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Abstract. We present a new distributed algorithm, Byzantine Cycle Mode
(BCM), that mixes bitcoin inputs of different sizes. The known decentralized
risk-less bitcoin mixing algorithms either assume equal inputs for operation
or become vulnerable if the inputs are unequal. BCM relaxes this constraint
by transforming instances with unequal bitcoin amounts into smaller sub-
instances of equal amounts.

1 Introduction

The invention of Bitcoin has brought new forms of financial practices,
actors, and services. There is often sensitivity (in the form of operational
risks and risks to client confidentiality and personal financial privacy) re-
lated to the information that is both directly available on the blockchain
and deducible through transaction graph analysis by unrelated third par-
ties (adversaries). The many examples include the following:

– Bitcoin exchanges, payment processors, and some online wallets have
custodial responsibilities, whereby they receive control of bitcoins
from clients and are responsible for holding or performing actions
on behalf of the client.

– Companies that pay its employees in bitcoins will want to obscure
the amounts given to particular employees.

– Political and membership-based organizations may want to keep their
membership lists private while receiving fees/donations from mem-
bers’ Bitcoin addresses.

The Bitcoin protocol, aptly, neither hinders nor directly supports this
type of transactional obfuscation. Additional technical mechanisms are
needed in order to give these new practices the necessary confidentiality
protection. Bitcoin mixing is a technique introduced by the community to
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mechanize such protection with the aim to render deductible information
less useful and/or more expensive to obtain. This work aims to build on
this approach by introducing a new mixing algorithm based on existing
Bitcoin functionality.

This work aims to make it easier for actors to engage in mixing with
large anonymity sets, where the input amounts are not apriori known
or controlled. The known decentralized bitcoin mixing algorithms either
require the input amounts to be equal or their anonymity strongly de-
pends on that being the case. For example, CoinSwap [[4]] and Coin-
Shuffle [[5]] assume equal bitcoin amounts. CoinJoin [[1]] is subject to
subset-sum attacks if the amounts are different. It should be noted that
transactions resulting from mixing operations are distinguishable from
regular transactions (with non-negligible advantage), despite the histor-
ical aim to mask mix transactions as regular transactions. The size of
the anonymity set of a mix operation is therefore limited by the number
of addresses that participate in the mixing operation and not the total
number of addresses that are active on the Bitcoin network at the time
of the operation. Therefore, the effectiveness of mixing depends on our
ability to perform mixes on large numbers of addresses. We present an
algorithm that facilitates large-scale mixing on disparate inputs amounts
so as to allow actors to engage more readily with large anonymity sets
than previously possible.

Suppose N players 1, 2, . . . , N want to mix an (integer) number of
satoshis, {ni | i ∈ N = {1, 2, . . . , N}}, respectively. The players must
jointly construct and agree on a mix specification and execute the mix
transactions under the following conditions:

1. The algorithm is distributed and decentralized.
2. There is zero risk on any player’s part of losing coins.
3. There are no trusted third parties involved.
4. There are no additional mixing fees.
5. Only well-known cryptographic techniques are used.
6. The algorithm must scale to a large number of players.
7. No one player may disproportionately influence the mix agreement.
8. All honest players detect Byzantine faults and identify their source

thereby allowing them to exclude the faulty player(s) from the final
mix.

The key contributions of this work are a new mixing algorithm sat-
isfying the above conditions, and a new method for detecting Byzantine



faults in the mix agreement and identifying their source. We present a
new algorithm called Byzantine Cycle Mode (BCM), the name of which
derives from its characteristics:

– Byzantine. BCM uses a Byzantine agreement process to construct
a mix, where the output is based on randomized contributions from
independent players. It tolerates Byzantine failures from up to 1/2
of the players, and allows the players to identify the source of the
failures.

– Cycle. BCM decomposes the mix agreement output into sets of edge-
disjoint network graph cycles, each of which define the set of play-
ers that will participate in the corresponding mix execution on the
blockchain.

– Mode. The algorithm is called a mode because its relationship to the
underlying mixing primitives (CoinJoin, CoinShuffle, etc) resembles
that of encryption modes (such as CTR and CBC) to underlying block
ciphers. In the same way that encryption modes (e.g., GCM, EAX)
extend the application of block ciphers (e.g., AES, 3DES) to large
inputs which do not necessarily fit along the block size boundaries,
BCM extends the application of mixing primitives to large numbers
of users who are mixing unequal sizes.

Our threat model and computational model include the following
assumptions:

1. Player ordering. There exists a mutually understood ordering on
the players, presumably provided during peer discovery (which is out-
side the scope of this work), such that the players are numbered
1, 2, ..., N . The choice of ordering is insignificant.

2. Connected. All the players have pairwise network connectivity to
each other over which reliable messaging with authenticated encryp-
tion may be done.

3. Secure messaging. Players reveal their public keys during peer dis-
covery, and all messaging is encrypted using secure ciphers and public-
key encryption.

4. Synchronized. The protocol is executed in a sequence of rounds.
Each round includes three steps from each player: receive a message
from each player, perform a calculation, broadcast a response to all
players.



5. Broadcast. Messages are broadcast to all peers and in a broadcast,
an honest player sends the same message to all peers.

6. Active/adaptive adversary. An adversary may control a number
of players, receive the messages they receive, and adapt its behavior
based on the messages received. Because all honest players send the
same messages to all players, the adversary is assumed to know all of
the messages sent to any players.

7. Fallibility and DOS resistance. In the presence of Byzantine
faults, any player may opt to abort the procedure, and if the faulty
process is identifiable amongst the participants then players may ex-
clude the faulty process from further steps.

8. Reliable links. The adversary may not control, reorder, drop, or
change messages between players. This strong assumption is admis-
sible because the mix agreement protocol was designed in tandem
with an ongoing software implementation project that uses a trans-
port layer that supports reliable, ordered delivery with fast disconnect
detection through heartbeats, and application-level replay capability.

9. IP address privacy. The IP addresses used in the network connec-
tions are obscured through onion routing.

10. Cryptography semantic security. The security assumptions of
one-way functions, collision-resistant hash functions, and public-key
cryptography are valid.

11. There are greater than N/2 honest players.

Unless otherwise noted, we use the term broadcast to mean that a
player sends a message to each of his peers — as opposed to its common
Bitcoin usage for denoting propagation of Bitcoin transactions. While the
algorithms in this paper use integer representations of bitcoin amounts
(as numbers of satoshis), the examples however give amounts in num-
bers of bitcoin, for the sake of presentation. For example, instead of
100,000,000, the number 1 is written.

Unless otherwise noted, the players used the following public-key mes-
saging format — where the cypher-text is appended by the public-key
encryption of the symmetric key using each player’s public key. Let m
be a plain text message. Let (E1, D1) be a secure symmetric encryption
scheme with MAC authentication of associated data, such as AES-128 in
GCM mode. Let (E2, D2) be a secure public-key encryption scheme (such
as RSA or El Gamal), and (pki, ski) be the set of public and private keys



for each player. To broadcast, a player randomly chooses a symmetric key
k and sends E1(k,m) || pki ||E2(pk1, k) || pk2 ||E2(pk2, k) || . . . || pkN ||E2(pkN , k)
to all of its peers, where || denotes concatenation. To decrypt a received
broadcast, the player i finds its public key in the cypher-text, and com-
putes D1(D2(ski, E2(pki, k)), E1(k,m)).

2 Overview with an Example

Let’s suppose that Alice, Bob, and Charlie intend to mix c1 = 1, c2 = 2,
and c3 = 3 bitcoins, respectively.
Step 1. Each player generates random inputs and broadcasts the inputs
to each peer.

A

B C

v1 = [0, 5, 10]

v2 = [6, 0, 9] v3 = [7, 8, 0]

Step 2. Each player receives and verifies inputs from the other players.

A

B C

P =
[
0 5 10
6 0 9
7 8 0

]

P =
[
0 5 10
6 0 9
7 8 0

]
P =

[
0 5 10
6 0 9
7 8 0

]

Step 3. Using Byzantine agreement, the players agree on the output of
a function f , giving the bitcoin flow adjacency matrix.



A

B C

f(P ) =
[
0 0 1
0 0 2
1 2 0

]

f(P ) =
[
0 0 1
0 0 2
1 2 0

]
f(P ) =

[
0 0 1
0 0 2
1 2 0

]

Step 4. Finally, the players execute mixes (as determined by f) on the
Bitcoin blockchain using known decentralized mixing techniques such as
CoinJoin, CoinSwap or CoinShuffle.

A

B C
⇒

B C

A

C

1

2

2

1

1

12

2

Let’s suppose that CoinShuffle is used. Then, players B and C perform
a CoinShuffle on 2 BTC, while players A and C independently perform
a CoinShuffle on 1 BTC.

3 The Mix Agreement Protocol

In this section we give the Byzantine Agreement protocol that allows the
honest players to agree on how many coins each player will send to other
players. A mix allocation (informally, a mix) is an N ×N integer matrix
[xij]i,j∈N such that xij gives the number of satoshis that player i should
transfer to player j as part of the mixing process. The total number of
satoshis each player sends to his peers must equal that which he receives.
Thus for all i ∈ N , the ith row and ith column sum to the same value.
Formally:



Definition 1 (Mix allocation) A mix allocation for [n1, n2, . . . , nN ] is
an N ×N integer matrix [xij] such that

∀i,
N∑
j=1

xij = ni (1)

∀j,
N∑
i=1

xij = nj (2)

ut

For example, three mix allocation matrices are given below. Note that
mix allocation matrices need not be symmetric, and they also are not
unique; when N > 1, there are multiple possible mix allocation matrices.

0 0 1
0 0 2
1 2 0

 0 0 1
1 0 2
0 3 0




0 0 0 1
1 0 0 1
0 1 0 2
0 1 3 0


(a) a mix for [1, 2, 3] (b) a mix for [1, 3, 3] (c) a mix for [1, 2, 3, 4]

Fig. 1: Three example mix allocation matrices
A mix allocation matrix defines a directed transaction graph of bit-

coins between players, where the graph nodes are the players and the
edges are the bitcoin amounts being transferred, either through a join or
swap. The properties of these graphs are used in this work (see section
3.5) to decompose the task of mixing according to the allocation matrix
into smaller, independent mixing tasks to be executed by the players.
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Fig. 2: Corresponding mix graphs for the three matrices in figure 1, re-
spectively



3.1 Protocol Description

The result of the Mix Agreement protocol is that all honest players either
agree on a mix allocation or they all abort the process. The below sim-
plified protocol is run simultaneously by all players after player discovery
is completed and secure network connections are established. At the ter-
mination of this protocol, if agreement is achieved, then each player uses
this mix allocation to execute the mix using a decentralized mix algo-
rithm such as CoinJoin or CoinShuffle.

Algorithm 1: Mix Allocation Agreement Protocol

input : i, player’s index
input : N , number of players
begin1

ExchangeInputs (i, N)2

Mi(1)← ComputeMixAllocation([v1, v2, . . . , vN ]);3

for rounds s = 1, 2, 3 do4

broadcast Mi(s) ;5

for ∀j 6= i do6

receive Mj(s) from player j;7

if ∃M = unique, most frequent value amongst8

{Mj(s)}j 6=i then
Mi(s + 1)←M9

end10

else abort;11

c(s)← count of M ;12

if c(s) ≤ 1
2
N then abort;13

if c(s) > 2
3
N then assume agreement on M ;14

end15

end16

if no agreement then abort;17

else ComputeCycles (M);18

end19

Note that agreement is not guaranteed from this protocol; any player
may abort before agreement is achieved to allow protection from denial-
of-service attacks. As such, it is not a solution to the Byzantine Generals



Problem. After aborting, a player can subsequently retry another mix
agreement with presumably different players.

3.2 Mix Allocation Computation

One technique for achieving Byzantine Agreement is to define a func-
tion that, when executed by honest players on inputs from all players,
deterministically returns the same value for each honest player.[2] The
key contribution of this work is the definition of such a function, Com-
puteMixAllocation(), for bitcoin mixes.

ComputeMixAllocation() is a deterministic, well-defined procedure
that takes an N×N matrix and returns a canonical mix allocation based
on its inputs. It is designed to return the same result for all honest players
and to be robust to factors such as different implementation language or
difference in computing environment/architecture.

Algorithm 2: ComputeMixAllocation

input : P = [pij], N ×N allocation priority matrix
output: M = [xij], N ×N allocation matrix
begin1

pairs← {(i, j) | i, j ∈ N}; // list of cell positions of P2

inventory← [n1, n2, . . . , nN ]; // num coins available3

capacity← [n1, n2, . . . , nN ]; // num coins needed4

sort pairs according to non-decreasing i;5

stable sort pairs according to non-increasing pij;6

for (i, j) ∈ pairs in order do7

xij ← min(capacityj, inventoryi);8

inventoryi ← inventoryi − xij;9

capacityj ← capacityj − xij;10

end11

return M = [xij]12

end13

ComputeMixAllocation() has the following properties:

1. The function runs in time O(N2 logN2), due to the sorting of N2

matrix cell positions.



2. The output matrix M has at most 2N non-zero entries. This is be-
cause for each iteration in the for loop, at least one of capacityj or
inventoryi gets annihilated, and this can happen at most 2N times.

3. The output is well-defined and robust in terms of consistency.

Below is an execution trace of ComputeMixAllocation() on [1, 2, 3] and

P =
[
0 5 10
6 0 9
7 8 0

]
. Since the result is reached by the end of iteration four,

iterations five through eight are omitted.

iteration (i, j) M inventory capacity

0

0 0 0
0 0 0
0 0 0

 [1, 2, 3] [1, 2, 3]

1 (1, 3)

0 0 1
0 0 0
0 0 0

 [0, 2, 3] [1, 2, 2]

2 (2, 3)

0 0 1
0 0 2
0 0 0

 [0, 0, 3] [1, 2, 0]

3 (3, 2)

0 0 1
0 0 2
0 2 0

 [0, 0, 1] [1, 0, 0]

4 (3, 1)

0 0 1
0 0 2
1 2 0

 [0, 0, 0] [0, 0, 0]

Fig. 3: Execution trace of ComputeMixAllocation().

3.3 Input Exchange

The algorithm ExchangeInputs exchanges inputs between the players and
allows each honest player to detect Byzantine faults during the inputs



exchange. Authenticated Byzantine agreement is used on the initial hash
value exchange to protect against denial of service attacks, and each
player first broadcasts a hash of his inputs to ensure that all players
commit their inputs before learning the inputs of other players.

The input exchange algorithm uses a two-step digitally signed broad-
cast scheme. In the first step, each player broadcasts his input hash
commitment value with a digital signature of the encrypted message. In
the second step, for each signed message received in step 1 that vali-
dates against the sender’s signature, each player relays (re-broadcasts)
the message, digitally signed by its private key. If the original message
did not validate against the sender’s signature, the relay broadcasts an
null message.

The network reliability, broadcast, and secure communication as-
sumptions allow each player to validate whether the sender sent the same
message to all peers. Each player performs the following validations in
order:

1. The relayed message must validate against the relay’s public key.
Otherwise, either the relay is at fault or there is a man-in-the-middle
attempt. The receiving player may abort or attempt to exclude the
relay.

2. The original message must validate against the sender’s public key.
Otherwise, the relay can be faulted; it should relay if and only if this
validation succeeded.

3. During decryption, the original message must MAC authenticate against
the symmetric key. Otherwise, the sender can be faulted; the sender’s
digital signature validated, so no third party could have broken the
MAC authentication of an otherwise proper cypher-text.

4. There should be a single, most frequent decrypted original message
(hash input commitment). Otherwise, the sender can be faulted. Given
that there are greater than N/2 honest players, the cypher-texts for
their relayed messages honestly reflect what the sender sent to them.
Therefore, if there is no most frequent original message, then it can
only be because the sender varied a sufficient number of its original
messages amongst the other players or sent a bad digital signature.

5. The subsequently sent input values should hash to the hash commit-
ment input value. Otherwise, the sender is faulted, clearly for the
same reasoning above.



6. The subsequently sent input values should meet the constraints 3, 4,
and 5 given in the next section. Likewise, the sender is faulted if this
is not the case.

Let pki be the public key of player i, ski be the secret key of player i,
H be a collision resistant hash function, and (S, V ) be a secure public-key
digital signature scheme.

Algorithm 3: ExchangeInputs

input : i, player’s index; ci, number of satoshis player i intends
to mix; N , number of players

begin1

vi ← GenerateInputs(i, N);2

mi ← H(ci, vi);3

broadcast mi || S(ski,mi);4

for ∀j 6= i do5

receive mj || S(skj,mj) from player j;6

if V (pkj,mj) = 1 then7

m′
i ← mj || S(skj,mj);8

broadcast m′
i || S(ski,m

′
i);9

end10

Qj = ∅;11

end12

for ∀j, k 6= i do13

receive mj || S(skj,mj) || S(skk,m
′
j);14

if V (pkk,m
′
j) = 1 then add mj to Qj;15

end16

for ∀j 6= i do17

if ∃ unique, most frequent value m in Qj then18

commitj ← m;
end19

broadcast ci, vi;20

for ∀j 6= i do21

receive vj from player j;22

if H(cj, vj) 6= commitj then abort;23

end24

end25



3.4 Input Generation

GenerateInputs() is a procedure that produces the player i’s input con-
tribution. It returns an integer vector vi = [vi1, vi2, . . . , viN ] such that

N∑
j=1

vij = C (3)

vij 6= 0, if i 6= j (4)

vii = 0 (5)

where C is an apriori known constant. Once the inputs vectors are ex-

changed, the players form an N ×N matrix P =

[ v1
v2
...
vN

]
that is the input

to ComputeMixAllocation(). P represents a prioritization of which pairs
ComputeMixAllocation() tries to match.

The significance of (3) is that it forces a trade-off for an active ad-
versary attempting to control the outcome. Further, the fact that the
inputs are generated in the blind means that an adaptive adversary does
not have the opportunity to tailor his inputs based on input of his peers.
The significance of (5) is that ComputeMixAllocation() prioritizes mix-
ing distinct players’ bitcoins rather than a player with himself.

The input vector, ideally, is generated uniformly over the space sat-
isfying the above using a pseudo-random number generator. The qual-
ity of randomness in a player’s contribution is at the discretion of the
player. That said, the honest player is incentivized to use a good pseudo-
random number generator, since doing so reduces the advantage a dis-
honest player has in knowing how their inputs will interact.

The constant C should be an integer sufficiently large such that the
expected number of collisions in inputs is low. This ensures that the pri-
oritization is determined primarily by the inputs, chosen by the players,
rather than the player ordering, chosen somehow during peer discovery.
By the Birthday Paradox analysis, C = 65, 536 is sufficient for mixes for
N up to a several hundred players. There is no cost in choosing a higher
value for C.

3.5 Decomposition Into Cycles

The mix allocation matrices returned by ComputeMixAllocation() have
equivalent representations as directed transaction graphs. Due to con-



straints (1) and (2), these graphs have a property known as flow conser-
vation.

Definition 2 (Flow Conservation) Flow conservation is the property
that for all vertexes, the sum of the weights flowing into the vertex is equal
to the sum of the weights flowing out of the vertex.

Any graph that has the flow conservation property can be decom-
posed into simple cycles that also have the flow conservation property.[[6]]
ComputeCycles() does this using Johnson’s well known graph algorithm.
Because mix allocation matrices have at most 2N non-zero entries, the
running time is O(N2). For example, the following graphs are decom-
posed into simple cycles.
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Fig. 4: Decomposition of 1(a) transaction graph.
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Fig. 5: Decomposition of 1(b) transaction graph.
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Fig. 6: Decomposition of 1(c) transaction graph.

Each of the simple cycles on the right hand side represent separate
mixes to be executed by the nodes of that cycle. The mix amount is the
weight that is in common between the edges of the cycle. These mixes
can be executed independently of each other, and because of the flow
conservation property of each cycle, the failure of any given cycle’s mix
does not pose an exposure risk to any players with respect to the other
mixes.
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