
Bitcoin-Compatible Virtual Channels
Lukas Aumayr

lukas.aumayr@tuwien.ac.at

TU Wien

Oğuzhan Ersoy

O.Ersoy@tudelft.nl

TU Delft

Andreas Erwig

andreas.erwig@tu-darmstadt.de

TU Darmstadt

Sebastian Faust

sebastian.faust@tu-darmstadt.de

TU Darmstadt

Kristina Hostáková

kristina.hostakova@tu-darmstadt.de

TU Darmstadt

Matteo Maei

matteo.maei@tuwien.ac.at

TU Wien

Pedro Moreno-Sanchez

pedro.sanchez@tuwien.ac.at

TU Wien

Siavash Riahi

siavash.riahi@tu-darmstadt.de

TU Darmstadt

ABSTRACT
Current permissionless cryptocurrencies such as Bitcoin suer from

a limited transaction rate and slow conrmation time, which hin-

ders their large scale adoption. Payment channels are one of the

most promising solutions to address these problems, as they al-

low two end-points of the channel to perform arbitrarily many

payments in a peer-to-peer fashion while uploading only two trans-

actions on the blockchain. This concept has been generalized into

payment-channel networks where a path of payment channels is

used to settle the payment between two users that might not share

a channel between them. However, this approach requires the ac-

tive involvement of each user in the path, making the system less

reliable (they might be oine), more expensive (they charge fees

per payment) and slower (intermediaries need to be actively in-

volved in the payment). To mitigate this issue, recent work has

introduced the concept of virtual channels, which involve inter-

mediaries only in the initial creation of a bridge between payer

and payee, who can later on independently perform arbitrarily

many o-chain transactions. Unfortunately, existing constructions

are only available for Ethereum, as they rely on its account model

and Turing-complete scripting language. The realization of virtual

channels in other blockchain technologies with limited scripting

capabilities, like Bitcoin, was considered so far an open challenge.

In this work, we present the rst virtual channel protocols that

are built on the UTXO-model and require a script language support-

ing only a digital signature scheme and a timelock functionality,

being thus backwards compatible with virtually every cryptocur-

rency, including Bitcoin. We formalize the security properties of

virtual channels as an ideal functionality in the Universal Com-

posability framework, and prove that our protocol constitutes a

secure realization thereof. We have prototyped and evaluated our

protocol on the Bitcoin blockchain, demonstrating its eciency:

for n sequential payments, they require an o-chain exchange of

11 + 2 · (n − 1) transactions or a total of 4219 + 695 · (n − 1) bytes,
with no on-chain footprint in the optimistic case.

1 INTRODUCTION
Permissionless cryptocurrencies such as Bitcoin [19] have spurred

increasing interest over the last years, putting forward a revolution-

ary, from both a technical and economical point of view, payment

paradigm. Instead of relying on a central authority for transaction

validation and accounting, Bitcoin relies at its core on a decentral-

ized consensus protocol for these tasks. The consensus protocol

establishes and maintains a distributed ledger that tracks each sin-

gle transaction, thereby enabling public veriability. This approach,

however, severely limits the transaction throughput and conrma-

tion time, which in the case of Bitcoin is around ten transactions per

second, and conrmation of an individual transaction can take up

to 60 minutes. This is in stark contrast to central payment providers

that oer instantaneous transaction conrmation and support or-

ders of magnitude higher transaction throughput. These scalability

issues hinder permissionless cryptocurrencies such as Bitcoin from

serving a growing base of payments.

Within other research eorts [6, 14, 23], payment channels [1]

have emerged as one of the most promising scalability solution,

being currently deployed in Bitcoin as the so-called Lightning net-

work [21], which at the time of writing hosts deposits worth more

than 7M USD. A payment channel enables an arbitrary number of

payments between users while committing only two transactions

onto the blockchain. In a bit more detail, a payment channel be-

tween Alice and Bob is rst created by a single on-chain transaction

that deposits Bitcoins into a multi-signature address controlled by

both users. The parties additionally ensure that they can get their

Bitcoins back at a mutually agreed expiration time. They can then

pay to each other (possibly many times) by exchanging authenti-

cated o-chain messages that represent an update of their share of

coins in the multi-signature address. The payment channel is nally

closed when a user submits the last authenticated distribution of

Bitcoins to the blockchain (or after the channel has expired).

Interestingly, it is possible to leverage a path of opened payment

channels from the sender to the receiver with enough capacity to

settle their payments o-chain, thereby creating a payment chan-

nel network (PCN) [17, 21]. Assume that Alice wants to pay Bob

and they do not have a payment channel between each other but

rather are connected through an intermediary user Ingrid. Upon

a successful o-chain update of the payment channel between Al-

ice and Ingrid, the latter would update her payment channel with

Bob to make the overall transaction eective. The key challenge

is how to perform the sequence of updates atomically in order to

prevent Ingrid from stealing the money from Alice without paying

to Bob. The standard technique for constructing payment channel

networks requires the intermediary (e.g., Ingrid in the example

from above) to be actively involved in each payment. This has

1

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

the disadvantage of making the system less reliable (e.g., Ingrid

might have to go oine), increasing the latency of each payment,

augmenting its costs since each intermediary charges a fee per

transaction, and revealing possibly sensitive payment information

to the intermediaries [15, 20, 22].

An alternative approach for connecting multiple payment chan-

nels was introduced by Dziembowski et al. [11]. They propose the

concept of virtual channels – an o-chain protocol that enables

direct o-chain transactions without the involvement of the inter-

mediary. Following our running example, a virtual channel can

be created between Alice and Bob using their individual payment

channels with Ingrid. Ingrid must collaborate with Alice and Bob

only to create such virtual channel, which can then be used by Alice

and Bob to perform arbitrarily many o-chain payments without

involving Ingrid. Virtual channels oer strong security guaran-

tees: each user does not lose money even if the others collude. A

salient application of virtual payment channels are so called pay-

ment hubs [11]: since establishing a payment channel requires a

deposit and active monitoring, the number of channels a user can

establish is limited. With payment hubs [11], users have to establish

just one payment channel with the hub and can then dynamically

open and close virtual channels between each other on demand.

Interestingly, since in a virtual channel the hub is not involved in

the individual payments, even transactions worth fractions of cents

can be carried out with low latency.

The design of secure virtual channels is extremely challenging,

since, as previouslymentioned, it has to account for all possible com-

promise and collusion scenarios. For this purpose, existing virtual

channel constructions [11] require smart contracts programmed

over a Turing-complete language and the account model, as sup-

ported in Ethereum. This signicantly simplies the construction,

since the deposit of a channel and its distribution between the end-

points are stored in memory and can be programmatically updated,

but it limits in fact the deployment of virtual channels to Ethereum.

It was an open question until now if virtual channels could be

implemented at all in UTXO-based cryptocurrencies featuring only

a limited scripting language, like Bitcoin and virtually all other

permissionless cryptocurrencies. In this setting, the channel de-

posit and its distribution between the end-points is represented

by past transactions, which are persistent by nature, and the up-

date of both the deposit and the distribution requires sophisticated

cryptographic techniques and carefully orchestrated transaction

protocols, as opposed to mere programming.

1.1 Our contributions
In this work, we give a positive answer to the above question, de-

veloping novel protocols for building a virtual channel hub over

Bitcoin and providing a comprehensive formal analysis of our con-

structions. Concretely, our contributions are summarized below.

• We present the rst protocols for virtual channel hubs that

are built on the UTXO-model and require a scripting language sup-

porting only a digital signature scheme and timelock functionality,

being thus backwards compatible with virtually every cryptocur-

rency, including Bitcoin. Since in the Lightning network currently

only 10 supernodes are involved in more than 25% of all channels,

our technique can be used to reduce the load on these nodes, and

thereby help to reduce latency.

• Weoer two constructions that dier onwhether (i) the virtual

channel is guaranteed to stay o-chain for an encoded validity

period, or (ii) the intermediary Ingrid can decide to ooad the

virtual channel (i.e., convert it into a direct channel between Alice

and Bob, which requires various on-chain transactions), thereby

removing its involvement in it. These two variants support dierent

business and functionality models, analogous to non-preemptible

and preemptible virtual machines in the cloud setting, with Ingrid

playing the role of the service provider.

• We formalize the security properties of virtual channels as

an ideal functionality in the UC framework [7], proving that our

protocol constitutes a secure realization thereof. Since our virtual

channels are built in the UTXO-model, our ideal functionality and

formalization signicantly diers from earlier work [11].

• We evaluate our protocol and show that for n sequential pay-

ments, they require an o-chain exchange of 11 + 2 · (n − 1) trans-
actions or a total of 4219 + 695 · (n − 1) bytes, as compared to

8 · n transactions or 3026 · n bytes when Ingrid routes the payment

actively through the PCN. We have interacted with the Bitcoin

blockchain to store the required transactions, demonstrating the

backwards compatibility of our protocol.

As a result of this work, we enable for the rst time in Bitcoin o-

chain payments between users connected by payment channels via

a hub without requiring the presence of any intermediary, thereby

increasing the reliability and, at the same time, reducing the latency

and costs of Bitcoin PCNs.

2 BACKGROUND & SOLUTION OVERVIEW
In this section, we rst introduce the notation used in this paper. We

then overview the basics of payment and virtual channels, referring

the reader to [3, 11, 17, 18] for further details. We nally overview

our solution for Bitcoin-compatible virtual channels.

2.1 Notation
We adopt the notation from [4] and we shorty review it below.

Attribute tuples. Let T be a tuple of values, we refer to these

values as attributes. Each attribute in T is identied by a unique

keyword, e.g., ar and referred to as T .ar.

Outputs and transactions. We focus on blockchains based on the

Unspent Transaction Output (UTXO) model, such as Bitcoin. In the

UTXO model, coins are held in outputs of transactions. Formally, an

output θ is an attribute tuple (θ .cash, θ .φ), where θ .cash denotes

the amount of coins associated to the output and θ .φ denotes the

conditions that need to be satised in order to spend the output. The

condition θ .φ can contain any script supported by the considered

blockchain. We say that a user P controls or owns an output θ if

θ .φ contains only a signature verication w.r.t. the public key of P .
In a nutshell, a transaction in the UTXOmodel, maps one or more

existing outputs to a list of new outputs. The existing outputs are

called transaction inputs. Formally, a transaction tx is an attribute

tuple and consists of the following attributes (tx.txid, tx.Input,
tx.Output, tx.TimeLock, tx.Witness). The attribute tx.txid ∈ {0, 1}∗

is called the identier of the transaction. The identier is calculated

2

Bitcoin-Compatible Virtual Channels

as tx.txid := H([tx]), whereH is a hash function which is modeled

as a random oracle and [tx] is the body of the transaction dened as

[tx] := (tx.Input, tx.Output, tx.TimeLock). The attribute tx.Input
is a vector of strings which identify the inputs of tx. Similarly, the

outputs of the transaction tx.Output is the vector of new outputs

of the transaction tx. The attribute tx.TimeLock ∈ N ∪ {0} denotes
the absolute time-lock of the transaction, which intuitively means

that transaction txwill not be accepted by the blockchain before the
round dened by tx.TimeLock. The time-lock is by default set to 0,

meaning that no time-lock is in place. Lastly, tx.Witness ∈ {0, 1}∗

called the transaction’s witness, contains the witness of the trans-

action that is required to spend the transaction inputs.

We use charts in order to visualize the transaction ow in the rest

of this work in order to improve readability and provide a road map

for the protocol execution. We rst explain the notation used in the

charts and how they should be read. Transactions are shown using

rectangles with rounded corners. Double edge rectangles are used to

represent transactions that are already published on the blockchain.

Single edge rectangles are transactions that could be published on

the blockchain but they are not yet. Each transaction contains one

or more boxes (i.e., with squared corners) that represent the outputs

of that transaction. The amount of coins allocated to each output is

written inside the output box. In addition, the output condition is

written on the arrow coming from the output.

In order to be concise, we use the following abbreviations for

the frequently used conditions. Most outputs can only be spent by

a transaction which is signed by a set of parties. In order to depict

this condition, we write the public keys of all these parties below
the arrow. Other conditions are written above the arrow. In other

words, the “owners” of the output are identied given the public

keys below the arrows and the additional spending conditions are

given above the arrows. The output script can have a relative time

lock i.e. a condition that is satised if and only if at least t rounds
are passed since the transaction was published on the blockchain.

We denote this output condition writing the string “+t” above the
arrow. In addition to relative time locks, an output can also have an

absolute time lock, i.e., a condition that is satised only if t rounds
elapsed since the blockchain was created and the rst transaction

was posted on it. We write the string “> t” above the arrow for

this condition. Lastly, an output’s spending condition might be a

disjunction of multiple conditions. In other words it can be written

as φ = φ1 ∨ · · · ∨φn for some n ∈ N where φ is the output script. In

this case, we add a diamond shape to the corresponding transaction

output. Each of the subconditionsφi is thenwritten above a separate
arrow. An example is given in Figure 1.

2.2 Payment channels
A payment channel enables arbitrarily many transactions between

users while requiring only two on-chain transactions. The cor-

nerstone of payment channels is depositing coins into an output

controlled by two users, who then authorize new deposit balances in

a peer-to-peer fashion while having the guarantee that all coins are

refunded at a mutually agreed time. In a bit more detail, a payment

channel has three operations: open, update and close. We necessarily

keep the description short and refer to [4, 14] for further reading.

tx

x1

x2

> t2

pkB
+t3

pkA , pkB

tx′ x

φ1

φ2

φ3

Figure 1: (Left) Transaction tx is published on the blockchain.
The output of value x1 can be spent by a transaction signed
w.r.t. pkB after round t2, and the output of value x2 can be
spent by a transaction signed w.r.t. pkA and pkB but only if at
least t rounds passed since txwas accepted by the blockchain.
(Right) Transaction tx′ is not published on the ledger. Its
only output, which is of value x , can be spent by a transac-
tionwhose witness satises the output conditionφ1∨φ2∨φ3.

Open:Assume that Alice and Bobwant to create a payment channel

with an initial deposit of xA and xB coins respectively. For that,

Alice and Bob agree on a funding transaction (that we denote by

TXf) that sets as inputs two outputs controlled by Alice and Bob

holding xA and xB coins respectively and transfers them to an

output controlled by both Alice and Bob. When TXf is added to the

blockchain, the payment channel is eectively open.

Update: Assume now that Alice wants to pay α ≤ xA coins to Bob.

For that, they create a new commit transaction TXc representing

the commitment from both users to the new channel state. The

commit transaction spends the output of TXf into two new outputs:

(i) one holding xA − α coins controlled by Alice; and (ii) the other

holding xB+α coins controlled by Bob. Finally, parties exchange the

signatures on the commit transaction. At this point, Alice (resp. Bob)

could add TXc to the blockchain. Instead, they keep it locally in their
memory and overwrite it when they agree on another commitment

transaction TXc representing a newer channel state. This, however,

leads to several commitment transactions that can possibly be added

to the blockchain. Since all of them are spending the same output,

only one can be accepted by the blockchain. Since it is impossible to

prevent a malicious user from publishing an old commit transaction,

payment channels require amechanism that punishes such behavior.

Such mechanism is typically called revocation and enables that an

honest user can take all the coins locked in the channel if the

dishonest user publishes an old commitment transaction.

Close: Assume nally that Alice and Bob no longer wish to use the

channel. Then, they can collaboratively close the channel by sub-

mitting the last commitment transaction TXc that they have agreed

upon to the blockchain. After it is accepted, the coins initially locked

at the channel creation are redistributed to both users according

to the last agreed state. As aforementioned, if one of the users sub-

mits an old commitment transaction instead, the counterparty can

punish the former through the revocation mechanism.

The Lightning Network [21] denes the state-of-the-art payment

channel construction for Bitcoin. A recent work [4] proposes gen-
eralized channels, an alternative construction for payment channels

(see Figure 2) that reduces the communication complexity both on-

chain and o-chain in case of revocation while providing the same

functionality as the Lightning Network and extending it to any

transaction that can be expressed with Bitcoin scripting language.

We instantiate our virtual channel protocol within the framework of

generalized channels for eciency and generality reasons, but the

3

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

TXf

xA + xB

TXc

xA + xB TXs ...

x1

xn

Punishment for A

Punishment for B

pkA , pkB

pkB

ϱA

pkA

ϱB

+∆

pkA , pkB

φ1

φn

Figure 2: A generalized channel in the state ((x1,φ1),
. . . , (xn,φn)). The value of ∆ upper bounds the time needed
to publish a transaction on a blockchain. The condition ϱA
represents the verication ofA’ revocation secret and ϱB rep-
resents the verication of B’ revocation secret.

same ideas could be integrated in the original Lightning Network

construction too. To avoid confusion with the term channel, we

hereby use the term ledger channel to denote a generalized channel

as described in [4].

Limitations of ledger channels A ledger channel enables pay-

ments between the two channel counterparties only. To overcome

this limitation, the Lightning Network integrates a cryptographic

protocol for routing payments between users not sharing a ledger

channel (say Alice and Bob) but being instead connected through an

intermediary user (Ingrid), thereby enabling a channel network [17].

This approach has unfortunately several drawbacks: (i) high-cost
as Ingrid charges a fee for each payment between Alice and Bob;

(ii) low reliability because the success of payments relies on Ingrid

being online; and (iii) low privacy as Ingrid observes each payment

between Alice and Bob. Virtual channels [10] address these prob-
lems, allowing Alice and Bob to open a (virtual) channel between

each other, along which payments can be directly routed bypassing

Ingrid, who is only required to participate in the initial creation of

the virtual channel and can otherwise be oine and anyway does

not see any payment routed on the virtual channel between Alice

and Bob. However, the construction in [10] builds upon the account

model (instead of UTXO) and relies on Turing-complete smart con-

tracts, and it is thus not supported in Bitcoin or virtually any other

cryptocurrency. We show for the rst time in this work that virtual

channels do not require Turing-complete smart contracts, devising

a construction that only makes use of a limited set of operations, all

of them supported in the current Bitcoin scripting language, while

providing the security guarantees of interest.

2.3 Overview of our solution
A virtual channel between Alice and Bob requires an intermediary

(say Ingrid) and it is constructed on top of two ledger channels,

namely, the ledger channels Alice-Ingrid and Ingrid-Bob. The cor-

nerstone of our approach is to construct the virtual channel as a

normal ledger channel with the only but key dierence that its

funding transaction is not funded directly by a transaction already

published on the blockchain but rather by coins from the current

state of the two underlying ledger channels. Informally speaking,

one can thus see a virtual channel as a “ledger channel on top of

two ledger channels”.

The key challenge is thus to design the virtual channel funding

mechanism in such a way that the involved honest users never lose

coins. Indeed, some parties might misbehave but, in contrast to

standard ledger channels who rely on funding transactions known

to the two end-points, virtual channels rely on funding transactions

from the two underlying ledger channels, and neither Alice nor

Bob have control over both of them.

This opens the door to attacks and collusion scenarios that are

not present in the case of standard payment channels. To illustrate

this, assume that Alice and Bob opened a virtual channel where

Alice contributed x coins from the ledger channel Alice-Ingrid and

Bob contributedy coins from the ledger channel Ingrid-Bob. Further

assume that after several payments between Alice and Bob, the

current balance of the virtual channel is such that Bob holds all x+y
coins. At this point, Alice could collude with Ingrid and close their

ledger channel into a state other than the one that contributed x
coins to the virtual channel. Bob cannot longer publish the funding

transaction of the virtual channel (i.e., the required inputs are not

on a blockchain transaction), eectively losing the balance of x +y
coins. A similar situation can be considered where Alice loses coins

from the virtual channel when Bob and Ingrid collude.

To solve this problem, we design a novel 3-party synchronization

protocol that compensates Alice or Bob if they try to publish the

virtual channel funding transaction honestly and this cannot be

done because one of the ledger channels has been maliciously

updated or closed.

In particular, we have two dierent designs for the 3-party syn-

chronization. Assume that Alice and Bob have opened a virtual

channel with a capacity of c coins. Both protocols have in common

that Ingrid must also contribute c coins as collateral to be able to
punish her when colluding with any of the other users, that is, Alice

or Bob. The two protocols, however, dier in the operations to of-
oad the virtual channel. Given that, we rst describe the ooading

of a virtual channel and then overview our two designs.

Virtual channel oload. The ooad of a virtual channel is its

conversion into a ledger channel, meaning that its funding trans-

action is published on-chain. This requires two steps. First, close

the underlying ledger channels to publish the inputs required for

the funding transaction of the virtual channel on the blockchain.

Second, publish the funding transaction itself.

Our two designs dier in the role that Ingrid plays during the of-

oad of a virtual channel between Alice and Bob. In the rst design,

Ingrid has to be proactive and she is responsible for ooading the

virtual channel at any time. In the second design, no one except

for Alice can ooad the virtual channel before a certain validity
timeout. Given this structural dierence, we tag this second design

as virtual channels with validity (VC-V) and the rst design as virtual
channels without validity (VC-NV).

These two designs aremeant to support dierent businessmodels

for virtual channels. On the one hand, similar to preemptible virtual

machines in cloud services, VC-NV allows Ingrid, which can be seen

as the service provider in virtual channels, to ooad the virtual

channel on her own and unilaterally. Ingrid may do so to get her

collateral back (e.g., to reuse it in a nancially more protable or

more active virtual channel). We note that, if they wish, both Alice

and Bob can also ooad their virtual channel if Ingrid does not do

so. On the other hand, similar to non-preemptible virtual machines,

4

Bitcoin-Compatible Virtual Channels

TXf

c

c + f

pkA , pkB
I

pkI

c + f /2

TXAs

pkA , pkB , pkI

A
+(T + 4∆)

pkA

c + f /2

TXBs

pkA , pkB , pkI

B
+(T + 4∆)

pkB

(a) Funding of a virtual channel γ without validity.

TXf

c

f /2

pkA , pkB

TX
refund

c + f

pkI
I

pkI

c + f /2

TXAs

pkA , pkI

I
> γ .val

pkI

c + f /2

TXBs pkI , pkB

B
> γ .val + 2∆

pkB

(b) Funding of a virtual channel γ with validity γ .val.

Figure 3: Funding of virtual channel. In both gures, c :=

γ .cash, f := γ .fee, A := γ .Alice, B := γ .Bob and I := γ .Ingrid.

VC-V gives Alice a quality of service guarantee, i.e., her virtual

channel cannot be ooaded during the complete validity period.

In practice, as Ingrid does not have the capability of recovering her

collateral before validity, she might charge a higher fee to Alice in

the virtual channel creation process.

We now give a more detailed overview of both designs, focusing

in particular on the transactions required to open a virtual channel

in both cases, which constitutes their cornerstone.

3-party synchronization for VC-NV. In this approach (illus-

trated in Figure 3a) the funding transaction of the virtual channel

TXf takes as input both the ledger channel Alice-Ingrid TXAs and

the ledger channel Ingrid-Bob TXBs. Both ledger channels contribute

a total of 2c + f coins so that c are later used to setup the virtual

channel and the rest c + f are used as collateral from Ingrid plus

the fee to provide the service for Alice and Bob.

In the honest case, Ingrid can publish both TXAs and TXBs on the

blockchain, thereby enabling TXf to be published, eventually letting
Ingrid get her collateral back from the output c+ f in TXf, and Alice
and Bob the coins reected in the last state of the virtual channel, as

enforced by the subsequent protocol operations. If Ingrid colludes

with Alice (the case with Bob is symmetric) and decides not to

publish TXAs as expected, Bob can get compensated by sending the

c + f /2 coins from TXBs to himself and on his own after T + 4∆
rounds. This timeout is set so that an honest Ingrid can the funding

transaction TXf before.
3-party synchronization for VC-V. In this approach (illustrated

in Figure 3b) the funding transaction of the virtual channel TXf
takes as input only TXAs while the refund of the collateral from

Ingrid as encoded in TX
refund

depends on both TXBs and TXf itself.

Note that, as in the previous design, the virtual channel is funded

with c coins while Ingrid is able to recover c + f coins.

Intuitively, this design allows Alice to publish TXf on her own

which in turn lets Ingrid recover her collateral on her own as well.

In a bit more detail, Alice can publish TXAs and TXf, thereby letting

Ingrid publish TXBs and TX
refund

. This design also diers in the

handling of the dishonest case. Assume that Alice is malicious

and does not publish TXf before the pre-agreed validity period

(val) expires, then Ingrid and Bob can punish Alice and get their

coins back. In particular, Ingrid can get the coins from TXAs after val.
Similarly, Bob can take the coins from TXBs after val + 2∆ rounds.

Similar to our design without validity, the timeout val + 2∆ gives

Ingrid enough time to claim her refund if TXf is published.
Arbitrary funds in ledger channels. In the high level overview

given above, we assume that the ledger channels Alice-Ingrid and

Ingrid-Bob have the exact amount of coins that are needed for the

virtual channel Alice-Bob which is in practice quite unlikely. Let us

stress that this assumption is made just to simplify the exposition as

it can avoided using the channel splitting technique discussed in [4].

This means that before constructing the virtual channel Alice-Bob,

parties would rst split each underlying ledger channel o-chain

in two channels: (i) one would contain the exact amount of coins

for the virtual channel and (ii) the other one would contain the

remaining coins.

3 VIRTUAL CHANNELS
3.1 Denitions and security model

Security model. We formally model the security of our virtual

channel constructions using a synchronous version of the global

UC framework (GUC) [8]. Financial transactions are handled by a

blockchain which we model as a global ideal functionality L̂(∆, Σ).
The parameter ∆ upper bounds on the blockchain delay (number of

rounds it takes to publish a transaction) and Σ denes the signature

scheme used by the blockchain. We denote by P the set of all parties

participating in the protocols considered in this work. For more

details about our model, we refer the reader to Appendix B.

Channels. We briey recall some notation and denition for

generalized channels as presented in [4] and extend the denition

to generalized virtual channels. In order to make the distinction

between the two types of channels, we call the former generalized

ledger channel (or ledger channels for short).
A generalized ledger channel is dened as a tuple γ := (γ .id,

γ .Alice,γ .Bob,γ .cash,γ .st), where γ .id ∈ {0, 1}∗ is the identier
of the channel, γ .Alice,γ .Bob ∈ P are the identities of the par-

ties using the channel, γ .cash ∈ R≥0 is a nite precision real

number that represents the total amount of coins locked in this

channel and γ .st = (θ1, . . . , θn) is the state of the channel. This

state is composed of a list of outputs. Recall that each output θi
has two attributes: the output value θi .cash ∈ R≥0 and the out-

put condition θi .φ : {0, 1}
∗ × N × N → {0, 1}. For convenience,

we dene a set γ .endUsers := {γ .Alice,γ .Bob} and a function

γ .otherParty : γ .endUsers→ γ .endUsers, which on input γ .Alice
outputs := γ .Bob and on input γ .Bob returns γ .Alice.

A generalized virtual channel (or just virtual channel for short) is
dened as a tuple γ := (γ .id,γ .Alice,γ .Bob,γ .cash,γ .st,γ .Ingrid,

5

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

γ .subchan,γ .fee,γ .val). The attributes γ .id,γ .Alice,γ .Bob,γ .cash,
γ .st are dened as in the case of ledger channels. The additional

attribute γ .Ingrid ∈ P denotes the identity of the intermediary
of the virtual channel γ . The set γ .endUsers and the function

γ .otherParty are dened as before. Additionally, we also dene the

setγ .users := {γ .Alice,γ .Bob,γ .Ingrid}. The attributeγ .subchan is
a function mapping γ .endUsers to a channel identier; namely, the

value γ .subchan(γ .Alice) refers to the identier of the channel be-

tween γ .Alice and γ .Ingrid; similarly, the value γ .subchan(γ .Bob)
refers to the identier of the channel between γ .Bob and γ .Ingrid.
The value γ .fee ∈ R≥0 represents the fee charged by γ .Ingrid for

her service of being an intermediary of γ . Finally, we introduce the
attribute γ .val ∈ N ∪ {⊥}. If γ .val , ⊥, then we call γ a virtual
channel with validity and the value of γ .val represents the round
number until which γ remains an open virtual channel. Channels

with γ .val = ⊥ are called virtual channels without validity.

Rooted transactions. UTXO based blockchains can be viewed as

a directed acyclic graph, where each node represents a transaction.

Nodes corresponding to transactions txi and txj are connected with
an edge if at least one of the outputs of txi is an input of txj , i.e, txi is
(partially) funding txj . We denote the transitive reachability relation

between nodes, which constitutes a partial order, as ≤. We say

that a transaction tx is rooted in the set of transactions R if (1)

∀txi ≤ tx.∃txj ∈ R.txj ≤ txi ∨ txi ≤ txj , (2) ∀txi , txj ∈ R.txi ,
txj , txi � txj , (3) tx < R. Intuitively, this denition allows us to

argue that certain set transactions fully funds the transaction tx.
Clearly, the set of transactions dened by the tx.Input (if they are

not connected) does satisfy such denition. However, there are

many other sets that do so as well, e.g. the set of all inputs of all

transaction dene by tx.Input. An example is given in Appendix A.

3.2 Security and eciency goals
We briey recall the properties of generalized channels as dened by

the ideal functionality in [4] and we informally state the additional

properties that we require from virtual channels.

Security goals. Generalized ledger channels must satisfy three

security properties, namely (S1) Consensus on creation, (S2) Con-

sensus on update and (S3) Instant nality with punish. Intuitively,

properties (S1) and (S2) guarantee that successful creation of a new

channel as well as successful update of an existing channel happens

if and only if both parties agree on the respective action. Property

(S3) states that if a channel γ is successfully updated to the state

γ .st and γ .st is the last state that the channel is updated to, then

an honest party P ∈ γ .endUsers has the guarantee that either this
state can be enforced on the ledger or P can enforce a state where

she gets all the coins locked in the channel. By saying that the state

st is enforced on the ledger we mean that a transaction with this

state appears on the ledger.

Since virtual channels are generalized channels whose funding

transaction is not posted on the ledger yet, the above stated prop-

erties should hold for virtual channels as well with a subtle but

important dierence: the creation of a virtual channel involves

three parties (Alice, Ingrid and Bob) and hence consensus on cre-

ation for virtual channels can only be fullled if all three parties

agree on the creation. In addition to the above properties, virtual

channels should also satisfy the following properties:

(V1) Balance security If γ is a virtual channel and γ .Ingrid is hon-

est, she never loses coins, even if γ .Alice and γ .Bob collude.

(V2) Oload with punish If γ is a virtual channel without valid-
ity (VC-NV), then γ .Ingrid is either able to transform γ to a ledger

channel or she gets nancially compensated.

(V3)Validity with punish In a virtual channel γ with validity (VC-
V), γ .endUsers have the guarantee that γ remains a virtual channel

until round γ .val or the honest parties get nancially compensated.

Additionally, γ .Ingrid has the guarantee that γ will be closed before

γ .val or she gets nancially compensated.

We rst note that the instant nality with punish property (S3)

does not provide any guarantees for Ingrid < γ .endUsers, and hence
we need to dene (V1) for virtual channels. In addition, properties

(V2) and (V3) point out the main dierence between VC-V and

VC-NV. In a VC-NV γ , Ingrid is able to free her collateral from γ at

any time by transforming the channel between Alice and Bob from

a virtual channel to a ledger channel. Instead, in a VC-V γ , each
honest party in γ .endUsers is guaranteed that either γ is closed at

latest in round γ .val or the party gets nancially compensated from

the underlying ledger channels.

Eciency goals. Lastly, we dene the following eciency goals:

(E1) Constant round creation Successful creation of a virtual

channel takes constant number of rounds.

(E2) Optimistic update For a channel γ , this property guaran-

tees that in the optimistic case when both parties in γ .endUsers
are honest, a channel update takes constant number of rounds.

(E3) Optimistic closure In the optimistic case when all parties in

γ .users are honest, the closure of a virtual channel takes constant
number of rounds.

Let us stress that property (E2) is common for all o-chain chan-

nels (i.e. both ledger and virtual channels). The properties (E1) and

(E3) capture the additional property of virtual channels that in

the optimistic case when all parties behave honestly, the entire

life-cycle of the channel is performed completely o-chain.

We compare the security and eciency goals for dierent types

of channels in Table 1.

3.3 Ideal functionality for virtual channels
We are now prepared to dene the ideal functionality FV that de-

scribes the ideal behavior of both ledger and virtual channels. Hence

it can be viewed as an extension of the ledger channel functional-

ity FL dened in [4] (we recall this functionality in Appendix C

for completeness). The functionality FV is parameterized by a pa-

rameter T which upper bounds the maximum number of o-chain

communication rounds between two parties required for any of the

L-Security V-Security Eciency

S1 – S3 V1 V2 V3 E1 E2 E3

L 3 - - - 7 3 7

VC-V 3 3 7 3 3 3 3

VC-NV 3 3 3 7 3 3 3

Table 1: Comparison of security and eciency goals for
ledger channels (L), virtual channels with validity (VC-V)
and virtual channels without validity (VC-NV).

6

Bitcoin-Compatible Virtual Channels

operations in FL . The ideal functionality FV communicates with

the parties P, the simulatorS and the ledger L̂. It maintains a chan-

nel space Γ where it stores all currently opened ledger channels

(together with their funding transaction tx) and virtual channels.

Before we dene FV formally, we describe it on a high level.

Messages related to ledger channels. For any message related to a

ledger channel, FV behaves as the functionality FL . That is, the cor-

responding code of FL is executed when a message about a ledger

channel γ is received. For the rest of this section, we discuss the

behavior of FV upon receiving a message about a virtual channel.

Create. The creation of a virtual channel is equivalent to syn-

chronously updating two ledger channels. Therefore, if all parties,

namely γ .Alice, γ .Bob and γ .Ingrid, follow the protocol, i.e., update

their ledger channels correctly, a virtual channel is successfully

created. This is captured in the “All agreed” case of the functional-

ity. Hence, if all parties send the CREATE message, the functionality

returns CREATED to γ .users, keeps the underlying ledger channels
locked and adds the virtual channel to its channel space Γ. We note

that the simulator is responsible for informing the functionality

whether corrupted parties behave honestly and follow the protocol.

On the other hand, the creation of the virtual channel fails if

after some time at least one of the parties does not send CREATE
to the functionality. There are three possible situations in which

the creation can fail. First, the update is peacefully rejected and

parties simply abort the virtual channel creation (e.g., γ .Ingrid
rejects updating her channel upon receiving the update request).

Second, both channels are forcefully closed, in order to prevent a

situation where one of the channels is updated and the other one is

not (e.g., the parties start the update procedure of their channels,

but γ .Alice or γ .Bob aborts the procedure prematurely). Finally the

functionality waits ∆ rounds and checks if γ .Ingrid has published

the old state of one of her channels to the ledger. If not it forcefully

closes the ledger channels using the new state. This models the case

where γ .Ingrid behaves maliciously and causes a situation where

she can publish both the old and new states of the ledger channels,

while γ .Alice or γ .Bob can only publish the new state (e.g., in case

γ .Alice revokes her previous state but γ .Ingrid does not).

The property (S1) is guaranteed because the parties inγ .endUsers
only output CREATED if message CREATE was received from all par-

ties, and property (E1) holds since the functionality waits at most a

constant number of rounds for all the CREATED messages.

Update. Since a virtual channel can be seen as a ledger chan-

nel where the funding transaction is not published on the ledger,

the update procedure for the virtual channel works in the same

way as for ledger channels. Hence, also the functionality code in

this operation is the same as FL , with the only dierence that in

case of any disputes during the execution, the functionality calls

V–ForceClose instead of L–ForceClose (therefore the properties

(S2), (E2) for virtual channels follow directly from (S2), (E2) of the

ledger channels functionality).

Ooad. The ooading mechanism allows the parties to trans-

form a virtual channel into a ledger channel. Upon completion, I ’s
collateral would be unlocked and she will receive a fee for facili-

tating the virtual channel. In addition the remaining funds in the

underlying ledger channels will nance the funding transaction of

virtual channel on the ledger. We consider two types of ooading

depending on whether the virtual channel is with or without valid-

ity. In the rst case, ooading is initiated by one of the γ .endUsers
before round γ .val, while for channels without validity, Ingrid can

initiate the ooading at any time. We note that for channels with-

out validity if both parties in γ .endUsers cooperate, they also can

ooad the virtual channel, while one party alone does not have the

power to do so. Yet in practice, if both parties cooperate and behave

honestly, there is no situation in which these parties would have to

ooad. Since ooading a virtual channel requires closure of the

underlying subchannels, the functionality merely checks if either

funding transaction of γ .subchan has been spent until roundT1+∆.
If not, the functionality outputs a message (ERROR). Similarly to

[4], the ERROR message represents an impossible situation which

should not happen as long as one of the parties are honest.

Close - channels without validity. Similar to the Create procedure,

closing a virtual channel corresponds to a synchronous update of

two ledger channels. Upon receiving (CLOSE, id) from all parties

in γ .users within T1 ≤ 6T rounds (where the exact value of T1 is
specied by S), all parties have peacefully agreed on closing the

virtual channel, which is indicated by the “All Agreed” case. Suppose

γ was in state γ .st = {(cA, One–SigA), (cB , One–SigB)}, meaning

that Alice := γ .Alice has cA coins and Bob := γ .Bob has cB coins. In

this case the functionality updates the underlying sub-channels α =
γ .subchan(Alice) by assigning cA coins to Alice and cB +γ .fee/2 to
γ .Ingrid. Similarly in the sub-channel β = γ .subchan(Bob) party
Bob gets assigned cB coins, while γ .Ingrid receives cA + γ .fee/2.
When the update of Γ is completed, the ideal functionality sends

CLOSED to all users. Due to the peaceful closure in this “All Agreed”

case, the functionality denes property (E3).

We put a restriction on the state of the virtual channel in which

peaceful closure is possible. Namely, we assume that peaceful clo-

sure is only possible for states that merely assign the coins in γ
between γ .Alice and γ .Bob. That is, we do not allow any peaceful

closure while the state of γ still contains more complex objects like

conditional payments or another virtual channel.

If one of the messages (CLOSE, id) was not received within T1
rounds (“Wait for others” case), then the closing procedure failed

and the functionality distinguishes the following two cases. In the

rst case, the update procedure of an underlying ledger channel was

aborted prematurely by γ .Alice or γ .Bob. In that case the virtual

channel is forcefully closed. In the second case, γ .Ingrid behaves

maliciously and refuses to revoke her state during the update of

either one of the underlying ledger channels. Like in the virtual

channel creation, the functionality waits ∆ rounds and checks if

γ .Ingrid has published the old state to the ledger. If not it executes

forceful closure of the ledger channels using the new state.

Close - channels with validity. The close procedure of a virtual
channel with validity starts in round γ .val − (4∆ + 7T) such that

there is enough time to forcefully close the channel if necessary.

If within T1 ≤ 6T rounds (where the exact value of T1 is specied
by S) all γ .users agreed on closing the channel or if the simulator

instructs the functionality to close the channel, the same steps as

in the all agreed case for channels without validity are executed.

7

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

Otherwise, after T1 rounds, the functionality executes the forceful

closure of the virtual channel.

Punish. The punishment procedure is executed at the end of each

round. It checks for every virtual channel γ if any of γ .subchan has

just been closed and distinguishes if the consequence of closure

was ooading or punishment. If afterT1 rounds (whereT1 is set by
S) two transactions tx1 and tx2 are published on the ledger, where

tx1 refunds the collateral γ .cash + γ .fee to γ .Ingrid and tx2 funds
γ on-chain, then the virtual channel has been ooaded. Hence, the

functionality sends a message (OFFLOADED) to γ .users.
If after T1 rounds, the ledger contains only one transaction tx,

which assigns γ .cash coins to a single honest party P and which

spends the funding transaction of only one of γ .subchan, the func-
tionality sends (PUNISHED) to P .

In all other cases, the functionality outputs (ERROR) to γ .users.

Force close. Since a virtual channel is not funded on the ledger,

forcing the closure of a virtual channel consists of two steps. First,

the functionality executes the subprocedure Offload, in order to

make sure that the virtual channel is funded on-chain. Once this ex-

ecution nishes successfully, the virtual channel is a funded ledger

channel and hence, the functionality can execute the subprocedure

L–ForceClose for ledger channels.
We note that (S3) holds because γ .endUsers can either close

their virtual channel or punish the misbehaving party. For channels

without validity, I can either ooad or punish the misbehaving

users. For channels with validity if the channel gets closed before

validity, the parties can either post the latest state of the channel or

punish the misbehaving party as in ledger channels. After validity

the responsible party in γ .endUsers is punished for not closing the

channel. Hence (V1)-(V3) hold as well.

Notation and assumptions. We do not aim to make any claims

regarding the privacy of our protocols and hence we (implicitly)

assume that all messages that are received/sent to/from the ideal

functionalities are directly forwarded to S. However virtual chan-

nels improve privacy compared to the lightning network since each

single payment is not routed through Ingrid. The formal description

of FV is simplied by excluding several natural checks which are

listed (as a functionality wrapper) in Appendix E. We writem
t
↪−→ P

as a short hand form for “send the messagem to party P in round

t .” andm
t
←−↩ P for “receive a messagem from party P in round t”.

Ideal Functionality FV (T)

Below we abbreviate A := γ .Alice, B := γ .Bob, I = γ .Ingrid. For
P ∈ γ .endUsers, we denote Q := γ .otherParty(P).

Upon receiving a message about ledger channels, behave as FL (T , 1).

Create

Upon (CREATE, γ)
τ
←−↩ P , let S dene T1 ≤ 8T . If P ∈ γ .endUsers,

then dene a set S , where S := {idP } := γ .subchan(P), otherwise
dene S as S := {idP , idQ } := γ .subchan. Lock all channels in S
and distinguish the following cases:

All agreed: If you already received both (CREATE, γ)
τ1
←−↩ Q1 and

(CREATE, γ)
τ2
←−↩ Q2, where Q1,Q2 ∈ γ .users \ {P } and τ − T1 ≤

τ1 ≤ τ2, then in round τ3 := τ1 +T1 proceed as follows:

(1) Let S dene
®θA and

®θB and set (idA, idB) := γ .subchan.
(2) Execute UpdateState(idA, ®θA) and UpdateState(idB , ®θB), set

Γ(γ .id) := γ , send (CREATED, γ)
τ3
↪−→ γ .endUsers and stop.

Wait for others: Else wait for at mostT1 rounds to receive (CREATE,

γ)
τ1≤τ+T1
←−−−−−−−↩ Q1 and (CREATE, γ)

τ2≤τ+T1
←−−−−−−−↩ Q2 where Q1,Q2 ∈

γ .users \ {P } (in that case option “All agreed” is executed). If at

least one of those messages does not arrive before round τ +T1, do
the following. For all idi ∈ S , let (γi , txi) := Γ(idi) and distinguish

the following cases:

• If S sends (peaceful–reject, idi), unlock idi and stop.

• If γ .Ingrid is honest or if instructed by S, execute the subproce-

dure L–ForceClose(idi) and stop.

• Otherwise wait for ∆ rounds. If txi still unspent, then set
®θold :=

γi .st, γi .st := { ®θold , ®θ } and Γ(idi) := (γi , txi). Execute the sub-
procedure L–ForceClose(idi) and stop.

Update

Upon (UPDATE, id, ®θ , tstp)
τ0
←−↩ P , where P ∈ γ .endUsers, behave

as FL (T , 1) yet replace the calls to L–ForceClose in FL (T , 1) with
calls to V–ForceClose.

Ooad

Upon (OFFLOAD, id)
τ0
←−↩ P , execute the subprocedure Offload(id).

Close

Channels without validity:

Upon (CLOSE, id)
τ
←−↩ P , where γ (id).val = ⊥, let S deneT1 ≤ 6T . If

P ∈ γi .endUsers, dene a set S , where S := {idP } := γi .subchan(P),
else dene S as S := {idP , idQ } := γi .subchan and distinguish:

All agreed: If you received both messages (CLOSE, id)
τ1
←−↩ Q1 and

(CLOSE, id)
τ2
←−↩ Q2, where Q1,Q2 ∈ γ .users \ {P } and τ − T1 ≤

τ1 ≤ τ2, then in round τ3 := τ1 +T1 proceed as follows:

(1) Let γ := Γ(id), (idA, idB) := γ .subchan.
(2) Parse γ .st = {(cA, One–SigA), (cB , One–SigB)} and dene

®θA := ((cA, One–SigA), (cB + γ .fee/2, One–SigI)),

®θB := ((cA + γ .fee/2, One–SigI), (cB , One–SigB)),

(3) Unlock both subchannels and execute UpdateState(idA, ®θA)
and UpdateState(idB , ®θB). Set Γ(id) := ⊥ and send (CLOSED, γ)
τ3
↪−→ γ .endUsers.

Wait for others: Else wait for at most T1 rounds to receive (CLOSE,

γ)
τ1≤τ+T1
←−−−−−−−↩ Q1 and (CLOSE, γ)

τ2≤τ+T1
←−−−−−−−↩ Q2 where Q1,Q2 ∈

γ .users \ {P } (in that case option “All agreed” is executed). For all

idi ∈ S let (γi , txi) := Γ(idi), if such messages are not received

until round τ +T1, set ®θold := γ ′.st and distinguish:

• If γ .Ingrid is honest or if instructed by S, execute the subproce-

dure V–ForceClose(idi) and stop.

• Else wait for ∆ rounds. If txi still unspent, set γi .st := { ®θold , ®θ }
and Γ(idi) := (γi , txi). Execute L–ForceClose(idi) and stop.

Channels with validity:

For every γ ∈ Γ s.t. γ .val , ⊥, in round τ0 := γ .val − (4∆ + 7T)
proceed as follows: let S set T1 ≤ 6T and distinguish:

8

Bitcoin-Compatible Virtual Channels

Peaceful close: If all parties in γ .users are honest or if instructed
by S, execute steps (1)–(3) of the “All agreed” case for channels

without validity with τ3 := τ0 +T1.
Force close: Else in round τ3 execute V–ForceClose(γ .id).

Punishment (executed at the end of every round)

For every id, where γ := Γ(id) is a virtual channel, set (idA, idB) :=
γ .subchan. If this is the rst round when Γ(idA) = (⊥, txA) or
Γ(idB) = (⊥, txB), i.e., one of the subchannels was just closed, then
let S set t1 ≤ T ′, where T ′ := τ0 + T + 5∆ if γ .val = ⊥ and

T ′ := γ .val + 3∆ if γ .val , ⊥, and distinguish the following cases:

Oloaded: Latest in round t1 the ledger L̂ contains both

• a transaction tx1 rooted at {txA, txB } with an output (γ .cash +

γ .fee, One–SigI). In this case (OFFLOADED, id)
τ1
↪−→ I , where τ1 is

the round tx1 appeared on L̂.

• a transaction tx2 with an output of value γ .cash and rooted

at {txA, txB }, if γ .val = ⊥, and rooted at {txA }, if γ .val ,
⊥. Let τ2 be the round when tx2 appeared on L̂. Then output

(OFFLOADED, id)
τ2
↪−→ γ .endUsers, set γ ′ = γ , γ ′.Ingrid = ⊥,

γ ′.subchan = ⊥, γ .val = ⊥ and dene Γ(id) := (γ ′, tx2).
Punished: Else for every honest party P ∈ γ .users, check the fol-

lowing: the ledger L̂ contains in round τ1 ≤ t1 a transaction tx
rooted at either txA or txB with (γ .cash + γ .fee/2, One–SigP) as

output. In that case, output (PUNISHED, id)
τ1
↪−→ P . Set Γ(id) = ⊥ in

the rst round when PUNISHED was sent to all honest parties.

Error: If the above case is not true, then (ERROR)
t1
↪−→ γ .users.

V–ForceClose(id): Let τ0 be the current round and γ := Γ(id). Exe-
cute subprocedure Offload(id). Let T ′ := τ0 + 2T + 8∆ if γ .val = ⊥
and T ′ := γ .val + 3∆ if γ .val , ⊥. If in round τ1 ≤ T ′ it holds that
Γ(id) = (γ , tx), execute subprocedure L–ForceClose(id).
Subprocedure Offload(id): Let τ0 be the current round, γ := Γ(id),
(idα , idβ) := γ .subchan, (α , txA) := Γ(idα) and (β , txB) := Γ(idβ).
If within ∆ rounds, neither txA nor txB is spent, then output (ERROR)
τ0+∆
↪−−−−→ γ .users.
Subprocedure UpdateState(id, ®θ): Let (α , tx) := Γ(id). Set α .st :=
®θ and update Γ(id) := (α , tx).

4 VIRTUAL CHANNEL PROTOCOL
In this section, we present the rationale of the design of our pro-

tocol realizing the ideal functionality FV (T). We aim at a modular

approach that builds upon the protocol for ledger channels as de-

scribed in [4], leveraging them in a black-box manner. Technically,

we design a protocolΠV (T) that works in the FL(T , 1)-hybrid world
where T is dened in Section 3.3 and 1 is the number of commit

transactions used in the ledger channel (see Appendix B for the

denition of a hybrid world). In this section, we rstly elaborate

on our modular approach, explaining its main technical challenges,

and thereafter describe our virtual channel protocol. To simplify

the exposition, we use the following abbreviations in the rest of

this section: FV := FV (T), FL := FL(T , 1) and ΠV := ΠV (T).

4.1 Modular approach
Parties in the protocolΠV make use of the hybrid ideal functionality

FL in the following cases.

(1) When a party receives a message about a ledger channel

from the environment, it simply forwards this message to

the hybrid ideal functionality FL , waits for its reply and

forwards this reply to the environment. Hence, the party

acts as a so-called dummy party.
(2) During virtual channel creation and closure, parties instruct

the hybrid ideal functionality FL to update both subchannels

of the virtual channel.

There is one technical problem with the above modular design

coming from the fact that we allow virtual channels to be ooaded.
Recall that ooading is a transformation that turns a virtual channel

into a ledger channel which, eectively, means that its funding

transaction appears on-chain. Assume that channel γ was created

as a virtual channel and ooaded later. Now γ is a ledger channel

and hence falls under the rule (1) described above. Namely, if the

environment asks a user of this channel to update the state of the

channel, this party simply forwards the update instruction to the

hybrid ideal functionality FL . However, the hybrid functionality

does not “know” this ledger channel, that is, it does not have it in

its channels space since the channel was not created via FL .

To overcome this technical modeling problem, we extend the

the functionality FL such that it supports a new operation: prepare
a ledger channel. In other words, it allows parties to create and

maintain a ledger channel “in their head” for some time and only

later turn it into a full-edged ledger channel by publishing its

funding transaction on-chain. In a bit more detail, we dene FpreL,

a functionality that behaves exactly as FL but is extended with the

following additional features.(i) creating a ledger channel whose

funding transaction does not have to be published on-chain (al-

though its identier must be known and registered in the channel

space at creation time); (ii) updating such channel and (iii) con-

stantly monitoring the ledger so that once the funding transaction

appears on-chain, the channel in preparation becomes a full-edged

ledger channel. In order to distinguish this additional features from

the standard ones, we use the prex pre- for the channels in prepa-

ration, e.g., pre-create, pre-update.
Let us stress that until the channel becomes a full-edged ledger

channel, no guarantees are provided to the channel users. However,

once the funding transaction is published, all security and eciency

properties of ledger channels (as dened in [4]) apply. Due to space

restriction, we refer the reader for the formal functionality descrip-

tion to Appendix C, where we also show how to realize this new

ideal functionality.

In conclusion, we design a virtual channel protocol ΠV in the

FpreL-hybrid world where parties interact with FpreL in the cases

(1) and (2) as described previously in this section and additionally:

(3) During virtual channel creation, parties pre-create a ledger
channel via FpreL.

(4) During virtual channel update, parties pre-update their pre-
viously prepared ledger channel via FpreL.

These two additional cases guarantee that once the virtual channel

is ooaded, the hybrid functionality knows about its existence and,

importantly, also about its latest agreed-on state.

9

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

4.2 High level protocol description
We now present a high-level description of our virtual channel

protocol ΠV . Since our goal is that ΠV UC-realizes the functionality

FV , we need to discuss how parties handle messages about both

ledger channels and virtual channel with and without validity. As

discussed in the overview of our modular approach (Section 4.1), we

design ΠV in the hybrid world of the ledger channel functionality

FpreL which allows parties in the protocol to forward all messages

about ledger channels to FpreL (recall the case (1) above). In the rest

of this section we focus on the more interesting case, that is, how

parties deal with messages about virtual channels. To this end, we

discuss the following subprotocols: create, update, close, ooad,

and punish. The formal description of our virtual channel protocol

can be found in Appendix D.

Create. Let γ be a virtual channel that A := γ .Alice and B :=

γ .Bobwant to create, using their ledger channels with I := γ .Ingrid.
On a high level, the creation procedure of a virtual channel is a

synchronous update of the underlying ledger channels. Following

the guidelines on how to use the ledger channel functionality FpreL
given in [4, Sec. 6], we proceed as follows (see Figure 4).

As a rst step, each party P ∈ {A,B} initiates an update of the

respective ledger channel with I (step 1○), who, upon receiving

both update requests, checks if the requested states (i.e., θA and θB)
are consistent. The ideal functionality FpreL informs parties about

the output identiers tidA and tidB that can be used to build up

the virtual channel (step 2○). Next, all three parties engage in a

setup phase, in which the structure of the virtual channel is being

built (step 3○). More concretely, all three parties agree on a funding

transaction of the virtual channel and the end-users of the virtual

channel, A and B, pre-create the channel via FpreL. When the setup

phase is completed, i.e., the virtual channel structure has been built,

the parties complete the ledger channel update procedures (step

4○). It is very important for the intermediary I to have the role of

a reacting party during both channel updates. This gives her the

power to wait until she is sure that both updates will complete

successfully and only then give her nal update agreement (step

5○). Finally, the functionality informs all parties that updates were

successfully completed (step 6○), which implies that the virtual

channel γ was successfully created. Let us stress that this descrip-

tion is simplied since it excludes the revocation steps. We refer

the reader to the formal protocol description for details on that.

It remains to discuss how parties generate the new channel states

θA and θB in step 1○, and how parties setup the virtual channel

construction in step 3○. Since this diers for channels with and

without validity, we discuss each channel type separately.

Without validity (Figure 5): First, I needs to inform both A and

B about the last state of the ledger channels that are used as input

for TXf. Second, upon creating TXf,A and B can then pre-create the

rest of transactions required for the virtual channel γ . Finally, the
three parties exchange the signatures on the funding transaction

TXf before communicating the update of both ledger channels to

the functionality FpreL.

With validity (Figure 6): Here,A can create TXf on her own from

the last state with her ledger channel with I . As second step,A and B
can already create the transactions required for the virtual channel

γ . Additionally, I and B create the refund transaction where I is

A I B
α β

1○

2○ F
pr
eL

F
pr
eL

UPDATE, θA UPDATE, θB

tidA , θA tidB , θBtidA tidB

3○ Setup virtual channel
Setup virtual channel

4○

5○

6○

F
pr
eL

F
pr
eL

SETUP–OK SETUP–OK

UPDATE–OK UPDATE–OK

UPDATED UPDATEDUPDATED UPDATED

Figure 4: Simplied creation procedure of a virtual channel
on top of two ledger channels α and β .

refunded if the virtual channel is used. The last two steps are used

to sign, from the right to left, the transactions created in previous

steps. In particular, in step 4, B signs TX
refund

so that I is sure that
she can publish it. Finally, I signs TXf and provides the signature

to A, eectively authorizing her to publish TXf when A and B are

done with using the virtual channel γ .

Update. In order to update the state of a virtual channel, one of

the end-users, which we call the initiating party, is instructed by

the environment to initiate the update. Recall that during virtual

channel creation, the end-users A and B pre-created a channel via

FpreL. Hence, an update of the virtual channel is essentially just a

pre-update of the prepared channel. To this end, the parties forward

the update instructions from the environment to the functionality

and vice versa. As long as the update is successful or peacefully

rejected (meaning that the reacting party rejects the update), the

parties act as dummy parties. The situation is more delicate when

the pre-update fails because one of the parties misbehaved and

aborted the pre-update.

We note that aborts during a channel update might cause a

problematic asymmetry between the parties, for instance, when

one party already signed the new state of the channel while the

other one did not; or when one party already revoked the old state of

TXf

c

c + f

γ

I

pkA, pkB

pkI

pkA , pkB , pkI
TXAs

pkA , pkB , pkI
TXBs

1. Create [TXf]

tidA
−−−→ B ,

tidB
−−−→ A

3. Sign [TXf]

∀P ∈ γ .users, P
SignskP ([TXf])
−−−−−−−−−−−−→ γ .users

2. Pre-Create γ

Figure 5: Setup of virtual channel without validity.

10

Bitcoin-Compatible Virtual Channels

TXf

c

f /2

γ
pkA, pkB

TX
refund

c + f
pkI

I

pkI

pkA , pkI
TXAs

pkI , pkB
TXBs

1. Create [TXf]

no communication

2. Pre-Create γ 3. Create [TXref.]

I
[TXf]
−−−−→ B

5. Sign [TXf]

I
SignskI ([TXf])
−−−−−−−−−−−→ A

4. Sign [TXref.]

B
SignskB ([TXref.]
−−−−−−−−−−−−−→ I

Figure 6: Setup of virtual channel with validity.

the channel but the other one did not. In a standard ledger channel,

these disputes are resolved by a force close procedure. This means

that the honest party publishes the latest valid state it is aware of

on the blockchain. Hence, within a nite number of rounds, the

dispute is resolved and the instant nality property is preserved. We

apply a similar technique for virtual channels. The main dierence

is that a virtual channel is not funded on-chain. Hence, we rst

need to ooad the virtual channel. In other words, we rst need

to transform a virtual channel into a ledger channel by publishing

its funding transaction on-chain. Thereafter, the dispute is handled

exactly as for ledger channels.

We note that virtual channels with validity should not be updated

after round γ .val − (4∆ + 7T). This is simply because before round

γ .val the virtual channel must be closed and parties require 4∆+7T
rounds for the closing procedure in the worst case (i.e. when one

of the parties aborts).

Close. The closure of a virtual channel is done by updating the

ledger channels γ .subchan(A) and γ .subchan(B) according to the

latest state of the virtual channel γ .st. Each party P ∈ {A,B} com-

putes the new state for the ledger channel and creates a new state

®θP := {(cP , One–SigpkP), (γ .cash − cP , One–SigpkI)} where cP is

the latest balance of P in γ . All parties update their ledger channels
according to this state using FpreL. Since both ledger channels must

be updated synchronously, I waits for both parties to initiate the

update procedure. In the end, after receiving the revocation of the

previous state, the virtual channel is closed.

In the pessimistic case, parties must forcefully close their vir-

tual channel, by publishing the funding transaction of the virtual

channel (ooading) and then closing the resulting ledger channel.

Ooad. During the ooad procedure, parties try to publish the

funding transaction of the virtual channel γ which transforms the

virtual channel into a ledger channel. In a nutshell, during this

procedure parties use the close interface of the FpreL in order to

publish the commit and split transaction of both underlying ledger

channels and afterwards the funding transaction of the virtual

channel is published. Naturally, after all these transactions are

published, I must be able to spend the collateral that she locked in

both channels (as stated in property property (V1)).

Without validity In our virtual channel without validity, I is al-
ways able to ooad γ which guarantees that I ’s collateral is not
locked for unlimited amount of time. We note that P ∈ {A,B} can
also initiate the ooading by publishing the commit and split trans-

action of their respective ledger channels. This forces I to publish

the commit and split transaction of the other ledger channel, since

I loses her collateral to P otherwise.

With validity In our virtual channel with validity, only A can

ooad the virtual channel by publishing the commit and split

transaction of her ledger channel with I . Although I and B are not

able to ooad the virtual channel, they have the guarantee that

after round γ .val, either the channel is ooaded or closed, since

otherwise they can punishA and get reimbursed. In order to prevent

I from simply closing her channel with B and earning her collateral

back, I is reimbursed only after the split transaction of her channel

with A is posted. Afterwards I can post a transaction which uses

an output of this split transaction and the split transaction from

her ledger channel with B which repays her the collateral. Hence,

this construction heavily relies on the fee which is being paid to I .

Punish. Misbehaving parties can be punished if ooading fails.

The concept of punishment in virtual channels is similar to ledger

channels, namely in case the latest state of the virtual channel

cannot be posted on the ledger, honest A or B are compensated

by receiving all coins of the virtual channel while honest I will
not lose coins. If the funding transaction of the virtual channel is

posted on the ledger, parties can execute the punishment protocol

for their newly established ledger channel. Hence, in addition to

the ledger channel’s punishment, parties can punish if the funding

transaction of γ cannot be published, in the following way:

Without validity Party P ∈ {A,B} can punish I by taking all the

coins on their respective ledger channels if the funding transaction

of the virtual channel γ is not published on the ledger after T + 4∆
rounds. In other words, it is I ’s responsibility to ensure that the

state of her ledger channels with A and B are not updated while γ
is open.

With validity Here, only A can post the funding transaction of

the virtual channel. Hence, if the virtual channel is not closed or

ooaded by γ .val, A is punished. We note that A loses cA coins to

I (where cA is the initial balance of A in γ) and I loses cA coins to

B (note that we are omitting I ’s fees to be concise).

Security analysis Due to the lack of space, here we only mention

the main security theorem and refer to Appendix H for the proof.

Theorem 1. Let Σ be a signature scheme that is existentially
unforgeable against chosen message attacks. Then for any ledger delay
∆ ∈ N, the protocol ΠV working in FpreL(3, 1)-hybrid, UC-realizes
the ideal functionality FV (2).

5 PERFORMANCE EVALUATION
In this section, we rst study the storage overhead on the blockchain

as well as the communication overhead between users to use vir-

tual channels. For each of these aspects, we evaluate both con-

structions (i.e., with and without validity) and compare them. As

testbed [2], the transactions are created in Python using the library

python-bitcoin-utils and the Bitcoin Script language. To show-

case compatibility and feasibility, we deployed these transactions

successfully on the Bitcoin testnet. Later in this section, we evaluate

11

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

the advantages of virtual channels over ledger channels in terms of

routing communication overhead and fee costs.

Communication overhead. We analyze the communication over-

head imposed by the dierent operations, such as CREATE, UPDATE,
OFFLOAD and CLOSE, by measuring the byte size of the transactions

that need to be exchanged as well as the cost in USD necessary for

posting the transactions that need to be published on-chain. The

cost in USD is calculated by taking the price of 6853.05 USD per

Bitcoin, the average transaction fee of 16 satoshis per byte and the

size of the transactions that need to be posted on-chain, all of them

at the time of writing. We detail in Table 2 the aforementioned costs

measured for both virtual channel constructions.

As expected from the design itself of both constructions, they are

similar for all operations except for the CREATE operation, where
the VC-NV case requires one transaction less than the VC-V case.

As illustrated in Section 2, this dierence stems from the fact that

we require only the TXf in the VC-NV case and two transactions in

the VC-V case, namely TXf and TXrefund. This very same dierence

of one transaction carries over to the cases of OFFLOAD and the

pessimistic CLOSE operations.
In a bit more detail, for the creation of a virtual channel (CREATE

operation), we need to update both ledger channels to a new state

that can fund the virtual channel, requiring to exchange 2 · 2 trans-

actions with 1494 (VC-NV) or 1422 (VC-V) bytes. Additionally, we

need TXf (640 bytes) or TXf (309 bytes) and TX
refund

(377 bytes)

respectively and nally, we need a commitment (431 bytes) and a

split transaction (264 bytes) for the virtual channel itself, spending

from TXf. This complete process results in 7 (VC-NV) or 8 (VC-V)

transactions with a total of 2829 (VC-NV) or 2803 (VC-V) bytes.

Forcefully closing (CLOSE(pess) operation) and ooading (OFFLOAD
operation) requires the same set of transactions as with CREATE,
minus the commitment and the split transaction (695 bytes) of

the virtual channel in the latter case. Finally, we observe that the

UPDATE and the optimistic CLOSE(opt) operation require 2 transac-

tions (695 bytes) for both constructions, as they are designed as an

update of a ledger channel.

In the cases OFFLOAD and CLOSE(pess), the transactions men-

tioned above have to be published on-chain for both constructions.

Most importantly however, in the CREATE and the optimistic CLOSE
case we do not have any on-chain transactions at all, which is

possibly one of the most relevant dierences to ledger channels

VC-NV VC-V

Operations on-chain o-chain on-chain o-chain

txs size cost # txs size # txs size cost # txs size

CREATE 0 0 0 7 2829 0 0 0 8 2803

UPDATE 0 0 0 2 695 0 0 0 2 695

OFFLOAD 5 2134 2.34 0 0 6 2108 2.31 0 0

CLOSE (opt) 0 0 0 4 1390 0 0 0 4 1390

CLOSE(pess) 7 2829 3.10 0 0 8 2803 3.07 0 0

Table 2: Evaluation of the virtual channels. For each opera-
tion we show: the number of on-chain and o-chain trans-
actions (# txs) and their size in bytes. For on-chain transac-
tions, cost is in USD and denotes the estimated cost of pub-
lish them on the ledger.

in practice, as it implies no on-chain fees for opening and clos-

ing virtual channels. For the operation UPDATE, we have also zero

on-chain transactions, just as in ledger channels.

5.1 Comparison to payment channel networks
In this section we compare virtual channels to multi-hop payments

in a payment channel network (PCN). In a PCN, users route their

payments via intermediaries. During the routing of a transaction tx,
each intermediary party locks tx.cash coins as a “promise to pay”

in their channels, a payment commitment that can technically be

implemented as a Hash-Time Lock Contract (HTLC), e.g. as in the

Lightning Network [21]. We now evaluate the dierence in com-

munication overhead and fee costs compared to virtual channels.

Routing communication overhead. When performing a payment

between Alice and Bob via an intermediary Ingrid in a multi-hop

payment, the participants need to update both generalized channels

with a “promise to pay”, which require 2 transactions or 818 bytes

per channel when implemented as HTLC. If they are successful,

both generalized channels need to be updated again to “conrm

the payment” (again, 2 transactions or 695 bytes per channel). This

whole process results in 8 transactions or 2 · 818 + 2 · 695 = 3026

o-chain bytes that need to be exchanged. Generically, if the parties

want to perform n sequential payments, they need to exchange 8 ·n
transaction with a total of 3026 · n bytes.

Assume now that Alice and Bob were to perform the payment

over a virtual channel without validity instead and that this virtual

channel is not yet created. As shown in Table 2, they need to open

the virtual channel for 2829 bytes, where they set the balance of the

virtual channel already to the correct state after the payment, and

then close it again for 1390 bytes, resulting in a total of 4219 o-

chain bytes. However, if we again consider n sequential payments,

the result would be 11+ 2 · (n− 1) transactions or 4219+ 695 · (n− 1)
bytes, which supposes a reduction of 2331 · (n − 1) − 1193 bytes
with respect to relying on generalized channels only. We obtain

similar results if we consider virtual channels with validity instead.

Fee costs. In a multi-hop payment tx in a PCN, the intermediary

user Ingrid charges a base fee (BF) for being online and oering

the routing service and relative fee FR for locking the amounts of

coins (tx.cash) and changing the balance in the channel, so that

fee(tx) := BF + FR · tx.cash. Note that at the time of writing, the

fees are BF = 1 satoshi and FR = 0.000001.

In a virtual channel setting, γ .Ingrid can charge a base fee to

collaborate to open and close the virtual channel, and also a relative

fee to lock collateral coins in the virtual channel. However, no

fees per payment are charged by Ingrid as she does not participate

in them. Let us now investigate the case of paying tx.cash in k
micropayments of equal value. In PCN case, the total cost would

be

∑k
i=1 BF + FR ·

tx.cash
k = BF · k + FR · tx.cash. Whereas, in the

virtual case, the parties rst create a virtual channel γ with balance

tx.cash, and they will handle the micropayments in γ . Thereby,
the cost would be only the opening cost of the virtual channel, for

which we assumed BF + FR · tx.cash. Thus, if Alice and Bob would

make more than one transaction, i.e., k > 1, it is benecial to use

virtual channels for reducing the fee costs by BF · (k − 1).
12

Bitcoin-Compatible Virtual Channels

6 CONCLUSION
Current PCNs route payments between two users through interme-

diate nodes, making the system less reliable (intermediate nodes

might be oine), expensive (intermediate nodes charge a fee per

payment) and privacy-invasive (intermediate nodes observe every

payment they route). To mitigate this, recent work has introduced

the concept of virtual channels, which involve intermediaries only

in the creation of a bridge between payer and payee, who can

later on independently perform arbitrarily many o-chain transac-

tions. Unfortunately, existing constructions are only available for

Ethereum, as they rely on its account model and Turing-complete

scripting language.

In this work, we present the rst virtual channel constructions

that are built on the UTXO-model and require a script language

supported by virtually every cryptocurrency, including Bitcoin.

Our two protocols provide a tradeo on who can ooad the virtual

channel (either payer and payee or intermediate one), similar to

the preemptible vs non-preemptible virtual machines in the cloud

setting. We formalize the security properties of virtual channels in

the UC framework, proving that our protocols constitute a secure

realization thereof.We have prototyped our protocols and evaluated

their eciency: for n sequential payments in the optimistic case,

they require 11 + 2 · (n − 1) o-chain transactions for a total of

4219 + 695 · (n − 1) bytes, with no on-chain footprint.

We conjecture that it is possible to recursively build virtual

channels on top of any two underlying channels (either ledger,

virtual or a combination of them), requiring to adjust the timings for

ooading channels: users of a virtual channel at layerk should have

enough time to ooad the (virtual/ledger) channels at layers 1 to

k − 1. Additionally, we envision that while virtual channels without

validity might serve as building block at any layer of recursion,

virtual channels with validity period may be more suitable for the

top layer as they have a predened expiration time after which they

would require to ooad in any case all underlying layers. We plan

to explore the recursive building of virtual channels in the near

future. Additionally, we conjecture that virtual channels help with

privacy, but we leave a formalization of this claim as an interesting

future work, as it involves a quantitative analysis that falls of the

scope of this work.

ACKNOWLEDGMENTS
This work was partly supported by the German Research Foun-

dation (DFG) Emmy Noether Program FA 1320/1-1, by the DFG
CRC 1119 CROSSING (project S7), by the German Federal Min-

istry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the German Federal Ministry of Education and

Research and the Hessen State Ministry for Higher Education, Re-

search and the Arts within their joint support of the National Re-
search Center for Applied Cybersecurity ATHENE, by the European

Research Council (ERC) under the European Unions Horizon 2020

research (grant agreement No 771527-BROWSEC), by the Austrian

Science Fund (FWF) through PROFET (grant agreement P31621)

and the Meitner program (grant agreement M 2608-G27), by the

Austrian Research Promotion Agency (FFG) through the Bridge-1

project PR4DLT (grant agreement 13808694) and the COMET K1

projects SBA and ABC, and by CoBloX Labs.

REFERENCES
[1] 2018. Bitcoin Wiki: Payment Channels. https://en.bitcoin.it/wiki/Payment_

channels.

[2] 2020. Bitcoin-Compatible Virtual Channels: Github repository. https://github.

com/utxo-virtual-channels/vc.

[3] Andreas M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies (1st ed.). O’Reilly Media, Inc.

[4] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostakova, Matteo Maei, Pedro Moreno-Sanchez, and Siavash Riahi. 2020.

Generalized Bitcoin-Compatible Channels. Cryptology ePrint Archive, Report

2020/476. https://eprint.iacr.org/2020/476.

[5] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.

Bitcoin as a Transaction Ledger: A Composable Treatment. In CRYPTO 2017,
Part I (LNCS), Jonathan Katz and Hovav Shacham (Eds.), Vol. 10401. Springer,

Heidelberg, 324–356.

[6] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the Age of

Blockchains. CoRR abs/1711.03936 (2017). arXiv:1711.03936 http://arxiv.org/abs/

1711.03936

[7] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

[8] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walsh. 2007. Universally

Composable Security with Global Setup. In TCC 2007 (LNCS), Salil P. Vadhan
(Ed.), Vol. 4392. Springer, Heidelberg, 61–85.

[9] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina

Hostáková. 2019. Multi-party Virtual State Channels. In EUROCRYPT 2019, Part I
(LNCS), Vincent Rijmen and Yuval Ishai (Eds.). Springer, Heidelberg, 625–656.

https://doi.org/10.1007/978-3-030-17653-2_21

[10] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.

PERUN: Virtual Payment Channels over Cryptographic Currencies. Cryptology

ePrint Archive, Report 2017/635. http://eprint.iacr.org/2017/635.

[11] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.

Perun: Virtual Payment Hubs over Cryptographic Currencies. , 635 pages. http://

eprint.iacr.org/2017/635 conference version accepted to the 40th IEEE Symposium

on Security and Privacy (IEEE S&P) 2019.

[12] Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. to appear at ACM

CCS 2018. General State Channel Networks. IACR Cryptology ePrint Archive (to
appear at ACM CCS 2018). https://eprint.iacr.org/2018/320

[13] Oded Goldreich. 2006. Foundations of Cryptography: Volume 1. Cambridge

University Press, New York, NY, USA.

[14] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. 2019. SoK: O The Chain Transactions. Cryptology ePrint

Archive, Report 2019/360. https://eprint.iacr.org/2019/360.

[15] George Kappos, Haaroon Yousaf, Ania M. Piotrowska, Sanket Kanjalkar, Sergi

Delgado-Segura, Andrew Miller, and Sarah Meiklejohn. 2020. An Empirical

Analysis of Privacy in the Lightning Network. CoRR abs/2003.12470 (2020).

arXiv:2003.12470 https://arxiv.org/abs/2003.12470

[16] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Universally

Composable Synchronous Computation. In TCC 2013 (LNCS), Amit Sahai (Ed.),

Vol. 7785. Springer, Heidelberg, 477–498. https://doi.org/10.1007/978-3-642-

36594-2_27

[17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maei, and Srivat-

san Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks. In

ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 455–471.

[18] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate,

and Matteo Maei. 2019. Anonymous Multi-Hop Locks for Blockchain Scal-

ability and Interoperability. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-

locks-for-blockchain-scalability-and-interoperability/

[19] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. http:

//bitcoin.org/bitcoin.pdf.

[20] Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker.

2020. Toward Active and Passive Condentiality Attacks on Cryptocurrency

O-chain Networks. In Proceedings of the 6th International Conference on In-
formation Systems Security and Privacy, ICISSP 2020, Valletta, Malta, February
25-27, 2020, Steven Furnell, Paolo Mori, Edgar R. Weippl, and Olivier Camp (Eds.).

SCITEPRESS, 7–14. https://doi.org/10.5220/0009429200070014

[21] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable

O-Chain Instant Payments. Draft version 0.5.9.2, available at https://lightning.

network/lightning-network-paper.pdf.

[22] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maei. 2020. A Quantita-

tive Analysis of Security, Anonymity and Scalability for the Lightning Network.

Cryptology ePrint Archive, Report 2020/303. https://eprint.iacr.org/2020/303.

[23] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-

Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt.

13

https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://github.com/utxo-virtual-channels/vc
https://github.com/utxo-virtual-channels/vc
https://eprint.iacr.org/2020/476
http://arxiv.org/abs/1711.03936
http://arxiv.org/abs/1711.03936
http://arxiv.org/abs/1711.03936
https://doi.org/10.1007/978-3-030-17653-2_21
http://eprint.iacr.org/2017/635
http://eprint.iacr.org/2017/635
http://eprint.iacr.org/2017/635
https://eprint.iacr.org/2018/320
https://eprint.iacr.org/2019/360
http://arxiv.org/abs/2003.12470
https://arxiv.org/abs/2003.12470
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.5220/0009429200070014
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2020/303

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

2019. SoK: Communication Across Distributed Ledgers. Cryptology ePrint

Archive, Report 2019/1128. https://eprint.iacr.org/2019/1128.

A EXAMPLE OF ROOTED TRANSACTIONS
In this section, we provide an example to clarify the concept of

rooted transactions as described in Section 3.1.

tx1 tx3

tx2

tx4

tx5

tx6

tx8

tx7

Figure 7: The root sets of transaction tx8 are {tx1},
{tx2, tx3, tx4}, {tx5, tx6}, {tx4, tx5} and {tx2, tx3, tx6}.

B ON THE USAGE OF THE UC-FRAMEWORK
To formally model the security of our construction, we use a syn-

chronous version of the global UC framework (GUC) [8] which

extends the standard UC framework [7] by allowing for a global

setup. Since our model is essentially the same as in [4], which in

turn follows [9, 12], parts of this section are taken verbatim from

there.

Protocols and adversarial model. We consider a protocol π that

runs between parties from the set P = {P1, . . . , Pn }. A protocol

is executed in the presence of an adversary A that takes as input

a security parameter 1
λ
(with λ ∈ N) and an auxiliary input z ∈

{0, 1}∗, and who can corrupt any party Pi at the beginning of the
protocol execution (so-called static corruption). By corruption we

mean that A takes full control over Pi and learns its internal state.

Parties and the adversary A receive their inputs from a special

entity – called the environment E – which represents anything

“external” to the current protocol execution. The environment also

observes all outputs returned by the parties of the protocol. In

addition to the above entities, the parties can have access to ideal

functionalitiesH1, . . . ,Hm . In this case we say that the protocol π

works in the (H1, . . . ,Hm)-hybrid model and write πH1, ...,Hm
.

Modeling time and communication. We assume a synchronous

communication network, which means that the execution of the

protocol happens in rounds. Let us emphasize that the notion of

rounds is just an abstraction which simplies our model and allows

us to argue about the time complexity of our protocols in a natural

way. We follow [9], which in turn follows [16], and formalize the

notion of rounds via an ideal functionality F̂clock representing “the

clock”. On a high level, the ideal functionality requires all honest

parties to indicate that they are prepared to proceed to the next

round before the clock is “ticked”. We treat the clock functionality

as a global ideal functionality using the GUC model. This means

that all entities are always aware of the given round.

We assume that parties of a protocol are connected via authenti-

cated communication channels with guaranteed delivery of exactly

one round. This means that if a party P sends a messagem to party

Q in round t , party Q receives this message in beginning of round

t + 1. In addition, Q is sure that the message was sent by party P .
The adversary can see the content of the message and can reorder

messages that were sent in the same round. However, it can not

modify, delay or drop messages sent between parties, or insert new

messages. The assumptions on the communication channels are

formalized as an ideal functionality FGDC . We refer the reader to

[9] its formal description.

While the communication between two parties of a protocol

takes exactly one round, all other communication – for example,

between the adversary A and the environment E – takes zero

rounds. For simplicity, we assume that any computation made by

any entity takes zero rounds as well.

Handling coins. Wemodel themoneymechanics oered byUTXO

cryptocurrencies, such as Bitcoin, via a global ideal functionality
L̂ using the GUC model. Our functionality is parameterized by a

delay parameter ∆ which upper bounded in the maximal number

of rounds it takes to publish a valid transaction, and a signature

scheme Σ. The functionality accepts messages from a xed set of

parties P.

The ledger functionality L̂ is initiated by the environment E via

the following steps: (1) E instructs the ledger functionality to gen-

erate public parameter of the signature scheme pp; (2) E instructs

every party P ∈ P to generate a key pair (skP , pkP) and submit

the public key pkP to the ledger via the message (register, pkP); (3)
sets the initial state of the ledger meaning that it initialize a set TX
dening all published transactions.

Once initialized, the state of L̂ is public and can be accessed by

all parties of the protocol, the adversary A and the environment

E. Any party P ∈ P can at any time post a transaction on the

ledger via the message (post, tx). The ledger functionality waits

for at most ∆ rounds (the exact number of rounds is determined

by the adversary). Thereafter, the ledger veries the validity of

the transaction and adds it to the transaction set TX. The formal

description of the ledger functionality follows.

Ideal Functionality L̂(∆, Σ)

The functionality accepts messages from all parties that are in the set

P and maintains a PKI for those parties. The functionality maintains

the set of all accepted transactions TX and all unspent transaction

outputs UTXO. The set V denes valid output conditions.

Initialize public keys: Upon (register, pkP)
τ0
←−↩ P and it is the rst

time P sends a registration message, add (pkP , P) to PKI.

Post transaction: Upon (post, tx)
τ0
←−↩ P , check that |PKI | = |P |. If

not, drop the message, else wait until round τ1 ≤ τ0 + ∆ (the exact

value of τ1 is determined by the adversary). Then check if:

(1) The id is unique, i.e. for all (t , tx′) ∈ TX, tx′.txid , tx.txid.
(2) All the inputs are unspent and the witness satises all the output

conditions, i.e. for each (tid, i) ∈ tx.Input, there exists (t , tid, i ,
θ) ∈ UTXO and θ .φ(tx, t , τ1) = 1.

(3) All outputs are valid, i.e. for each θ ∈ tx.Output it holds that
θ .cash > 0 and θ .φ ∈ V .

(4) The value of the outputs is not larger than the value of the inputs.

More formally, let I := {utxo := (t , tid, i , θ) | utxo ∈ UTXO ∧

14

https://eprint.iacr.org/2019/1128

Bitcoin-Compatible Virtual Channels

(tid, i) ∈ tx.Input}, then it must hold that

∑
θ ′∈tx.Output θ ′.cash

≤
∑

utxo∈I utxo.θ .cash
(5) The absolute time-lock of the transaction has expired, i.e. it must

hold that tx.TimeLock ≤ now.
If all the above checks return true, add (τ1, tx) to TX, remove the

spent outputs from UTXO, i.e., UTXO := UTXO \ I and add the out-

puts of tx to UTXO, i.e., UTXO := UTXO ∪ {(τ1, tx.txid, i , θi)}i∈[n] for
(θ1, . . . , θn) := tx.Output. Else, ignore the message.

Let us emphasize that our ledger functionality is fairly simpli-

ed. In reality, parties can join and leave the blockchain system

dynamically. Moreover, we completely abstract from the fact that

transactions are published in blocks which are proposed by parties

and the adversary. Those and other features are captured by prior

works, such as [5], that provide a more accurate formalization of

the Bitcoin ledger in the UC framework [7]. However, interaction

with such ledger functionality is fairly complex. To increase the

readability of our channel protocols and ideal functionality, which

is the main focus on our work, we decided for this simpler ledger.

The GUC-security denition. Let π be a protocol with access to

the global ledger L̂(∆, Σ), the global clock F̂clock and ideal function-
alities H1, . . . ,Hm . The output of an environment E interacting

with a protocol π and an adversary A on input 1
λ
and auxiliary

input z is denoted as

EXE
L̂(∆,Σ), F̂clock ,H1, ...,Hm
π ,A,E

(λ, z).

Let ϕF be the ideal protocol for an ideal functionality F with access

to the global ledger L̂(∆, Σ) and the global clock F̂clock . This means

thatϕF is a trivial protocol inwhich the parties simply forward their

inputs to the ideal functionality F . The output of an environment

E interacting with a protocol ϕF and a adversary S (sometimes

also call simulator) on input 1
λ
and auxiliary input z is denoted as

EXE
L̂(∆,Σ), F̂clock
ϕF ,S,E

(λ, z).

We are now ready to state our main security denition which,

informally, says that if a protocol π UC-realizes an ideal functional-

ity F , then any attack that can be carried out against the real-world

protocol π can also be carried out against the ideal protocol ϕF .

Definition 1. A protocol π working in a (H1, . . . ,Hm)-hybrid
model UC-realizes an ideal functionality F with respect to a global

ledger L̂ := L̂(∆, Σ) and a global clock F̂clock if for every adversary
A there exists an adversary S such that we have{
EXE

L̂, F̂clock ,H1, ...,Hm
π ,A,E

(λ, z)

}
λ∈N,

z∈{0,1}∗

c
≈

{
EXE

L̂, F̂clock
ϕF ,S,E

(λ, z)

}
λ∈N,

z∈{0,1}∗

(where “
c
≈” denotes computational indistinguishability of distribution

ensembles, see, e.g., [13]).

To simplify exposition, we omit the session identiers sid and

the sub-session identiers ssid. Instead, we will use expressions like
“messagem is a reply to messagem′”. We believe that this approach

improves readability.

C ADDITIONAL MATERIAL TO LEDGER
CHANNELS

C.1 Ledger channel functionality
For completeness, we recall the ledger channel ideal functionality

from [4].

Ideal Functionality FL (T , k)

We abbreviate Q := γ .otherParty(P) for P ∈ γ .endUsers.

Create

Upon (CREATE, γ , tidP)
τ0
←−↩ P , let S dene T1 ≤ T and:

Both agreed: If already received (CREATE, γ , tidQ)
τ
←−↩ Q , where

τ0 − τ ≤ T1, wait if in round τ1 ≤ τ + ∆ +T1 a transaction tx, with
tx.Input = (tidP , tidQ) and tx.Output = (γ .cash, φ), appears on

the ledger L̂. If yes, set Γ(γ .id) := (γ , tx) and (CREATED, γ .id)
τ1
↪−→

γ .endUsers. Else stop.
Wait for Q : Else store the message and stop.

Update

Upon (UPDATE, id, ®θ , tstp)
τ0
←−↩ P , let S dene T1,T2 ≤ T , parse

(γ , tx) := Γ(id) and proceed as follows:

(1) In round τ1 ≤ τ0 +T , let S set | ®tid | = k . Then (UPDATE–REQ, id,
®θ , tstp, ®tid)

τ1
↪−→ Q and (SETUP, id, ®tid)

τ1
↪−→ P .

(2) If (SETUP–OK, id)
τ2≤τ1+tstp
←−−−−−−−−−↩ P , then (SETUP–OK, id)

τ2+T1
↪−−−−→ Q .

Else stop.

(3) If (UPDATE–OK, id)
τ2+T1
←−−−−↩ Q , then (UPDATE–OK, id)

τ2+2T1
↪−−−−−→ P .

Else distinguish:

• If Q honest or if instructed by S, stop (update rejected).

• Else execute L–ForceClose(id) and stop.

(4) If (REVOKE, id)
τ2+2T1
←−−−−−↩ P , (REVOKE–REQ, id)

τ2+2T1+T2
↪−−−−−−−−→ Q . Else

execute L–ForceClose(id) and stop.

(5) If (REVOKE, id)
τ2+2T1+T2
←−−−−−−−−↩ Q , set γ .st = ®θ and Γ(id) := (γ , tx).

Then (UPDATED, id, ®θ)
τ2+2T1+2T2
↪−−−−−−−−−→ γ .endUsers and stop. Else

distinguish:

• If Q honest, execute L–ForceClose(id) and stop.

• If Q corrupt, and wait for ∆ rounds. If tx still unspent, then
set
®θold := γ .st, γ .st := { ®θold , ®θ } and Γ(id) := (γ , tx). Execute

L–ForceClose(id) and stop.

Close

Upon (CLOSE, id)
τ0
←−↩ P , let S dene T1 ≤ T and distinguish:

Both agreed: If you received (CLOSE, id)
τ
←−↩ Q , where τ0 − τ ≤ T1,

let (γ , tx) := Γ(id) and distinguish:

• If in round τ1 ≤ τ +T1 + ∆ a transaction tx′, with tx′.Output =
γ .st and tx′.Input = tx.txid, appears on L̂, set Γ(id) := (⊥, tx),

(CLOSED, id)
τ1
↪−→ γ .endUsers and stop.

• If tx is still unspent in round τ +T1 +∆, output (ERROR)
τ+T1+∆
↪−−−−−−→

γ .endUsers and stop.

Wait for Q : Else wait for at most T1 rounds to receive (CLOSE, id)
τ ≤τ0+T1
←−−−−−−−↩ Q (in that case option “Both agreed” is executed). If such

message is not received, execute L–ForceClose(id) in round τ0+T1.

Punish (executed at the end of every round τ0)

15

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

For each (γ , tx) ∈ Γ check if L̂ contains tx′ with tx′.Input = tx.txid.
If yes, then distinguish:

Punish: For P ∈ γ .endUsers honest, the following must hold: in

round τ1 ≤ τ0 + ∆, a transaction tx′′ with tx′′.Input = tx′.txid
and tx′′.Output = (γ .cash, One–SigpkP) appears on L̂. Then send

(PUNISHED, id)
τ1
↪−→ P , set Γ(id) := ⊥ and stop.

Close: Either Γ(id) = (⊥, tx) before round τ0 + ∆ (channels was

peacefully closed) or in round τ1 ≤ τ0 + 2∆ a transaction tx′′, with
tx′′.Output ∈ γ .st and tx′′.Input = tx′.txid, appears on L̂ (chan-

nel is forcefully closed). In the latter case, set Γ(id) := (⊥, tx) and

(CLOSED, id)
τ1
↪−→ γ .endUsers.

Error: Otherwise (ERROR)
τ0+2∆
↪−−−−→ γ .endUsers.

Subprocedure L–ForceClose(id)

Let τ0 be the current round and (γ , tx) := Γ(id). If within ∆ rounds tx

is still an unspent transaction on L̂, then (ERROR)
τ0+∆
↪−−−−→ γ .endUsers

and stop. Else, latest in round τ0+3∆,m ∈ {CLOSED, PUNISHED, ERROR}
is output via Punish.

C.2 Wrapped ledger channel functionality
As discussed already in Section 4.1, for technical reason we cannot

use the ledger channel functionality (FL(T ,k)) for building virtual

channels in a black-box way. The main problem comes from the

ooading feature of virtual channel. In order to overcome these

issues, we present FpreL(T ,k), an ideal functionality that extends

FL(T ,k) to supports the preparation generalized channels ahead of

time and later registration of such prepared generalized channels.

Technically, the functionality extension is done by wrapping the

original functionality. Before we present the functionality wrapper

FpreL(T ,k) formally, let us explain each of its parts on high level.

Generalized channels. The functionality treats messages about

standard generalized channels exactly as the functionality FL(T ,k)
presented in Appendix C.1.

Creation. In order to pre-create a generalized channelγ , both end-
users of the channel must the message (PRE–CREATE,γ , TXf, i, to)
to the ideal functionality. Here TXf | |i identies the funding of the
channel and to ∈ N represents the maximal number of round it

should take to publish the channel funding transaction on-chain. If

the functionality receives such a message from both parties within

T rounds, it stores the channel γ , the funding identier and the

waiting time to a special channel set Γpre , and informs both parties

about the successful pre-creation.

Update. The update process works similarly as for standard

ledger channel with one dierence. If the update process fails at

some point (e.g., one of the parties does not revoke), the function-

ality does not call L–ForceClose since there is no ledger chan-

nel to be forcefully closed. Instead, it calls a subprocedure called

Wait–if–Register which add a ag “in–dispute” to the channel
and waits for at most to rounds if the prepared channel is turned

into a standard generalized channel (i.e., the corresponding funding

transaction is added to the blockchain). If not, then it adds the new

channel state back into the set of prepared (not yet full-edged)

channel states.

Register. The ideal functionality constantly monitors the ledger.

Once the funding transaction of one of the channels in prepara-

tion appears on-chain, the functionality moves the information

about the channel from the channel space Γpre to the channel

space Γ. Moreover, if the channel in preparation was marked as

“in–dispute”, then it immediately calls L–ForceClose.
The formal functionality description on the functionality wrap-

per FpreL(T ,k) follows.

Wrapped Ledger Channel Functionality FpreL(T , k)

We abbreviate Q := γ .otherParty(P) for P ∈ γ .endUsers.

Ledger Channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK, REVOKE or

CLOSE message, then behave exactly as the functionality FL (T , k).

Pre-Create

Upon (PRE–CREATE, γ , TXf, i , to)
τ0
←−↩ P , let S dene T1 ≤ T and:

Both agreed: If already received (PRE–CREATE, γ , TXf, i , to)
τ
←−↩

Q , where τ0 − τ ≤ T1, check that TXf .Output[i].cash = γ .cash.

If yes, set Γpre(γ .id) := (γ , TXf, to) and (PRE–CREATED, γ .id)
τ0
↪−→

γ .endUsers. Else stop.
Wait for Q : Else store the message and stop.

Pre-Update

Upon (PRE–UPDATE, id, ®θ , tstp)
τ0
←−↩ P , let S dene T1,T2 ≤ T , parse

(γ , TXf, t) := Γpre(id) and proceed as follows:

(1) In round τ1 ≤ τ0+T , let S set | ®tid | = k . Then (PRE–UPDATE–REQ,

id, ®θ , tstp, ®tid)
τ1
↪−→ Q and (PRE–SETUP, id, ®tid)

τ1
↪−→ P .

(2) If (PRE–SETUP–OK, id)
τ2≤τ1+tstp
←−−−−−−−−−↩ P , then (PRE–SETUP–OK, id)

τ2+T1
↪−−−−→ Q . Else stop.

(3) In round τ2 +T1 distinguish:

• If (PRE–UPDATE–OK, id)
τ2+T1
←−−−−↩ Q , then (PRE–UPDATE–OK, id)

τ2+2T1
↪−−−−−→ P .
• If not andQ honest or if instructed by S, (PRE–UPDATE–REJECT,

id)
τ2+2T1
↪−−−−−→ P .

• Else execute Wait–if–Register(id) and stop.

(4) If (PRE–REVOKE, id)
τ2+2T1
←−−−−−↩ P , (PRE–REVOKE–REQ, id)

τ2+2T1+T2
↪−−−−−−−−→

Q . Else execute Wait–if–Register(id) and stop.

(5) If (PRE–REVOKE, id)
τ2+2T1+T2
←−−−−−−−−↩ Q , set γ .st = ®θ and ΓV (id) :=

(γ , TXf). Then (PRE–UPDATED, id, ®θ)
τ2+2T1+2T2
↪−−−−−−−−−→ γ .endUsers and

stop. Else Wait–if–Register(id) and stop.

Register – executed in every round

Let t0 be the current round. For every (γ , TXf) ∈ Γpre check if TXf
appears on the ledger L̂. If yes, then Γpre(γ .id) = ⊥ and Γ(γ .id) =
(γ , TXf).

Subprocedure Wait–if–Register(id)

Let τ0 be the current round and (γ , TXf, to) := Γpre(id).
(1) Set Γpre(id) := (γ , TXf, to , in–dispute).

(2) Wait for to rounds. If after this time, Γpre(id) , ⊥, then set ®θold :=

γ .st, γ .st := { ®θold , ®θ } and Γpre(id) := (γ , TXf, to , in–dispute).

16

Bitcoin-Compatible Virtual Channels

C.3 Adaptor Signatures
Adaptor signatures have been introduced and used in the cryptocur-

rencies community for some time, but have been formalized for

the st time in [4]. These signatures not only allow for authenti-

cation as normal signatures schemes do, but also reveal a secret

value upon publishing. Here we recall the denition of an adaptor

signature scheme from [4]. In a nutshell, an adaptor signature is

generated in two phases. First a pre-signature is computed w.r.t.

some statement Y of a hard relation R e.g. Y = дy where д is the

generator of the groupG in which computing the discrete logarithm

is hard. We dene LR to be the associated language for R dened as

LR := {Y | ∃y s.t. (Y ,y) ∈ R}. This pre-signature can be adapted to

a full signature given a witness y for the statement Y , i.e. (Y ,y) ∈ R.
Furthermore, given the pre-signature and the adapted full signature

one can extract a witnessy. We now recall the denition for adaptor

signature schemes from [4].

Definition 2 (Adaptor Signature Scheme). An adaptor sig-
nature scheme wrt. a hard relation R and a signature scheme Σ =
(Gen, Sign,Vrfy) consists of four algorithms ΞR .Σ = (pSign,Adapt,
pVrfy, Ext) dened as:

pSignsk(m,Y): is a PPT algorithm that on input a secret key sk,
message m ∈ {0, 1}∗ and statement Y ∈ LR , outputs a pre-
signature σ̃ .

pVrfypk(m,Y ; σ̃): is a DPT algorithm that on input a public key pk,
messagem ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̃ ,
outputs a bit b.

Adapt(σ̃ ,y): is a DPT algorithm that on input a pre-signature σ̃ and
witness y, outputs a signature σ .

Ext(σ , σ̃ ,Y): is a DPT algorithm that on input a signature σ , pre-
signature σ̃ and statement Y ∈ LR , outputs a witness y such
that (Y ,y) ∈ R, or ⊥.

We now briey recall the properties that an adaptor signature

scheme must satisfy and refer the reader to [4] for the formal

denitions.

Correctness: An adaptor signature should not only satisfy the

standard signature correctness, but it must also satisfy pre-signature
correctness. This property guarantees that if a pre-signature is gen-

erated honestly (wrt. a statement Y ∈ LR), it can be adapted into a

valid signature such that a witness for Y can be extracted.

Existential unforgeablity under chosen message attack for adaptor
signatures: Unforgeability for adaptor signatures is very similar to

the normal denition of existential unforgeability under chosen

message attacks for digital signatures, but it additionally requires

that producing a forged signature σ for a messagem is hard even if

the adversary is given a pre-signature on the challenge messagem
w.r.t. a random statement Y ∈ LR .

Pre-signature adaptability: Intuitively it is required that any valid
pre-signature w.r.t. Y (even when produced by a malicious signer)

can be completed into a valid signature using the witness y where

(Y ,y) ∈ R.

Witness extractability: In a nutshell, this property states that

given a valid signature/pre-signatue pair (σ , σ̃) for a message m

with respect to a statement Y , one can extract the corresponding

witness y.

C.4 Realizing the wrapped functionality
While [4] presents a protocol ΠL that realizes the ideal functionality

FL , it does not say anything about our wrapped functionality FpreL.

In order to have such protocol, we design a protocol wrapper around
the protocol ΠL and prove that such wrapped protocol, which we

denote ΠpreL realizes the ideal functionality FpreL.

Let us stress that the protocol wrapper very closely follows the

protocol for ledger channel. Below we stress the main dierence

and thereafter we formally dene the protocol for completeness.

Pre-Create. The only deference between the pre-create and create
is that in pre-create TXf is neither generated by the parties nor

posted on the ledger and is given as an input from the environment.

Intuitively this is a funding transactions that might be posted in

the future. Hence such channels are called pre-created or prepared

channels.

Pre-Update. During the pre-update procedure, parties update the
state of the pre-created channel as in normal ledger channels, but

parties cannot directly force-close the channel since the funding

transaction is not posted on the ledger yet. Hence in case of dis-

pute parties rst have to post this transaction on the ledger this is

captured in calls to Wait–if–Register sub-procedure.

Register. This is a new procedure in order to capture the situation

during which the funding transaction of a pre-created channel

is posted on the ledger. In this case the pre-created channel is

transformed into a normal ledger channel and is added to the list

of ledger channels. Furthermore if this channel was in dispute, it is

directly force closed.

To summarize, parties upon receiving one of the PRE–UPDATE,
PRE–SETUP–OK, PRE–UPDATE–OK or PRE–REVOKE messages, behave

as in the protocol ΠL with the following changes:

• Use the channel space ΓPpre instead of ΓP .
• Add to rounds to the absolute time lock of new TXc.

• Replace calls to L–ForceCloseP by calls to Wait–if–RegisterP

which marks a channel to be in dispute.

• In case the reacting party peacefully rejects the update, output

PRE–UPDATE–REJECT before you stop.

• When the protocol instructs you to output am-message, where

m ∈ {UPDATE–REQ, SETUP, SETUP–OK, UPDATE–OK, REVOKE–REQ,
UPDATED}, then output PRE–m.

Wrapped Ledger Channel Protocol ΠpreL

Below, we abbreviate Q := γ .otherParty(P) for P ∈ γ .endUsers.
Ledger channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK, REVOKE or

CLOSE message, then behave exactly as in the protocol ΠL .

Pre-Create

Party P upon (PRE–CREATE, γ , TXf, i , to)
t0
←−↩ E:

(1) If TXf .Output[i].cash , γ .cash, then ignore the message.

17

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

(2) Set id := γ .id, generate (RP , rP) ← GenR, (YP , yP) ← GenR

and send (createInfo, id, TXf, i , to , RP , YP)
t0
↪−→ Q .

(3) If (createInfo, id, TXf, i , to , RQ , YQ)
t0+1
←−−−↩ Q , create:

[TXc] := GenCommit([TXf], IP , IQ , 0)

[TXs] := GenSplit([TXc].txid‖1, γ .st)

for IP := (pkP , RP , YP), IQ := (pkQ , RQ , YQ). Else stop.
(4) Compute sPc ← pSignskP ([TXc], YQ), s

P
s ← SignskP ([TXs]) and

send (createCom, id, sPc , s
P
s)

t0+1
↪−−−→ Q .

(5) If (createCom, id, sQc , sQs)
t0+2
←−−−↩ Q , s.t. pVrfypkQ ([TXc], YP ; s

Q
c)

= 1 and VrfypkQ ([TXs]; s
Q
s) = 1, set

TXc := ([TXc], {SignskP ([TXc]), Adapt(s
Q
c , yP)})

TXs := ([TXs], {s
P
s , s

Q
s })

ΓPpre(γ .id) := (γ , TXf, (TXc, rP , RQ , YQ , sPc), TXs, to).

and send (PRE–CREATED, id)
t0+2
↪−−−→ E.

Pre-Update

Party P upon (PRE–UPDATE, id, ®θ , tstp)
tP
0

←−−↩ E

(1) Generate (RP , rP) ← GenR, (YP , yP) ← GenR and send the

message (updateReq, id, ®θ , tstp, RP , YP)
tP
0

↪−−→ Q .

Party Q upon (updateReq, id, ®θ , tstp, RP , YP)
tQ
0

←−−↩ P

(2) Generate (RQ , rQ) ← GenR and (YQ , yQ) ← GenR.
(3) Extract TXf and to from ΓPpre(id).

(4) Set tlock := tQ
0
+ tstp + 4 + ∆ + to and

[TXc] := GenCommit([TXf], IP , IQ , tlock)

[TXs] := GenSplit([TXc].txid‖1, ®θ)

where IP := (pkP , RP , YP), IQ := (pkQ , RQ , YQ).

(5) Sign sQs ← SignskQ ([TXs]), send (updateInfo, id, RQ , YQ , sQs)

tQ
0

↪−−→ P , (PRE–UPDATE–REQ, id, ®θ , tstp, TXs .txid)
tQ
0
+1

↪−−−−→ E.

Party P upon (updateInfo, id, hQ , YQ , sQs)
tP
0
+2

←−−−−↩ Q

(6) Extract TXf and to from Γ
Q
pre(id).

(7) Set tlock := tP
0
+ tstp + 5 + ∆ + to , and

[TXc] := GenCommit([TXf], IP , IQ , tlock)

[TXs] := GenSplit([TXc].txid‖1, ®θ),

for IP := (pkP , RP , YP) and IQ := (pkQ , RQ , YQ). If it holds

that VrfypkQ ([TXs]; s
Q
s) = 1, (PRE–SETUP, id, TXs .txid)

tP
0
+2

↪−−−−→ E.

Else stop.

(8) If (PRE–SETUP–OK, id)
tP
1
≤tP

0
+2+tstp

←−−−−−−−−−−−−↩ E, compute the values sPc ←
pSignskP ([TXc], YQ), s

P
s ← SignskP ([TXs]) and send themessage

(updateComP, id, sPc , s
P
s)

tP
1

↪−−→ Q . Else stop.

Party Q

(9) If (updateComP, id, sPc , s
P
s)

tQ
1
≤tQ

0
+2+tstp

←−−−−−−−−−−−−↩ P , s.t. pVrfypkP ([TXc]
, YQ ; sPc) = 1 andVrfypkP ([TXs]; s

P
s) = 1, output (PRE–SETUP–OK,

id)
tQ
1

↪−−→ E. Else stop.

(10) If (PRE–UPDATE–OK, id)
tQ
1

←−−↩ E, pre-sign sQc ← pSign([TXc], YP)

and send (updateComQ, id, sQc)
tQ
1

↪−−→ P . Else send the message

(updateNotOk, id, rQ)
tQ
1

↪−−→ P and stop.

Party P

(11) In round tP
1
+ 2 distinguish the following cases:

• If (updateComQ, id, sQc)
tP
1
+2

←−−−−↩ Q , s.t. pVrfypkQ ([TXc], YP ; s
Q
c)

= 1, output (PRE–UPDATE–OK, id)
tP
1
+2

↪−−−−→ E.

• If (updateNotOk, id, rQ)
tP
1
+2

←−−−−↩ Q , s.t. (RQ , rQ) ∈ R , add

ΘP (id) := ΘP (id) ∪ ([TXc], rQ , YQ , sPc), output the message

(PRE–UPDATE–REJECT)
tP
1
+2

↪−−−−→ E and stop.

• Else, execute the procedure Wait–if–RegisterP (id) and stop.

(12) If (PRE–REVOKE, id)
tP
1
+2

←−−−−↩ E, parse ΓPpre(id) as (γ , TXf, (TXc, r̄P ,
R̄Q , ȲQ , s̄PCom), TXs) and update the channel space as ΓPpre(id) :=

(γ , TXf, (TXc, rP , RQ , YQ , sPc), TXs), for TXs := ([TXs], {s
P
s , s

Q
s })

and TXc := ([TXc], {SignskP ([TXc]), Adapt(s
Q
c , yP)})., and send

(revokeP, id, r̄P)
tP
1
+2

↪−−−−→ Q . Else, execute Wait–if–RegisterP (id)
and stop.

Party Q

(13) Parse Γ
Q
pre(id) as (γ , TXf, (TXc, r̄Q , R̄P , ȲP , s̄

Q
Com), TXs). If (revokeP,

id, r̄P)
tQ
1
+2

←−−−−↩ P , s.t. (R̄P , r̄P) ∈ R , (PRE–REVOKE–REQ, id)
tQ
1
+2

↪−−−−→

E. Else execute Wait–if–RegisterQ (id) and stop.

(14) If (PRE–REVOKE, id)
tQ
1
+2

←−−−−↩ E as a reply, set

ΘQ (id) :=ΘQ (id) ∪ ([TXc], r̄P , ȲP , s̄
Q
Com)

Γ
Q
pre(id) :=(γ , TXf, (TXc, rQ , RP , YP , s

Q
c), TXs),

for TXs := ([TXs], {s
P
s , s

Q
s }), TXc := ([TXc], {SignskQ ([TXc]),

Adapt(sPc , yQ)}), and send (revokeQ, id, r̄Q)
tQ
1
+2

↪−−−−→ P . In the

next round (PRE–UPDATED, id)
tQ
1
+3

↪−−−−→ E and stop. Else, in round

tQ
1
+ 2, execute Wait–if–RegisterQ (id) and stop.

Party P

(15) If (revokeQ, id, r̄Q)
tP
1
+4

←−−−−↩ Q s.t. (R̄Q , r̄Q) ∈ R , then setΘP (id) :=

ΘP (id) ∪ ([TXc], r̄Q , ȲQ , s̄PCom) and (PRE–UPDATED, id)
tP
1
+4

↪−−−−→ E.

Else execute Wait–if–RegisterP (id) and stop.

Register

Party P in every round t0: For each id ∈ {0, 1}∗ s.t. ΓPpre(id) , ⊥:

(1) Parse ΓPpre(id) := (γ , TXf, (TXc, rP , RQ , YQ , sPc), TXs, to , x)
(2) If TXf appeared on-chain in this round, then

18

Bitcoin-Compatible Virtual Channels

(a) Set Γ(id) := (γ , TXf, (TXc, rP , RQ , YQ , sPc), TXs).
(b) Set ΓPpre(id) := ⊥
(c) If x = in–dispute, then call L–ForceCloseP (id).

Subprocedures

GenCommit([TXf], (pkP , RP , YP), (pkQ , RQ , YQ), t) :
Let (c , Multi–SigpkP ,pkQ) := TXf .Output[1] and denote

φ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP ,

φ2 := Multi–SigToKey(RP),ToKey(YP),pkQ ,

φ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ .

Return [tx], where tx.Input = TXf .txid‖1, tx.Output := (c , φ1∨φ2∨

φ3) and set tx.TimeLock to t if t > now and to 0 otherwise.

GenSplit(tid, ®θ):
Return [tx], where tx.Input := tid and tx.Output := ®θ .

Wait–if–RegisterP (id):
Let t0 be the current round. Let X := ΓPpre(id). Then set ΓPpre(id) :=
(X , in–dispute).

Theorem 2. Let Σ be a signature scheme that is existentially
unforgeable against chosen message attacks, R a hard relation and
ΞR,Σ a secure adaptor signature scheme. Then for any ledger delay∆ ∈
N, the protocol ΠpreL UC-realizes the ideal functionality FpreL(3, 1).

D ADDITIONAL MATERIAL FOR VIRTUAL
CHANNELS

We now formally describe the protocol ΠV (T) that was discussed
on a high level in Section 4. Since our goal it to prove that ΠV (T)
UC-realizes FV (T), we need to discuss about parties deal with in-

struction about ledger channel as well as virtual channel.

D.1 Ledger Channels
As a rst step, we discuss how parties deal with message about

ledger channel or prepared ledger channel. On a high level, parties

simply forward these instructions to the hybrid ideal functionality

FpreL(T , 1). If the functionality sends a reply, the party forwards this
reply to the environment. In addition to the message forwarding,

parties stores information about the ledger channels in a channel

space ΓL . More precisely, once the a ledger channel is created or

pre-created, party adds this channels to ΓL . Once an existing ledger

channel is updated or pre-updated, the party updates the latest state

of the channel stored in ΓL .
There is one technicality that we need to take care of. There

are two dierent situations in which a party of a virtual channel

protocol instructs the hybrid ideal functionality FpreL(T , 1) to pre-

cerate (resp. pre-update) a channel γ :

(1) Party receives a pre-create, resp. pre-update, instruction

from the environment. As discussed above, in this case the

party acts as a dummy party and forward the message to

FpreL(T , 1).
(2) Party is creating, resp. updating, a virtual channel and hence

is sending pre-create, resp. pre-update, messages toFpreL(T , 1).

Let us stress that while channels pre-created via option (1) exist in

both the real and ideal world, channels pre-created via option (2)

exist only in the real world. This is because the pre-creation of these

channels was not initiated by the environment but by the parties of

the virtual channel protocol. Hence, we need to make sure that the

environment cannot “accidentally” update a channel pre-created

via (2) since this would help the environment distinguish between

the real and ideal world.

To this end, party in the case (1) modies the identier of the

channel by adding a prex “ledger”. More precisely, if the environ-

ment makes a request about a channel with identier id it forwards

the instruction to the hybrid functionality but replaces id with

ledger‖id. Analogously, if the hybrid functionality replies to this

message, the party removes the prex. This ensure that the envi-

ronment cannot directly make any change on the ledger channels

pre-created via option (2).

D.2 Create
The creation of a virtual channel was described on a high level in

Section 4. The main idea is to update the two subchannels of the

virtual channel and pre-create a new ledger channel corresponding

to the virtual channel. Importantly, the update of the subchannel

needs to be synchonized in order to ensure that either both updates

complete (in which case the virtual channel is created) or both

updates are rejected (in which case the virtual channel creation

fails).

Since large part of the creation process is the same for channel

with and without validity, our formal description is modularized.

Create a virtual channels - modular

Below we abbreviate FpreL := FpreL(T , 1), A := γ .Alice, B := γ .Bob,
I = γ .Ingrid. For P ∈ γ .endUsers, we denoteQ := γ .otherParty(P).

Party P ∈ {A, B }

Upon receiving (CREATE, γ)
tP
0

←−−↩ E proceed as follows:

(1) Let idα := γ .subchan(P) and compute

θP := GenVChannelOutput(γ , P).

(2) Send (UPDATE, idα , θP , tstp)
tP
0

↪−−→ FpreL.

(3) Upon receiving (SETUP, idα , tidP)
tP
1
≤tP

0
+T

←−−−−−−−−↩ FpreL, engage in

the subprotocol SetupVChannel with input (γ , tidP).

Party I

Upon receiving (CREATE, γ)
t I
0

←−↩ E proceed as follows:

(1) Set idα = γ .subchan(A), idβ = γ .subchan(B) and generate

θA := GenVChannelOutput(γ , A)

θB := GenVChannelOutput(γ , B)

(2) If in round t I
1
≤ t I

0
+T you have received both (UPDATE–REQ, idα ,

θA, tstp, tidA) ←−↩ FpreL and (UPDATE–REQ, idβ , θB , tstp, tidB)
←−↩ FpreL, then engage in the subprotocol SetupVChannel with

inputs (γ , tidA, tidB). Else stop.

Party P ∈ {A, B }

Wait until tP
2

:= tP
1
+ tstp. If the subprotocol completed successfully,

then send (SETUP–OK, idα)
tP
2

↪−−→ FpreL. Else stop.

19

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

Party I

If in round t I
2
≤ t I

1
+ tstp + T you receive both (SETUP–OK, idα))

←−↩ FpreL and (SETUP–OK, idβ)) ←−↩ FpreL, send (UPDATE–OK, idα)
t2
↪−→

FpreL and (UPDATE–OK, idβ)
t2
↪−→ FpreL. Otherwise stop.

Party P ∈ {A, B }

(1) If you receive (UPDATE–OK, idα)
tP
2
≤tP

1
+2T

←−−−−−−−−−↩ FpreL, reply with

(REVOKE, idα)
tP
2
+T

↪−−−−→ FpreL. Otherwise stop.

Party I

If in round t I
3
≤ t I

2
+ 4T you have received both (REVOKE–REQ, idα)

←−↩ FpreL and (REVOKE–REQ, idβ) ←−↩ FpreL, reply (REVOKE, idα)
t I
3

↪−→

FpreL and (REVOKE, idβ)
t I
3

↪−→ FpreL and update ΓI (γ .id) from (⊥, x)
to (γ , x). Otherwise stop.

Party P ∈ {A, B }

Upon receiving (UPDATED, idα)
tP
3
≤tP

2
+3T

←−−−−−−−−−↩ FpreL, mark γ as created,

i.e. update ΓP (γ .id) from (⊥, x) to (γ , x), and output (CREATED, γ .id)
tP
3

↪−−→ E.

Function GenVChannelOutput(γ , P)

Return θ , where θ .cash = γ .cash + γ .fee/2 and θ .φ is dened as

follows

θ .φ =

Multi–Sigγ .users ∨ (One–SigP ∧ CheckRelative(T+4∆)),

if γ .val = ⊥
Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ .val),

if γ .val , ⊥ ∧ P = A
Multi–SigB ,I ∨ (One–SigB ∧ CheckLockTimeγ .val+2∆),

if γ .val , ⊥ ∧ P = B

Subprotocol SetupVChannel

Let t0 be the current round.
Channels without validity

Party P ∈ {A, B } on input (γ , tidP)

(1) Create the body of the funding transactions:

TX
γ
f
.Input :=(tidP , tidQ)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .cash + γ .fee, One–SigpkI))

(2) Send (PRE–CREATE, γ , TXf, 1, to)
t0
↪−→ FpreL, where to = 2T +

8∆.

(3) If (PRE–CREATED, γ .id)
t1≤t0+T
←−−−−−−−↩ FpreL, then sign the funding

transaction, i.e. sPf ← SignskP ([TX
γ
f
]) and send (createFund,

γ .id, sPf , [TX
γ
f
])

t1
↪−→ I . Else stop.

Party I on input (γ , tidA, tidB)

(4) If you receive (createFund, γ .id, sAf , [TX
γ
f
])

t2≤t0+T+1
←−−−−−−−−−↩ A and

(createFund, γ .id, sBf , [TX
γ
f
])

t2
←−↩ B , verify the funding transac-

tion and signatures of A and B , i.e. check:

VrfypkA ([TX
γ
f
]; sAf) = 1

VrfypkB ([TX
γ
f
], sBf) = 1

(tidA, tidB) = TX
γ
f
.Input

(γ .cash + γ .fee, One–SigpkI) ∈ TX
γ
f
.Output.

(5) If all checks pass, sign the funding transaction, i.e. compute

s If := SignskI ([TX
γ
f
]),

TX
γ
f
:= {([TX

γ
f
], sAf , sBf , s If)}.

Store ΓI (γ .id) := (⊥, TXγ
f
). Then send (createFund, γ .id, sBf , s If)

t2
↪−→ A and (createFund, γ .id, sAf , s If)

t2
↪−→ B , and consider proce-

dure successfully completed. Else stop.

Party P ∈ {A, B }

(6) Upon receiving (createFund, γ .id, sQ
f
, s If)

t1+1
←−−−↩ I , verify all

signatures, i.e. check:

VrfypkQ ([TX
γ
f
]; sQ

f
) = 1

VrfypkI ([TX
γ
f
], s If) = 1.

If all checks pass dene TX
γ
f
:= {([TX

γ
f
], sPf , s

Q
f
, s If)} and set

ΓP (γ .id) := (⊥, TXγ
f
, tidP) and consider procedure success-

fully completed. Else stop.

Channels with validity

Party A on input (γ , tidA)

(1) Send (createInfo, γ .id, tidA)
t0
↪−→ B

(2) In round t1 := t0 + 1, create the body of the funding transaction:

TX
γ
f
.Input :=(tidA)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .fee/2, One–SigpkI))

(3) Send (PRE–CREATE, γ , TXf, 1, to)
t1
↪−→ FpreL, for to = γ .val+3∆.

(4) If (PRE–CREATED, γ .id)
t2≤t1+T
←−−−−−−−↩ FpreL, then goto step (10). Else

stop.

Party B on input (γ , tidB)

(5) If (createInfo, γ .id, tidA)
t1 :=t0+1
←−−−−−−↩ A, then create the body of

the funding and refund transactions:

TX
γ
f
.Input :=(tidA)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .fee/2, One–SigpkI))

TX
γ
refund

.Input :=(TXγ
f
.txid | |2, tidB)

TX
γ
refund

.Output :=(γ .cash + γ .fee, One–SigpkI).

Else stop.

(6) Send (PRE–CREATE, γ , TXf, 1, to)
t1
↪−→ FpreL, for to = γ .val+3∆.

20

Bitcoin-Compatible Virtual Channels

(7) If (PRE–CREATED, γ .id)
t2≤t1+T
←−−−−−−−↩ FpreL, then compute a signa-

ture on the refund transaction, i.e., sBRef ← SignskB ([TX
γ
refund

])

and dene ΓB (γ .id) := (⊥, [TXγ
f
], tidB). Then, send (createFund,

γ .id, sBRef, [TX
γ
refund

], [TX
γ
f
])

t2
↪−→ I and consider procedure suc-

cessfully completed. Else stop.

Party I on input (γ , tidA, tidB)

(8) If (createFund, γ .id, sBRef, [TX
γ
refund

], [TX
γ
f
])

t3≤t0+T+2
←−−−−−−−−−↩ B , ver-

ify the fund and refund transactions and signature of B , i.e. check:

VrfyskB ([TX
γ
refund

]; sBRef) = 1.

[TX
γ
refund

].Input = (TXγ
f
.txid | |2, tidB),

[TX
γ
refund

].Output = (γ .cash + γ .fee, One–SigpkI),

[TX
γ
f
].Output[2] = (γ .fee/2, One–SigpkI)

If all checks pass, then sign the fund and refund transactions, i.e.

compute

s IRef := SignskI ([TX
γ
refund

]), s If := SignskI ([TX
γ
f
]),

TX
γ
refund

:= {([TX
γ
refund

], s IRef, s
B
Ref)}.

Else stop.

(9) Store ΓI (γ .id) := (⊥, [TXγ
f
], TX

γ
refund

, tidA, tidB), send the mes-

sage (createFund, γ .id, s If)
t3
↪−→ A, and consider procedure suc-

cessfully completed.

Party A

(10) If you receive (createFund, γ .id, s If)
t2+2
←−−−↩ I , verify the signature,

i.e. check VrfypkI ([TX
γ
f
]; s If) = 1. If the check passes, compute a

signature on the fund transaction:

sAf := SignskA ([TX
γ
f
]),

TX
γ ,A
f

:= {([TX
γ
f
], s If , s

A
f)}.

and set ΓA(γ .id) := (⊥, TXγ ,A
f

, tidA). Then consider procedure

successfully completed. Else stop.

D.3 Update
As discussed in Section 4, in order to update a virtual channel,

parties update the corresponding prepared channel. This is does in

a black-box way via the hybrid functionality FpreL. Hence, parties

act as dummy parties as forward update instructions (modied by

adding PRE–) to the hybrid functionality FpreL and forward the

replies of the functionality (modied by removing PRE–) to the

environment. In case the update fails, party ooad the channel

which allows to resolve disputes on-chain.

Update

Below we abbreviate FpreL := FpreL(T , 1).

Initiating party P :

(1) Upon (UPDATE, id, ®θ , tstp)
t0
←−↩ E, (PRE–UPDATE, id, ®θ , tstp)

t0
↪−→

FpreL.

(2) If (PRE–SETUP, id, tidP)
t1≤t0+T
←−−−−−−−↩ FpreL, (SETUP, id, tidP)

t1
↪−→ E.

Else stop.

(3) If (SETUP–OK, id)
t2≤t1+tstp
←−−−−−−−−↩ E, (PRE–SETUP–OK, id)

t2
↪−→ E. Else

stop.

(4) Distinguish the following three cases:

• If (PRE–UPDATE–OK, id)
t3≤t2+T
←−−−−−−−↩ FpreL, (UPDATE–OK, id)

t3
↪−→

E.

• If (PRE–UPDATE–REJECT, id)
t3≤t2+T
←−−−−−−−↩ FpreL, then stop.

• Else execute the procedure OffloadP (id) and stop.

(5) If (REVOKE, id)
t3
←−↩ E, (PRE–REVOKE, id)

t3
↪−→ FpreL. Else execute

OffloadP (id) and stop.

(6) If (PRE–UPDATED, id)
t4≤t3+T
←−−−−−−−↩ FpreL, update the channel space,

i.e., let γ := ΓP (id), set γ .st := ®θ and Γ(id) := γ . Then (UPDATED,

id)
t4
↪−→ FpreL. Else execute Offload

P (id) and stop.

Reacting party Q

(1) Upon (PRE–UPDATE–REQ, id, ®θ , tstp, tid)
τ0
←−↩ FpreL, (UPDATE–REQ,

id, ®θ , tstp, tid)
τ0
↪−→ E.

(2) If (PRE–SETUP–OK, id)
τ1≤τ0+tstp+T
←−−−−−−−−−−−↩ FpreL, (SETUP–OK, id)

τ1
↪−→

E. Else stop.

(3) If (UPDATE–OK, id)
τ1
←−↩ E, (PRE–UPDATE–OK, id)

τ1
↪−→ FpreL. Else

stop.

(4) If (PRE–REVOKE–REQ, id)
τ2≤τ1+T
←−−−−−−−↩ FpreL, (REVOKE–REQ, id)

τ2
↪−→

E. Else execute OffloadQ (id) and stop.

(5) If (REVOKE, id)
τ2
←−↩ E, (PRE–REVOKE, id)

τ2
↪−→ FpreL. Else execute

OffloadQ (id) and stop.

(6) Upon (PRE–UPDATED, id)
τ3≤τ2+T
←−−−−−−−↩ FpreL, update the channel

space, i.e., let γ := ΓQ (id), set γ .st := ®θ and Γ(id) := γ . Then

(UPDATED, id)
τ3
↪−→ E.

D.4 Oload
As a next step, we dene the ooading process which transforms

a virtual channel into a ledger channel. Let us stress that ooading

can be triggered either by the environment via a message OFFLOAD
or internally by parties when executing an update or close. To

avoid code repetition, we dene a procedure OffloadP (id) and

instruct parties upon receiving (OFFLOAD, id)
t0
←−↩ E to simply call

OffloadP (id).
Since channels with validity are constructed in a dierent way

than channel without validity, the procedure is dened for the two

cases separately.

Subprocedure OffloadP (id)

Below we abbreviate FpreL := FpreL(T , 1), A := γ .Alice and B :=

γ .Bob and I = γ .Ingrid. For P ∈ γ .endUsers, we denote Q :=

γ .otherParty(P). Let t0 be the current round.
Channels without validity

P ∈ {A, B }

(1) Extract γ and TX
γ
f
from ΓP (id) and tidP , tidQ from TX

γ
f
. Then

dene idα := γ .subchan(P) and send (CLOSE, idα)
t0
↪−→ FpreL.

(2) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−−↩ FpreL, then continue.

Else set ΓP (γ .id) = ⊥ and stop.

(3) Let T2 := t1 +T + 3∆ and distinguish:

21

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

• If in round t2 ≤ T2 a transaction with tidQ appeared on L̂,

then (post, TX
γ
f
)

t2
↪−→ L̂.

• Else in round T2 create the punishment transaction TXpun as
TXpun .Input := tidP , TXpun .Output := (γ .cash + γ .fee/2,
One–SigpkP) and TXpun .Witness := SignskP ([TXpun]). Then

(post, TXpun)
T2
↪−→ L̂.

(4) Let T3 := t2 + ∆ and distinguish the following two cases:

• The transaction TX
γ
f
was accepted by L̂ in t3 ≤ T3, then

update ΓPL (id) := ΓP (id) and setm := ooaded.

• The transaction TXpun was accepted by L̂ in t3 ≤ T3, then set

m := punished.

(5) Set ΓP (id) = ⊥ and returnm in round t3.

Party I

(1) Extract γ and TX
γ
f
from ΓI (id) and tidA , tidB from TX

γ
f
. Then

dene idα := γ .subchan(A), idβ := γ .subchan(B) and send the

messages (CLOSE, idα)
t0
↪−→ FpreL and (CLOSE, idβ)

t0
↪−→ FpreL.

(2) If you receive both messages (CLOSED, idα)
tA
1
≤t0+T+3∆

←−−−−−−−−−−−↩ FpreL

and (CLOSED, idβ)
tB
1
≤t0+T+3∆

←−−−−−−−−−−−↩ FpreL, publish (post, TX
γ
f
)

t1
↪−→

L̂, where t1 := max{tA
1
, tB

1
}. Otherwise set ΓI (id) = ⊥ and

stop.

(3) Once TX
γ
f
is accepted by L̂ in round t2 ≤ t1 +∆, then ΓI (id) = ⊥

and return “ooaded”.

Channels with validity

Party A

(1) Extract γ , tidA and TX
γ
f
from ΓA(id). Let idα := γ .subchan(A)

and send (CLOSE, idα)
t0
↪−→ FpreL.

(2) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−−↩ FpreL, then post (post,

TX
γ ,A
f
)

t2
↪−→ L̂. Otherwise, set ΓA(γ .id) = ⊥ and stop.

(3) Once TX
γ
f
is accepted by L̂ in round t2 ≤ t1 + ∆, then update

ΓAL (id) := ΓA(id), ΓA(id) := ⊥ and return “ooaded”.

Party B

(1) Extract γ , tidB and [TX
γ
f
] from ΓB (id). Let idβ := γ .subchan(B)

and send (CLOSE, idβ)
t0
↪−→ FpreL.

(2) If you receive (CLOSED, idβ)
t1≤t0+T+3∆
←−−−−−−−−−−↩ FpreL, then continue.

Otherwise, set ΓB (γ .id) = ⊥ and stop.

(3) Create the punishment transaction TXpun as TXpun .Input := tidB ,
TXpun .Output := (γ .cash + γ .fee/2, One–SigpkB) and set the

value TXpun .Witness := SignskB ([TXpun]). Then wait until round

t2 := max{t1, γ .val + 2∆} and send (post, TXpun)
t2
↪−→ L̂.

(4) Let T3 := t2 + ∆ and distinguish the following two cases:

• A transaction with identier TX
γ
f
.txid was accepted by L̂ in

t3 ≤ T3, then dene ΓBL (id) := ΓB (id) and setm := ooaded.

• The transaction TXpun was accepted by L̂ in t3 ≤ T3, setm :=

punished.

(5) Set ΓB (id) := ⊥ and returnm in round t3.

Party I

(1) Extractγ , tidA , tidB , TX
γ
refund

and [TX
γ
f
] from ΓI (id). Then dene

idα := γ .subchan(A), idβ := γ .subchan(B) and send (CLOSE, idα)
t0
↪−→ FpreL and (CLOSE, idβ)

t0
↪−→ FpreL.

(2) If you receive both messages (CLOSED, idα)
tA
1
≤t0+T+3∆

←−−−−−−−−−−−↩ FpreL

and (CLOSED, idβ)
tB
1
≤t0+T+3∆

←−−−−−−−−−−−↩ FpreL, then continue. Otherwise,

set ΓI (γ .id) = ⊥ and stop.

(3) Create the punishment transaction TXpun as TXpun .Input := tidA ,
TXpun .Output := (γ .cash + γ .fee/2, One–SigpkI) and set the

value TXpun .Witness := SignskI ([TXpun]). Then wait until round

t2 := max{tA
1
, γ .val} and send (post, TXpun)

t2
↪−→ L̂.

(4) Let T3 := t2 + ∆ and distinguish the following two cases:

• A transaction with identier TX
γ
f
.txid was accepted by L̂ in

t ′
3
≤ T3, send (post, TX

γ
refund

)
t4
↪−→ L̂ where t4 := max{tB

1
, t ′

3
}.

Once TX
γ
refund

is accepted by L̂ in round t5 ≤ t4 + ∆, then

denem := ooaded and ΓI (γ .id) = ⊥.
• The transaction TXpun was accepted by L̂ in t ′′

3
≤ T3, then

denem := punished and ΓI (γ .id) = ⊥.
(5) Returnm in round t6 where t6 := max{t5, t ′′

3
}.

D.5 Close
In order to close a virtual channel, parties rst try to adjust the

balances in the sunchannel according to the latest valid state of

the virtual channel. This is done by updating the subchannels in

a synchonous way, as was done during virtual channel creation.

In case this process fails, parties close the channel forcefully. This

means that parties rst ooad the channel and then immediately

close the ooaded ledger channel.

Close a virtual channel

Below we abbreviate FpreL := FpreL(T , 1), A := γ .Alice and B :=

γ .Bob and I = γ .Ingrid. For P ∈ γ .endUsers, we denote Q :=

γ .otherParty(P).

Party P ∈ {A, B }

Upon receiving (CLOSE, id)
tP
0

←−−↩ E or in round tP
0

:= γ .val−(4∆+7T)
if γ .val , ⊥, proceed as follows:

(1) Extract γ , TXγ
f
from ΓP (id).

(2) Parse γ .st =
(
(cP , One–SigpkP), (cQ , One–SigpkQ)

)
.

(3) Compute the new state of the channel idα := γ .subchan(P) as

®θP := {(cP , One–SigpkP), (cQ +
γ .fee
2

, One–SigpkI)}

Then, send (UPDATE, idα , ®θP , 0)
tP
0

↪−−→ FpreL.

(4) Upon (SETUP, idα , tidP)
tP
1
≤tP

0
+T

←−−−−−−−−↩ FpreL, send (SETUP–OK, idα)
tP
1

↪−−→ FpreL.

Party I

Upon receiving (CLOSE, id)
t I
0

←−↩ E or in round t I
0
:= γ .val−(4∆+7T),

proceed as follows:

(1) Extract γ , TXγ
f
from ΓI (id).

(2) Let idα = γ .subchan(A), idβ = γ .subchan(B) and c := γ .cash

22

Bitcoin-Compatible Virtual Channels

(3) If in round t I
1
≤ t I

0
+ T you received both (UPDATE–REQ, idα ,

tidA, ®θA, 0) ←−↩ FpreL and (UPDATE–REQ, idβ , tidB , ®θB , 0) ←−↩
FpreL check that for some cA, cB s.t. cA + cB = c it holds

®θA = {(cA, One–SigpkA), (cB + γ .fee/2, One–SigpkI)}

®θB = {(cB , One–SigpkB), (cA + γ .fee/2, One–SigpkI)}

If not, then stop.

(4) If in round t I
2
≤ t I

1
+ T you receive both (SETUP–OK, idα)) ←−↩

FpreL and (SETUP–OK, idβ)) ←−↩ FpreL, send (UPDATE–OK, idα)
t I
2

↪−→ FpreL and (UPDATE–OK, idβ)
t I
2

↪−→ FpreL. If not, then stop.

Party P ∈ {A, B }

If you receive (UPDATE–OK, idα)
tP
2
≤tP

1
+2T

←−−−−−−−−−↩ FpreL, replywith (REVOKE,

idα)
tP
2

↪−−→ FpreL. Otherwise execute Offload
P (id) and stop.

Party I

If in round t I
3
≤ t I

2
+ 2T you received both (REVOKE–REQ, idα)

←−↩ FpreL and (REVOKE–REQ, idβ) ←−↩ FpreL, reply (REVOKE, idα)
t I
3

↪−→

FpreL and (REVOKE, idβ)
t I
3

↪−→ FpreL and set ΓI (id) := ⊥.

Party P ∈ {A, B }

If you receive (UPDATED, idα)
tP
3
≤tP

2
+2T

←−−−−−−−−−↩ FpreL, set Γ
P (id) := ⊥.

Then output (CLOSED, id)
tP
3

↪−−→ E and stop. Else execute OffloadP (id)
and stop.

D.6 Punish
Finally, we formalize the actions taken by parties in every round. On

a high level, in addition to triggering the hybrid ideal functionality

to take the every-round actions for ledger channel (which include

blockchain monitoring for outdated commit transactions), parties

also need to make several check for virtual channel. Namely, chan-

nel users that tried to ooad the virtual channel by closing their

subchannel) monitor whether the other subchannel was closed as

well. If yes, then they can publish the funding transaction and com-

plete the ooad and otherwise apply the punishment mechanism.

Punish virtual channel

Below we abbreviate FpreL := FpreL(T , 1), A := γ .Alice and B :=

γ .Bob and I = γ .Ingrid. For P ∈ γ .endUsers, we denote Q :=

γ .otherParty(P).

Upon receiving (PUNISH)
τ0
←−↩ E, do the following:

• Forward this message to the hybrid ideal functionality (PUNISH)
τ0
↪−→ FpreL. If (PUNISHED, id)

τ1
←−↩ FpreL, then (PUNISHED, id)

τ1
↪−→ E.

• Execute both subprotocols Punish and Punish–Validity.

Punish

Party P ∈ {A, B }

For every id ∈ {0, 1}∗, such that γ which γ .val = ⊥ can be extracted

from ΓP (id) do the following:

(1) Extract TX
γ
f
from ΓP (id) and tidP , tidQ from TX

γ
f
. Check if tidP

appeared on L̂. If not, then stop.

(2) Denote T2 := t1 +T + 3∆ and distinguish:

• If in round t2 ≤ T2 the transaction with tidQ appeared on L̂,

then (post, TX
γ
f
)

t2
↪−→ L̂.

• Else in round T2 create the punishment transaction TXpun as

TXpun .Input := tidP
TXpun .Output := (γ .cash + γ .fee/2, One–SigpkP)

TXpun .Witness := SignskP ([TXpun]),

and (post, TXpun)
T2
↪−→ L̂.

(3) Let T3 := t2 + ∆ and distinguish the following two cases:

• The transaction TX
γ
f
was accepted by L̂ in t3 ≤ T3, then

ΓPL (id) := ΓP (id), ΓP (id) = ⊥ andm := OFFLOADED.

• The transaction TXpun was accepted by L̂ in t3 ≤ T3, then
dene ΓP (γ .id) = ⊥ and setm := PUNISHED.

(4) Output (m, id)
t3
↪−→ E.

Party I

For every id ∈ {0, 1}∗, such that γ with γ .val = ⊥ can be extracted

from ΓI (id) do the following:

(1) Extract TX
γ
f
from ΓI (id) and tidA , tidB from TX

γ
f
. Check if for

some P ∈ {A, B } a transaction with identier tidP appeared on

L̂. If not, then stop.

(2) Denote idα := γ .subchan(Q) and send (CLOSE, idα)
t0
↪−→ FpreL.

(3) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−−↩ FpreL and tidQ ap-

peared on L̂, (post, TX
γ
f
)

t1
↪−→ L̂. Otherwise set ΓI (id) = ⊥ and

stop.

(4) Once TX
γ
f
is accepted by L̂ in round t2, such that t2 ≤ t1 +∆, set

ΓI (id) = ⊥ and output (OFFLOADED, id)
t2
↪−→ E.

Punish–Validity

Party A

For every id ∈ {0, 1}∗, such that γ with γ .val , ⊥ can be extracted

from ΓA(id) do the following:

(1) Extract TX
γ
f
from ΓA(id) and tidA from TX

γ
f
. If tidA appeared on

L̂, then send (post, TX
γ
f
)

t1
↪−→ L̂. Else stop.

(2) Once TX
γ
f
is accepted by L̂ in round t2 ≤ t1 + ∆, set ΓAL (id) :=

ΓA(id), ΓA(id) := ⊥ and output (OFFLOADED, id)
t2
↪−→ E.

Party B

For every id ∈ {0, 1}∗, such that γ which γ .val = ⊥ can be extracted

from ΓB (id) do the following:

(1) Extract tidB and [TX
γ
f
] from ΓB (id). Check if tidB or [TX

γ
f
].txid

appeared on L̂. If not, then stop.

(2) If a transaction TX
γ
f
appeared on L̂, update set ΓBL (id) := ΓB (id)

and ΓB (id) := ⊥. Then output (OFFLOADED, id)
t1
↪−→ E and stop.

(3) If tidB appeared on L̂, create the punishment transaction TXpun
as

TXpun .Input := tidB
TXpun .Output := (γ .cash + γ .fee/2, One–SigpkB)

TXpun .Witness := SignskB ([TXpun]).

23

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

Then wait until round t2 := max{t1, γ .val+ 2∆} and send (post,

TXpun)
t2
↪−→ L̂.

(4) If transaction TXpun was accepted by L̂ in t3 ≤ t2+∆, then dene

ΓB (γ .id) = ⊥ and output (PUNISHED, id)
t3
↪−→ E.

Party I

For every id ∈ {0, 1}∗, such that γ which γ .val = ⊥ can be extracted

from ΓI (id) do the following:

(1) Extract tidA , tidB , TX
γ
refund

and [TX
γ
f
] from ΓI (id). Check if tidA

or tidB appeared on L̂ or t1 = γ .val− (3∆ +T). If not, then stop.

(2) Distinguish the following cases:

• If t1 = γ .val − (3∆ +T), dene idα := γ .subchan(A), idβ :=

γ .subchan(B) and send (CLOSE, idα)
t1
↪−→ FpreL and (CLOSE,

idβ)
t1
↪−→ FpreL.

• If tidB appeared on L̂, send (CLOSE, idα)
t1
↪−→ FpreL.

(3) If a transaction with identier tidA appeared on L̂ in round

t2 ≤ t1 +T + 3∆, create the punishment transaction TXpun as

TXpun .Input := tidA
TXpun .Output := (γ .cash + γ .fee/2, One–SigpkI)

TXpun .Witness := SignskI ([TXpun]).

Then wait until round t3 := max{t2, γ .val} and send (post,

TXpun)
t3
↪−→ L̂.

(4) Distinguish the following two cases:

• The transaction TX
γ
f
.txid was accepted by L̂ in t4 ≤ t3 + ∆,

send (post, TX
γ
refund

)
t5
↪−→ L̂ where t5 := max{γ .val + ∆, t4 }.

Once TX
γ
refund

is accepted by L̂ in round t6 ≤ t5 + ∆, set

ΓI (γ .id) = ⊥ and output (OFFLOADED, id)
t6
↪−→ E and stop.

• The transaction TXpun was accepted by L̂ in t4 ≤ t3 + ∆, then

set ΓI (γ .id) = ⊥ and output (PUNISHED, id)
t4
↪−→ E.

E SIMPLIFYING FUNCTIONALITY
DESCRIPTION

In order to simplify the exposition, the formal descriptions of

the channel ideal functionalities FL , FpreL and FV are simplied.

Namely, they exclude several natural checks that one would expect

an ideal functionality to make when it receives a message from

a party. The purpose of the checks is to avoid the functionality

from accepting malformed messages. To provide some intuition,

we present several examples of such restrictions:

• A party sends a malformed message (e.g. missing or addi-

tional parameters)

• A party request creation of a virtual channel but one of the

two subchannels does not exists or does not have enough

funds for virtual channel creation.

• Parties try to update the same channel twice in parallel.

We now list all check formally in the wrapper below which can be

seen as an extension to the wrapper provided by [4] for FL .

Functionality wrapper:W
checks

(T)

The wrapper is dened for F ∈ {FV (T), FpreL(T), FL (T)}. Below,
we abbreviate A := γ .Alice, B := γ .Bob and I := γ .Ingrid.

Create: Upon (CREATE, γ , tid)
τ0
←−↩ P , where P ∈ γ .users, check if:

Γ(γ .id) = ⊥, F.Γpre(γ .id) = ⊥ and there is no channel γ ′ with
γ .id = γ ′.id being created or pre-created; γ is valid according to

the denition given in Section 3.1; γ .st = {(cP , One–SigpkP), (cQ ,

One–SigpkQ)} for cP , cQ ∈ R
≥0
. Depending on the type of channel,

make the following additional checks:

ledger channel: There exists (t , id, i , θ) ∈ L̂ .UTXO such that θ =
(cP , One–SigP) for (id, i) := tid;a

virtual channel:
• If P ∈ γ .endUsers, then α := F.Γ(idP) , ⊥ for idP :=

γ .subchan(P); α .endUsers = {P , I }; there is no other

virtual channel being created over α and α is currently not

being updated; both P and I have enough funds in α .
• If P = I , thenα := F.Γ(idA) , ⊥ for idA := γ .subchan(A);
β := F.Γ(idB) , ⊥ for idB := γ .subchan(B); α .endUsers
= {A, I }; β .endUsers = {B, I }; there is no other virtual

channel being created over α or β ; A and I have enough
funds in α and B and I have enough funds in β .
• If γ .val , ⊥, then γ .val ≥ τ0 + 4∆ + 15T .

If one of the above checks fails, drop the message. Else proceed as F.

Pre-Create: Upon (PRE–CREATE, γ , TXf, i , to)
τ0
←−↩ P , check if: P ∈

γ .users, F.Γpre(γ .id) = ⊥, F.Γpre(γ .id) = ⊥ and there is no channel

γ ′ withγ .id = γ ′.id being created or pre-created;γ is valid according

to the denition given in Section 3.1; γ .st = {(cP , One–SigpkP),
(cQ , One–SigpkQ)} for cP , cQ ∈ R

≥0
and TXf is not a published

transaction on L̂. If one of the above checks fails, drop the message.

Else proceed as F.

(Pre)-Update: Upon (m, id, ®θ , tstp)
τ0
←−↩ P , check if: γ := Γ(id) , ⊥ if

m = UPDATE and γ := Γpre(id) , ⊥ ifm = PRE–UPDATE. In both cases

additionally check: P ∈ γ .endUsers; there is no other update being

preformed on γ ; let ®θ = (θ1, . . . θ`) = ((c1, φ1), . . . , (c` , φ`)), then∑
j∈[`] ci = γ .cash and φ j ∈ L̂ .V for each j ∈ [`]. If not, drop the

message. Else proceed as F.

Upon ((PRE–)SETUP–OK, id)
τ2
←−↩ P check if: you accepted a message

((PRE–)UPDATE, id, ®θ , tstp)
τ0
←−↩ P , where t2 − t0 ≤ tstp + T and the

message is a reply to the message ((PRE–)SETUP, id, tid) sent to P
in round τ1 such that τ2 − τ1 ≤ tstpb. If not, drop the message. Else

proceed as F.

Upon ((PRE–)UPDATE–OK, id)
τ0
←−↩ P , check if the message is a reply

to the message ((PRE–)SETUP–OK, id) sent to P in round τ0. If not,
drop the message. Else proceed as F.

Upon ((PRE–)REVOKE, id)
τ0
←−↩ P , check if the message is a reply to

either the message ((PRE–)UPDATE–OK, id) sent to P in round τ0 or
the message ((PRE–)REVOKE–REQ, id) sent to P in round τ0. If not,
drop the message. Else proceed as F.

Ooad: Upon receiving (OFFLOAD, id)
τ0
←−↩ P make the following

checks: γ := Γ(id) , ⊥ is a virtual channel and P ∈ γ .users. If one
of the checks fails, then drop the message. Otherwise proceed as the

functionality F.

Close: Upon (CLOSE, id)
τ0
←−↩ P , check if γ := Γ(id) , ⊥ and P ∈

γ .endUsers. If γ is a virtual channel, additionally check that γ .val =
⊥. If not, drop the message. Else proceed as F.

All other messages are dropped.

a
In case more channels are being created at the same time, then none of the

other creation requests can use of the tid.
b
See Appendix B what we formally meant by “reply”.

24

Bitcoin-Compatible Virtual Channels

F SIMPLIFYING THE PROTOCOL
DESCRIPTIONS

Similarly as the descriptions of our ideal functionality, the descrip-

tion our channel protocols, the protocol ΠpreL presented in Appen-

dix C.4 and the protocol ΠV presented in Appendix D, exclude

many natural checks that we would want an honest party to make.

Let us give a few examples of requests which an honest party drops

if received from the environment:

• The environment sends a malformed message to a party P
(e.g. missing or additional parameters);

• A party P receives an instruction to create a channel γ but

P < γ .endUsers;
• A party P receives an instruction to create a virtual channel

on top of a ledger channel that does not exist, does not belong

to part P or is not suciently funded.

• Parties request to create a channel with validity whose va-

lidity time already expired (or is about to expire).

We dene all these check as a wrapperW
checksP

that can be seen as

a extension of the wrapper provided by [4] for their ledger channel

protocol.

Protocol wrapper:W
checksP

The wrapper is dened for Π ∈ {ΠV (T), ΠpreL(T)}. Below, we ab-
breviate A := γ .Alice, B := γ .Bob and I := γ .Ingrid.

Party P

Create: Upon (CREATE, γ , tid)
τ0
←−↩ E check if: P ∈ γ .endUsers;

ΓP (γ .id) = ⊥, ΓPpre(γ .id) = ⊥ and there is no channel γ ′ with
γ .id = γ ′.id being created or pre-created; γ is valid according

to the denition given in Section 3.1; γ .st = {(cP , One–SigpkP),
(cQ , One–SigpkQ)} for cP , cQ ∈ R

≥0
. Depending on the type of

channel, make the following additional checks:

ledger channel: There exists (t , id, i , θ) ∈ L̂ .UTXO such that θ =
(cP , One–SigP) for (id, i) := tid;a

virtual channel:
• If P ∈ γ .endUsers, then α := ΓP (idP) , ⊥ for idP :=

γ .subchan(P); α .endUsers = {P , I }; there is no other

virtual channel being created over α and α is currently not

being updated; both P and I have enough funds in α .
• If P = I , then α := ΓP (idA) , ⊥ for idA := γ .subchan(A);
β := ΓP (idB) , ⊥ for idB := γ .subchan(B);α .endUsers =
{A, I }; β .endUsers = {B, I }; there is no other virtual

channel being created over α or β ; A and I have enough
funds in α and B and I have enough funds in β .
• If γ .val , ⊥, then γ .val ≥ τ0 + 4∆ + 15T .

If one of the checks fails, drop the message. Else proceed as in Π.

Pre-Create: Upon (PRE–CREATE, γ , TXf, i , to)
τ0
←−↩ E, check if: P ∈

γ .users, ΓPpre(γ .id) = ⊥, Γ
P
pre(γ .id) = ⊥ and there is no channel γ ′

with γ .id = γ ′.id being created or pre-created; γ is valid according

to the denition given in Section 3.1; γ .st = {(cP , One–SigpkP),
(cQ , One–SigpkQ)} for cP , cQ ∈ R

≥0
and TXf is not a published

transaction on L̂. If one of the above checks fails, drop the message.

Else proceed as in Π.

(Pre)-Update: Upon (m, id, ®θ , tstp)
τ0
←−↩ E check if: γ := ΓP (id) , ⊥

ifm = UPDATE and γ := ΓPpre(id) , ⊥ ifm = PRE–UPDATE. In both

cases, check that there is no other update being preformed on γ ; let
®θ = (θ1, . . . θ`) = ((c1, φ1), . . . , (c` , φ`)), then

∑
j∈[`] ci = γ .cash

and φ j ∈ L̂ .V for each j ∈ [`]. If on of the checks fails, drop the

message. Else proceed as in Π.

Upon ((PRE–)SETUP–OK, id)
τ2
←−↩ E check if: you accepted a message

((PRE–)UPDATE, id, ®θ , tstp)
τ0
←−↩ E, where t2 − t0 ≤ tstp + T and the

message is a reply to the message ((PRE–)SETUP, id, ®tid) you sent in

round τ1 such that τ2 − τ1 ≤ tstpb. If not, drop the message. Else

proceed as in Π.

Upon ((PRE–)UPDATE–OK, id)
τ0
←−↩ E, check if the message is a reply

to the message ((PRE–)SETUP–OK, id) you sent in round τ0. If not,
drop the message. Else proceed as in Π.

Upon ((PRE–)REVOKE, id)
τ0
←−↩ E, check if the message is a reply to

either ((PRE–)UPDATE–OK, id) or ((PRE–)REVOKE–REQ, id) you sent in

round τ0. If not, drop the message. Else proceed as in Π.

Ooad: Upon receiving (OFFLOAD, id)
τ0
←−↩ E make the following

checks: γ := Γ(id) , ⊥ is a virtual channel and P ∈ γ .users. If one
of the checks fails, then drop the message. Else proceed as in Π.

Close: Upon (CLOSE, id)
τ0
←−↩ E, check if γ := ΓP (id) , ⊥, P ∈

γ .endUsers. If γ is a virtual channel, additionally check that γ .val =
⊥. If not, drop the message. Else proceed as in Π.
All other messages are dropped.

a
In case more channels are being created at the same time, then none of the

other creation requests can use of the tid.
b
See Appendix B what we formally meant by “reply”.

G SIMULATIONWRAPPER
In this section we provide a proof for Theorem 2. In our proof, we

provide the code for a simulator, that simulates the protocolΠpreL in

the ideal world, having access to the functionalities L̂ and FpreL. In

UC proofs it is required to provide a simulation of the real protocol

in the ideal world even without knowledge of the secret inputs

of the honest protocol participants. The main challenge is that

this transcript of the simulation has to be indistinguishable to the

environment E from the transcript of the real protocol execution.

Yet, in our protocols, parties do not receive secret inputs, but are

only instructed by the environment to take certain protocol actions,

e.g. updating a channel. Hence the only challenge that arises during

simulation is handling dierent behavior of malicious parties. Due

to this, we only provide the simulator code for the protocol without

arguing about indistinguishability of simulation and real protocol

execution, since it naturally holds due to the reasons given above.

In our simulation, we omit the case where all parties are honest,

since the simulator simply has to follow the protocol description.

In case of three protocol participants, we provide a simulation for

all cases where two parties are corrupted and one party is honest,

because these cases cover also all cases where just one party is

corrupted. In other words, the case where two parties are honest

is a combination of cases where each of these parties are honest

individually.

Since the functionality FpreL incorporates, FL , we refer at some

point of our simulation to the simulator code for ledger channels.

We note that the indistinguishability of the simulated transcript

and the transcript of the real protocol can only hold if the secu-

rity properties of the underlying adaptor signature scheme holds.

25

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

Namely, we require the adaptor signature scheme to fulll the

unforgeability, witness extractability and adaptability properties.

Simulator for Wrapper protocol

Pre-Creat

Case A honest and B corrupted

(1) Upon A sending (PRE–CREATE, γ , TXf, i , to)
τ0
↪−→ FpreL set T1 =

2 and do the following:

(2) If TXf .Output[i].cash , γ .cash, then ignore the message.

(3) Set id := γ .id, generate (RA, rA) ← GenR, (YA, yA) ← GenR

and send (createInfo, id, TXf, i , to , RA, YA)
τ0
↪−→ B .

(4) If (createInfo, id, TXf, i , to , RB , YB)
τ0+1
←−−−↩ B , create:

[TXc] := GenCommit([TXf], IA, IB , 0)

[TXs] := GenSplit([TXc].txid‖1, γ .st)

for IA := (pkA, RB , YA), IB := (pkB , RB , YB). Else stop.
(5) Compute sAc ← pSignskA ([TXc], YB), s

A
s ← SignskA ([TXs]) and

send (createCom, id, sAc , sAs)
τ0+1
↪−−−→ B .

(6) If (createCom, id, sBc , sBs)
τ0+2
←−−−↩ B , s.t. pVrfypkB ([TXc], YA ; s

B
c) =

1 and VrfypkB ([TXs]; s
B
s) = 1, set

TXc := ([TXc], {SignskA ([TXc]), Adapt(s
B
c , yA)})

TXs := ([TXs], {s
A
s , sBs })

ΓApre(γ .id) := (γ , TXf, (TXc, rA, RB , YB , s
A
c), TXs, to).

and if B has not sent (PRE–CREATE, γ , TXf, i , to) to FpreL send
this message on behalf of B .

Pre-Update

Let T1 = 2 and T2 = 1 and let | ®tid | = 1.

Case A is honest and B is corrupted

Upon A sending (PRE–UPDATE, id, ®θ , tstp)
τ0
↪−→ FpreL, proceed as

follows:

(1) Generate new revocation public/secret pair (RP , rP) ← GenR
and a new publishing public/secret pair (YP , yP) ← GenR and

send (updateReq, id, ®θ , tstp, RA, YA)
τA
0

↪−−→ B .

(2) Upon (updateInfo, id, hB , YB , s
B
s)

τA
0
+2

←−−−−↩ B , set tlock := τA
0
+

tstp + 5 + ∆ + to , extract TXf from ΓBpre(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ®θ),

for IA := (pkA, RA, YA) and IB := (pkB , RB , YB). If it holds
that VrfypkB ([TXs]; s

B
s) = 1 continue. Else mark this execution

as “failed” and stop.

(3) If A sends (PRE–SETUP–OK, id)
τA
1
≤τA

0
+2+tstp

↪−−−−−−−−−−−−→ FpreL, compute

sAc ← pSignskA ([TXc], YB), s
A
s ← SignskA ([TXs]) and send the

message (update–commitA, id, sAc , sAs)
τA
1

↪−−→ B .
(4) In round τA

1
+ 2 distinguish the following cases:

• If A receives (update–commitB, id, sBc)
τA
1
+2

←−−−−↩ B check if B

has not sent (PRE–UPDATE–OK, id)
τA
1
+1

↪−−−−→ FpreL. If so send the

message (PRE–UPDATE–OK, id)
τA
1
+1

↪−−−−→ FpreL on behalf of B .
If pVrfypkB ([TXc], YA ; s

B
c) = 0, then mark this execution as

“failed” and stop.

• IfA receives (updateNotOk, id, rB)
τA
1
+2

←−−−−↩ B , where (RB , rB) ∈
R , add ΘA(id) := ΘA(id) ∪ ([TXc], rB , YB , s

A
c), instruct FpreL

to send (PRE–UPDATE–REJECT, id) ↪−→ A and to stop and mark

this execution as “failed” and stop.

• Else, execute the simulator code for the procedure

Wait–if–RegisterA(id) and stop.

(5) If A sends (PRE–REVOKE, id)
τA
1
+2

↪−−−−→ FpreL, then parse ΓApre(id)
as (γ , TXf, (TXc, r̄A, R̄B , ȲB , s̄

A
Com), TXs) and update the channel

space as ΓApre(id) := (γ , TXf, (TXc, rA, RB , YB , s
A
c), TXs), for TXs :=

([TXs], {s
A
s , sBs }) and TXc := ([TXc], {SignskA ([TXc]), Adapt(s

B
c ,

yA)}). Then send (revokeP, id, r̄A)
τA
1
+2

↪−−−−→ B . Else, execute the
simulator code for the procedure Wait–if–RegisterA(id) and
stop.

(6) If A receives (revokeB, id, r̄B)
τA
1
+4

←−−−−↩ B , check if B has not

sent (PRE–REVOKE, id)
τ B
1
+2

↪−−−−→ FpreL. If so send (PRE–REVOKE, id)
τ B
1
+2

↪−−−−→ FL on behalf of B . Check if (R̄B , r̄B) ∈ R , then set

ΘB (id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄
A
Com)

Else execute the simulator code for the procedure

Wait–if–RegisterA(id) and stop.

Case B is honest and A is corrupted

Upon A sending (updateReq, id, ®θ , tstp, hA)
τ0
↪−→ B , send the mes-

sage (PRE–UPDATE, id, ®θ , tstp)
τ0
↪−→ FpreL on behalf of A, if A has not

already sent this message. Proceed as follows:

(1) Upon (updateReq, id, ®θ , tstp, RA, YA)
τ B
0

←−−↩ A, generate (RB , rB) ←
GenR and (YB , yB) ← GenR.

(2) Set tlock := τ B
0
+ tstp + 4 + ∆ + to , extract TXf from ΓApre(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ®θ)

where IA := (pkA, RA, YA), IB := (pkB , RB , YB).
(3) Compute sBs ← SignskB ([TXs]), send (updateInfo, id, RB , YB ,

sBs)
τ B
0

↪−−→ A.

(4) If B receives (update–commitA, id, sAc , sAs)
τ B
1
≤τ B

0
+2+tstp

←−−−−−−−−−−−−↩ A

then send (PRE–SETUP–OK, id)
τ B
1

↪−−→ FpreL on behalf of A, if A has

not sent this message.

(5) Check if pVrfypkP ([TXc], YQ ; sPc) = 1 andVrfypkP ([TXs]; s
P
s) = 1.

Else mark this execution as “failed” and stop.

(6) If B sends (PRE–UPDATE–OK, id)
τ B
1

↪−−→ FpreL, then compute sBc ←

pSign([TXc], YA) and send (update–commitB, id, sBc)
τ B
1

↪−−→ A.

Else send (updateNotOk, id, rB)
τ B
1

↪−−→ A, mark this execution

as “failed” and stop.

26

Bitcoin-Compatible Virtual Channels

(7) Parse ΓBpre(id) as (γ , TXf, (TXc, r̄B , R̄A, ȲA, s̄
B
Com), TXs). If B re-

ceives (revokeA, id, r̄A)
τ B
1
+2

←−−−−↩ A, send (PRE–REVOKE, id)
τ B
1
+2

↪−−−−→

FpreL on behalf of A, if A has not sent this message.

Else if you do not receive (revokeA, id, r̄A)
τ B
1
+2

←−−−−↩ A or if (R̄A, r̄A)
< R , execute the simulator code of the procedure

Wait–if–RegisterB (id) and stop.

(8) If B sends (PRE–REVOKE, id)
τ B
1
+2

↪−−−−→ FpreL, then set

ΘB (id) :=ΘB (id) ∪ ([TXc], r̄A, ȲA, s̄
B
Com)

ΓBpre(id) :=(γ , TXf, (TXc, rB , RA, YA, s
B
c), TXs),

for TXs := ([TXs], {s
A
s , sBs }) and TXc := ([TXc], {SignskB ([TXc]),

Adapt(sAc , yB)}). Then (revokeB, id, r̄B)
τ B
1
+2

↪−−−−→ A and stop. Else,

in round τ B
1
+ 2, execute the simulator code of the procedure

Wait–if–RegisterB (id) and stop.

Register

Case A honest and B corrupted

For party A in every round τ0 do the following:

(1) For each id ∈ {0, 1}∗ s.t. ΓApre(id) , ⊥:
(2) Parse ΓApre(id) := (γ , TXf, (TXc, rA, RB , YB , s

A
c), TXs, to , x)

(3) If TXf appeared on-chain in this round, then

(a) Set Γ(id) := (γ , TXf, (TXc, rA, RB , YB , s
A
c), TXs).

(b) Set ΓApre(id) := ⊥
(c) If x = in–dispute, then execute the simulator code for

L–ForceCloseA(id).

Wait–if–Register(id)

Case A honest and B corrupted

Let τ0 be the current round. Let X := ΓApre(id). Then set ΓApre(id) :=
(X , in–dispute).

H SIMULATION VIRTUAL CHANNELS
In this section we provide a proof for Theorem 1. In our proof, we

provide the code for a simulator, that simulates the protocol ΠV in

the ideal world having access to the functionalities L̂ and FV .

We note that since during our simulation, no ERROR messages

are produced by the functionality, the protocol satises the security

properties of the functionality FV as mentioned in Section 3.2.

Simulator for creating virtual channels

creating virtual channels

Case A is honest and I are B are corrupt

Upon A sending (CREATE, γ)
τA
0

↪−−→ FV set T1 = 6T + tstp proceed
as follows:

(1) Let idα := γ .subchan(A) and compute

θA := GenVChannelOutput(γ , A).

(2) Upon A sending (UPDATE, idα , θA, tstp)
τA
0

↪−−→ FL execute the

simulator code of the update procedure for the generalized chan-

nels until the message (SETUP, idα , tidA) is sent by FL . If the
execution stops send (peaceful–reject, idα) ↪−→ FV .

(3) UponA receiving (SETUP, idα , tidA)
τA
1
≤τA

0
+T

←−−−−−−−−−↩ FL , execute the

simulator code for SetupVChannel with input (γ , tidA).
(4) If this execution of SetupVChannel is recorded “failed” stop. Oth-

erwise execute the simulator code of the update procedure for

the generalized channels until the end. If the execution failed (I
does not revoke) instruct FV to L–ForceClose(idα).

(5) If B or I have not sent (CREATE, γ) ↪−→ FV send this message on

their behalf.

(6) Upon A receiving (CREATED, γ)
τA
2
≤τA

1
+5T

←−−−−−−−−−−↩ FV , mark γ as cre-

ated, i.e. update ΓA(γ .id) from (⊥, x) to (γ , x).

Case I is honest and A, B are corrupted

Upon I sending (CREATE, γ)
τ I
0

↪−−→ FV proceed as follows:

(1) Set idα = γ .subchan(A), idβ = γ .subchan(B) and generate

θA := GenVChannelOutput(γ , A)

θB := GenVChannelOutput(γ , B)

(2) Upon A and B sending (UPDATE, idα , θA, tstp)
τA
0

↪−−→ FL and

(UPDATE, idα , θB , tstp)
τ B
0

↪−−→ FL , execute the simulator code for

the update procedure of the generalized channel functionality un-

til themessage (UPDATE–REQ, idα , θA, tstp, tidA) and (UPDATE–REQ,
idα , θB , tstp, tidB) are sent by FL .

(3) If in round τ I
1
≤ τ I

0
+T , I has received both (UPDATE–REQ, idα ,

θA, tstp, tidA) ←−↩ FL and (UPDATE–REQ, idβ , θB , tstp, tidB) ←−↩
FL , then execute the simulator code of SetupVChannel with

inputs (γ , tidA, tidB). Or send (peaceful–reject, idα) ↪−→ FV and

(peaceful–reject, idβ) ↪−→ FV if instructed by E. Else stop.

(4) If in round τ I
2
≤ τ I

1
+ tstp +T , I receives both (SETUP–OK, idα))

←−↩ FL and (SETUP–OK, idβ)) ←−↩ FL , continue executing the

simulator code of the update procedure of generalized channels

until the messages (REVOKE–REQ, idα) and (REVOKE–REQ, idα)
are sent by FL . Otherwise stop.

(5) If in round τ I
3
≤ τ I

2
+4T you have received both (REVOKE–REQ, idα)

←−↩ FL and (REVOKE–REQ, idβ) ←−↩ FL , continue executing the

simulator code of the update procedure of generalized channels

until the end. Otherwise stop.

(6) If A or B have not sent (CREATE, γ) ↪−→ FV send this message on

their behalf. Update ΓI (γ .id) from (⊥, x) to (γ , x).

SetupVChannel for channels without validity

Case A is honest and I , B are corrupted

(1) Create the body of the funding transaction:

TX
γ
f
.Input :=(tidA, tidB)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .cash + γ .fee, One–SigpkI))

(2) Upon A sending (PRE–CREATE, γ , TXf, 1, to)
t0
↪−→ FpreL where

to = 2T + 8∆, execute the simulator code for the Pre-Create

procedure of the FpreL functionality.

27

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

(3) UponA receiving (PRE–CREATED, γ .id)
τ1≤τ0+T
←−−−−−−−↩ FpreL then sign

the funding transaction, i.e. sBf ← SignskB ([TX
γ
f
]) and send

(createFund, γ .id, sAf , [TX
γ
f
])

τ1
↪−→ I . Else record this execution

as “failed” and stop.

(4) Upon receiving (createFund, γ .id, sBf , s If)
τ1+1
←−−−↩ I , verify all sig-

natures, i.e. check:

VrfypkB ([TX
γ
f
]; sBf) = 1

VrfypkI ([TX
γ
f
], s If) = 1.

If all checks pass dene

TX
γ
f
:= {([TX

γ
f
], sAf , sBf , s If)},

and set

ΓA(γ .id) := (⊥, TXγ
f
, tidA)

and consider procedure successfully completed. Else record this

execution as “failed” and stop.

Case I is honest and A, B are corrupted

(5) If I receives (createFund, γ .id, sAf , [TX
γ
f
])

τ2≤τ0+T+1
←−−−−−−−−−↩ A and

(createFund, γ .id, sBf , [TX
γ
f
])

τ2
←−↩ B , verify the funding trans-

action and signatures of A and B , i.e. check:

VrfypkA ([TX
γ
f
]; sAf) = 1

VrfypkB ([TX
γ
f
], sBf) = 1

(tidA, tidB) = TX
γ
f
.Input

(γ .cash + γ .fee, One–SigpkI) ∈ TX
γ
f
.Output.

(6) If all checks pass, sign the funding transaction, i.e. compute

s If := SignskI ([TX
γ
f
]),

TX
γ
f
:= {([TX

γ
f
], sAf , sBf , s If)}.

Store ΓI (γ .id) := (⊥, TXγ
f
). Then send (createFund, γ .id, sBf , s If)

τ2
↪−→ A and (createFund, γ .id, sAf , s If)

τ2
↪−→ B , and consider proce-

dure successfully completed. Else record this execution as “failed”

and stop.

SetupVChannel for channels With validity

Case A is honest and B, I are corrupted

(1) Send (createInfo, γ .id, tidA)
τ0
↪−→ B .

(2) In round τ1 = τ0 + 1, create the body of the funding transaction:

TX
γ
f
.Input :=(tidA)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .fee/2, One–SigpkI))

(3) Upon A sending (PRE–CREATE, γ , TXf, 1, to)
τ1
↪−→ FpreL where

to = γ .val + 3∆, execute the simulator code for the Pre-Create

procedure of the FpreL functionality. If A does not receive the

message (PRE–CREATED, γ .id)
τ2≤τ1+T
←−−−−−−−↩ FpreL then mark this

execution as “failed” and stop.

(4) If A receives (createFund, γ .id, s If)
τ2+2
←−−−↩ I , verify the signature,

i.e. check:

VrfyskI ([TX
γ
f
]; s If) = 1.

If the check passes, compute a signature on the fund transaction:

sAf := SignskA ([TX
γ
f
]),

TX
γ ,A
f

:= {([TX
γ
f
], s If , s

A
f)}.

Else record this execution as “failed” and stop.

(5) Set

ΓA(γ .id) := (⊥, TXγ ,A
f

, tidA)
and consider procedure successfully completed.

Case B is honest and A, I are corrupted

(1) If (createInfo, γ .id, tidA)
τ0+1
←−−−↩ A, create the body of the funding

and the rst commit and split transactions:

TX
γ
f
.Input :=(tidA)

TX
γ
f
.Output :=((γ .cash, Multi–Sig{γ .endUsers}),

(γ .fee/2, One–SigpkI))

TX
γ
refund

.Input :=(TXγ
f
.txid | |2, tidB)

TX
γ
refund

.Output :=(γ .cash + γ .fee, One–SigpkI).

Else record this execution as “failed” and stop.

(2) Upon B sending (PRE–CREATE, γ , TXf, 1, to)
τ1=τ0+1
↪−−−−−−→ FpreL

where to = γ .val + 3∆, execute the simulator code for the Pre-

Create procedure of the FpreL functionality. If B does not receive

(PRE–CREATED, γ .id)
τ2≤τ1+T
←−−−−−−−↩ FpreL then mark this execution

as “failed” and stop.

(3) Compute a signature on the refund transaction, i.e., sBRef ←

SignskB ([TX
γ
refund

]) and dene TX
γ ,B
f

:= {([TX
γ
f
])}. Then, send

(createFund, γ .id, sBRef, [TX
γ
refund

], [TX
γ
f
])

τ2
↪−→ I , set

ΓB (γ .id) := (⊥, TXγ ,B
f

, tidB)

and consider procedure successfully completed. Else record this

execution as “failed” and stop.

Case I is honest and A, B are corrupted

(4) If I receives themessage (createFund, γ .id, sBRef, [TX
γ
refund

], [TX
γ
f
])

τ3≤τ0+T+2
←−−−−−−−−−↩ B , verify the fund and refund transactions and signa-

ture of B , i.e. check:

VrfyskB ([TX
γ
refund

]; sBRef) = 1.

[TX
γ
refund

].Input = (TXγ
f
.txid | |2, tidB),

[TX
γ
refund

].Output = (γ .cash + γ .fee, One–SigpkI),

[TX
γ
f
].Output[2] = (γ .fee/2, One–SigpkI)

If all checks pass, sign the fund and refund transactions, i.e. com-

pute

s IRef := SignskI ([TX
γ
refund

]), s If := SignskI ([TX
γ
f
]),

TX
γ
refund

:= {([TX
γ
refund

], s IRef, s
B
Ref)}.

Store ΓI (γ .id) := (⊥, [TX
γ
f
], TX

γ
refund

, tidA, tidB). Then send

(createFund, γ .id, s If)
τ3
↪−→ A, and consider procedure success-

fully completed. Else record this execution as “failed” and stop.

28

Bitcoin-Compatible Virtual Channels

Function GenVChannelOutput(γ , P)

Return θ , where θ .cash = γ .cash + γ .fee/2 and θ .φ is dened as

follows

θ .φ =

Multi–Sigγ .users ∨ (One–SigP ∧ CheckRelative(T+4∆)),

if γ .val = ⊥
Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ .val),

if γ .val , ⊥ ∧ P = A
Multi–SigB ,I ∨ (One–SigB ∧ CheckLockTimeγ .val+2∆),

if γ .val , ⊥ ∧ P = B

Simulator for updating virtual channels

Update virtual channels

Case A is honest and B is corrupt

Below we abbreviate FpreL := FpreL(T , 1) and assume A is the

initiating party.

(1) Upon A sending (UPDATE, id, ®θ , tstp)
τA
0

↪−−→ FpreL, execute the

simulator for the pre-update procedure of the FpreL function-

ality from beginning until PRE–SETUP is sent. If this execution is

marked “failed” stop.

(2) Upon A sending (SETUP–OK, id)
τA
2
≤τA

1
+tstp

↪−−−−−−−−−−→ FpreL, continue

executing the simulator code until step 4. If this execution is

marked “failed” stop.

(3) If A does not receive (PRE–UPDATE–OK, id)
τA
3
≤τA

2
+T

←−−−−−−−−−↩ FpreL or

(PRE–UPDATE–REJECT, id)
τA
3
≤τA

2
+T

←−−−−−−−−−↩ FpreL, execute the simula-

tor code for the procedure OffloadA(id) and stop.

(4) Upon A sending (PRE–REVOKE, id)
τA
3

↪−−→ FpreL continue execut-

ing the simulator code until the end. If this execution is marked as

“failed” execute the simulator code for the procedure OffloadA(id)
and stop.

(5) Upon A receiving (PRE–UPDATED, id)
τA
4
≤τA

3
+T

←−−−−−−−−−↩ FpreL, update

the channel space, i.e., let γ := ΓA(id), set γ .st := ®θ and Γ(id) :=
γ . Else if this execution is marked as “failed” execute the simulator

code for the procedure OffloadA(id) and stop.

Case B is honest and A is corrupt

(1) Let τ B
0

be the round in which B receives (PRE–UPDATE–REQ,

id, ®θ , tstp, tid)
τ B
0

←−−↩ FpreL.

(2) Let τ B
1
≤ τ0 + tstp + T be the round in which B receives the

message (PRE–SETUP–OK, id)
τ B
1
≤τ0+tstp+T

←−−−−−−−−−−−−↩ FpreL.

(3) Upon B sending (UPDATE–OK, id)
τ B
1

←−−↩ FpreL execute the simula-

tor code of the pre-update procedure for the FpreL functionality

until the message PRE–REVOKE–REQ is sent by the functionality

and let the this round be τ B
2
≤ τ B

1
+ T . If this execution is

marked as “failed” execute the simulator code of the procedure

OffloadB (id) and stop.

(4) Upon B sending (PRE–REVOKE, id)
τ B
2

↪−−→ FpreL continue execut-

ing the simulator code until the end. If this execution is marked as

“failed” execute the simulator code for the procedure OffloadB (id)
and stop.

(5) Upon B receiving (PRE–UPDATED, id)
τ B
3
≤τ B

2
+T

←−−−−−−−−−↩ FpreL, update

the channel space, i.e., let γ := ΓB (id), set γ .st := ®θ and Γ(id) :=
γ .

Simulator for oloading virtual channels

Oloading virtual channels without validity

Case A honest and I , B corrupted

(1) Extractγ and TX
γ
f
from ΓA(id) and tidA , tidB from TX

γ
f
. Then

dene idα := γ .subchan(A). Upon A sending (CLOSE, idα)
τ0
↪−→ FL execute the simulator code for the close procedure of

generalized ledger channels.

(2) If A receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−−↩ FL , check that a

transaction with tidA appeared on L̂. Else stop.

(3) Let T2 := τ1 +T + 3∆ and distinguish:

• If in round τ2 ≤ T2 a transaction with tidB appeared on

L̂, then (post, TX
γ
f
)
τ2
↪−→ L̂.

• Else in roundT2 create the punishment transaction TXpun as
TXpun .Input := tidA , TXpun .Output := (γ .cash + γ .fee/2,
One–SigpkA) and TXpun .Witness := SignskA ([TXpun]). Then

(post, TXpun)
T2
↪−→ L̂.

(4) Let T3 := τ2 + ∆ and distinguish the following two cases:

• The transaction TX
γ
f
was accepted by L̂ in τ3 ≤ T3, then

update ΓA := ToLedgerChannel(ΓA, γ .id) and setm :=

ooaded.

• The transaction TXpun was accepted by L̂ in τ3 ≤ T3, then
dene ΓA(γ .id) = ⊥ and setm := punished.

(5) Returnm in round τ3.

Case I honest and A, B corrupted

(1) Extract γ and TX
γ
f
from ΓI (id) and tidA , tidB from TX

γ
f
. Then

dene idα := γ .subchan(A), idβ := γ .subchan(B) Upon I

sending the messages (CLOSE, idα)
τ0
↪−→ FL and (CLOSE, idβ)

τ0
↪−→ FL execute the simulator code of the close procedure for

the generalized channels.

(2) If I receives both (m, idα)
τA
1
≤τ0+T+3∆

←−−−−−−−−−−−↩ FL and (CLOSED, idβ)
τ B
1
≤τ0+T+3∆

←−−−−−−−−−−−↩ FL , check that a transaction with tidA and a

transaction with tidB appeared on L̂. Then publish (post,

TX
γ
f
)
τ1
↪−→ L̂, where τ1 := max{τA

1
, τ B

1
}. Otherwise set ΓI (id) =

⊥ and stop.

(3) Once TX
γ
f
is accepted by L̂ in round τ2 ≤ τ1 + ∆, then

ΓI (γ .id) = ⊥ and return “ooaded”.

Oloading virtual channels with validity

Case A honest and B, I corrupted

(1) Extract γ , tidA and TX
γ
f
from ΓA(id). Then dene idα :=

γ .subchan(A) and Upon A sending (CLOSE, idα)
τ0
↪−→ FL ex-

ecute the simulator code of the close procedure of the gener-

alized ledger channel.

29

Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Maeo Maei, Pedro Moreno-Sanchez, and Siavash Riahi

(2) IfA receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−−↩ FL , then post (post,

TX
γ ,A
f
)
τ2
↪−→ L̂. Otherwise, set ΓA(γ .id) = ⊥ and stop.

(3) Once TX
γ
f
is accepted by L̂ in round τ2 ≤ τ1 + ∆, then set

ΓAL (id) := ΓA(id), ΓA(id) := ⊥ and return “ooaded”.

Case B honest and A, I corrupted

(1) Extract γ , tidB and [TX
γ
f
] from ΓB (id). Then dene idβ :=

γ .subchan(B) and Upon B sending (CLOSE, idβ)
τ0
↪−→ FL ex-

ecute the simulator code of the close procedure of the gener-

alized ledger channel.

(2) If B receives (CLOSED, idβ)
τ1≤τ0+T+3∆
←−−−−−−−−−−↩ FL , then continue.

Otherwise, set ΓB (γ .id) = ⊥ and stop.

(3) Create the punishment transaction TXpun as TXpun .Input :=
tidB , TXpun .Output := (γ .cash + γ .fee/2, One–SigpkB) and
TXpun .Witness := SignskB ([TXpun]). Then wait until round

τ2 := max{τ1, γ .val + 2∆} and send (post, TXpun)
τ2
↪−→ L̂.

(4) Let T3 := τ2 + ∆ and distinguish the following two cases:

• A transaction with identier TX
γ
f
.txid was accepted by L̂

in τ3 ≤ T3, then update ΓBL (id) := ΓB (id) and set m :=

ooaded.

• The transaction TXpun was accepted by L̂ in τ3 ≤ T3, then
dene ΓB (γ .id) = ⊥, and setm := punished.

(5) Returnm in round τ3.

Case I honest and A, B corrupted

(1) Extract γ , tidA , tidB , TX
γ
refund

and [TX
γ
f
] from ΓI (id). Then

dene idα := γ .subchan(A), idβ := γ .subchan(B) and upon

I sending (CLOSE, idα)
τ0
↪−→ FL and (CLOSE, idβ)

τ0
↪−→ FL ex-

ecute the simulator code of the close procedure of the gener-

alized ledger channel for both idα and idβ .

(2) If I receives both (CLOSED, idα)
τA
1
≤τ0+T+3∆

←−−−−−−−−−−−↩ FL and (CLOSED,

idβ)
τ B
1
≤τ0+T+3∆

←−−−−−−−−−−−↩ FL ,then continue. Otherwise, set Γ
I (γ .id) =

⊥ and stop.

(3) Create the punishment transaction TXpun as TXpun .Input :=
tidA , TXpun .Output := (γ .cash + γ .fee/2, One–SigpkI) and
TXpun .Witness := SignskI ([TXpun]). Then wait until round

τ2 := max{τA
1
, γ .val} and send (post, TXpun)

τ2
↪−→ L̂.

(4) Let T3 := τ2 + ∆ and distinguish the following two cases:

• A transaction with identier TX
γ
f
.txid was accepted by

L̂ in τ ′
3
≤ T3, send (post, TX

γ
refund

)
τ4
↪−→ L̂ where τ4 :=

max{τ B
1
, τ ′

3
}. Once TX

γ
refund

is accepted by L̂ in round

τ5 ≤ τ4 + ∆, set ΓI (γ .id) = ⊥ andm := ooaded.

• The transaction TXpun was accepted by L̂ in τ ′′
3
≤ T3, then

set ΓI (γ .id) = ⊥ andm := punished.

(5) Returnm in round τ6 where τ6 := max{τ5, τ ′′
3
}.

Simulator for punishing in a virtual channel

• Upon a party sending (PUNISH)
τ0
↪−→ FL , execute the simulator code

for the punish procedure of the generalized channels.

• Execute the simulator code for both Punish and Punish–Validity.

Punish

Case A honest and I , B corrupted

For every id ∈ {0, 1}∗, such that γ which γ .val = ⊥ can be

extracted from ΓA(id) do the following:

(1) Extract TX
γ
f
from ΓA(id) and tidA , tidB from TX

γ
f
. Check if

tidA appeared on L̂. If not, then stop.

(2) Denote T2 := τ1 +T + 3∆ and distinguish:

• If in round τ2 ≤ T2 the transaction with tidB appeared on

L̂, then (post, TX
γ
f
)
τ2
↪−→ L̂.

• Else in roundT2 create the punishment transaction TXpun as
TXpun .Input := tidA , TXpun .Output := (γ .cash + γ .fee/2,
One–SigpkA) and TXpun .Witness := SignskA ([TXpun]) and

(post, TXpun)
T2
↪−→ L̂.

(3) Let T3 := τ2 + ∆ and distinguish the following two cases:

• The transaction TX
γ
f
was accepted by L̂ in τ3 ≤ T3, then

update ΓA := ToLedgerChannel(ΓA, γ .id).
• The transaction TXpun was accepted by L̂ in τ3 ≤ T3, then
dene ΓA(γ .id) = ⊥.

Case I honest and A, B corrupted

For every id ∈ {0, 1}∗, such that γ with γ .val = ⊥ can be extracted

from ΓI (id) do the following:

(1) Extract TX
γ
f
from ΓI (id) and tidA , tidB from TX

γ
f
. Check if for

some P ∈ {A, B } a transaction with identier tidP appeared

on L̂. If not, then stop.

(2) Denote idα := γ .subchan(Q) where Q = γ .otherParty(P)

and upon I sending (CLOSE, idα)
τ0
↪−→ FL execute simulator

the code for the punish procedure of the generalized virtual

channels.

(3) If I receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−−↩ FL and tidQ ap-

peared on L̂, (post, TX
γ
f
)

τ1
↪−→ L̂. Otherwise set ΓI (id) = ⊥

and stop.

(4) Once TX
γ
f
is accepted by L̂ in round τ2, such that τ2 ≤ τ1+∆,

set ΓI (id) = ⊥.

Punish–Validity

Case A honest and I , B corrupted

For every id ∈ {0, 1}∗, such that γ which γ .val , ⊥ can be

extracted from ΓA(id) do the following:

(1) Extract tidA and TX
γ
f
from ΓA(id). Check if tidA appeared on

L̂. If not, then stop.

(2) Send (post, TX
γ
f
)
τ1
↪−→ L̂.

(3) Once TX
γ
f
is accepted by L̂ in round τ2 ≤ τ1+∆, set ΓAL (id) :=

ΓA(id), ΓA(id) := ⊥.

Case B honest and A, I corrupted

For every id ∈ {0, 1}∗, such that γ which γ .val , ⊥ can be extracted

from ΓB (id) do the following:

(1) Extract tidB and [TX
γ
f
] from ΓB (id). Check if tidB or [TX

γ
f
].txid

appeared on L̂. If not, then stop.

(2) If TX
γ
f
appeared on L̂, set ΓBL (id) := ΓB (id), ΓB (id) := ⊥ and

stop.

(3) If tidB appeared on L̂, create the punishment transaction

TXpun as TXpun .Input := tidB , TXpun .Output := (γ .cash +
γ .fee/2, One–SigpkB) and TXpun .Witness := SignskB ([TXpun]).
Then wait until round τ2 := max{τ1, γ .val + 2∆} and send

(post, TXpun)
τ2
↪−→ L̂.

30

Bitcoin-Compatible Virtual Channels

(4) If transaction TXpun was accepted by L̂ in τ3 ≤ τ2 + ∆, then
dene ΓB (γ .id) = ⊥.

Case I honest and A, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ .val , ⊥ can be extracted

from ΓI (id) do the following:

(1) Extract tidA , tidB , TX
γ
refund

and [TX
γ
f
] from ΓI (id). Check if

tidA or tidB appeared on L̂ or τ1 = γ .val − (3∆ +T). If not,
then stop.

(2) Distinguish the following cases:

• If τ1 = γ .val − (3∆ + T), dene idα := γ .subchan(A),
idβ := γ .subchan(B) and upon I sending the messages

(CLOSE, idα)
τ1
↪−→ FL and (CLOSE, idβ)

τ1
↪−→ FL execute the

simulator code for the close procedure of the generalized

channels for both channels idα and idβ .

• If tidB appeared on L̂, send (CLOSE, idα)
τ1
↪−→ FL .

(3) If a transaction with identier tidA appeared on L̂ in round

τ2 ≤ τ1 + T + 3∆, create the punishment transaction TXpun
as TXpun .Input := tidA , TXpun .Output := (γ .cash + γ .fee/2,
One–SigpkI) and TXpun .Witness := SignskI ([TXpun]). Then
wait until round τ3 := max{τ2, γ .val} and send (post, TXpun)
τ3
↪−→ L̂.

(4) Distinguish the following two cases:

• The transaction TX
γ
f
.txidwas accepted by L̂ in τ4 ≤ τ3+∆,

send (post, TX
γ
refund

)
τ5
↪−→ L̂ where τ5 := max{γ .val +

∆, τ4 }. Once TX
γ
refund

is accepted by L̂ in round τ6 ≤ τ5+∆,
set ΓI (γ .id) = ⊥ and stop.

• The transaction TXpun was accepted by L̂ in τ4 ≤ τ3 + ∆,
then set ΓI (γ .id) = ⊥.

Simulator for Close in a virtual channel

Closing virtual channels

Case A honest and I , B corrupted

(1) Upon A sending (CLOSE, id)
τA
0

↪−−→ FV or in round τA
0
= γ .val −

(4∆ + 7T) if γ .val , ⊥, proceed as follows:

(2) Extract γ , TXγ
f
, tidA from ΓA(id). Parse

TX
γ
s .Output =

(
(cA, One–SigpkA), (cB , One–SigpkB)

)
.

(3) Compute the new state of the channel idα := γ .subchan(A) as

®θA := {(cA, One–SigpkA), (γ .cash − cA +
γ .fee
2

, One–SigpkI)}

Then, upon A sending (UPDATE, idα , ®θA, 0)
τA
0

↪−−→ FL execute the

simulator code for the update procedure of generalized chan-

nels until (SETUP, idα , ®tid′A) is sent by FL . If this execution fails

instruct FV to execute V–ForceClose(id) and stop.

(4) Upon A sending (SETUP–OK, idα)
τA
1
≤τA

0
+T

↪−−−−−−−−−→ FL continue exe-

cuting the simulator code for the update procedure of generalized

channels until A receives (UPDATE–OK, idα)
τA
2
≤τA

1
+2T

←−−−−−−−−−−↩ FL . If

this execution fails instruct FV to execute V–ForceClose(id) and
stop.

(5) Upon A sending (REVOKE, idα)
τA
2

↪−−→ FL continue executing the

simulator code for the update procedure of generalized chan-

nels until A receives (UPDATED, idα)
τA
3
≤τA

2
+2T

←−−−−−−−−−−↩ FL , then set

ΓA(id) := ⊥ and stop. If this execution fails instruct FV to execute

V–ForceClose(id) and stop.

Case I honest and A, B corrupted

(1) Upon I sending (CLOSE, id)
τ I
0

↪−−→ FV or in round τA
0
= γ .val −

(4∆ + 7T) if γ .val , ⊥, proceed as follows:

(2) Extract γ , TXγ
f
, tidA and tidB from ΓI (id).

(3) Let idα = γ .subchan(A), idβ = γ .subchan(B) and c := γ .cash,
execute the simulator code for the update procedure of gen-

eralized channels until (UPDATE–REQ, idα , ®tid′A, ®θA, 0) ←−↩ FL
and (UPDATE–REQ, idβ , ®tid′B , ®θB , 0) ←−↩ FL are sent by FL until

round τ I
1
≤ τ I

0
+T .

(4) Check that for some cA, cB s.t. cA + cB + γ .fee = c it holds

®θA = {(cA, One–SigpkA), (c − cA + γ .fee/2, One–SigpkI)}

®θB = {(cB , One–SigpkB), (c − cB + γ .fee/2, One–SigpkI)}

If not, then stop.

(5) continue executing the simulator code for the update procedure

of generalized channels until I receives (SETUP–OK, idα) ←−↩ FL
and (SETUP–OK, idβ)) ←−↩ FL until round τ I

2
≤ τ I

1
+T . Otherwise

stop.

(6) Upon I sending (UPDATE–OK, idβ)
τ I
2

↪−−→ FL continue executing

the simulator code for the update procedure of generalized chan-

nels until I receives the messages (REVOKE–REQ, idα) ←−↩ FL and

(REVOKE–REQ, idβ) ←−↩ FL until round τ I
3
≤ τ I

2
+ 2T .

(7) Upon I sending (REVOKE, idα)
τ I
3

↪−−→ FL and (REVOKE, idβ)
τ I
3

↪−−→

FL executing the simulator code for the update procedure of

generalized channels until the end and set ΓI (id) := ⊥.

31

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Background & solution overview
	2.1 Notation
	2.2 Payment channels
	2.3 Overview of our solution

	3 Virtual Channels
	3.1 Definitions and security model
	3.2 Security and efficiency goals
	3.3 Ideal functionality for virtual channels

	4 Virtual Channel Protocol
	4.1 Modular approach
	4.2 High level protocol description

	5 Performance evaluation
	5.1 Comparison to payment channel networks

	6 Conclusion
	References
	A Example of Rooted Transactions
	B On the usage of the UC-Framework
	C Additional material to ledger channels
	C.1 Ledger channel functionality
	C.2 Wrapped ledger channel functionality
	C.3 Adaptor Signatures
	C.4 Realizing the wrapped functionality

	D Additional material for Virtual channels
	D.1 Ledger Channels
	D.2 Create
	D.3 Update
	D.4 Offload
	D.5 Close
	D.6 Punish

	E Simplifying functionality description
	F Simplifying the protocol descriptions
	G Simulation Wrapper
	H Simulation Virtual Channels

