
Catena: Preventing Lies with Bitcoin
Alin Tomescu

MIT CSAIL
alinush@mit.edu

Srinivas Devadas
MIT CSAIL

devadas@mit.edu

Abstract—We present Catena, an efficiently-verifiable Bitcoin
witnessing scheme. Catena enables any number of thin clients,
such as mobile phones, to efficiently agree on a log of application-
specific statements managed by an adversarial server. Catena
implements a log as an OP_RETURN transaction chain and
prevents forks in the log by leveraging Bitcoin’s security against
double spends. Specifically, if a log server wants to equivocate it
has to double spend a Bitcoin transaction output. Thus, Catena
logs are as hard to fork as the Bitcoin blockchain: an adversary
without a large fraction of the network’s computational power
cannot fork Bitcoin and thus cannot fork a Catena log either.
However, different from previous Bitcoin-based work, Catena
decreases the bandwidth requirements of log auditors from 90
GB to only tens of megabytes. More precisely, our clients only
need to download all Bitcoin block headers (currently less than 35
MB) and a small, 600-byte proof for each statement in a block. We
implemented Catena in Java using the bitcoinj library and used it
to extend CONIKS, a recent key transparency scheme, to witness
its public-key directory in the Bitcoin blockchain where it can be
efficiently verified by auditors. We show that Catena can be used
to secure many systems today such as public-key directories, Tor
directory servers or software transparency schemes.

I. INTRODUCTION

Security often depends on systems not being able to lie,
a property known as non-equivocation. For example, when
a Certificate Authority (CA) lies by signing fake certificates,
it can impersonate websites and compromise users’ privacy.
In fact, this has happened many times in the past [1]–
[7]. To prevent lies, Certificate Transparency (CT) [8] has
been introduced as a way of publicly-logging all CA-issued
certificates. However, a CT log server can still lie about the
log of issued certificates and, together with a colluding CA,
can launch impersonation attacks. While gossiping [9] about
the log can help detect these lies, detection can be slow or not
happen at all, as gossip messages can be delayed indefinitely.
Another example is the Tor [10] anonymity network, where
if directory servers lie then Tor users can be tricked to use
malicious Tor relays and get deanonymized [11]. Thus, we
believe non-equivocation is an important security requirement
in many systems today.

Unfortunately, without online trusted parties, achieving non-
equivocation is impossible [12]. To deal with this impossi-
bility result, systems resort to enforcing a weaker property
called fork consistency [12]. Fork-consistent systems essen-
tially make lies “permanent” and thus easier to prove later
when clients are able to communicate or “gossip” out-of-
band. However, as illustrated above, for many systems such
as public-key directories or Tor directory servers, undetected

Figure 1. A Catena log is a chain of Bitcoin transactions. Each Catena
transaction has two outputs: (1) a continuation output, which will be spent
by the next Catena transaction, thus creating a chain and (2) an OP_RETURN
output, which commits some application-specific statement. The server pays
Bitcoin transaction fees for each issued statement. For applications that publish
statements often, batching can be used to keep the fee per statement low.

lies can seriously impact users’ security. Thus, we believe a
more proactive approach [13] to security is desirable for such
systems.

To prevent equivocation proactively, recent work [14]–[16]
uses the Bitcoin blockchain [17], [18], as a witness. We believe
this Bitcoin witnessing approach, though currently inefficient,
is promising for three reasons. First, this approach makes
equivocation as hard as forking the Bitcoin blockchain itself,
which has proven resistant to forking attacks. Second, this
approach only relies on a single global witness, namely the
Bitcoin blockchain, obviating the need for users to obtain
correct cryptographic identities of multiple trusted entities
such as log providers and auditors as in CT [8], or witnesses
as in CoSi [13]. It also has the advantage of not requiring
the witness to keep any secrets, which if compromised would
result in equivocation. Third, the Bitcoin blockchain’s open,
decentralized and censorship-resistant nature makes deploy-
ment of witnessing schemes easy and interference with them
hard. Unfortunately, the main drawback of Bitcoin witnessing
has been that verifiers have to download the entire Bitcoin
blockchain, which at the time of this writing is almost 90 GB
[19] in size.

This paper presents Catena, an efficient Bitcoin-based wit-
nessing scheme which dramatically reduces auditors’ band-
width overhead. At a high-level, Catena is a tamper-evident log
[20] built on top of the Bitcoin blockchain. Catena prevents
adversarial log servers who cannot fork the Bitcoin block-

chain from equivocating about a log of application-specific
statements. Importantly, auditors who run Catena clients can
check the log for non-equivocation efficiently via Simplified
Payment Verification (SPV) [17]. This drastically decreases
the bandwidth requirements of log auditors from 90 GB [19]
to only tens of megabytes, as Catena clients only need to
download Bitcoin block headers and small Merkle proofs
under some of those headers. Furthermore, after all block
headers are downloaded, the bandwidth for auditing decreases
to less than 1 KB of data every 10 minutes.

A. Efficient Non-equivocation via Bitcoin

Previous Bitcoin witnessing schemes [14], [15] are ineffi-
cient because they cannot prove non-membership of inconsis-
tent statements unless auditors download all the transactions
in the Bitcoin blockchain. Our design addresses this issue
by allowing Catena clients to skip downloading all irrelevant
transactions while still guaranteeing non-equivocation. The key
idea behind Catena is that Bitcoin’s mechanism for preventing
double spends can actually be regarded as a non-membership
proof. Specifically, Bitcoin proves that no transactions double
spending a previous transaction’s output exist. That is, if a
client verifies blockchain membership for a transaction tx2

which spends a previous transaction output tx1[0], that client
has also implicitly verified that no other transaction tx′2 which
spends tx1[0] exists in the blockchain1.

Catena turns this idea into a non-equivocation scheme.
Each Catena transaction stores exactly one statement and
spends the previous Catena transaction, creating a chain of
statements as shown in Figure 1. This implies that if an
auditor sees a statement si in the blockchain whose transaction
correctly spends the transaction for the previous statement
si−1, then that constitutes a non-membership proof that no
other inconsistent statement s′i exists. Looked at differently,
if an adversarial log server wants to equivocate about si, it
has to double spend the previous Catena transaction for si−1,
which can only be done by forking the Bitcoin blockchain.

1) Root-of-Trust: Catena guarantees that once a client
correctly obtains a log’s genesis transaction, the server can-
not equivocate about that log unless it forks the Bitcoin
blockchain. The genesis transaction is the first transaction
in the log and acts as the root-of-trust or “public key” for
a Catena log (see Section IV-A). Once clients obtain the
correct genesis transaction they can efficiently verify that every
issued statement comes from a transaction that spends coins
originating from the genesis transaction. In Section IV, we
explain how this implicitly prevents equivocation in a Catena
log. Our design is simple, efficient and obviates the need for
log servers and clients to download the full Bitcoin blockchain
while ensuring the consistency of the log.

2) Bitcoin-friendly: To embed log statements in Bitcoin
transactions, Catena uses provably-unspendable OP_RETURN
transaction outputs [21] which, unlike previous work [15],

1Here, we use tx1[0] to refer to output #0 of transaction tx1 (see Section
II-B5 for background on Bitcoin transactions)

[22], does not harm Bitcoin by polluting the unspent trans-
action output (UTXO) set on Bitcoin nodes. To avoid putting
stress on the Bitcoin P2P network, Catena clients query the
log server directly to find out about statements and also query
a header relay network (HRN) to obtain the latest Bitcoin
block headers (see Section IV-C). Nodes for the header relay
network can be run by anybody and are only trusted for
availability and freshness. This is because lying about headers
requires forging them, which is computationally prohibitive
(see Bitcoin mining in Section II-B4).

3) Applications: Due to Bitcoin’s 10-minute block rate,
Catena can only issue a statement every 10 minutes. Still,
even at this slower rate of issuing statements, Catena can help
secure many applications which depend on non-equivocation.
Catena can prevent equivocation attacks in key transparency
systems such as CT [8], ECT [23], DTKI [24], ARPKI [25],
AKI [26] and CONIKS [16]. Catena can also be used to
implement Tor Consensus Transparency [11], to implement
a simple yet resilient software transparency scheme [27], or
as consensus protocol for n mutually distrusting servers. We
discuss these applications in more detail in Section II-A and
discuss Catena’s application-agnostic nature in Section VII-3.

4) Implementation: To demonstrate the feasibility of
Catena, we implemented a prototype in 3000 lines of Java
using the bitcoinj Simplified Payment Verification (SPV) li-
brary [28]. The Catena log server starts with some Bitcoin
funds and issues statements to the Bitcoin blockchain for
clients to audit. Catena clients connect to the Bitcoin P2P
network and use Bloom filtering [29] to hear about relevant
transactions issued by the Catena server. Importantly, clients
verify that transactions are backed by sufficient proof-of-work
and correctly chained together, thus preventing equivocation.
We also analyze the Bitcoin transaction fees the server has to
pay per issued statement and show they could be anywhere
between 7 to 12 cents per statement. Since existing systems
like Keybase [14] already pay close to 7 cents per transaction,
we believe this cost is practical. In the future, we plan on
scaling our Catena prototype by allowing clients to fetch
statements directly from the log server and to fetch block
headers from a header relay network. Finally, we used our
prototype to add Bitcoin witnessing to CONIKS [16], a recent
key transparency scheme (see Section VI-D), and demonstrate
the ease of using Catena.

B. Contributions and Organization

To summarize, this paper makes the following contributions:
• A new, efficient approach to transparency based on wit-

nessing in the Bitcoin blockchain.
• Catena, an append-only log built on top of Bitcoin that

is efficiently verifiable by thin clients, obviating the need
to download the full Bitcoin blockchain.

• A prototype implementation of Catena in Java that can
be used by applications today.

Organization. We motivate Catena and present the Bitcoin
background necessary to understand our design in Section
II. We describe our system model, threat model and goals in

Section III. We present Catena’s design in Section IV and we
discuss attacks and countermeasures in Section V. We discuss
our prototype implementation, its overheads and our extension
of CONIKS in Section VI. We discuss remaining issues and
future work in Section VII. We go over related work in Section
VIII and we conclude in Section IX.

II. BACKGROUND AND MOTIVATION

In this section we discuss our motivation for designing
Catena and give the necessary background on Bitcoin needed
to understand Catena’s design.

A. Motivation

Our main motivation for designing Catena is to provide
proactive security to many applications that depend on it. We
describe these applications and how Catena can secure them
in this subsection. At the same time, we wanted to improve
previous blockchain-based transparency schemes [14], [30]
whose shortcomings we describe in Section II-A2. Finally, we
wanted a non-equivocation scheme that does not require many
trustworthy parties to come into existence as in [13], [16] and
can be deployed today. In that sense, we only assume the
Bitcoin blockchain is a trustworthy witness and show how to
leverage it efficiently to prevent equivocation.

1) Key Transparency: Catena can prevent equivocation at-
tacks in current key transparency work [8], [16], [23]–[26] and,
as a result, thwart man-in-the-middle (MITM) attacks. Key
transparency schemes bundle public key bindings together into
a directory implemented using authenticated data structures
[31]. Users are presented with commitments of the directory
as it evolves over time and can verify someone’s public key
against a commitment of the directory, preventing equivocation
with respect to that commitment. The remaining problem for
key transparency schemes is to prevent equivocation about the
commitments themselves. For this, current schemes rely on
users gossiping between themselves [9], [16], [23], [24], users
gossiping with trusted validators [26], federated trust [16], any-
trust assumptions [25] or non-collusion between actors [25],
[26].

With Catena, we propose using the Bitcoin blockchain as a
hard-to-coerce, trustworthy witness that can vouch for direc-
tory commitments. For example, in Certificate Transparency
(CT), a log server would directly witness signed tree heads
(STHs) in Bitcoin via a Catena log. Users can efficiently
lookup new STHs in the Catena log and be certain that the
log server has not been coerced or compromised to equivocate
about them. We believe this approach could be more resilient
to attacks, as a compromised log server cannot equivocate
without forking the Bitcoin blockchain. Also, because most
transparency schemes publish commitments of the directory
periodically, we believe they are amenable to being secured
by Catena.

2) Blockchain-based Transparency: Blockchain-based
transparency schemes [14], [15] are promising due to their
simplicity and resilience to forks, but the overhead of
downloading all blockchain data makes them unusable on

many devices. Catena can decrease the overhead of these
schemes from currently 90 GB [19] to around 35 MB. For
example, Catena can enable thin clients running on mobile
phones to efficiently audit the Bitcoin-witnessed Keybase
[14] public-key directory. Currently, Keybase publishes
commitments of their public-key directory in Bitcoin by
creating a transaction which spends coins from a fixed
address. Keybase clients recognize transactions from this
address [32] and read the arbitrary data committed in the
transaction. The problem with this approach is thin clients
cannot securely use Bloom filtering to avoid downloading
irrelevant transactions, as an adversary could selectively hide
Keybase transactions and equivocate about the directory (we
explain this attack in Section IV-D). Catena prevents this
attack and also has the advantage of not polluting Bitcoin’s
unspent transaction output (UTXO) set [22].

Catena can also be used to build thin clients for blockchain-
based applications such as Blockstack [15]. Currently, to ben-
efit from Bitcoin’s resilience against forks, Blockstack clients
need to download the entire blockchain and compute their own
consensus hash over all Blockstack-related operations. Block-
stack clients can choose to trust someone else’s consensus
hash and verify public key lookups against it efficiently using
Simplified Name Verification (SNV) [15], [33]. However,
Blockstack clients still have to download full Bitcoin blocks
to update that consensus hash or continue trusting someone
else to update it. As with Keybase, Bloom filtering cannot
be used securely to filter Blockstack transactions. To fix this
problem, we propose using a Catena log to keep track of
Blockstack operations rather than scattering them through the
blockchain. In this way, thin clients can efficiently download
just the Blockstack operations and quickly compute their
own consensus hashes. One disadvantage of this approach,
according to one of the Blockstack co-founders [34], is that
it requires a secret key to manage the Catena log and would
thus ”centralize” the system.

3) Certificate Authorities (CAs): As an alternative to cur-
rent key transparency schemes, Certificate Authorities (CAs)
may choose to publish their certificates in the Bitcoin block-
chain using Catena. A CA would publish a periodically-
updated Merkle tree of certificates, sorted by the subject name
so as to provide non-membership proofs as in [16], [23].
Subjects who are issued certificates can efficiently check that
they have not been impersonated, while users, relying on
subjects to monitor their own certificates, can trust that every
certificate seen in the log is valid. We believe this approach
is promising because of its simplicity. Specifically, users can
efficiently verify that a certificate has been published in the
CA’s log before using it. To bootstrap the system securely,
browsers can include the genesis transaction (see Section
IV-A) of a Catena-enabled CA next to the CA’s public key.

4) Software Transparency: Catena can prevent equivocation
in software transparency schemes [27] and thus thwart man-in-
the-middle attacks that try to inject malicious software binaries
on victims’ machines [27]. In fact, Bitcoin developers were
concerned in the past about these kinds of attacks on Bitcoin

binaries [35]. To prevent these attacks, software vendors can
publish digests of new versions of their software in a Catena
log. Customers can then verify any version downloaded from
a vendor’s website against the vendor’s log. Previous work
[13] already highlights the necessity of software transparency
in the face of insecure software update schemes [36], [37], key
loss or compromise [38] and black markets for code-signing
certificates [39].

5) Tor Directory Servers: Catena can be used to prevent
Tor directory servers [10] from lying about the directory of
Tor relays. Equivocation attacks are particularly concerning
for Tor because they enable an attacker to easily deanonymize
users by pointing them towards attacker-controlled Tor relays.
In fact, Tor Transparency [11] plans to address these attacks
by publicly logging the Tor directory consensus. In the same
spirit, we propose using Catena to increase the resilience of
Tor Transparency. With Catena, directory servers can publish
the consensus in a Catena log by jointly signing it using a
Bitcoin multisignature [40]. Since Tor consensus is updated
every hour [41], we believe it is suitable for embedding in a
Catena log.

Tor presents a small challenge though, because Tor users
running Catena clients need to obtain Bitcoin block headers
from Catena’s header relay network. Thus, we need to ensure
Tor users do not leak their IP addresses to adversarial servers
in this network. As a solution, Tor users can initially sync the
block headers via the Bitcoin P2P network and, later on, users
can query the header relay network anonymously through Tor.

6) Consensus Amongst n Servers: Catena can be used by
a set of n servers to reach consensus on a log of operations,
where each server manages its own private key and does not
necessarily trust the other n− 1 servers. In this scheme, each
server submits its own operation to the log by creating a
Catena transaction which is spendable by all n servers (see
Section IV-B for more detail on our transaction format). To
disincentivize the other servers from stealing the coins, small
amounts in Bitcoin can be used to fund the log along with
frequent refunds (see Section IV-F). This scheme allows all
servers to reach consensus on a log of operations and relies
on the Bitcoin miners to decide which server’s operation gets
included in the log. To prevent adversarial servers from paying
a higher transaction fee and monopolizing the log with their
operations, the servers can agree on an upper bound on the
transaction fee.

B. Bitcoin Background

In this section, we describe Bitcoin in sufficient detail
to understand Catena’s design. Though not necessary for
understanding this paper, additional background on Bitcoin
can be found in [42]–[44].

1) Overview: Bitcoin is a peer-to-peer digital currency that
allows users to mint digital coins called bitcoins and exchange
them without a trusted intermediary. Bitcoin uses a novel
permissionless Byzantine consensus protocol known as proof-
of-work consensus [18] which allows all participants to agree
on a log of transactions and prevent attacks such as double

spending coins. The log of transactions is called a blockchain
and is stored and managed by a peer-to-peer (P2P) network
[45]. A special set of users called miners run Bitcoin’s proof-
of-work consensus protocol, extending the blockchain with
new blocks made up of new transactions. This process, called
mining, is computationally difficult and secures the Bitcoin
network by allowing all participants to agree on the correct
log of transactions while preventing Sybil attacks [46]. To
incentivize Bitcoin miners to mine, a block reward consisting
of newly minted bitcoins is given to a miner if he mines or
“finds” the next block.

2) P2P Network: Bitcoin uses a peer-to-peer (P2P) network
of volunteer nodes to store the blockchain [45], listen for new
transactions or new blocks, and propagate this information
throughout the network. Users, such as merchants and their
customers, can download the blockchain by becoming part of
the P2P network and then receive or issue Bitcoin transactions.
Miners, who create blocks, are also part of the P2P network
where they listen for new blocks and broadcast their own
blocks.

3) Blockchain: Bitcoin’s public log of transactions keeps
track of all transactions in the system, allowing anyone to
verify that no double spends have occurred. The transaction
log, or blockchain, is implemented as a hash-chain of blocks,
as depicted in Figure 2. A Bitcoin block is made up of a
small block header (80 bytes), which contains a hash pointer
to the previous block, and a set of transactions (up to 1 MB).
The transactions in the block are hashed in a Merkle tree [47]
and the tree’s root hash is stored inside the block header. The
Merkle tree allows Bitcoin thin clients (see Section II-B7) to
obtain efficient membership proofs that a transaction is part of
a block.

4) Decentralized Consensus: To solve the consensus prob-
lem in the decentralized or permissionless setting, where
participants can enter and leave the protocol as they please,
Bitcoin introduces a novel Byzantine consensus protocol called
proof-of-work consensus [18]. In this protocol, consensus on
the blockchain can be reached under the assumption that 51%
of the computational power amongst participants is honest.
Bitcoin’s consensus protocol defeats Sybil attacks [46] and
keeps the Bitcoin network open or “decentralized,” though it
does so at a high computational cost. Specifically, participants
called miners race to solve computationally-difficult proof-of-
work puzzles derived from the previous Bitcoin block. This
process is referred to as mining.

If a miner finds a solution, the miner can publish the next
block by announcing it along with the solution2 to everyone
else over the P2P network. The puzzle difficulty is adjusted
every 2016 blocks based on the inferred computational power,
or network hashrate, of the miners so that a new block is found
or “mined” on average every 10 minutes. To incentivize miners
to expend computational power and produce new blocks, each
mined block gives a block reward in bitcoins to the miner who
found the solution for that block.

2In reality, the solution is part of the block.

Figure 2. The Bitcoin blockchain is a hash chain of blocks. Each block has a
Merkle tree of transactions. Efficient membership proofs of transactions can
be constructed with respect to the Merkle root. In this example, Alice, Bob
and Carol sign a transaction tx1 transferring 6 coins: 2 coins go to Dan, 3
coins go to somebody else and 1 coin pays the transaction fee. Later on, Dan
spends those coins by signing a new transaction txd.

When two miners find a solution at the same time, the
Bitcoin blockchain forks into two chains. This is referred to
as an accidental fork. To reach consensus in the presence of
accidental forks, Bitcoin peers use the heaviest chain rule and
select the heavier fork as the main chain that dictates the state
of the system. The weight of a fork in Bitcoin is measured in
terms of the amount of computational work expended to create
that fork. If there are no difficulty changes, then the longest
fork will be the heaviest fork. But across many difficulty
changes, it could be that a fork with less blocks is heavier
than a longer fork (though this never happens in practice).

When an accidental fork happens, both forks will have the
same length and weight3, so Bitcoin peers will adopt the fork
they received first as the main chain. However, as more blocks
are found by the network, eventually one of the forks becomes
heavier than the other one and is accepted as the main chain
by the whole network [18]. In this case, the other abandoned
fork and its blocks are said the be “orphaned.” In practice,
accidental forks are infrequent and short: no more than one or
two blocks get orphaned. To deal with accidental but also with
malicious forks, most Bitcoin nodes only consider a block and
its transactions confirmed if 6 or more blocks have been mined
after it.

Proof-of-work consensus has been analyzed extensively in
[18], [48]–[50].

5) Transactions: Bitcoin transactions facilitate the transfer
of coins between users. A Bitcoin transaction is made up
of an arbitrary number of transaction inputs, which specify
amounts of coins to be transferred, and transaction outputs,
which specify to whom those coins will be transferred to and
in what amounts. Naturally, the number of coins locked in the
outputs cannot exceed the number of coins specified in the
inputs4.

A transaction output specifies an amount of coins and their
new owner, most commonly as a public key. A transaction

3Assuming the fork does not cross a difficulty recomputation point.
4With the exception of coinbase transactions, which mint new coins and

have no inputs.

input refers to or “spends” a previously unspent transaction
output (UTXO) and contains a proof-of-ownership from that
UTXO’s owner which authorizes the transfer of those coins.
For the purposes of this paper, we will only consider the case
where outputs specify owners using public keys and inputs
prove ownership using signatures.

Importantly, when assembling transactions into blocks, Bit-
coin miners prevent double spends by ensuring that, across
all transactions in the blockchain, for every transaction output
there exists at most one transaction input that refers to or
spends that output. This invariant is known as the transaction
output (TXO) invariant and Catena leverages it to prevent
forks.

Lastly, Bitcoin computes a transaction’s fee as the difference
in value between the coins spent in its inputs and the coins
transferred by its outputs. The fee is awarded to the miner
who includes that transaction in a mined block. In theory, the
fee can be zero, but in practice recent contention for space in
the blockchain requires users to pay transaction fees.

We show an example of a Bitcoin transaction in Figure 2.
Here, tx1 transfers coins owned by Alice, Bob and Carol to
two users: Dan and somebody else. The difference between
the inputs and the outputs is transferred to Bitcoin miners as
a transaction fee. Alice authorizes the transfer of her coins by
signing tx1, which contains an input pointing to Alice’s coins
locked in the first output of txa. Bob and Carol do the same.
Dan later spends the coins locked for him in tx1’s first output
by signing a new transaction txd which has an input pointing
to tx1’s first output.

6) Storing Data in Transactions: Bitcoin allows embed-
ding of data in transactions through provably-unspendable
OP_RETURN transaction outputs. An OP_RETURN output
allows the user to specify up to 80 bytes of arbitrary data.
Importantly, any coins specified in the output are forever
unspendable or “burned”. Catena uses OP_RETURN outputs to
store application-specific statements in the Bitcoin blockchain
(see Section IV).

7) Thin Nodes vs. Full Nodes: Bitcoin’s P2P network is
made up of two types of nodes: full nodes which download
the entire blockchain and validate all the transactions and thin
nodes which only download small 80 byte block headers and
cannot fully validate transactions. Full nodes play an important
role in the Bitcoin network as they validate new transactions
and new blocks, relay them to other nodes and prevent
double spends, helping the network reach consensus on the
blockchain. However, not everyone can run a full node due
to the high bandwidth, computation and space requirements.
As a result, Bitcoin provides a thin node implementation for
smaller devices with limited space and bandwidth, such as
smartphones.

Thin nodes or Simple Payment Verification (SPV) nodes
verify Bitcoin transactions more efficiently under a slightly
stronger assumption about the Bitcoin network. Thin nodes
assume that Bitcoin miners follow their incentives and create
correct blocks, since otherwise miners would lose their block
reward (see Section II-B4). As a result, a thin node considers

a transaction valid if it sees a correct Merkle proof of mem-
bership for that transaction in a block. Also, the more con-
firmations a transaction gets, the more confident a thin node
can be that it is indeed valid. Importantly, thin nodes don’t
even verify signatures on transactions. The membership proof
coupled with enough confirmations offers enough assurance
that the transaction was verified by miners and is thus valid.
We revisit this point later in Section IV-D when discussing
Catena clients which run thin nodes but actually have to verify
transaction signatures for security.

Finally, to avoid downloading unnecessary data, thin nodes
use a Bitcoin feature called Bloom filtering [29]. This feature
allows thin nodes to only receive transactions of interest by
asking remote peers to filter out irrelevant transactions using
a Bloom filter [51].

III. MODEL AND GOALS

In this section we describe our system model, our threat
model and our design goals.

A. System Model
The main actors in our scheme are the log server, which

appends statements to the log, Catena clients, which verify
new statements and check for non-equivocation, and the header
relay network (HRN) which helps scale Catena to support a
large number of clients (see Figure 3).

1) Log server: A log server manages an append-only log
of application-specific statements. The log server appends
statements to the log by signing Bitcoin transactions with
statement data embedded in them and broadcasting them to
the Bitcoin P2P network. For now, we call these transactions
Catena transactions and defer discussion on them until Section
IV-B. In this paper, we will mostly talk about a single log
server managing the log, but using Bitcoin multisignatures
[40], Catena can support multiple servers who either jointly
or separately append statements to the log. Also, although a
log server can manage many different logs, for simplicity we
restrain our discussion to a single server managing a single
log.

2) Clients: Multiple clients connect to the log server and
keep up with new log statements. As depicted in Figure
3, clients fetch Catena transactions from the log server and
verify they have been included in the Bitcoin blockchain. This
verification is done against block headers obtained from the
header relay network, which we discuss next. The goal of
Catena clients is to avoid being lied to about statements, a
property known as non-equivocation. Specifically, a client who
is shown a statement si wants to ensure there is no other
contradictory statement s′i in the log at position i.

3) Header Relay Network (HRN): Catena clients use a sep-
arate network to obtain Bitcoin block headers. This is simply
a scalability measure we adopt due to the low connection
capacity of the Bitcoin P2P network. Otherwise, if Catena
clients were to connect to the Bitcoin P2P network to hear
about block headers, our system would put unnecessary stress
on Bitcoin’s network and would not scale very well. We
discuss this in more detail in Section IV-C.

Figure 3. The log server broadcasts Catena transactions with statements
embedded in them to the Bitcoin P2P network. Catena clients query the header
relay network for block headers and the log server for statements and proofs
that those statements were witnessed in the Bitcoin blockchain. The header
relay network maintains good connectivity to the Bitcoin P2P network without
depleting its connection pool.

B. Catena API

Our scheme can be succinctly described as a tuple
〈CreateLog,AppendStmt,VerifyStmt〉 of API calls. For
clarity, we prefix calls with S when they are made by the log
server and with C when they are made by clients. Our API
is summarized below:

S.CreateLog(d) → (skBTC, txgenesis) Creates an empty log
whose “public key” is the genesis transaction txgenesis
against which all future log statements can be verified. The
empty log will also contain arbitrary data d, if specified by
the log creator. New statements can be appended to the log
by broadcasting new Bitcoin transactions signed using the
secret key skBTC (see S.AppendStmt below).

S.AppendStmt(skBTC, si)→ txi Appends the statement si to
the log by signing a new Bitcoin transaction using skBTC.
Returns the signed Catena transaction txi which commits
the statement si and spends the previous Catena transaction
txi−1. If this is the first call to S.AppendStmt, then txi

spends the genesis transaction returned by S.CreateLog.
C.VerifyStmt(txgenesis, txi) → {si,⊥} Verifies that the

statement si in transaction txi is correctly appended to
the log specified by txgenesis. If successful, returns the
statement si embedded in the transaction. Otherwise,
returns ⊥ if the transaction is incorrectly signed or
improperly formatted. If txi = txgenesis, then this call
returns the arbitrary data d specified in S.CreateLog.

To recap, a server creates a new log by calling CreateLog
and appends statements to this log by signing and broadcasting
Catena transactions using AppendStmt. Clients keep up with
the log by listening on the header relay network for new block
headers, fetching new transactions txi from the log server and
verifying them using VerifyStmt.

C. Threat Model

1) Adversarial Log Server: We assume the Catena log
server is compromised or coerced and wants to equivocate
about statements. We assume Catena clients can correctly
obtain the log’s genesis transaction which acts as the log’s
“public key” (see Section IV-A). We note that both Catena and
previous work [8], [13], [16], [23], [25], [26] all rely on some
sort of initial public-key distribution. However, unlike previous
work, Catena can make guarantees about non-equivocation
once a client has the “public key” or genesis transaction.
Specifically, Catena prevents equivocation once the client
has obtained the genesis transaction identifying the log. It’s
important to understand that, similar to how a signature can
only be verified with respect to a public key, equivocation can
only be prevented with respect to a log identified by some
kind of information, in this case, the genesis transaction.

We stress that Catena’s goal is to prevent equivocation given
a log’s genesis transaction and orthogonal techniques can be
used for distributing the genesis transaction. For instance, the
log’s genesis transaction can be shipped with the application
software that audits that log, similar to how browsers are
shipped with public keys of Certificate Authorities (CAs). In
fact, because the Bitcoin blockchain effectively timestamps
transactions, we argue it might be easier for end-users to
verify the genesis transaction if they have a rough idea about
when the log was started. This is because users can inspect
the Bitcoin blockchain efficiently via Bloom filtering [29]
and make sure no other genesis transaction for the log exists
around its creation time.

2) Proof-of-Work Consensus: Like all previous Bitcoin-
based work [14], [15], [30], [52]–[57], we assume that ad-
versaries cannot break Bitcoin’s proof-of-work consensus and
fork the blockchain. Specifically, we assume that a Catena
transaction is immutable once it has been confirmed by a
sufficient number of blocks, as configured by Catena clients
individually (we recommend at least 6 blocks). We believe it is
reasonable to assume that long malicious forks are unlikely to
occur due to the computational difficulty and financial burden
of such an attack. We also assume the Catena log server cannot
collude with large Bitcoin miners, who are not likely to benefit
financially from a forking attack. We discuss accidental forks,
which have occurred in the past [58], [59], and malicious
forks, which are not known to have occurred, in more detail
in Section V.

3) SPV Assumption: To enable Catena logs to be verified
efficiently via Simplified Payment Verification (SPV), we have
to assume miners verify their own blocks and the blocks of
other miners before mining, otherwise they could accidentally
fork the blockchain. Fortunately, Bitcoin miners have a strong
incentive to verify blocks, as miners would lose the block
reward and TX fees if they create invalid blocks. However,
recent work [60] shows that if block verification is expensive,
then miners have an incentive to skip it. This route was indeed
taken by at least two large Bitcoin miners in 2015. However,
these miners were actually acting in an irrational manner and,

as a result, suffered a significant financial loss [59]. We discuss
this in more detail in Section V-C.

4) Bitcoin’s P2P Network: Like Bitcoin, we have to assume
its P2P network is reliable and broadcasts Bitcoin blocks
timely, or else its proof-of-work consensus would be easily
subverted [18], [61]. While so-called “eclipse attacks” [61]
on the P2P network can lead to double spending attacks,
mitigations for this attack have already been deployed in
Bitcoin’s P2P code. Moreover, networks such as the Bitcoin
Fast Relay Network (FRN) [62], Falcon [63] or FIBRE [64]
are already deployed to speed up block propagation and make
the network more resilient to partitioning attacks.

5) Header Relay Network: We also trust Catena’s header
relay network to serve Catena clients with the latest Bitcoin
block headers. Note that nodes in this network cannot equiv-
ocate about block headers unless a fork happens, in which
case our proof-of-work consensus assumption would be broken
anyway. In that case, Catena cannot prevent equivocation but
can make it detectable later when the fork is resolved. Thus,
we only trust the header relay network for availability and
freshness. We can minimize trust in this network but only at
the cost of putting some stress on Bitcoin’s P2P network.

D. Goals

Succinctly, our goal is to prevent equivocation and to do
so in an efficiently verifiable manner. Efficient verification is
crucial as it enables each user to audit individually, minimizing
trust in our applications such as public-key directories.

1) Non-equivocation: A log server should have a hard time
equivocating about log statements. Catena makes equivocation
in the log as hard as forking the Bitcoin blockchain, which we
believe to be a reasonable amount of protection for many ap-
plications, including public-key directories. If our assumptions
are broken and the Bitcoin blockchain forks, Catena cannot
prevent equivocation but still makes equivocation detectable
once the forks are resolved, similar to previous gossip-based
approaches [9], [16], [23], [24].

It’s important to understand what non-equivocation actually
provides. Non-equivocation does not prevent the adversarial
log server from issuing incorrect statements that break se-
mantics at the application layer. Instead, non-equivocation
simply guarantees that all clients will see all issued statements,
including incorrect ones. This allows clients to detect attacks
at the application layer. For example, a compromised public-
key directory server could issue a fake statement attesting to a
fake directory d that contains fake public keys for both client
A and B. Non-equivocation guarantees that both A and B will
see the same fake directory d and can quickly detect (at the
public-key directory application layer) their own fake public
keys in the directory. As a result, A and B can stop using the
directory and whistleblow as in [8], [16], [23].

2) Publicly Verifiable: Given a log’s public key as its
genesis transaction txgenesis, anyone can verify the full history
of statements in that log. Specifically, a client can obtain all
statements 〈s1, s2, . . . , sn〉 in the log and verify them with
respect to txgenesis. Verification here means that a statement

is part of the log at some position i and no other inconsistent
statement at position i exists (i.e., non-equivocation). In par-
ticular, for any statement si, the log server gives the client a
publicly verifiable proof p with respect to the log’s txgenesis
which proves that si is indeed the only statement in the log
at position i.

3) Efficiently Verifiable: Catena clients should be able to
audit logs efficiently without downloading the entire Bitcoin
blockchain. Recent blockchain-based transparency work [14]–
[16] is inefficient, requiring clients to run full Bitcoin nodes
that download the entire blockchain or risk being forked (see
Section II-A2). This high space and bandwidth requirements
raises the barrier to entry for log auditors who might have
to outsource auditing or trust the log blindly. In contrast, the
barrier for Catena clients is very low. A client only downloads
small 80-byte block headers for each Bitcoin block and 600-
byte Merkle membership proofs for each issued statement.

IV. CATENA DESIGN

At a high-level, Catena makes equivocation about a log
statement as hard as double spending a Bitcoin transaction
output. The key idea behind Catena is to embed statements
in Bitcoin transactions and have each transaction spend the
previous one. This is a simple but powerful idea because it
forces the log server to double spend a transaction output if it
wants to equivocate, which is notoriously difficult in Bitcoin.
Thus, Catena can offer a strong guarantee to clients that they
have not been lied to.

Catena operates very simply, as illustrated in Figure 1.
The Catena log server creates a log by issuing an initial
transaction called the genesis transaction. The server issues
the first statement in the log by creating a new transaction
which spends the genesis transaction and commits that first
statement via an OP_RETURN transaction output (see Section
II-B6). Finally, the server can append a new statement to the
log by creating a new transaction which spends the previously-
created transaction and commits the statement as before.

Catena clients first obtain the log’s genesis transaction,
which can be shipped with the higher-level application that
Catena secures, such as a public-key directory client. Then,
clients obtain and verify all Bitcoin block headers from the
header relay network (discussed in Section IV-C). Finally,
clients can ask the Catena log server for the statements and
verify them against the genesis transaction and the Bitcoin
block headers. Importantly, because Catena transactions are
chained and Bitcoin prevents double spends, clients are as-
sured that no inconsistent statements have been issued by the
server.

Catena’s overhead is small. For each statement, the server
will send over a 235-byte5 Catena transaction and a 350-byte
Merkle path proving that the statement is part of the log. That
amounts to around 600 bytes per statement plus the overhead
of downloading all block headers (currently 35 MB), making
Catena very cheap in terms of bandwidth. Our design is simple

5Assuming statements are 32-byte hashes or signatures.

Figure 4. Equivocating in a Catena log is as hard as double spending in
Bitcoin which requires forking the blockchain. This is because Catena’s design
requires a new Catena transaction to spend the previous one which linearizes
the history of statements embedded in those transactions, thereby preventing
equivocation.

and prevents equivocation as long as the Bitcoin blockchain
does not fork.

A. Genesis Transaction

Catena logs are identified by a genesis transaction. This is
the first transaction created by the log server when it starts the
log. The genesis transaction effectively acts as the log’s “public
key”: once a client has the log’s genesis transaction, that client
can verify log updates against it and prevent equivocation.

Note that some kind of information about the log is needed
for any system which claims to prevent equivocation, whether
it’s a Merkle root hash as in [20] or a genesis block as in
Bitcoin [17]. Without such information, clients would have to
resort to accepting any statement without being able to check
whether it belongs to the log, making equivocation attacks
easy. Thus, Catena uses the genesis transaction as its log-
identifying information against which clients can verify new
statements.

B. Catena Transactions

A Catena log is just a chain of specially-crafted Bitcoin
transactions, which we call Catena transactions (see Figure 1).
Our transaction format is simple. First, a Catena transaction
has one input, which spends the previous Catena transaction in
the chain. Second, a Catena transaction has two outputs. The
first output is an unspendable OP_RETURN output which com-
mits the log statement and the second output is a continuation
output which is spent by the next Catena transaction’s input.
The genesis transaction also has the same Catena transaction
format.

Our transaction format leverages the fact that Bitcoin miners
prevent double spends which, in turn, allows us to prevent
equivocation about statements. We illustrate this in Figure
4. The key idea is that a Catena transaction has a single
spendable output, which means Bitcoin miners will ensure
only a single future transaction will spend that output. Thus,
a Catena transaction can only be followed by another unique
Catena transaction, which allows us to create a linear history
of statements that all Catena clients agree on.

Catena transactions just transfer coins from the Catena log
server back to itself, committing log statements and paying
fees to Bitcoin miners in the process. Recall from Section
II-B5 that a transaction output specifies a coin amount and a
public key that “locks” those coins (i.e., is authorized to spend
them later). In Catena, all transaction outputs are locked by the
same key called the statement key, which is managed by the
log server. This key signs all Catena transactions, including
the statements embedded in them, authorizing the transfer of
coins back to the server. Catena clients can easily obtain the
statement key from the genesis transaction since it is specified
in its continuation output. The server can choose to change
the statement key in future transactions and clients can easily
pick up the new key, but for simplicity we assume it remains
the same across all Catena transaction.

As mentioned before, the log server has to pay fees to Bit-
coin miners to get its transactions included in the blockchain.
Due to recent contention for space in Bitcoin blocks, zero-fee
transactions are not likely to be included in the blockchain.
Thus, a Catena log server needs access to some initial Bitcoin
funds and will have to occasionally “refund” its Catena log
when it runs out of funds. We describe how refunding works
in Section IV-F and we analyze the server’s cost per Catena
statement in Section VI-C1.

C. Header Relay Network

We want to avoid putting stress on Bitcoin’s P2P network,
which has a limited connection capacity that would be quickly
depleted by Catena clients. There are currently around 5500
full Bitcoin nodes, each by default capable of handling up
to 117 incoming connections [65], [66]. This means Bitcoin’s
P2P network currently supports at most 5500×117 = 643, 500
incoming connections at a single point in time, some of which
are already used up by Bitcoin thin clients for user wallets.
Importantly, these connections need to be long-lived so as to
allow thin clients to connect to a diverse set of Bitcoin peers.
Thus, if each Catena client maintains 8 outgoing connections,
this implies Catena cannot scale beyond tens of thousands
of clients without putting a significant stress on the Bitcoin
network.

To address this problem, we propose using a header relay
network (HRN) that is well connected to the Bitcoin P2P
network and can serve block headers to hundreds of thousands
of Catena clients. A header relay network can act as an
extension of the Bitcoin P2P network without introducing a
weak link in our design or depleting Bitcoin’s small connection
pool. As described in our threat model (see Section III-C),
this network is trusted only for availability and freshness: an
adversary still has to fork the Bitcoin network to equivocate
in a Catena log.

For an initial small deployment of Catena, Bitcoin’s P2P
network can serve as the header relay network, but as more
Catena clients join, the system has to transition to specialized
header relay nodes. These nodes would be part of the Bitcoin
P2P network and contribute to its health but would also
provide an interface to Catena clients for obtaining block

headers fast. For example, current blockchain explorers [67]–
[70] can already act as header relay nodes as they are well
connected to the Bitcoin network and already provide public
APIs for fetching block headers.

For some applications, a header relay network can be boot-
strapped as a P2P network amongst Catena clients themselves.
Catena clients in this network can occasionally fetch block
headers from the Bitcoin P2P network and then distribute them
amongst themselves. Each Catena client can query the Bitcoin
P2P network with probability inversely proportional in the size
of the header relay network, so as to avoid stressing Bitcoin
P2P nodes. The header relay network size can be estimated by
each Catena client using known techniques [71]. Sybil attacks
[46] can be addressed by requiring Catena clients joining the
network to “burn” bitcoins in a provable manner and tie their
identities to those coins.

D. Auditing a Catena Log

To audit a log, clients download the Catena transaction
chain and verify that transactions are signed and chained
correctly using the statement key. Clients first download and
verify block headers from the header relay network and then
download and verify Catena transactions and their Merkle
proofs from the log server. The log server can serve the
transactions and Merkle proofs more efficiently than using
Bloom filtering on the Bitcoin P2P nodes (see Section II-B7)
which creates significant disk activity for Bitcoin full nodes.
Finally, auditing is cheap for Catena clients as they only
download small transactions and Merkle proofs (600 bytes)
and not full Bitcoin blocks (1 MB).

When a client verifies a new Catena transaction txi, it
checks that:

• txi is in the correct Catena format
• txi is correctly included in a Bitcoin block with a Merkle

membership proof.
• The first input of txi spends the continuation output of

the previous Catena transaction txi−1.
• txi is signed correctly with the statement key of the log.
• txi has a sufficient number of confirmations (we recom-

mend at least 6).

It’s important to understand that without clients verifying
transaction signatures, a malicious log server can lie about
statements in the log. For example, consider two Catena clients
c1 and c2 which correctly obtained the genesis transaction
txgenesis of the log but do not verify Catena transaction
signatures. In this attack, the malicious log server issues two
Catena transactions that commit two different statements s1
and s′1 respectively but, importantly, do not spend the genesis
transaction. Instead they spend some other transactions and
get included in the blockchain. The attack is straightforward:
the log server simply shows client c1 the transaction for s1
but hides the one for s′1. Similarly, client c2 is shown the
transaction for s′1 and not the one for s1. Thus, without
verifying signatures, clients can be easily lied to as they have
no way of checking that s1 and s′1 are truly part of the log.

Figure 5. Refunding a Catena chain is done by allowing the next transaction in
the chain to have additional inputs which lock extra coins in that transaction’s
continuation output. In this example, Catena transactions pay .5 BTC as a fee.
Thus, to ensure tx8 does not run out of coins, we refund it using extra inputs.

E. Blockchain Reorganizations

Like Bitcoin, Catena also needs to deal with small day-
to-day blockchain reorganizations, such as when two miners
both find a block and the blockchain forks for a short time (see
Section II-B4). These small forks are automatically resolved
by the Bitcoin network: as more blocks are found, eventually
one of the forks overtakes the other one and becomes the main
chain [18]. To be certain payments are not reversed by these
small reorganizations, Bitcoin merchants only consider a block
and its transactions confirmed if 6 or more blocks are built on
top of it.

Catena also relies on confirmations before accepting a state-
ment as final. Like Bitcoin, Catena allows clients to set their
own application-specific number of required confirmations
before accepting a statement. As a result, Catena makes a
trade off between resilience to forks and latency of accept-
ing statements. Additionally, as a security measure against
longer accidental forks, Catena clients remember recently-
issued statements. This way, if a statement is withdrawn due
to a reorganization, Catena clients can ensure the reissued
statement matches the previously seen one.

F. Paying for a Catena Log

A Catena log server must pay Bitcoin transaction fees to
start a log and append statements to it. Initially, the Catena
log server must obtain some bitcoins (BTC), perhaps from a
Bitcoin exchange [72]. Then, the server can issue the log’s
genesis transaction and pay for its fee. The server will lock
some coins in the genesis transaction’s continuation output
which can “fund” future log transactions. To issue the first
statement, the server signs a new Catena transaction with the
statement key. This transaction commits the statement (via
an OP_RETURN output), transfers the genesis transaction’s
coins back to the log server and leaves a small fee for the
miners. As before, the remaining coins will be locked in this
new transaction’s continuation output. The server repeats this
process for every new statement, spending the coins locked in
the previous Catena transaction, until it runs out of funds.

To “refund” the chain, we use a Catena transaction with
additional inputs which locks extra coins in that transaction’s
continuation output (see Figure 5). Importantly, these inputs
can only be used to add extra funds and cannot be used to
maliciously join two different logs. This is because we restrict

Catena transactions to only use their first input to spend a
previous Catena transaction. Thus, clients can easily detect
if a Catena transaction tries to point to two distinct previous
Catena transactions by using additional inputs.

We analyze the costs of running a Catena log in terms of
transaction fees in Section VI-C1.

V. ATTACKS

In this section we describe attacks on Bitcoin that can
translate into attacks on Catena and explain what Catena
clients can do to protect themselves. We touch upon attacks on
Bitcoin’s P2P network, accidental forks, as well as malicious
forks. We also explain what can and cannot happen when a
log server’s secret key is stolen.

A. Stolen Key Attack

An attacker might compromise the Catena log server and
steal its statement key. In this case, an attacker can issue his
own statements, but he cannot fork the log and equivocate
about statements. That is, all clients will see all attacker-issued
statements and can check their correctness at the application
layer. The attacker can also steal the server’s Bitcoin funds.
However, we stress that Catena’s main goal is to prevent
equivocation in the face of stolen key attacks and orthogonal
techniques can be used to secure the Bitcoin wallet of Catena
servers.

Once the attacker has the statement key, he could also
abruptly “end” the log by issuing a transaction that is not in
the correct Catena format. To recover from such an attack, the
Catena log server has to abandon that log and start a new one
with a new genesis transaction. In this sense, Catena performs
no worse than previous systems which would also have to
advertise a new public key to log clients if all log server
secrets were compromised. However, unlike previous work,
Catena provides non-equivocation in the face of a stolen key
attack.

B. Freshness Attacks

The log server could hide away transactions from Catena
clients. As a result, Catena clients would lose freshness and
not be aware of the newest issued statements. However, as
discussed in Section IV-D, Catena clients can never be lied
to about statements as that would require double spending
a transaction in Bitcoin. Similarly, the header relay network
can hide block headers from Catena clients. However, hiding
headers too only sacrifices freshness and does not lead to
equivocation attacks unless a fork in the Bitcoin blockchain
happens. To prevent freshness attacks, clients can query the
Bitcoin blockchain directly and efficiently via Bloom filtering
[29]. However, this defense comes at the cost of putting some
stress on the Bitcoin P2P network.

C. Accidental Forks

Accidental forks in the Bitcoin blockchain pose a threat to
Catena clients as adversaries can double spend Catena trans-
actions across forks and equivocate. In the past, Bitcoin has

had three major accidental forks. Two of them, in August 2010
and March 2013, were due to bugs in the bitcoind daemon
[58], [73] and one of them, in July 2015, was caused by at least
one irrational miner [59], which we expand on below. All of
these forks orphaned a significant number of blocks, enough
to unconfirm previously confirmed transactions. Moreover,
during the March 2013 fork [58], an honest-but-curious user
attempted a double spend attack on a Bitcoin exchange which
succeeded. However, the attacker quickly returned the funds
to the exchange [74].

We stress that accidental forks have been rare and are thus
outside of our threat model. Also, an adversary cannot exploit
accidental forks without also compromising the header relay
network or the Bitcoin P2P network. Clients can be made
aware about forks via the header relay network and refuse
accepting statements until forks are resolved, which gives
them an extra line of defense. As a last line of defense,
Catena clients can wait for additional confirmations to protect
themselves against accidental forks.

1) “SPV” Mining: The July 2015 fork was caused by
at least one irrational miner who mined for over an hour
on top of an unverified chain [75]. This strategy of mining
before verifying is called SPV mining6 and it hurts the Bitcoin
network because it risks extending an invalid block and fork
the blockchain. SPV mining is used by some rational miners as
a way to start mining quicker and lower their rate of orphaned
blocks [60]. However, when performed without a timeout, this
strategy is actually irrational as it can leave miners mining on
an invalid fork indefinitely. As we explain below, this is what
happened in July 2015.

Instead of waiting to hear about a solved block on the
P2P network, SPV miners obtain a solved block hash directly
from other mining pools via their Stratum mining API [76].
Then, they start mining on top of that hash, assuming its
corresponding block is correct and expecting to eventually
receive the full block via the P2P network. Unfortunately, if
the block is invalid, the P2P network will not waste bandwidth
broadcasting it. Thus, SPV miners will never hear about an
invalid block, which is why they need to time out after a
while and switch to mining on the correct chain. Otherwise,
SPV miners could be left mining on top of an invalid chain
forever. This is exactly what happened in July 2015, when
several miners did not implement timeout logic and went on
to mine several invalid blocks, losing over $50,000 in profits
[59].

SPV mining remains a concern for the larger Bitcoin
network. However, future Bitcoin improvements should further
decrease the orphan rate and steer miners away from this
unhealthy mining strategy. These could be improvements in
block propagation delay, block verification speed as well as
new fast block relay networks such as Falcon [63] and FIBRE
[64].

6SPV normally stands for Simple Payment Verification as discussed in
Section II-B7, but here it is used to indicate that miners are not verifying
the block they are mining on.

D. Network Partitioning

Eclipse attacks [61] and Sybil attacks [46] on the Bitcoin
P2P network can partition nodes and lead to double spending
attacks on the Bitcoin network without the need for adversarial
mining. This in turn can lead to equivocation attacks on
Catena logs. While countermeasures against eclipse attacks
have already been adopted by the Bitcoin developers, full-
fledged Sybil attacks on the P2P network would constitute a
break of Bitcoin itself and, if practical, could be a concern
for both Bitcoin and Catena. However, these attacks have
not been observed yet in the wild and it is not clear that
they could remain undetected for long. For instance, mining
pool operators would quickly notice the fork by an increase
in their fraction of mined blocks. We also stress that in
applications such as key transparency schemes one fork is
not sufficient. The adversary would need to maintain many
forks in order to be able to impersonate multiple users, which
further complicates his task. We plan on investigating to what
extent a Sybil attack can partition the Bitcoin P2P network in
future work.

E. Adversarial Mining Attacks

A sufficiently powerful adversary can mine his own side
chain and fork the Bitcoin blockchain, enabling him to double
spend transactions across the two forks. Unfortunately, thin
clients are more vulnerable than full nodes to a generalized
“Vector76” attack where the attacker mines a k-block long
side chain that is at least one block longer than the main
chain [77]. The side chain contains a transaction tx with
k confirmations which the attacker will later replace with
another transaction tx′ double-spending the same output(s) as
tx. When the attacker successfully mines the side chain, he
shows the side chain only to the victim, who will accept tx.
Then, the attacker will cease to mine, will issue tx′ to the
main chain, and let the main chain win the race, confirming
tx′ and unconfirming tx.

Full nodes are more resilient to this attack because they can
relay the attacker’s side chain to the rest of the network, while
thin clients cannot. Thus, with full nodes, the attacker’s side
chain could be adopted by the network which would prevent
the double spend. However, we stress that with proper timing,
the attacker can also trick full nodes if he is able to propagate
his side chain to the victim at the same time as the same-length
main chain is propagating to the rest of the network [77].

Similar to previous work [14], [15], [30], [52]–[57], we
exclude adversaries who can mine a sufficiently long side
chain from our threat model because they are extremely
powerful and so far they have not been observed in practice.
These adversaries can break not only thin nodes but also full
nodes with proper attack timing. The main countermeasure
against these attacks is to simply wait for more confirmations,
which makes the attacker’s job more difficult. Another coun-
termeasure, is for Catena clients to accept a block header only
after hearing about it from multiple sources, so as to ensure
the attacker’s side chain is seen by the whole Bitcoin P2P
network.

VI. PROTOTYPE AND EVALUATION

We implemented a Catena prototype in Java using the
bitcoinj [28] library in 3000 lines of code7. Our code is open
source and available on GitHub:

https://github.com/preventinglieswithbitcoin/catena-java

Our prototype implements a Catena log server and a Catena
client, both operating as thin nodes on the Bitcoin network. In
this first implementation, Catena clients use only the Bitcoin
P2P network to fetch both block headers and Catena transac-
tions with their associated Merkle proofs. In a future, more
scalable implementation, we plan on fetching transactions and
Merkle proofs from the log server and on using a header relay
network for downloading block headers.

A. Catena Log Server

The log server manages the statement key used to sign new
Catena statements (see Section IV-B) and a set of funding keys
used to refund a Catena log (see Section IV-F). The server
provides an appendStatement(s) API for issuing a statement
s, which abstracts the Bitcoin layer away from applications.
Though currently not implemented, the server should refund
the chain automatically assuming there are sufficient funds
controlled by funding keys.

B. Catena Log Client

The client connects to the Bitcoin P2P network and sets a
Bloom filter [51] on all its connections to filter out irrelevant
transactions. This way, Catena clients only receive server-
issued Catena transactions (see Section II-B7) and save orders
of magnitude in bandwidth. Currently, a Catena client only has
to download approximately 35 MB worth of block headers
and around 600 bytes for each statement and its Merkle
proof. Thus, if one statement is issued per block (i.e., every
10 minutes), Catena clients have to download less than 100
KB per day. While additional bandwidth will be consumed
by small blockchain reorganizations (see Section IV-E), this
amount should be negligible.

Catena clients expose an onStatementAppended(s) API
which notifies the higher level application of newly issued
statements s which have sufficient confirmations. Applications
are notified about statements in the order they were issued,
making it easy to verify each statement for application-specific
invariants (we discuss this in more detail in Section VII-3).
If the Catena log is caught equivocating, the Catena client
notifies the application via an onEquivocation(s, s′) API which
includes signatures on the two inconsistent statements s and
s′ and thus offers a publicly-verifiable non-repudiable proof
of equivocation.

Certain applications might want to be made aware about
the stability of Bitcoin’s consensus. For this, we provide
an onReorganize() API which notifies applications about
blockchain reorganizations with information about forks and
the number of orphaned blocks. Applications can use this

7Measured using the sloccount tool.

information to infer whether the Bitcoin network is under
attack, but we leave this to future work.

If bigger accidental or malicious forks should occur, they
might unconfirm previously-confirmed Catena transactions.
Even though such events are outside of our threat model,
Catena still notifies applications about statements that were
unconfirmed via an onStatementWithdrawn(s) API so they
can decide how to proceed.

C. Costs and Overheads

In this subsection, we discuss the financial cost of running a
Catena server, the overheads involved for clients and servers,
and Catena’s scalability.

1) Transaction Fees: Transaction fees in Bitcoin vary with
contention for space in the blockchain (see Figure 6) and so
far have not been prohibitive for Bitcoin users. For instance,
Bitcoin transactions currently pay a fee of 70 satoshis per byte
to get included in the blockchain within the next block [79].
For a 235-byte Catena transaction that commits a statement
consisting of a 256-bit SHA256 hash, the fee would be
16,450 satoshis or 12 cents per statement8. If a statement
is issued every 10 minutes, the cost per day would be less
than 17.5 USD, which we believe is reasonable. For example,
this cost is not much higher than Keybase’s cost [14], which
commits a Merkle root less often (every 6 hours) in the Bitcoin
blockchain, paying a smaller fee of 10,000 satoshis or 7 cents
per transaction [80].

2) Overheads: Catena’s CPU overhead is insignificant.
Catena servers can issue at most one statement per Bitcoin
block, so they only have to perform one signature every 10
minutes. Similarly, Catena clients only verify a transaction
every 10 minutes for each log they audit, which adds virtually
no overhead. Finally, verifying the proof-of-work in block
headers adds insignificant overhead.

Catena requires a small, constant amount of storage to re-
compute the Bitcoin difficulty and handle blockchain reorgani-
zations. To recompute the difficulty every 2016 blocks, Catena
clients and servers need to store the last 2016 block headers
of the blockchain, which are 80 bytes each. To prevent lies
about withdrawn statements during blockchain reorganizations
(see Section IV-E), Catena clients also remember the past 100
statements issued by the server, which cannot exceed 80 bytes
each due to the OP_RETURN payload limit (see Section II-B6).
Here we assume that no Bitcoin fork, whether accidental or
malicious, will be longer than 100 blocks. Thus, Catena’s
storage cost for both clients and servers is smaller than 200
KB.

Catena demands a small amount of bandwidth from clients
and a larger amount from servers who have to serve statements
to clients. First, servers and clients pay an initial cost to sync
all the blockchain headers (currently 35 MB). Servers and
clients need to download all the headers so as to ensure the
chain is sufficiently “heavy” and is thus the correct chain
(see Section II-B4). Once this is done, Catena clients need

8Currently, 1 BTC = $706.54.

https://github.com/preventinglieswithbitcoin/catena-java

Figure 6. The transaction fees in this graph are estimated with 90% accuracy using Feesim [78]. This graph shows that fees tend to increase with contention
for space in the Bitcoin “mempool” of unconfirmed transactions and that transactions with higher fees get included in the blockchain faster. The fee is
displayed in “satoshis” per kilobyte, where 1 satoshi = 0.00000001 BTC = 10−8 BTC and 1 kilobyte = 103 bytes.

to sporadically connect to the header relay network to check
for new block headers and connect to the log server to fetch
new statements. The required bandwidth for clients is less
than 1 KB every 10 minutes: 600 bytes for statements and
Merkle proofs and 80 bytes for each block header requested.
In contrast, the server will need more bandwidth to serve
statements to all of its Catena clients.

3) Scalability: We believe Catena can scale easily if the
header relay network distributes block headers and the Catena
log server distributes statements and proofs. However, our
current implementation based on Bitcoin’s P2P network will
not scale beyond tens of thousands of Catena clients without
putting significant stress on Bitcoin. As discussed in Section
IV-C, there simply aren’t enough connections available in the
Bitcoin network to support a large number of Catena clients.
In addition, in our current implementation, Bloom filtering is
somewhat expensive to perform for Bitcoin full nodes as they
have to read blocks from disk and pass them through the filter.
We stress that these are current, surmountable limitations of
Bitcoin that all thin blockchain-based applications need to deal
with, not just Catena.

D. Preventing Lies in CONIKS

To demonstrate Catena’s applicability to key transparency
schemes, we modified CONIKS [16] to publish directory
commitments in a Catena log so as to prevent a malicious
provider from equivocating about its public-key directory. Our
modified CONIKS is as hard to fork as Bitcoin, which we
believe makes CONIKS more resilient to attacks. Our changes
to CONIKS are minimal, consisting of 66 new lines of code for
the CONIKS server and 89 new lines of code for the CONIKS
test client9.

A typical CONIKS provider advertises the root hash of
a prefix Merkle tree periodically to CONIKS clients. This
root hash is signed and is referred to as a Signed Tree

9We changed Java source files, project files and configuration files.

Root (STR). To prevent impersonation, clients have to gossip
STRs amongst themselves or with different providers. Our
modification of CONIKS removes the need for gossiping by
witnessing STRs in the Bitcoin blockchain using a Catena
log. This allows all CONIKS clients to agree on the same
history of STRs. We lowered the frequency at which providers
publish STRs from 1 minute to 10 minutes to coincide with the
frequency of Bitcoin blocks. We also modified the CONIKS
test client to listen for Bitcoin-witnessed STRs. However,
because the provided test client is not fully implemented to
keep track of STRs, more changes to CONIKS, not Catena,
are needed to actually prevent equivocation.

Catena does not change CONIKS’s public-key distribution
assumptions. CONIKS assumes that clients have a way of
obtaining the public keys of providers. Similarly, our Bitcoin-
witnessed CONIKS assumes that clients have a way of ob-
taining the “public keys” for the Catena logs of providers.
Specifically, our “public key” is the log’s genesis transaction
(see Section IV-A). We commit the old public key of the
provider in the auxiliary data of the genesis transaction (see
Section III-B). CONIKS needs this actual public key to sign
server replies to clients.

VII. DISCUSSION AND FUTURE WORK

1) Building Catena on Top of Bitcoin: Our main reason
for designing Catena on top of Bitcoin is the resilience of its
proof-of-work consensus [18], which we leverage to prevent
equivocation in Catena logs. Another reason is that Bitcoin is
already deployed, which makes Catena-enabled applications
easy to deploy, without having to wait for trustworthy parties
to come into existence. We note that Catena could also be
built on top of other blockchains such as Ethereum [81], but
we believe Bitcoin’s security currently outmatches the security
of all other blockchains.

In particular, we avoided Ethereum for a few reasons. First,
thin client support in Ethereum is currently not implemented
[82], which breaks our efficiency goals (see Section III-D3).

Second, Ethereum plans on transitioning to a proof-of-stake
consensus algorithm [83] which would change the trust as-
sumptions behind thin nodes. Third, we believe Bitcoin is
a more mature ecosystem to base applications on, given all
current blockchain-based apps built on top of it [14], [15],
[84]–[86].

2) Censorship: Catena’s liveness depends on the
censorship-resistance of the Bitcoin network. Malicious
miners can censor Catena transactions and exclude them
from the Bitcoin blockchain which reduces the liveness of a
Catena log. We stress however, that Bitcoin’s decentralized
consensus does provide some degree of censorship-resistance
by allowing any honest miner to join the protocol, eventually
resulting in an honest, non-censoring, majority. We also stress
that censorship attacks have not been observed in practice
and, if performed, could affect miner profits by turning honest
miners against censoring ones. We leave a more careful
analysis of Bitcoin’s censorship-resistance to future work.

3) Historical Consistency: Catena is application-agnostic
and does not guarantee application-specific internal consis-
tency of statements [20], which needs to be checked at the
application layer. Instead, Catena only guarantees historical
consistency of statements as in [20], enabling applications
to later check the correct semantics of statements. As an
example, Catena ensures that all clients of a key transparency
scheme such as Certificate Transparency (CT) [8] see the same
history of signed tree heads (STHs). However, applications still
have to check the internal consistency of the STHs to detect
impersonation. For instance, Bob’s client will want to make
sure that across all STHs, his public key has not been changed
maliciously, and thus he hasn’t been impersonated.

It is important to understand that without historical consis-
tency, any guarantees of internal consistency are meaningless.
This is exactly why we designed Catena. For instance, a
malicious CT log server [8] can equivocate, giving Alice an
STH with her real public key and a fake public key for Bob,
while giving Bob a different STH with his real public key
and a fake public key for Alice. Alice and Bob both verify
their own STHs as being internally consistent and believe they
were not impersonated. However, because Alice and Bob have
no historical consistency, they are looking at different STHs
which means the internal consistency guarantees they have
are essentially useless. In this case, Alice and Bob are being
impersonated even though internal consistency tells them they
are not. Thus, without historical consistency, an adversary
can equivocate and present inconsistent histories to different
users such that each user’s history verifies locally as internally
consistent, even though it would not verify globally with
respect to all the other “hidden” histories.

VIII. RELATED WORK

Tamper-evident logging [20] allows log auditors to chal-
lenge a log and ensure its correct behavior. A history tree
is used to store events in the log, check their membership
and prove that a new version of the log is consistent with
a past version (i.e., no past events have been removed or

modified). Unfortunately, tamper-evident logging does not
fully address equivocation attacks, and assumes auditors can
gossip to detect forks. Catena offers the same semantics as
tamper-evident logging (i.e., membership proofs, consistency
proofs) but also prevents equivocation. However, because the
Bitcoin blockchain is implemented as a hash-chain, Catena’s
membership and consistency proofs are linear, not logarithmic,
in the log’s size. In practice, a Catena log can commit root
hashes of a history tree and prevent equivocation about the
tree, while preserving logarithmic membership with respect to
a root hash and logarithmic consistency proofs between two
consecutive root hashes.

Keybase [14] and Blockstack [15], [30] use the Bitcoin
blockchain to prevent equivocation but do so inefficiently,
requiring clients to run a full Bitcoin node. Catena instead
uses OP_RETURN transaction chains to allow thin clients to
efficiently check for non-equivocation. CommitCoin [57] uses
the Bitcoin blockchain to “timestamp” commitments and prove
they were made at a certain time. Unlike Catena though,
CommitCoin does not prevent an adversary from committing
different data twice in the blockchain and equivocating to thin
clients about the committed data.

CoSi [13] prevents equivocation by requiring statements
to be signed by a threshold number of verifiers known as
“witnesses.” Depending on the application, these witnesses
could also check the internal consistency of statements (see
Section VII-3). Both CoSi and Catena make assumptions about
connectivity of participants. CoSi requires a relatively well
connected set of witnesses for its tree broadcast while Catena
requires the Bitcoin P2P network to not be easily partitioned.
One drawback of CoSi is that it requires an admission control
process for witnesses in order to prevent Sybil attacks [46].
As a result, finding witnesses who are reputable, trustworthy
entities could be hard. In contrast, Catena could be easier to
deploy since it only relies on the Bitcoin blockchain as a single
trustworthy witness and on a header relay network that can be
bootstrapped using existing blockchain explorers or between
Catena clients themselves.

Like CoSi, Catena can offer both “proactive” and “retroac-
tive” security [13]. In particular, Catena can be used retroac-
tively by clients to confirm that previously accepted statements
were not lies, or it can be used proactively before accepting
a statement as valid. Unlike CoSi, Catena suffers a higher
delay when used proactively because clients have to wait for
sufficient confirmations before accepting a statement. This
is a cost Catena pays for using a decentralized consensus
network as its only witness. However, we stress that not
all applications will incur this cost. In particular, Catena is
suitable for key transparency schemes, Tor directory servers
and software transparency schemes which all perform batching
and update their state infrequently.

Key transparency schemes can detect equivocation using
gossip amongst users [9], [16], [23], [24], gossip between
users and trusted validators [26], federated trust [16], any-
trust assumptions [25] or non-collusion between actors [25],
[26]. Catena instead relies on the resilience of Bitcoin’s proof-

of-work consensus to prevent, not just detect, equivocation.
Our approach can provide proactive security [13] at the
cost of publishing new statements every 10 minutes with an
average 60-minute confirmation latency (if clients wait for 6
confirmations). Alternatively, Catena can provide retroactive
security with no latency. We believe Catena can strengthen
key transparency schemes because it enables anyone to audit
efficiently for non-equivocation. We also believe Catena’s
approach to non-equivocation is simpler and more trustworthy
due to the decentralized nature of Bitcoin’s consensus protocol.

EthIKS [87] uses the Ethereum blockchain [81] to prevent
equivocation in CONIKS [16], a key transparency scheme
that enables users to efficiently monitor their own public key
bindings. EthIKS implements CONIKS as a “smart contract”
in the Ethereum blockchain and relies on Ethereum miners to
enforce CONIKS security invariants. This is similar to how
Catena relies on Bitcoin miners to prevent double spends and
thus prevent equivocation in the log. Like Catena, EthIKS
also makes equivocation in CONIKS as hard as forking the
Ethereum blockchain. However, due to the lack of support for
thin nodes in Ethereum [82], EthIKS cannot yet be audited
efficiently by clients.

IX. CONCLUSION

We designed and implemented Catena, an append-only log
that is as hard to fork as the Bitcoin blockchain but efficient to
verify by thin clients such as mobile phones. Specifically, in
Catena, an attacker can equivocate if and only if he can double
spend Bitcoin transactions, which is notoriously difficult due
to Bitcoin’s proof-of-work consensus. The key idea behind
Catena is to chain OP_RETURN transactions together, making
equivocation in the log as hard as double spending in Bitcoin.

Catena can be used to prevent equivocation in key trans-
parency schemes, paving the way for more trustworthy public-
key directories. Catena can also be used as a public log for
Tor Consensus Transparency [11], as a software transparency
scheme to prevent malicious software updates or as a consen-
sus log for mutually distrusting participants. Catena’s over-
heads are small. Clients only need to download 80-byte block
headers and 600-byte statements, a significant improvement
over previous blockchain-based transparency schemes [14],
[15], [30] which currently require auditors to download 90
GB of blockchain data [19]. We developed a first prototype
of Catena in Java and we applied it to CONIKS, a key trans-
parency scheme, demonstrating its feasibility. Next, we plan
on extending our prototype to scale for popular applications.

Our main reason for designing Catena was to prevent online
services from lying. In that sense, we believe Catena can
bring Bitcoin’s non-equivocation guarantees to many impor-
tant applications today. In particular, we hope Catena can be
adopted by existing secure messaging apps such as Signal [88]
or public-key directories such as Keybase [14], allowing end
users to get stronger guarantees about non-equivocation.

REFERENCES

[1] J. B. Andre Niemann, “A Survey on CA Compromises,” https:
//www.cdc.informatik.tu-darmstadt.de/fileadmin/user upload/Group

CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014 submission 8.pdf,
Accessed: 2016-05-15.

[2] “Further improving digital certificate security,”
https://googleonlinesecurity.blogspot.com.au/2013/12/
further-improving-digital-certificate.html, Accessed: 2015-11-06.

[3] R. Mandalia, “Security breach in CA networks - Comodo, DigiNotar,
GlobalSign,” http://blog.isc2.org/isc2 blog/2012/04/test.html, Accessed:
2015-08-22.

[4] “Enhancing digital certificate security,” https://googleonlinesecurity.
blogspot.co.uk/2013/01/enhancing-digital-certificate-security.html, Ac-
cessed: 2015-11-06.

[5] D. O’Brien, “Web users in the United Arab Emirates have more
to worry about than having just their BlackBerries cracked.”
http://www.slate.com/articles/technology/webhead/2010/08/the
internets secret back door.html, Accessed: 2015-08-22.

[6] H. Adkins, “An update on attempted man-in-the-middle
attacks,” http://googleonlinesecurity.blogspot.com/2011/08/
update-on-attempted-man-in-middle.html, Accessed: 2015-08-22.

[7] C. Soghoian and S. Stamm, “Certified lies: Detecting and
defeating government interception attacks against ssl (short
paper),” in Proceedings of the 15th International Conference on
Financial Cryptography and Data Security, ser. FC’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 250–259. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27576-0 20

[8] B. Laurie, A. Langley, and E. Kasper, “RFC: Certificate Transparency,”
http://tools.ietf.org/html/rfc6962, Accessed: 2015-5-13.

[9] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri,
“Efficient gossip protocols for verifying the consistency of certificate
logs,” in Communications and Network Security (CNS), 2015 IEEE
Conference on, Sept 2015, pp. 415–423.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
generation Onion Router,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251396

[11] L. Nordberg, “Tor Consensus Transparency, take two,” http://archives.
seul.org/tor/dev/Feb-2016/msg00099.html, Accessed: 2016-05-23.

[12] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data
repository (sundr),” in Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, ser.
OSDI’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 9–9.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251254.1251263

[13] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities ”honest or bust”
with decentralized witness cosigning,” pp. 526–545, 2016. [Online].
Available: http://dx.doi.org/10.1109/SP.2016.38

[14] Keybase.io, “Keybase,” http://keybase.io, Accessed: 2016-05-15.
[15] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Experiences with

Building a Global PKI with Blockchains,” in 2016 USENIX Annual
Technical Conference (USENIX ATC 16). Denver, CO: USENIX
Association, Jun. 2016. [Online]. Available: https://www.usenix.org/
conference/atc16/technical-sessions/presentation/ali

[16] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten,
and M. J. Freedman, “Bringing deployable key transparency
to end users,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/melara

[17] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[18] R. Pass, L. Seeman, and abhi shelat, “Analysis of the blockchain

protocol in asynchronous networks,” Cryptology ePrint Archive, Report
2016/454, 2016, http://eprint.iacr.org/2016/454.

[19] blockchain.info, “Bitcoin blockchain size over time,” https://blockchain.
info/charts/blocks-size, Accessed: 2016-11-11.

[20] S. A. Crosby and D. S. Wallach, “Efficient data structures for
tamper-evident logging,” in Proceedings of the 18th Conference
on USENIX Security Symposium, ser. SSYM’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 317–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855788

[21] bitcoin.org, “Null Data (OP RETURN) Transaction,” https://bitcoin.org/
en/glossary/null-data-transaction, Accessed: 2016-10-13.

[22] “Use OP RETURN to store merkle root in bitcoin blockchain,” https://
github.com/keybase/keybase-issues/issues/1104, Accessed: 2016-05-23.

https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014_submission_8.pdf
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014_submission_8.pdf
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014_submission_8.pdf
https://googleonlinesecurity.blogspot.com.au/2013/12/further-improving-digital-certificate.html
https://googleonlinesecurity.blogspot.com.au/2013/12/further-improving-digital-certificate.html
http://blog.isc2.org/isc2_blog/2012/04/test.html
https://googleonlinesecurity.blogspot.co.uk/2013/01/enhancing-digital-certificate-security.html
https://googleonlinesecurity.blogspot.co.uk/2013/01/enhancing-digital-certificate-security.html
http://www.slate.com/articles/technology/webhead/2010/08/the_internets_secret_back_door.html
http://www.slate.com/articles/technology/webhead/2010/08/the_internets_secret_back_door.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://dx.doi.org/10.1007/978-3-642-27576-0_20
http://tools.ietf.org/html/rfc6962
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://archives.seul.org/tor/dev/Feb-2016/msg00099.html
http://archives.seul.org/tor/dev/Feb-2016/msg00099.html
http://dl.acm.org/citation.cfm?id=1251254.1251263
http://dx.doi.org/10.1109/SP.2016.38
http://keybase.io
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
http://eprint.iacr.org/2016/454
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
http://dl.acm.org/citation.cfm?id=1855768.1855788
https://bitcoin.org/en/glossary/null-data-transaction
https://bitcoin.org/en/glossary/null-data-transaction
https://github.com/keybase/keybase-issues/issues/1104
https://github.com/keybase/keybase-issues/issues/1104

[23] M. D. Ryan, “Enhanced certificate transparency and end-to-end en-
crypted mail,” Cryptology ePrint Archive, Report 2013/595, 2013,
http://eprint.iacr.org/.

[24] J. Yu, V. Cheval, and M. Ryan, “DTKI: a new formalized PKI with no
trusted parties,” CoRR, vol. abs/1408.1023, 2014. [Online]. Available:
http://arxiv.org/abs/1408.1023

[25] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and
P. Szalachowski, “ARPKI: Attack Resilient Public-Key Infrastructure,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’14. New York, NY, USA:
ACM, 2014, pp. 382–393. [Online]. Available: http://doi.acm.org/10.
1145/2660267.2660298

[26] T. H.-J. Kim, L.-S. Huang, A. Perring, C. Jackson, and V. Gligor,
“Accountable Key Infrastructure (AKI): A Proposal for a Public-key
Validation Infrastructure,” in Proceedings of the 22Nd International
Conference on World Wide Web, ser. WWW ’13. New York,
NY, USA: ACM, 2013, pp. 679–690. [Online]. Available: http:
//doi.acm.org/10.1145/2488388.2488448

[27] B. Ford, “Apple, FBI, and Software Transparency.” Freedom To Tinker,
Mar. 2016.

[28] “bitcoinj,” https://bitcoinj.github.io/, Accessed: 2016-10-10.
[29] bitcoin.org, “Bloom Filter,” https://bitcoin.org/en/glossary/bloom-filter,

Accessed: 2016-10-19.
[30] J. Nelson, M. Ali, R. Shea, and M. J. Freedman, “Extending

existing blockchains with virtualchain,” https://www.zurich.ibm.com/
dccl/papers/nelson dccl.pdf, 2016, Accessed: 2016-08-01. [Online].
Available: https://www.zurich.ibm.com/dccl/papers/nelson dccl.pdf

[31] S. A. Crosby and D. S. Wallach, “Authenticated dictionaries:
Real-world costs and trade-offs,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 2, pp. 17:1–17:30, Sep. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2019599.2019602

[32] Keybase.io, “Keybase is now writing to the Bitcoin block-
chain,” https://keybase.io/docs/server security/merkle root in bitcoin
blockchain, Accessed: 2016-05-15.

[33] Blockstack, “Light clients,” https://blockstack.org/docs/light-clients, Ac-
cessed: 2016-05-22.

[34] R. Shea, Personal communication, Jun. 2016.
[35] bitcoin.org, “0.13.0 Binary Safety Warning,” https://bitcoin.org/en/alert/

2016-08-17-binary-safety, Accessed: 2016-10-21.
[36] A. Bellissimo, J. Burgess, and K. Fu, “Secure software updates:

Disappointments and new challenges,” in Proceedings of the 1st
USENIX Workshop on Hot Topics in Security, ser. HOTSEC’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 7–7. [Online].
Available: http://dl.acm.org/citation.cfm?id=1268476.1268483

[37] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the
mirror: Attacks on package managers,” in Proceedings of the 15th ACM
Conference on Computer and Communications Security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 565–574. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455841

[38] T. Mendelsohn, “Secure Boot snafu: Microsoft leaks backdoor
key, firmware flung wide open,” http://arstechnica.com/security/2016/
08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/, Accessed:
2016-10-21.

[39] L. Kessem, “Certificates-as-a-Service? Code Signing Certs Become
Popular Cybercrime Commodity,” https://securityintelligence.com/
certificates-as-a-service-code-signing-certs-become-popular-cybercrime-commodity/,
Sep. 2015, Accessed: 2016-10-21.

[40] bitcoin.org, “M-of-N Multisig, Multisig Output,” https://bitcoin.org/en/
glossary/multisig, Accessed: 2016-10-13.

[41] Tor, “Tor Metrics about page,” https://metrics.torproject.org/about.html,
Accessed: 2016-10-12.

[42] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE Symposium on Security and Privacy,
May 2015, pp. 104–121.

[43] Narayanan, Arvind and Bonneau, Joseph and Felten, Edward
and Miller, Andrew and Goldfeder, Steven, “Bitcoin and
cryptocurrency technologies,” https://d28rh4a8wq0iu5.cloudfront.net/
bitcointech/readings/princeton bitcoin book.pdf?a=1, 2016, Accessed:
2016-03-29. [Online]. Available: https://d28rh4a8wq0iu5.cloudfront.net/
bitcointech/readings/princeton bitcoin book.pdf?a=1

[44] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” in IEEE Communications

Surveys Tutorials, vol. PP, no. 99, 2016, pp. 1–1. [Online]. Available:
https://eprint.iacr.org/2015/464.pdf

[45] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartı́, “The bitcoin
p2p network,” in Financial Cryptography and Data Security. Springer,
2014, pp. 87–102. [Online]. Available: http://fc14.ifca.ai/bitcoin/papers/
bitcoin14 submission 3.pdf

[46] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS
’01. London, UK, UK: Springer-Verlag, 2002, pp. 251–260. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687813

[47] R. Merkle, “Method of providing digital signatures,” Jan. 5 1982, US
Patent 4,309,569. [Online]. Available: https://www.google.com/patents/
US4309569

[48] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, 2015, pp. 281–310. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-46803-6 10

[49] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in blockchain
protocols,” IACR Cryptology ePrint Archive, vol. 2015, p. 1019, 2015.
[Online]. Available: http://eprint.iacr.org/2015/1019

[50] A. Miller and J. J. LaViola Jr, “Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin,” p. 5, 2014.

[51] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[52] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in 2014 IEEE Symposium
on Security and Privacy, May 2014, pp. 443–458.

[53] C. Garman, M. Green, and I. Miers, “Decentralized anonymous
credentials,” in 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26,
2014, 2014. [Online]. Available: http://www.internetsociety.org/doc/
decentralized-anonymous-credentials

[54] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich, “Versum: Verifiable
computations over large public logs,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, 2014, pp. 1304–1316.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660327

[55] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part II, 2014, pp. 421–439. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-44381-1 24

[56] J. Clark, J. Bonneau, E. W. Felten, J. A. Kroll, A. Miller, and
A. Narayanan, “On decentralizing prediction markets and order books,”
in Workshop on the Economics of Information Security, State College,
Pennsylvania, 2014.

[57] J. Clark and A. Essex, CommitCoin: Carbon Dating Commitments with
Bitcoin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 390–
398. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-32946-3
28

[58] bitcoin.org, “11/12 March 2013 Chain Fork Information,” https://bitcoin.
org/en/alert/2013-03-11-chain-fork, Accessed: 2016-10-17.

[59] ——, “Some Miners Generating Invalid Blocks,” https://bitcoin.org/en/
alert/2015-07-04-spv-mining, Accessed: 2016-10-17.

[60] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying
incentives in the consensus computer,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 706–719.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813659

[61] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 129–144. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/heilman

[62] M. Corallo, “The Bitcoin Relay Network,” http://bitcoinrelaynetwork.
org/, Accessed: 2016-10-17.

[63] E. G. S. Soumya Basu, Ittay Eyal, “The Falcon Network,” http://www.
falcon-net.org/, Accessed: 2016-10-17.

[64] M. Corallo, “FIBRE,” http://bitcoinfibre.org/, Accessed: 2016-10-17.
[65] “Bitnodes,” https://bitnodes.21.co/, Accessed: 2016-11-5.

http://eprint.iacr.org/
http://arxiv.org/abs/1408.1023
http://doi.acm.org/10.1145/2660267.2660298
http://doi.acm.org/10.1145/2660267.2660298
http://doi.acm.org/10.1145/2488388.2488448
http://doi.acm.org/10.1145/2488388.2488448
https://bitcoinj.github.io/
https://bitcoin.org/en/glossary/bloom-filter
https://www.zurich.ibm.com/dccl/papers/nelson_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/nelson_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/nelson_dccl.pdf
http://doi.acm.org/10.1145/2019599.2019602
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://blockstack.org/docs/light-clients
https://bitcoin.org/en/alert/2016-08-17-binary-safety
https://bitcoin.org/en/alert/2016-08-17-binary-safety
http://dl.acm.org/citation.cfm?id=1268476.1268483
http://doi.acm.org/10.1145/1455770.1455841
http://arstechnica.com/security/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/
http://arstechnica.com/security/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key/
https://securityintelligence.com/certificates-as-a-service-code-signing-certs-become-popular-cybercrime-commodity/
https://securityintelligence.com/certificates-as-a-service-code-signing-certs-become-popular-cybercrime-commodity/
https://bitcoin.org/en/glossary/multisig
https://bitcoin.org/en/glossary/multisig
https://metrics.torproject.org/about.html
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://eprint.iacr.org/2015/464.pdf
http://fc14.ifca.ai/bitcoin/papers/bitcoin14_submission_3.pdf
http://fc14.ifca.ai/bitcoin/papers/bitcoin14_submission_3.pdf
http://dl.acm.org/citation.cfm?id=646334.687813
https://www.google.com/patents/US4309569
https://www.google.com/patents/US4309569
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2015/1019
http://doi.acm.org/10.1145/362686.362692
http://www.internetsociety.org/doc/decentralized-anonymous-credentials
http://www.internetsociety.org/doc/decentralized-anonymous-credentials
http://doi.acm.org/10.1145/2660267.2660327
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1007/978-3-642-32946-3_28
http://dx.doi.org/10.1007/978-3-642-32946-3_28
https://bitcoin.org/en/alert/2013-03-11-chain-fork
https://bitcoin.org/en/alert/2013-03-11-chain-fork
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining
http://doi.acm.org/10.1145/2810103.2813659
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
http://bitcoinrelaynetwork.org/
http://bitcoinrelaynetwork.org/
http://www.falcon-net.org/
http://www.falcon-net.org/
http://bitcoinfibre.org/
https://bitnodes.21.co/

[66] J. A. Donet Donet, C. Pérez-Solà, and J. Herrera-Joancomartı́,
The Bitcoin P2P Network. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 87–102. [Online]. Available: http://dx.doi.org/10.
1007/978-3-662-44774-1 7

[67] “blockchain.info API,” https://blockchain.info/api/blockchain api, Ac-
cessed: 2016-11-08.

[68] “blockexplorer.com,” https://blockexplorer.com/api-ref, Accessed: 2016-
11-08.

[69] “blockr.io,” https://blockr.io/documentation/api, Accessed: 2016-11-08.
[70] “blocktrail.com,” https://www.blocktrail.com/api/docs#api block, Ac-

cessed: 2016-11-08.
[71] N. Evans, B. Polot, and C. Grothoff, Efficient and Secure Decentralized

Network Size Estimation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 304–317. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-30045-5 23

[72] howtobuybitcoins.info, “How To Buy Bitcoins,” https:
//howtobuybitcoins.info/, Accessed: 2016-10-20.

[73] en.bitcoin.it, “Value overflow incident,” https://en.bitcoin.it/wiki/Value
overflow incident#cite note-7, Accessed: 2016-10-18.

[74] macbook air, “A successful DOUBLE SPEND US$10000 against OK-
PAY this morning.” https://bitcointalk.org/index.php?topic=152348.0;all,
Accessed: 2016-10-14.

[75] en.bitcoin.it, “July 2015 chain forks,” https://en.bitcoin.it/w/index.php?
title=July 2015 chain forks&redirect=no, Accessed: 2016-10-21.

[76] ——, “Stratum mining protocol,” https://en.bitcoin.it/wiki/Stratum
mining protocol, Accessed: 2016-10-18.

[77] Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,”
CoRR, vol. abs/1605.09193, 2016. [Online]. Available: http://arxiv.org/
abs/1605.09193

[78] https://bitcoinfees.github.io/, Accessed: 2016-10-31.
[79] “Bitcoin Fees for Transactions,” https://bitcoinfees.21.co/, Accessed:

2016-11-4.
[80] blockchain.info, “Keybase-issued Bitcoin transactions,” https://

blockchain.info/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz,
Accessed: 2016-05-15.

[81] Gavin Wood, “Ethereum: A Secure Decentralised Generalised Transac-
tion Ledger,” http://gavwood.com/paper.pdf, Accessed: 2016-05-15.

[82] “Light client protocol,” https://github.com/ethereum/wiki/wiki/
Light-client-protocol, Accessed: 2016-11-09.

[83] I. Bentov, A. Gabizon, and A. Mizrahi, Cryptocurrencies Without
Proof of Work. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 142–157. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-53357-4 10

[84] “OpenAssets,” https://github.com/OpenAssets, Accessed: 2016-11-09.
[85] “Colu,” https://www.colu.com/solutions, Accessed: 2016-11-09.
[86] “OP RETURN Stats,” http://opreturn.org/, Accessed: 2016-11-09.
[87] J. Bonneau, “EthIKS: Using Ethereum to audit a CONIKS key

transparency log,” BITCOIN’16, 2016, http://www.jbonneau.com/doc/
B16b-BITCOIN-ethiks.pdf.

[88] Open Whisper Systems, “Signal,” https://whispersystems.org/, Accessed:
2016-11-09.

http://dx.doi.org/10.1007/978-3-662-44774-1_7
http://dx.doi.org/10.1007/978-3-662-44774-1_7
https://blockchain.info/api/blockchain_api
https://blockexplorer.com/api-ref
https://blockr.io/documentation/api
https://www.blocktrail.com/api/docs#api_block
http://dx.doi.org/10.1007/978-3-642-30045-5_23
http://dx.doi.org/10.1007/978-3-642-30045-5_23
https://howtobuybitcoins.info/
https://howtobuybitcoins.info/
https://en.bitcoin.it/wiki/Value_overflow_incident#cite_note-7
https://en.bitcoin.it/wiki/Value_overflow_incident#cite_note-7
https://bitcointalk.org/index.php?topic=152348.0;all
https://en.bitcoin.it/w/index.php?title=July_2015_chain_forks&redirect=no
https://en.bitcoin.it/w/index.php?title=July_2015_chain_forks&redirect=no
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol
http://arxiv.org/abs/1605.09193
http://arxiv.org/abs/1605.09193
https://bitcoinfees.github.io/
https://bitcoinfees.21.co/
https://blockchain.info/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz
https://blockchain.info/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz
http://gavwood.com/paper.pdf
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
http://dx.doi.org/10.1007/978-3-662-53357-4_10
http://dx.doi.org/10.1007/978-3-662-53357-4_10
https://github.com/OpenAssets
https://www.colu.com/solutions
http://opreturn.org/
http://www.jbonneau.com/doc/B16b-BITCOIN-ethiks.pdf
http://www.jbonneau.com/doc/B16b-BITCOIN-ethiks.pdf
https://whispersystems.org/

	Introduction
	Efficient Non-equivocation via Bitcoin
	Root-of-Trust
	Bitcoin-friendly
	Applications
	Implementation

	Contributions and Organization

	Background and Motivation
	Motivation
	Key Transparency
	Blockchain-based Transparency
	Certificate Authorities (CAs)
	Software Transparency
	Tor Directory Servers
	Consensus Amongst n Servers

	Bitcoin Background
	Overview
	P2P Network
	Blockchain
	Decentralized Consensus
	Transactions
	Storing Data in Transactions
	Thin Nodes vs. Full Nodes

	Model and Goals
	System Model
	Log server
	Clients
	Header Relay Network (HRN)

	Catena API
	Threat Model
	Adversarial Log Server
	Proof-of-Work Consensus
	SPV Assumption
	Bitcoin's P2P Network
	Header Relay Network

	Goals
	Non-equivocation
	Publicly Verifiable
	Efficiently Verifiable

	Catena Design
	Genesis Transaction
	Catena Transactions
	Header Relay Network
	Auditing a Catena Log
	Blockchain Reorganizations
	Paying for a Catena Log

	Attacks
	Stolen Key Attack
	Freshness Attacks
	Accidental Forks
	``SPV'' Mining

	Network Partitioning
	Adversarial Mining Attacks

	Prototype and Evaluation
	Catena Log Server
	Catena Log Client
	Costs and Overheads
	Transaction Fees
	Overheads
	Scalability

	Preventing Lies in CONIKS

	Discussion and Future Work
	Building Catena on Top of Bitcoin
	Censorship
	Historical Consistency

	Related Work
	Conclusion
	References

