R← Zp, and programs the

random oracle at i as

H(name‖i) = gri
/ (

g
∑s
j=1 βjmij · h

∑s
j=1 γjmij

)
.

Now the simulator can compute σi, since we have

H(name‖i) ·
s∏
j=1

u
mij
j =

( s∏
j=1

u
mij
j

)
·
(
gri
/
g
∑s
j=1 βjmij · h

∑s
j=1 γjmij

)
= g

∑s
j=1 βjmij · h

∑s
i=1 γjmij · gri

/
g
∑s
j=1 βjmij · h

∑s
j=1 γjmij = gri ,

so the simulator computes σi =
(
H(name‖i) ·

∏s
j=1 u

mij
j

)α
= (gα)ri .
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• The simulator continues interacting with the adversary until the condition specified in the def-
inition of Game 2 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with a signature σ′ that is different from the expected signature σ.

The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance — name, n, {uj}, {mij}, and {σi}— were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature σ′ by the verification equation for
the expected signature σ, we obtain

e(σ′/σ, g) = e
( s∏
j=1

u
∆µj
j , v

)
= e
( s∏
j=1

(gβj · hγj )∆µj , v
)
.

Rearranging terms yields

e
(
σ′ · σ−1 · v−

∑s
j=1 βj∆µj , g

)
= e(h, v)

∑s
j=1 γj∆µj ,

Noting that v equals gα, we see that we have found the solution to the computational Diffie-
Hellman problem,

hα =
(
σ′ · σ−1 · v−

∑s
j=1 βj∆µj

) 1∑s
j=1

γj∆µj ,

unless evaluating the exponent causes a divide-by-zero. However, we noted already that not
all of {∆µj} can be zero, and the values of {γj} are information theoretically hidden from
the adversary,10 so the denominator is zero only with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve computational Diffie-Hellman,
as required.

Game 3. Game 3 is the same as Game 2, with one difference. As before, the challenger tracks
St queries and observes proof-of-retrievability protocol instances. This time, if in any of these
instances the adversary is successful (i.e., V outputs 1) but at least one of the aggregate messages
mj is not equal to the expected

∑
(i,νi)∈Q νimij (where, again, Q is the challenge issued by the

verifier) the challenger declares failure and aborts.

Analysis. Again, let us establish some notation. Suppose the file that causes the abort is
n blocks long, has name name, has generating exponents {uj}, and contains sectors {mij}, and
that the block signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes
the challenger to abort, and that the adversary’s response to that query was µ′1, . . . , µ

′
s together

with σ′. Let the expected response — i.e., the one that would have been obtained from an honest
prover — be µ1, . . . , µs and σ, where σ =

∏
(i,νi)∈Q σ

νi
i and µj =

∑
(i,νi)∈Q νimij for 1 ≤ j ≤ s.

Game 2 already guarantees that we have σ′ = σ; it is only the values {µ′j} and {µj} that can differ.

Define ∆µj
def
= µ′j − µj for 1 ≤ j ≤ s; again, at least one of {∆µj} is nonzero.

10Hidden because they are used to compute only the values {uj} in the adversary’s view, and these are Pedersen
commitments and so information-theoretically hiding.
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We now show that if the adversary causes the challenger in Game 3 to abort with nonnegligible
probability we can construct a simulator that solves the discrete logarithm problem.

The simulator is given as inputs values g, h ∈ G; its goal is to output x such that h = gx. The
simulator behaves like the Game 2 challenger, with the following differences:

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves according to St, except that For each j,

1 ≤ j ≤ s, the simulator chooses random values βj , γj
R← Zp and sets uj ← gβj · hγj .

• The simulator continues interacting with the adversary until the condition specified in the def-
inition of Game 3 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with aggregate messages {µ′j} that are different from the expected aggregate
messages {µj}.
As before, we know because of the change made in Game 1 that the parameters associated
with this protocol instance were generated by the simulator as part of a St query. Because of
the change made in Game 2 we know that σ′ = σ. Equating the verification equations using
{µ′j} and {µj} gives us

e
( ∏

(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj
j , v

)
= e(σ, g) = e(σ′, g) = e

( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µ′j
j , v

)
,

from which we conclude that
s∏
j=1

u
µj
j =

s∏
j=1

u
µ′j
j

and therefore that

1 =

s∏
j=1

u
∆µj
j =

s∏
j=1

(
gβj · hγj

)∆µj = g
∑s
j=1 βj∆µj · h

∑s
j=1 γj∆µj

We see that we have found the solution to the discrete logarithm problem,

h = g
−

∑s
j=1 βj∆µj∑s
j=1

γj∆µj ,

unless the denominator is zero. However, not all of {∆µj} can be zero, and the values of
{γj} are information theoretically hidden from the adversary, so the denominator is zero only
with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
2 and 3, we can construct a simulator that uses the adversary to compute discrete logarithms, as
required.

Wrapping up. In Game 3, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Pub.P. Yet we have argued that,
assuming the signature scheme is secure and computational Diffie-Hellman and discrete logarithm
are hard in bilinear groups, there is only a negligible difference in the success probability of the
adversary in this game compared to Game 0, where the adversary is not constrained in this manner.
Moreover, the hardness of the CDH problem implies the hardness of the discrete logarithm problem.
This completes the proof of Theorem 4.2.
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4.2 Part-Two Proof

We say that a cheating prover P ′ is well-behaved if it never causes V to accept in a proof-of-
retrievability protocol instance except by responding with values {µj} and σ that are computed
correctly, i.e., as they would be by Pub.P. The part-one proofs above guarantee that all adversaries
that win the soundness game with nonnegligible probability output cheating provers that are well-
behaved, provided that the cryptographic primitives we employ are secure. The part-two theorem
shows that extraction always succeeds against a well-behaved cheating prover:

Theorem 4.3. Suppose a cheating prover P ′ on an n-block file M is well-behaved in the sense
above, and that it is ε-admissible: i.e., convincingly answers an ε fraction of verification queries.
Let ω = 1/#B + (ρn)l/(n − l + 1)l. Then, provided that ε − ω is positive and nonnegligible, it is
possible to recover a ρ fraction of the encoded file blocks in O

(
n
/

(ε−ω)
)

interactions with P ′ and
in O

(
n2s+ (1 + εn2)(n)

/
(ε− ω)

)
time overall.

We first make the following definition.

Definition 4.4. Consider an adversary B, implemented as a probabilistic polynomial-time Turing
machine, that, given a query Q on its input tape, outputs either the correct response (qM in vector
notation) or a special symbol ⊥ to its output tape. Suppose B responds with probability ε, i.e., on
an ε fraction of the query-and-randomness-tape space. We say that such an adversary is ε-polite.

The proof of our theorem depends upon the following lemma that is proved below.

Lemma 4.5. Suppose that B is an ε-polite adversary as defined above. Let ω equal 1/#B +
(ρn)l/(n − l + 1)l. If ε > ω then it is possible to recover a ρ fraction of the encoded file blocks in
O
(
n
/

(ε− ω)
)

interactions with B and in O
(
n2s+ (1 + εn2)(n)

/
(ε− ω)

)
time overall.

To apply Lemma 4.5, we need only show that a well-behaved ε-admissible cheating prover P ′,
as output by a setup-game adversary A, can be turned into an ε-polite adversary B. But this is
quite simple. Here is how B is implemented. We will use the P ′ to construct the ε-adversary B.
Given a query Q, interact with P ′ according to

(
V(pk, sk, τ) 
 P ′

)
, playing the part of the verifier.

If the output of the interaction is 1, write (µ1, . . . , µs) to the output tape; otherwise, write ⊥. Each
time B runs P ′, it provides it with a clean scratch tape and a new randomness tape, effectively
rewinding it. Since P ′ is well-behaved, a successful response will compute (µ1, . . . , µs) as prescribed
for an honest prover. Since P ′ is ε-admissible, on an ε fraction of interactions it answers correctly.
Thus algorithm B that we have constructed is an ε-polite adversary.

The only use for V above is to check that P ′’s responses are convincing. For schemes with
private verification, this requires the secret key sk. For schemes with public verification, however,
the secret key is not needed.

All that remains to guarantee that ω = 1/#B+(ρn)l/(n− l+1)l is such that ε−ω is positive —
indeed, nonnegligible. But this simply requires that each of 1/#B and (ρn)l/(n−l+1)l be negligible
in the security parameter; see Section 1.1.
To prove Lemma 4.5, we must first introduce some arguments in linear algebra.

For a subspace D of (Zp)n, denote the dimension of D by dimD. Furthermore, let the free
variables of a space, freeD, be the indices of the basis vectors {ui} included in D, i.e.,

freeD def
=
{
i ∈ [1, n] : ui ∈ D

}
.
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Observe that if we represent D by means of a basis matrix in row-reduced echelon form, then
we can efficiently compute dimD and freeD.

Next, we give two claims.

Claim 4.6. Let D be a subspace of (Zp)n, and let I be an l-element subset of [1, n]. If I * freeD,
then a random query over indices I with coefficients in B is in D with probability at most 1/#B.

Proof. Let I be the subspace spanned by the unit vectors in I, i.e., by {ui}i∈I . Clearly, dimD ∩ I is
at most l − 1; if it equalled l, then we would have D ∩ I = I and each of the vectors {ui}i∈I
would be in D, contradicting the lemma statement. Suppose dimD ∩ I equals r. Then there exist
r indices in I such that a choice of values for the coordinates at these indices determines the values
of the remaining l− r coordinates. This means that there are at most (#B)r vectors in D∩ I with
coordinate values in B: a choice of one of #B values for each of the r coordinates above determines
the value to each of the other l− r coordinates; if the values of these coordinates are all in B, then
this vector contributes 1 to the count; otherwise it contributes 0. The maximum possible count
is thus (#B)r. By contrast, there are (#B)l vectors in I with coordinates in B, and these are
exactly the vectors corresponding to each random query with indices I. Thus the probability that
a random query is in D is at most 1

/
(#B)l−r ≤ 1

/
(#B), which proves the lemma.

Claim 4.7. Let D be a subspace of (Zp)n, and suppose that #(freeD) = m. Then for a random
l-element subset I of [1, n] the probability that I ⊆ freeD is at most ml/(n− l + 1)l.

Proof. Color the m indices included in freeD black; color the remaining n −m indices white. A
query I corresponds to a choice of l indices out of all these, without replacement. A query satisfies
the condition that I ⊆ freeD exactly if every element of I is in freeD, i.e., is colored black. Thus
the probability that a random query satisfies the condition is just the probability of drawing l black
balls, without replacement, from a jar containing m black balls and n −m white balls; and this
probability is (

m

l

)/(
n

l

)
=

(
m!/(m− l)!

)(
n!/(n− l)!

) <
ml

(n− l + 1)l
,

as required.

Note that the bound established in 4.7 is not particularly tight. For example, if m < l then
it is impossible that I ⊆ freeD, but the probability bound is still positive; and if m > n − l the
probability bound is larger than 1 and therefore vacuous.

Lemma 4.5. Suppose that B is an ε-polite adversary as defined above. Let ω equal 1/#B +
(ρn)l/(n − l + 1)l. If ε > ω then it is possible to recover a ρ fraction of the encoded file blocks in
O
(
n
/

(ε− ω)
)

interactions with B and in O
(
n2s+ (1 + εn2)(n)

/
(ε− ω)

)
time overall.

Proof. We say the extractor’s knowledge at each point is a subspace D, represented by a t × n
matrix A in row-reduced echelon form. Suppose that the query–response pairs contributing to the
extractor’s knowledge are

q(1)M =
(
µ

(1)
1 , . . . , µ(1)

s

)
. . . q(t)M =

(
µ

(t)
1 , . . . , µ(t)

s

)
,

or VM = W , where V is the t× n matrix whose rows are {q(i)} and W is the t× s matrix whose

rows are
(
µ

(i)
1 , . . . , µ

(i)
s

)
. The row-reduced echelon matrix A is related to V by A = UV , where U is

a t× t matrix with nonzero determinant computed in applying Gaussian elimination to V .
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The extractor’s knowledge is initially empty, i.e., D = ∅.
The extractor repeats the following behavior until #(freeD) ≥ ρn:
The extractor chooses a random query Q. It runs B on Q. Suppose B chooses to respond,

giving answer (µ1, . . . , µs); clearly this happens with probability ε. Let Q be over indices I ∈ [1, n],
and denote it in vector notation as q. Now we classify Q into three types:

1. q /∈ D;

2. q ∈ D but I * freeD; or

3. I ⊆ freeD.

For queries of the first type, the extractor addsQ to its knowledge D, obtaining new knowledge D′, as
follows. It adds a row corresponding to the query to V , obtaining V ′, and a row corresponding to the
response to W , obtaining W ′; it modifies the transform matrix U , obtaining U ′, so that A′ = U ′V ′ is
again in row-reduced echelon form and spans q. The primed versions D′, A′, U ′, V ′, and W ′ replace
the unprimed versions in the extractor’s state. For queries of type 2 or 3, the extractor does not
add to its knowledge. Regardless, the extractor continues with another query.

Clearly, a type-1 query increases dimD by 1. If dimD equals n then freeD = [1, n] and
#(freeD) = n ≥ ρn, so the extractor’s query phase is guaranteed to terminate by the time it
has encountered n type-1 queries.

We now observe that any time the simulator is in its query phase, type-1 queries make up
at least a 1 − ω fraction of the query space. By Claim 4.6, type-2 queries make up at most a
(1/#B) fraction of the query space, since

Pr
Q

[
Q is type-2

]
= Pr

Q

[
q ∈ D ∧ I * freeD

]
= Pr

Q

[
q ∈ D

∣∣ I * freeD
]
· Pr
Q

[
I * freeD

]
≤ Pr

Q

[
q ∈ D

∣∣ I * freeD
]

≤ 1/#B ,

where it is the last inequality that follows from Claim 4.6.11 Here the probability expressions are
all over a random choice of query Q, and I and q are the index set and vector form corresponding
to the chosen query.

Similarly, suppose that #(freeD) = m. Then by Claim 4.7, type-3 queries make up at most an
ml/(n− l + 1)l fraction of the query space, and since m < ρn (otherwise the extractor would have
ended the query phase) this fraction is at most (ρn)l/(n− l + 1)l.

Therefore the fraction of the query space consisting of type-2 and type-3 queries is at most
1/#B+ (ρn)l/(n− l+ 1)l = ω. Since query type depends on the query and not on the randomness
supplied to B, it follows that the fraction of query-and-randomness-tape space consisting of type-2
and type-3 queries is also at most ω. Now, B must respond correctly on an ε fraction of the query-
and-randomness-tape space. Even if the adversary is as unhelpful as it can be and this ε fraction
includes the entire ω fraction of type-2 and type-3 queries, there remains at least an (ε−ω) fraction

11The claim gives a condition for a single I satisfying the condition I * freeD; the inequality here is over all such I;
but if the probability never exceeds 1/#B for any specific I then it doesn’t exceed 1/#B over a random choice of I,
either.
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of the query-and-randomness-tape space to which the adversary will respond correctly and in which
the query is of type 1 and therefore helpful to the extractor. (By assumption ε > ω, so this fraction
is nonempty.)

Since the extractor needs at most n successful type-1 queries to complete the query phase and
it obtains a successful type-1 query from an interaction with B with probability O(ε−ω), it follows
that the extractor will require at most O

(
n/(ε− ω)

)
interactions in expectation.

With D represented by a basis matrix A in row-reduced echelon form, it is possible, given
a query q to which the adversary has responded, to determine efficienty which type it is. The
extractor appends q to A and runs the Gaussian elimination algorithm on the new row, a process
that takes O(n2) time [11, Section 2.3].12 If the reduced row is not all zeros then the query is type 1;
the reduction also means that the augmented matrix A′ is again in row-reduced echelon form, and
the steps of the reduction also give the appropriate updates to the transform matrix U ′. Since the
reduction need only be performed for the ε fraction of queries to which B correctly responds, the
overall running time of the query phase is O

(
(1 + εn2)(n)

/
(ε− ω)

)
.

Once the query phase is complete, the extractor has matrices A, U , V , and W such that
VM = W (where M = (mij) is the matrix consisting of encoded file blocks), A = UV , and A is
in row-reduced echelon form. Moreover, there are at least ρn free dimensions in the subspace D
spanned by A and by V . Suppose i is in freeD. Since A is in row-reduced echelon form, there
must be a row in A, say row t, that equals the ith basis vector ui. Multiplying both sides of
VM = W by U on the left gives the equation AM = UW . For any j, 1 ≤ j ≤ s, consider the
entry at row t and column j in the matrix AM . It is equal to ui · (m1,j ,m2,j , . . . ,mn,j) = mi,j . If
we compute the matrix product UW , we can thus read off from it every block of every sector for
i ∈ freeD. Computing the matrix product takes O(n2s) time. The extractor computes the relevant
rows, outputs them, and halts.

Note that while we have described the extraction algorithm as performing row reduction opera-
tions, it could instead collect n successful interactions with the cheating prover and then perform a
single Gaussian elimination using an algorithm specialized for sparse matrices, reducing the asymp-
totic runtime substantially. We do not expect that the extraction algorithm will be used in actual
outsourced storage deployments, so this improvement is not important in practice. This completes
the proof of Lemma 4.5.

4.3 Part-Three Proof

Theorem 4.8. Given a ρ fraction of the n blocks of an encoded file M∗, it is possible to recover
the entire original file M with all but negligible probability.

Proof. For rate-ρ Reed-Solomon codes this is trivially true, since any ρ fraction of encoded file
blocks suffices for decoding; see Appendix A. For rate-ρ linear-time codes the additional measures
described in Appendix A guarantee that the ρ fraction of blocks retrieved will allow decoding with
overwhelming probability. Note, however, that these measures do not protect the user if the patern
of block accesses she makes, in reading or reconstructing her file, reveals correlations between the
plaintext blocks. If proofs of retrievability are used as part of a larger system where individual file
blocks will be accessed, then Reed-Solomon codes should be used instead.

12More specifically, O(tn) time if A is a t× n matrix; but of course t ≤ n.
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5 Proof for the Simple MAC Scheme

In this section we recall the simple MAC scheme described by Naor and Rothblum [26] and Juels and
Kaliski [22] and give a formal proof for its security in the proof-of-retrievability model. We use the
same common notation as in Section 3.1.

5.1 The Construction

Let f : {0, 1}∗ ×Kprf → Zp be a PRF. The construction of the simple scheme Simple is:

Simple.Kg(). Choose a random MAC key kmac
R← Kmac. The secret key is sk = (kmac); there is no

public key.

Simple.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′ into n
blocks (for some n), each s sectors long: {mij}1≤i≤n

1≤j≤s
. Choose a random file name name from

some sufficiently large domain (e.g., Zp). The file tag is τ = (name). Now, for each i,
1 ≤ i ≤ n, compute

σi ← MACkmac(name‖i‖mi1‖ · · · ‖mis) .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

Simple.V(pk, sk, τ). Parse sk as (kmac). Parse τ as (name). Pick a random l-element subset I of
the set [1, n]. Send I to the prover.

Parse the prover’s response to obtain mi1, . . . ,mis and σi, all in Zp, for each i ∈ I. If parsing
fails, fail by emitting 0 and halting. Otherwise, check for each i ∈ I whether

σi
?
= MACkmac(name‖i‖mi1‖ · · · ‖mis) ;

if all l equations hold, output 1; otherwise, output 0.

Simple.P(pk, τ,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as I, an l-element subset of [1, n]. Send to
the prover, for each i ∈ I, the values mi1, . . . ,mis and σi.

The correctness of the scheme is trivial to establish. Note that it is easy to modify the scheme and
the proof to use a signature scheme instead of a MAC to obtain public verifiability.

5.2 The Proof

Theorem 5.1. If the MAC scheme is unforgeable then (except with negligible probability) no adver-
sary against the soundness of the simple scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {mij} and {σi} that are computed correctly, i.e.,
as they would be by Simple.P.

Proof. The simulator is given oracle access to the MAC; its goal is to create a forgery. The
simulator plays the part of the environment in interacting with the attacker, using its MAC-
generation oracle to create the {σi} MACs. Whenever the adversary responds in a proof-of-storage
protocol instance where name is not one of the names issued by the simulator in a store query,
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the simulator uses its MAC verification oracle to check whether any σi sent by the adversary, for
i ∈ I, is a valid MAC.13 Such a valid MAC would be a forgery, since the simulator never requests
a MAC on a name not chosen in a store query. Whenever the adversary responds in a proof-of-
storage protocol instance on a file with tag name whose blocks are {mij} and where, for some i ∈
I, the values {m′ij}j sent by the adversary are different from the values {mij}j in the file, the
simulator uses its MAC verification oracle to check whether the corresponding authenticator is valid.
Such a valid MAC would be a forgery, since the simulator never requested a MAC on any string
beginning “name‖i‖ · · · ” except for “name‖i‖mi1‖ · · · ‖mis”, and (mi1, . . . ,mis) 6= (m′i1, . . . ,m

′
is)

by assumption. (Because name is drawn from a large space, each file storage query will use a
different value for name, except with negligible probability.) We see that if the adversary ever
causes V to accept in a proof-of-retrievability protocol instance without responding with values
{mij} and {σi} computed as they would be by Simple.P, the simulator finds a MAC forgery.

As before, we say that a cheating prover P ′ is well-behaved if it never causes V to accept in
a proof-of-retrievability protocol instance except by responding with values {mij} and {σi} that
are computed correctly, i.e., as they would be by Simple.P. The theorem above guarantee that all
adversaries that win the soundness game with nonnegligible probability output cheating provers
that are well-behaved, provided that the MAC we employ is secure. The next theorem shows that
extraction always succeeds against a well-behaved cheating prover:

Theorem 5.2. Suppose a cheating prover P ′ on an n-block file M is well-behaved in the sense
above, and that it is ε-admissible: i.e., convincingly answers an ε fraction of verification queries.
Then, provided that ε − (ρn)l/(n − l + 1)l is positive and nonnegligible, it is possible to recover a
ρ fraction of the encoded file blocks in O

(
ρn
/ (

ε− (ρn)l/(n− l + 1)l
))

interactions with P ′.

Proof. We turn the ε-admissible, well-behaved cheating prover P ′ into an ε-polite adversary B as
in the proof of Theorem 4.3, by interacting with P ′, checking the MACs {σi} on each block i ∈ I,
and emitting {mij} if all l MACs are valid, ⊥ otherwise.

Against an ε-polite adversary the extractor works as follows. Its knowledge is a subset S ⊆ [1, n],
initially empty. If #S ever reaches ρn, the extractor halts. The extractor repeatedly chooses a
random l-element query I ⊂ [1, n] and sends I to the polite adversary B. If the adversary does not
output ⊥, the extractor updates its knowledge as S′ ← S ∪ I. Regardless, the extractor continues
with another query.

A query is answered as not ⊥ with probability ε. For such a query, #S increases by at least 1
provided that I * S. But if the extractor has not yet halted we have #S < ρn, and the probability
that a random l-element subset I of [1, n] is such that I ⊆ S is at most (ρn)l/(n−l+1)l, by reasoning
identical to that used in the proof of Lemma 4.7. This means that on an ε − (ρn)l/(n − l + 1)l

fraction of the query–randomness space the adversary B will give a response that increases #S.
Thus O

(
ρn
/ (

ε − (ρn)l/(n − l + 1)l
))

interactions with the adversary suffice to grow #S to ρn
elements, at which point the extractor halts.

But each element i ∈ S corresponds to a block i for which the extractor has learned the values
mi1, . . . ,mis (since the adversary is polite), so the extractor will have recovered ρn blocks of the
file, as required.

Theorem 5.3. Given a ρ fraction of the n blocks of an encoded file M∗, it is possible to recover
the entire original file M with all but negligible probability.

13See Bellare, Goldreich, and Mityagin [8] for why the MAC security definition incorporates verification queries.
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The proof is identical to the proof of Theorem 4.8 in Section 4.3.

6 Construction with RSA Signatures

In this section, we show how the RSA construction of Ateniese et al. [3] can be considered an
instantiation of our framework for proofs of retrievability. The construction closely follows that
of Ateniese et al., and the part-one proof also uses RSA techniques similar to those used in their
Theorem 3.3. The benefit of this section is to show that an RSA-based construction very similar
to that of Ateniese et al. admits a full and rigorous proof of security.

6.1 Construction

Let λ be the security parameter, and let λ1 be a bitlength such that the difficulty of factoring a
(2λ1−1)-bit modulus is appropriate to the security parameter λ. Let maxB be the largest element
in B, and let λ2 be a bitlength equal to dlg(l ·maxB)e+ 1.

The construction of the public verification scheme PubRSA is:

PubRSA.Kg(). Generate a random signing keypair (spk, ssk)
R← SKg. Choose two random primes

p and q in the range
[
2λ1−1, 2λ1 − 1

]
. Let N = pq be the RSA modulus; we have 22λ1−2 <

N < 22λ1 . Let H : {0, 1}∗ → Z∗N be a full-domain hash, which we treat as a random oracle.14

Choose a random 2λ1 + λ2-bit prime e, and set d = e−1 mod φ(N). The secret key is
sk = (N, d,H, ssk); the public key is pk = (N, e,H, spk).

PubRSA.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′

into n blocks (for some n), each s sectors: {mij}1≤i≤n
1≤j≤s

. Each sector mij is an element

of ZN . Now parse sk as (N, d,H, ssk). Choose a random file name name from some suf-

ficiently large domain (e.g., ZN ). Choose s random elements u1, . . . , us
R← Z∗N . Let τ0 be

“name‖n‖u1‖ · · · ‖us”; the file tag τ is τ0 together with a signature, on τ0 under private key
ssk: τ ← τ0‖SSigssk(τ0).

Now, for each i, 1 ≤ i ≤ n, compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij
j

)d
mod N .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

PubRSA.V(pk, sk, τ). Parse pk as (N, e,H, spk). Use spk to verify the signature on τ ; if the
signature is invalid, reject by emitting 0 and halting. Otherwise, parse τ , recovering name,
n, and u1, . . . , us. Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I,

a random element νi
R← B. Let Q be the set {(i, νi)}. Send Q to the prover.

Parse the prover’s response to obtain µ1, . . . , µs and σ ∈ ZN . Check that each µj is in the
range [0, l ·N ·maxB]. If parsing fails or the {µj} values are not in range, fail by emitting 0

14The hash H can be instantiated using a hash onto all of ZN ; a value not in Z∗N would disclose the factorization
of N and thus will never appear in practice.
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and halting. Otherwise, check whether

σe
?
=

∏
(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj
j mod N ;

if so, output 1; otherwise, output 0.

PubRSA.P(pk, τ,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with
{σ1}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with
the i’s distinct, each i ∈ [1, n] and each νi ∈ B.

For each j, 1 ≤ s ≤ j, compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Z ,

where the sum is computed in Z, without modular reduction. In addition, compute

σ ←
∏

(i,νi)∈Q

σνii mod N .

Send to the prover in response the values µ1, . . . , µs and σ.

Correctness. It is easy to see that the scheme is correct. Let the modulus be N and the
public and private exponents be e and d. Let the public generators be u1, . . . , us. Let the file

sectors be {mij}, so that the block authenticators are σi =
(
H(name‖i) ·

∏s
j=1 u

mij
j

)d
mod N .

For a prover who responds honestly to a query {(i, νi)}, so that each µj =
∑

(i,νi)∈Q νimij and

σ =
∏

(i,νi)∈Q σ
νi
i mod N , we have, modulo N , that

σ =
∏

(i,νi)∈Q

σνii =
∏

(i,νi)∈Q

(
H(name‖i) ·

s∏
j=1

u
mij
j

)νid
=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
∏

(i,νi)∈Q

s∏
j=1

u
νimij
j

)d

=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u

(∑
(i,νi)∈Q

νimij

)
j

)d
=

( ∏
(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u
µj
j

)d
,

which means that

σe =
∏

(i,νi)∈Q

H(name‖i)νi ×
s∏
j=1

u
µj
j mod N ,

so the verification equation is satisfied.

6.2 Part-One Proof

We now give the part one proof of our scheme.
We begin with technical observations about Z∗N that will be of use below. For e relatively

prime to φ(N), the map x 7→ xe mod N is an isomorphism of Z∗N ; since e as chosen above is
prime and larger than N , it must be relatively prime to φ(N), as required. For c ∈ Z∗N , the map
x 7→ cx mod N is also an isomorphism of Z∗N . Thus for x ∈ Z∗N , the value cx for a random c ∈ Z∗N
is information-theoretically independent of x. In addition, we will use the following lemma (see [19]
and Lemma 1 of [12]):
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Lemma 6.1. Given x, y ∈ ZN , along with a, b ∈ Z such that xa = yb and gcd(a, b) = 1, one can
efficiently compute x̄ ∈ ZN such that x̄a = y.

Theorem 6.2. If the signature scheme used for file tags is existentially unforgeable and the RSA
problem with large public exponents is hard, then, in the random oracle model, except with negligible
probability no adversary against the soundness of our public-verification scheme ever causes V to
accept in a proof-of-retrievability protocol instance, except by responding with values {µj} and σ
that are computed correctly, i.e., as they would be by PubRSA.P.

Once more, we prove the theorem as a series of games with interleaved analysis.

Game 0. The first game, Game 0, is simply the challenge game defined in Section 2. By assump-
tion, the adversary A wins with nonnegligible probability.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag τ
either in initiating a proof-of-storage protocol or as the challenge tag, that (1) has a valid signature
under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and aborts.

Analysis. Clearly, if there is a difference in the adversary’s success probability between Games
0 and 1, we can use the adversary to construct a forger against the signature scheme.

Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-storage protocol with the adversary — whether because of a proof-of-storage query made
by the adversary, or in the test made of P ′, or as part of the extraction attempt by Extr. If in any
of these instances the adversary is successful (i.e., V outputs 1) but either

1. the adversary’s aggregate signature σ is not equal to
∏

(i,νi)∈Q σ
νi
i mod N (where Q is the

challenge issued by the verifier and σi are the signatures on the blocks of the file considered
in the protocol instance) or

2. at least one the adversary’s aggregate block values µ′1, . . . , µ
′
s is not equal to the expected

block value µj =
∑

(i,νi)∈Q νimij ,

the challenger declares failure and aborts.

Analysis. Before analyzing the difference in success probabilities between Games 1 and 2, we
will establish some notation and draw a few conclusions. Suppose the file that causes the abort
is n blocks long, has name name, has generating exponents {uj}, and contains sectors {mij}, and
that the block signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes the
challenger to abort, and that the adversary’s response to that query was µ′1, . . . , µ

′
s together with σ′.

Let the expected response — i.e., the one that would have been obtained from an honest prover — be
µ1, . . . , µs and σ, where σ =

∏
(i,νi)∈Q σ

νi
i mod N and µj =

∑
(i,νi)∈Q νimij for 1 ≤ j ≤ s. By the

correctness of the scheme, we know that the expected response satisfies the verification equation,
i.e., that

σe =
∏

(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj
j ;
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Because the challenger aborted, we know that σ′ and µ′1, . . . , µ
′
s passed the verification equation,

i.e., that

(σ′)e =
∏

(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µ′j
j .

(Note that if σ′ is in ZN \ Z∗N then so is (σ′)e, whereas the right-hand side of the verification
equation is in Z∗N . Thus the verification equation will not hold unless σ′ is in Z∗N , which is why no
separate check in V that is required that σ′ is relatively prime to N .)

Now observe that condition 1, above, implies condition 2, which means that having the simulator
abort on either condition 1 or 2 is the same as having it abort on just condition 2: if condition 2
doesn’t hold then µ′j = µj for each j, and it follows from the verification equation that (σ′)e = σe.
Because V checked that σ′ is in ZN and because, as noted, the verification equation requires
that σ′, like σ, is in Z∗N , the fact that exponentiation by e is an isomorphism of Z∗N means that
(σ′)e = σe implies σ′ = σ, so condition 1 doesn’t hold, either.

Therefore, if we define ∆µj
def
= µ′j − µj for 1 ≤ j ≤ s, it must be the case that if the simulator

aborts at least one of {∆µj} is nonzero.
With this in mind, we now show that if there is a nonnegligible difference in the adversary’s

success probabilities between Games 1 and 2 we can construct a simulator that solves the RSA
problem when the public exponent e is large.

The simulator is given as inputs a 2λ1-bit modulus N and a (2λ1 + λ2)-bit public exponent e,
along with a value y ∈ Z∗N ; its goal is to output x ∈ Z∗N such that xe = y. The simulator behaves
like the Game 1 challenger, with the following differences:

• In generating a public key, it sets the modulus and public exponent to N and e; it does not
know the corresponding secret modulus d.

• The simulator programs the random oracle H. It keeps a list of queries and responses to

answers consistently. In answering the adversary’s queries it responds with a random g
R← Z∗N .

The simulator also answers queries of the form H(name‖i) in a special way, as we will see
below.

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves as follows. It chooses a name name at random.
Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at name‖i for any i.

For each j, 1 ≤ j ≤ s, the simulator chooses a random gj
R← Z∗N and βj

R←
[
1, 2λ

]
and sets

uj ← gejy
βj . For each i, 1 ≤ i ≤ n, the simulator chooses a random value hi

R← Z∗N , and
programs the random oracle at i as

H(name‖i) = hei
/ s∏
j=1

u
mij
j .

Now the simulator can compute σi, since we have

H(name‖i) ·
s∏
j=1

u
mij
j = hei ;
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if the simulator sets σi = hi, we will have σei = he·rii = H(name‖i) ·
∏s
j=1 u

mij
j , as required.

• The simulator continues interacting with the adversary until the condition specified in the
definition of Game 2 occurs: the adversary, as part of a proof-of-storage protocol, succeeds
in responding with a signature σ′ that is different from the expected signature σ.

The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance — name, n, {uj}, {mij}, and {σi}— were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature σ′ by the verification equation for
the expected signature σ, we obtain

(σ′/σ)e =
s∏
j=1

u
∆µj
j =

[ s∏
j=1

(gej )
βj∆µj

]
· y

∑s
j=1 βj∆µj ;

rearranging terms yields [(
σ′/σ

)
·
s∏
j=1

g
βj∆µj
j

]e
= y

∑s
j=1 βj∆µj ; (2)

Now, provided that gcd
(
e,
∑s

j=1 βj∆µj
)

= 1, we can compute, using Lemma 6.1, a value x
from (2) such that xe = y.

It remains only to argue that gcd
(
e,
∑s

j=1 βj∆µj
)
6= 1 occurs with negligible probability.

First, we noted already that not all of {∆µj} can be zero. Second, the values of {βj} are sta-
tistically hidden from the adversary.15 Third, the verification equation checks that each µ′j is
in the range [0, l ·N ·maxB], and each µj is also in the same range; thus for each j we have

|∆µj | = |µ′j − µj | ≤ l ·N ·maxB < 2dlgNe · 2dlg(l·maxB)e < 22λ1 · 2λ2 < e ,

and since e is prime this means that gcd(∆µj , e) must equal 1. Now, because e is prime,
gcd
(
e,
∑s

j=1 βj∆µj
)
6= 1 means that e divides

∑s
j=1 βj∆µj , i.e., that

∑s
j=1 βj∆µj ≡ 0

mod e. For any particular fixed choice of {∆µj} values, the probability that this happens,
over the independent random choices of each βj from [1, 2λ], is at most 2−λ, which is negligible.
(Let j∗ be some index such that ∆µj∗ 6= 0 and fix {βj}j 6=j∗ . Then let c ≡

∑
j 6=j∗ βj∆µj mod e;

then
∑s

j=1 βj∆µj ≡ c + βj∗∆µj∗ ; and this is congruent to 0 modulo e for exactly one value

of βj∗ , namely βj∗ = −
(
c
)(

∆µ−1
j∗
)

mod e; since βj∗ is drawn from the range [1, 2λ], the

probability that it takes on this value is at most 1/2λ.)

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve the RSA problem, as required.

Wrapping up. Assuming the signature scheme used for file tags is secure, and that the RSA
problem with large public exponent is hard, we see that any adversary that wins the soundness game
against our public-verification scheme responds in proof-of-storage protocol instance with values
{µj} and σ that are computed according to PubRSA.P, which completes the proof of Theorem 6.2.

15Hidden because they are used to compute only the values {uj} in the adversary’s view, and thus are hidden by
the {gej} multipliers.
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6.3 Part-Two and Part Three Proofs

It is easy to see that the Part-Two proof of Section 4.2 carries over unchanged to the case where
blocks are drawn from ZN instead of Zp. The matrix operations used there require only that
inversion be efficiently computable, and this is, of course, the case in ZN using Euclid’s algorithm,
provided we never encounter values in ZN \ Z∗N ; but such a value would allow us to factor N , so
they occur with negligible probability provided the RSA problem — and therefore factoring — is
hard.

Similarly, erasure decoding works just as well when blocks are drawn from ZN ; and because
nothing in the proof requires that blocks be distributed uniformly in all of ZN , we could treat each
mij as an element of Zkp0

where p0 is some prime convenient for whatever erasure code we employ

and k is the largest integer such that pk0 < N .

Acknowledgements

We thank Dan Boneh, Guy Rothblum, and Moni Naor for helpful discussions about this work; Eric
Rescorla for detailed comments on the manuscript; Giuseppe Ateniese for his helpful comments,
and in particular for his suggested improvements to our RSA construction; attendees of the MIT
Cryptography and Information Security Seminar and the UC Irvine Crypto Seminar for their
questions and comments; and the anonymous conference reviewers and Journal of Cryptology
referees.

References

[1] M. Aigner and G. Ziegler. Proofs from The Book. Springer-Verlag, 3rd edition, 2004.

[2] N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. IEEE
Trans. Info. Theory, 42(6):1732–6, Nov. 1996.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song.
Remote data checking using provable data possession. ACM Trans. Info. & System Security,
14(1), May 2011.

[4] G. Ateniese, R. Di Pietro, L. Mancini, and G. Tsudik. Scalable and efficient provable data
possession. In P. Liu and R. Molva, editors, Proceedings of SecureComm 2008, pages 1–10.
ICST, Sept. 2008.

[5] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification
protocols. In M. Matsui, editor, Proceedings of Asiacrypt 2009, volume 5912 of LNCS, pages
319–33. Springer-Verlag, Dec. 2009.

[6] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and
S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of LNCS, pages 319–31. Springer-
Verlag, 2006.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In A. R. Karlin, editor, Proceedings of FOCS 2007, pages 394–403. IEEE Computer
Society, Oct. 1997.

33



[8] M. Bellare, O. Goldreich, and A. Mityagin. The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309,
2004. http://eprint.iacr.org/.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297–319, Sept. 2004.

[10] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and implementation.
In R. Sion and D. Song, editors, Proceedings of CCSW 2009, pages 43–54. ACM Press, Nov.
2009.

[11] H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag, 1993.

[12] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Info. & System Security, 3(3):161–85, 2000.

[13] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Computing, 33(1):167–226, 2003.
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A Erasure Codes

The proof-of-retrievability schemes we have presented allow a client of a storage server to be sure
that he can recover an ε fraction of the stored blocks. Of course, clients would like to recover all
their data, not a fraction of it, so stored files must be redundantly encoded such that any ε fraction
of the redundant encoding allows reconstruction of the file’s contents. Erasure codes are the codes
that provide this property [27, 2]. In this section, we briefly note the properties we require from
erasure codes. For more on erasure codes, see the brief survey by Mitzenmacher [25]; for more on
their use in storage systems, see the recent paper by Huang et al. [21].

Because an adversarial server can choose what blocks to “remember” and what blocks to “for-
get,” it is crucial that the erasure code be resilient against adversarial erasure. Reed-Solomon–style
erasure codes can be constructed for arbitrary rates allowing recovery of the original file from any
fraction of the encoded file blocks [28]. The code matrix used can be made public and any user can
apply the decoding procedure. This provides public retrievability.
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The downside of Reed-Solomon codes is the time required for encoding and decoding. For an
n-block file, both of these procedure will take O(n2) time. For outsourced storage, n can be very
large. For example, if a block is 1000 bytes and the file being stored is 1 GB, then we have n ≈ 220.

Although one would like decoding to have performance linear in n, no codes are known that
provide linear decoding time in the presence of adversarial erasure. Instead, current linear-time
erasure codes are secure against random erasure: they allow reconstruction of the original file from
an ε fraction of the encoded blocks with overwhelming probability [25]. To make use of these codes,
we scramble the encoded file blocks so the server can do no better than randomly erasing blocks.
It is crucial that the server not learn the secrets used for this scrambling step, which unfortunately
makes public retrievability impossible.

Our proposed scrambling operation is essentially the same as that proposed by Ateniese et al. [3,
Section 4.2.2], and we refer the reader to that paper for more details and a full analysis.

First, encode the file using the linear-time code. Second, permute the blocks of the file using a
pseudorandom permutation over the domain [1, n], where n is the number of blocks in the encoded
file. (See Hoang, Morris, and Rogaway [20] for details on how to construct such a permutation.)
Third, encrypt each block independently using a tweakable block cipher [24], with the the block
index as tweak. Store the blocks output by this procedure on the server.

Now consider an adversary A that is given a file scrambled according to this procedure, and
can erase all but an ε fraction of the blocks. We argue that each block in the original encoded file is
retained with probability ε, assuming the pseudorandom permutation and block cipher are secure.
That is, A can do no better than random erasure.

In Game 0, we play the erasure game with the adversary. In Game 1, we replace the pseu-
dorandom permutation with a truly random permutation over [1, n]. If A behaves differently in
Game 1 and Game 2, we can construct an adversary that breaks the security of the pseudorandom
permutation. In Game 3, we replace the encrypted block with truly random blocks. If A behaves
differently in Game 2 and Game 3, we can construct an adversary that breaks the security of the
block cipher, by means of a hybrid argument. Note that, without the tweak, identical plaintext
blocks would encrypt to identical ciphertext blocks, so this argument wouldn’t apply. But now
in Game 3 the permutation applied to the encoded blocks is independent of A’s view. Thus no
adversary that erases blocks can do better than random erasure, which is exactly the property we
require for decoding to work with overwhelming probability.

It is important to note that our model, above, does not consider the access pattern for the file
blocks. It is possible that the block accesses made by a user, in reading or in reconstructing her file,
leak information about the correlation between plaintext blocks. In this case, the server might be
able to do better than guessing in choosing which blocks to delete. Note that our proof-of-retriev-
ability protocol queries blocks at random, as does the extraction algorithm used in our proofs, so
neither leaks information to the adversary. If proofs of retrievability are used as part of a larger
system where individual file blocks will be accessed, then codes secure against adversarial erasure
should be used instead.

B Are Our Schemes Still Secure Without B Coefficients?

In both schemes proposed in Section 3, the verifier sends with each index i of a query a coefficient νi
from a set B. If we could avoid sending these coefficients — equivalently, if we could set B = {1}—
then we would obtain a scheme that is more efficient in several respects:
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• the verifier would need to flip fewer coins in generating a query;

• the query would be shorter by l · lg #B bits;

• the prover’s computation would be greatly reduced: essentially, one multiplication instead of
l + 1 multiplications in the first scheme; one exponentiation instead of l + 1 exponentiations
in the second scheme16; and

• the verifier’s computation would also be reduced, though not so dramatically.

Unfortunately, it is clear from Lemma 4.5 that the proof techniques of Section 4.2 cannot apply
when #B = 1, since we will not then have ε > 1/#B, however large the adversary’s success
probability ε is.

This is not just a proof problem. Below, we present an attack on the schemes of Section 3 when
B = {1}. In the attack, the server stores n − 1 blocks instead of n, can answer a nonnegligible
fraction of all queries, yet no extraction technique can recover any of the original blocks.

Note that our argument is relevant only to those schemes, like those we presented in Section 3,
in which the server’s response consists of a linear combination of file blocks. If individual blocks
are returned, as in the simple scheme of Section 5, then no coefficients are necessary.

Note also that the scheme we attack is closely related to the “E-PDP” efficient alternative
scheme given by Ateniese et al. [3]. For their E-PDP scheme, Ateniese et al. claim only that the
protocol establishes that a cheating prover has the sum

∑
i∈I mi of the blocks. Our attack suggests

that this guarantee is insufficient for recovering file contents.

A note on notation. In this section, we will make some simplifications to the notation for the
sake of brevity and clarity. First, observe that the Part-1 proofs of Section 4.1 do apply in the case
that B = {1}. We will thus elide the authenticators {σi} in our attack; this allows us to address
both the scheme with private verification and the scheme with public verification simultaneously.
Second, we will set the number of sectors per block, s, to 1. Our attack easily generalizes to the
case s > 1, but this simplification allows us to eliminate a subscript and simplify the presentation.

The attack. With the simplifications above, consider an n-block file with blocks (m1, . . . ,mn).
A query will consist of l indices I ⊂ [1, n]; the response will be µ =

∑
i∈I mi. We assume that l is

even.17

The adversary chooses an index i∗ at random from [1, n]. For each i 6= i∗, he chooses τi
R←

{−1,+1} and sets
m′i ← mi + ζimi∗ .

Now the adversary remembers (m′1, . . . ,m
′
i∗−1,m

′
i∗+1,m

′
n). Clearly, the adversary needs to store

one less block than an honest server would.
Now, consider a query I. If i∗ /∈ I, the adversary responds with µ′ =

∑
i∈I m

′
i. Otherwise,

i∗ ∈ I, and the adversary responds with µ′ =
∑

i∈I\{i∗}m
′
i.

In our analysis, we will use the following simple lemma:

16The l element summation computed by the prover in the first scheme requires work comparable to a multiplication
when l ≈ lg p.

17If l is odd, the adversary can set m′i ← mi + (l−1 mod p)(mi∗), which allows him to respond to that l/n fraction
of queries where i∗ ∈ I.
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Lemma B.1 ([1], p. 12). For k ≥ 2 we have
(

k
bk/2c

)
≥ 2k/k.

Proof.
(

k
bk/2c

)
is the largest of the k values

(
k
1

)
,
(
k
2

)
, . . . ,

(
k
k−1

)
, and

(
k
0

)
+
(
k
l

)
; and so it must be at

least as large as their average, 2k/k.

In the case i∗ /∈ I, µ′ will be correct provided that we have
∑

i∈I ζi = 0. But this happens when
the number of +1s and the number of −1s are equal in {ζi}i∈I , and this happens with probability(

l

l/2

)
·
(

1

2

)l/2
·
(

1

2

)l/2
≥
(

2l

l

)
·
(

1

2l

)
=

1

l
.

In the case i∗ ∈ I, µ′ will be correct provided we have
∑

i∈I\{i∗} ζi = 1. This happens when
there are (l/2− 1) −1s and (l/2) +1s in {ζi}i∈I\{i∗}, and this happens with probability(

l − 1

l/2− 1

)
·
(

1

2

)l/2−1

·
(

1

2

)l/2
=

(
l − 1

b(l − 1)/2c

)
·
(

1

2

)l−1

≥
(

2l−1

l − 1

)
·
(

1

2l−1

)
=

1

l − 1
>

1

l
.

Thus the adversary can respond to 1/l fraction of queries where i∗ ∈ I and to a 1/l fraction of
queries where i∗ /∈ I; so he can respond to a 1/l fraction of all queries, which is clearly nonnegligible.

But now it is impossible for any extraction strategy to recover any block, let alone a ρ fraction
of all blocks. This is because the subspace known to the adversary is insufficient to determine
any block. Indeed, the adversary’s knowledge is consistent with any value for any block. Fix
(m′1, . . . ,m

′
i∗−1,m

′
i∗+1,m

′
n) where m′i = mi + ζimi∗ . Suppose we believe that mi∗ = a for any

value a. This fixes mi for each i 6= i∗, as mi = m′i − ζimi∗ . If we believe, for some index λ 6= i∗,
mλ = a, then mi∗ is fixed because m′λ = mλ+ ζλmi∗ implies mi∗ = (ζλ)(m′λ−a), and the argument
proceeds as before. Since the adversary’s knowledge is consistent with any choice of value for any
(single) block, it cannot be the case that it allows recovery of the value of any block.
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