
ar
X

iv
:2

00
6.

03
91

8v
1

 [
cs

.P
L

]
 6

 J
un

 2
02

0

Bitcoin covenants unchained

Massimo Bartoletti1, Stefano Lande1, Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. Covenants are linguistic primitives that extend the Bitcoin
script language, allowing transactions to constrain the scripts of the re-
deeming ones. Advocated as a way of improving the expressiveness of
Bitcoin contracts while preserving the simplicity of the UTXO design,
various forms of covenants have been proposed over the years. A com-
mon drawback of the existing descriptions is the lack of formalization,
making it difficult to reason about properties and supported use cases.
In this paper we propose a formal model of covenants, which can be
implemented with minor modifications to Bitcoin. We use our model to
specify some complex Bitcoin contracts, and we discuss how to exploit
covenants to design high-level language primitives for Bitcoin contracts.

1 Introduction

Bitcoin is a decentralised infrastructure to transfer cryptocurrency between users.
The log of all the currency transactions is recorded in a public, append-only, dis-
tributed data structure, called blockchain. Bitcoin implements a model of com-
putation called Unspent Transaction Output (UTXO): each transaction holds an
amount of currency, and specifies conditions under which this amount can be
redeemed by a subsequent transaction, which spends the old one. Compared to
the account-based model, implemented e.g. by Ethereum, the UTXO model does
not require a shared mutable state: the current state is given just by the set
of unspent transactions on the blockchain. While, on the one hand, this design
choice fits well with the inherent concurrency of transactions, on the other hand
the lack of a shared mutable state substantially complicates leveraging Bitcoin
to implement contracts, i.e. protocols which transfer cryptocurrency according
to programmable rules.

The literature has shown that Bitcoin contracts support a surprising va-
riety of use cases, including e.g. crowdfunding [1, 9], lotteries and other gam-
bling games [6, 9, 14, 17, 23, 25], contingent payments [12], micro-payment chan-
nels [9, 29], and other kinds of fair computations [8, 22]. Despite this apparent
richness, the fact is that Bitcoin contracts cannot express most of the use cases
that are mainstream in other blockchain platforms (e.g., decentralised finance).
Indeed, there are several factors that limit the expressiveness of Bitcoin con-
tracts. Among them, the crucial one is the script language used to express the
redeeming conditions within transactions. This language only features a limited

http://arxiv.org/abs/2006.03918v1

set of logic, arithmetic, and cryptographic operators, but its has no loops, and
it cannot access parts of the spent and of the redeeming transaction.

Several extensions of the Bitcoin script language have been proposed, with
the aim to improve the expressiveness of Bitcoin contracts, while adhering to the
UTXO model. Among these extensions, covenants are a class of script operators
that allow a transaction to constrain how its funds can be used by the redeeming
transactions. Covenants may also be recursive, by requiring the script of the
redeeming transaction to contain the same covenant of the spent one. As noted
by [27], recursive covenants would allow to implement Bitcoin contracts that
execute state machines, by appending transactions to trigger state transitions.

Although the first proposals of covenants date back at least to 2013 [24], their
inclusion into the official Bitcoin protocol is still uncertain, mainly because of
the extremely cautious approach to implement changes to Bitcoin [21]. Still, the
emerging of Bitcoin layer-2 protocols, like e.g. the Lightning Network [29], has
revived the interest in covenants, as witnessed by a recent Bitcoin Improvement
Proposal (BIP 119 [30]).

Since the goal of the existing proposals is to show how implementing covenants
would impact on the performance of Bitcoin, they describe covenants from a
low-level, technical perspective. We believe that a proper abstraction and for-
malization of covenants would also be useful, as it would simplify reasoning on
the behaviour of Bitcoin contracts and on their properties.

Contributions We summarise our main contributions as follows:

– we introduce a formal model of Bitcoin covenants, inspired by the informal,
low-level presentation in [26].

– we use our formal model to specify complex Bitcoin contracts, which largely
extend the set of use cases expressible in pure Bitcoin;

– we discuss how to exploit covenants in the design of high-level language
primitives for Bitcoin contracts.

2 The pure Bitcoin

We start by illustrating the Bitcoin transaction model. To this purpose we adapt
the formalization in [11], omitting the parts that are irrelevant for our subsequent
technical development.

Transactions In its simplest form, a Bitcoin transaction allows a participant to
transfer cryptocurrency (the bitcoins, B) to someone else. For this to be possible,
bitcoins must be created at first. This is obtained through coinbase transactions
(i.e., the first transaction of each mined block), whose typical form is:

T0

in: ⊥
wit: ⊥
out: (versig(pkA , rtx.wit), 1B)

We identify T0 as a coinbase transaction by its in field, which does not point
to any other previous transaction on the blockchain (formally, we model this as
the undefined value ⊥). The out field contains a pair, whose first element is a
script, and the second one is the amount of bitcoins that will be redeemed by
a subsequent transaction which points to T0 and satisfies its script. In partic-
ular, the script versig(pkA , rtx.wit) verifies the signature in the wit field of the
redeeming transaction (rtx) against A’s public key pkA .

Assume that T0 is on the blockchain, and that A wants to transfer 1B to B.
To do this, A can append to the blockchain a new transaction, e.g.:

T1

in: T0

wit: sigskA
(T1)

out: (versig(pkB , rtx.wit), 1B)

The in field points to T0, and the wit field contains A’s signature on T1 (but
for the wit field itself). This witness makes the script within T0.out evaluate to
true, hence the redemption succeeds, and T0 is spent.

The transactions T0 and T1 above only use part of the features of Bitcoin.
More in general, transactions can collect bitcoins from many inputs, and split
them between many outputs; further, they can use more complex scripts, and
specify time constraints. Following the formalization in [11], we represent trans-
actions as tuples of the form (in,wit, out, absLock, relLock), where:

– in is the list of inputs. Each input is a pair (T, i), referring to the i-th output
of transaction T.

– wit is the list of witnesses, of the same length as the list of inputs. Intuitively,
for each input (T, i) in the in field, the witness at the same index must make
the i-th output script of T evaluate to true.

– out is the list of outputs. Each output is a pair (e, v), where the component
e is a script, and v is a currency value.

– absLock is a value, indicating the first moment in time when the transaction
can be added to the blockchain;

– relLock is a list of values, of the same length as the list of inputs. Intuitively,
if the value at index i is n, the transaction can be appended to the blockchain
only if at least n time units have passed since the input transaction at index
i has been appended.

We let f range over transaction fields (in,wit, out, absLock, relLock), and we
denote with T.f the content of field f of transaction T. For uniformity, we assume
that absLock is a list of unit length; we omit null values in absLock and relLock.
In transaction fields, we represent a list ℓ1 · · · ℓn as 1 7→ ℓ1, . . . , n 7→ ℓn, or just
as ℓ1 when n = 1. When clear from the context, we just write the name A of
a participant in place of her public/private keys, e.g. we write versig(A, e) for
versig(pkA , e), and sig

A
(T) for sigskA

(T).

Scripts Bitcoin scripts are small programs written in a non-Turing equivalent
language. Whoever provides a witness that makes the script evaluate to “true”,

JvKT,i = v Je ◦ e′KT,i = JeKT,i ◦⊥ Je′KT,i (◦ ∈ {+,−,=, <})

Je.e′KT,i = JejKT,i if e = e1 · · · ek, Je′KT,i = j, and 1 ≤ j ≤ k

Jif e0 then e1 else e2KT,i = if Je0KT,i then Je1KT,i else Je2KT,i Jrtx.witKT,i = T.wit(i)

J|e|KT,i = size(JeKT,i) JH(e)KT,i = H(JeKT,i)

Jversig(e1 · · · en, e
′

1 · · · e
′

m)KT,i = verJe1KT,i···JenKT,i
(Je′1KT,i · · · Je

′

mKT,i,T, i)

JabsAfter e : e′KT,i = if T.absLock ≥ JeKT,i then Je′KT,i else ⊥

JrelAfter e : e′KT,i = if T.relLock(i) ≥ JeKT,i then Je′KT,i else ⊥

Fig. 1: Semantics of Bitcoin scripts.

can redeem the bitcoins retained in the associated (unspent) output. In our
model, scripts are terms with the following syntax, where ◦ ∈ {+,−,=, <}, and
where we write sequences of scripts in bold notation:

e ::= v | e ◦ e | e.e | if e then e else e | rtx.wit |

|e| | H(e) | versig(e, e) | absAfter e : e | relAfter e : e

Besides values v and the basic arithmetic/logical operators, scripts feature
operators to access the elements of a sequence (e.e), to access the witnesses of
the redeeming transaction (rtx.wit), to compute the size |e| of a bitstring and its
hash H(e). The script versig(e, e′) evaluates to true iff the sequence of signatures
resulting from the evaluation of e′ (say, of length m) is verified by using m out
of the n keys resulting from the evaluation of e. The expressions absAfter e : e′

and relAfter e : e′ define absolute and relative time constraints: they evaluate as
e′ if the constraints are satisfied, otherwise they evaluate to false. We assume a
basic type system which rules out ill-formed scripts.

We define in Figure 1 the semantics of scripts. The script evaluation function
J·KT,i takes two parameters: T is the redeeming transaction, and i is the index
of the redeeming input/witness. We denote with H a public hash function, with
size(n) the size (in bytes) of an integer n, and with ver a multi-signature verifi-
cation function (see [11] for the definition of these semantic operators). All the
operators are strict, i.e. they evaluate to ⊥ if some of their operands is ⊥. We
use syntactic sugar for scripts, e.g. false denotes 1 = 0, true denotes 1 = 1, while
e and e′ denotes if e then e′ else false, and e or e′ denotes if e then true else e′.

Blockchains We model a blockchain B as a sequence of transactions T0 · · ·Tn.
For simplicity, we abstract from the fact that Bitcoin groups transactions into
time-stamped blocks, and we identify the time-stamp of a transaction with its
position in the blockchain. We say that the j-th output of the transaction Ti

in the blockchain is spent iff there exists some transaction Ti′ in the blockchain
(with i′ > i) and some j′ such that Ti′ .in(j

′) = (Ti, j).
A transaction Tn is valid with respect to the blockchain B = T0 · · ·Tn−1

whenever the following conditions hold:

e ::= · · · | ctx.f (e) access part of the current transaction

| rtx.f (e) access part of the redeeming transaction

| outidx index of the redeemed output

| inidx index of the redeeming input

| verscr(e, e) covenant

| verrec(e) recursive covenant

Fig. 2: Extended Bitcoin scripts.

1. for each input i of Tn, if Tn.in(i) = (T′, j) then:
(a) T′ = Th, for some h < n (i.e., T′ is one of the transactions in B);
(b) the j-th output of T′ is not spent in B;
(c) JT′.out(j)KTn,i = true;

2. n ≥ Tn.absLock;
3. for each input i of Tn, if Tn.in(i) = (Th, j) then n− h ≥ Tn.relLock(i);
4. the sum of the amounts of the inputs of T is greater or equal to the sum of

the amount of its outputs (the difference between the amount of inputs and
that of outputs is the fee paid to miners).

The Bitcoin consensus protocol ensures that each transactionTi in the blockchain
is valid with respect to the sequence of past transactions T0 · · ·Ti−1.

3 Extending Bitcoin with covenants

To extend Bitcoin with covenants, we amend the transaction model of the pre-
vious section as follows:

– we add an element to the outputs, making them triples of the form (a, e, v),
where a is a sequence of values. Intuitively, the extra element can be used
to encode a state within transactions.

– we add script operators to access any part of the current transaction and of
the redeeming one (by contrast, in pure Bitcoin a script can only access the
whole redeeming transaction, but not its parts).

– we add script operators to check whether the output scripts in the redeeming
transaction match a given script, or a given output of the current transaction
(by contrast, in pure Bitcoin the redeeming transaction is only used when
verifying signatures).

We start by introducing some notation to access the parts of transaction
outputs. Namely, we extend the range of the meta-variable f to include arg, scr,
and val, with the following meaning. If T.out(i) = (a, e, v), then T.arg(i) = a,
T.scr(i) = e, and T.val(i) = v.

We extend the syntax of scripts in Figure 2, and in Figure 3 we define their
semantics. As in pure Bitcoin, the script evaluation function takes as parame-
ters the redeeming transaction T and the index i of the redeeming input/witness.

Jctx.f (e)KT,i = T
′
.f (JeKT,i) Jrtx.f (e)KT,i = T.f (JeKT,i) if f 6= wit or JeKT,i = i

JoutidxKT,i = j JinidxKT,i = i

Jverscr(e, e′)KT,i = T.scr(JeKT,i) ≡ e
′ Jverrec(e)KT,i = T.scr(JeKT,i) ≡ T

′
.scr(j)

Fig. 3: Semantics of extended scripts, where (T′, j) = T.in(i).

From them, it is possible to infer the current transaction T′ = fst(T.in(i)), and
the index j = snd(T.in(i)) of the redeemed output. The operator ctx.f (k) eval-
uates to the part f (k) of the current transaction; similarly, rtx.f (k) operates
on the redeeming transaction. The symbols outidx and inidx evaluate, respec-
tively, to the index of the redeemed output and to that of the redeeming input.
For coherence with pure Bitcoin, we make the semantics of rtx.wit(k) defined
only if k is the index of the redeeming input. We use rtx.wit as syntactic sugar
for rtx.wit(inidx). The last two scripts specify covenants, in basic and recursive
form. The basic covenant verscr(k, e) checks that the k-th output script of the
redeeming transaction is syntactically equal to e (note that e is not evaluated).
The recursive covenant verrec(k) checks that the k-th output of the redeeming
transaction is syntactically equal to the redeemed output script.

4 Use cases

We illustrate the expressive power of covenants through a series of use cases. At
the best of our knowledge, we believe these use cases cannot be obtained in pure

Bitcoin. Below, we denote with UvB
A

a transaction with a single unspent output

of the form (ε, versig(A, rtx.wit), vB).

4.1 Crowdfunding

Assume that a start-up Z wants to raise funds through a crowdfunding campaign.
The target of the campaign is to gather at least vB by time t. The contributors
want the guarantee that if this target is not reached, then they will get back their
funds after the expiration date. The start-up wants to ensure that contributions
cannot be retracted before time t, or once vB have been gathered.

To fund the campaign, a contributor Ai publishes the transaction Ti in Fig-
ure 4 (left). Its output script is a disjunction between two conditions. The first
condition requires that the output at index 1 of the redeeming transaction pays
at least vB to Z. The second condition allows Ai to redeem her contribution
after the expiration date t.

When contributors have deposited enough funds (i.e., there are n transactions
T1, . . . ,Tn with v′ = v1 + · · · vn ≥ v), the transaction TZ can be appended by Z

to the blockchain. After that, Z can redeem v′B.

Ti

in: U
viB

Ai

wit: · · ·

out:
(ε, (versig(Z, rtx.wit) and rtx.val(1) ≥ v)

or absAfter t : versig(Ai, rtx.wit), viB)

TZ

in: 1 7→ (T1, 1), . . . , n 7→ (Tn, 1)

wit: 1 7→ sig
Z
(TZ), . . . , n 7→ sig

Z
(TZ)

out: (ε, versig(Z, rtx.wit), v′B)

Fig. 4: Transactions for the crowdfunding contract.

Compared to the assurance contract in the Bitcoin wiki [1], ours offers more
protection to the start-up. Indeed, while in [1] any contributor can retract her
funds at any time, this is not possible here until time t. We achieve this by
constraining the val part of the redeeming transaction, without using covenants.

4.2 Non-fungible tokens

A non-fungible token represents the ownership of a physical or logical asset.
Unlike fungible tokens (e.g., ERC-20 tokens in Ethereum [2]), where each token
unit is interchangeable with every other unit, non-fungible ones have unique
identities. Consequently, the only operation they support is the transfer between
users, whereas fungible tokens support split and merge operations.

We start by implementing a subtly flawed version of the non-fungible token.
Consider the transactions in Figure 5, which use the following script:

eNFT = versig(ctx.arg(1), rtx.wit) and verrec(1) and rtx.val(1) = 1

User A creates a new token by depositing 1B in T0, where she sets T0.arg(1)
to her public key, to declare her ownership over the token. When A wants to
transfer the token to B, she creates another transaction, like T1 in Figure 5,
setting T1.arg(1) to B’s public key.

To spend T0, the transaction T1 must satisfy the following conditions: (i) the
wit field contains the signature of the current owner; (ii) the script at index 1 is
equal to that at the same index in T0; (iii) the output at index 1 has 1B value,
to preserve the integrity of the token. At this point, B can transfer the token to
another user, by appending a transaction which redeems T1.

The design flaw, already spotted in [26], is exploited by the transaction T2

in Figure 5. Suppose we have two unspent transactions, T1 and T′

1
, both repre-

senting a token. The transaction T2 can spend both of them, since it complies
with all the validity conditions: indeed, the script eNFT only constrains the first
output of the redeeming transaction, while the other outputs are only subject
to the validity conditions (in particular, that the sum of their values does not
exceed the value in input). Actually, T2 destroys one of the tokens, and removes
the covenant from the other one.

To solve this issue, we amend the script as follows:

e′NFT = versig(ctx.arg(inidx), rtx.wit) and verrec(inidx) and rtx.val(inidx) = 1

T0

in: U1B

A

wit: sig
A

(T0)

out: (A, eNFT , 1B)

T1

in: (T0, 1)

wit: sig
A

(T1)

out: (B, eNFT , 1B)

T2

in: 1 7→ (T1, 1), 2 7→ (T′

1, 1)
wit: 1 7→ sig

A
(T2), 2 7→ sig

A
(T2)

out:
1 7→ (A, eNFT , 1B)
2 7→ (ε, versig(A, rtx.wit), 1B)

Fig. 5: Transactions of the flawed non-fungible token. The transaction T2 exploits
the flaw to destroy a token, and transfer its value to A.

The new script requires that the index of the input redeeming T0 is equal to the
index of the output “propagating” the token. After this change, a transaction
redeeming two tokens must produce two tokens (so, T2 would not be valid).

An alternative approach to solve the issue, originally proposed in [26], is to
add a unique identifier id to each token, e.g. by amending the script as follows:

e′′NFT = eNFT and id = id

This makes two tokens distinguishable. For instance, if the tokens in T1 and T′

1

are distinguishable, T2 cannot redeem both of them.

4.3 Vaults

In Bitcoin, transaction outputs are usually secured by cryptographic keys. Who-
ever knows a key corresponding to transactions can redeem it: in case of key
theft, the legitimate owner cannot employ any defence mechanism. Vault trans-
actions, introduced in [26], are a technique to mitigate this issue, by allowing
the legitimate owner to abort the transfer.

We implement a basic version of the vault through the following script:

eV =
versig(A, rtx.wit) and
verscr(1, relAfter 100 : versig(ctx.arg(inidx), rtx.wit) or versig(Ar, rtx.wit))

To create a vault, A deposits 1B in TV in Figure 6. The transaction can be
redeemed with the signature of A, but only by a de-vaulting transaction such as
TS , with the script:

eS = relAfter 100 : versig(ctx.arg(inidx), rtx.wit) or versig(Ar, rtx.wit)

The output of the de-vaulting transaction TS can be spent by the participant
set in its argument, but only after a certain time. Before the time expires, A can
cancel the transfer by spending TS with her recovery key Ar.

A recursive vault The vault in Figure 6 has a potential issue, in that the
recovery key may also be subject to theft. Although this issue is mitigated by
hardware wallets (and by the infrequent need to interact with the recovery key),
the vault modelled above does not discourage any attempt at key theft.

TV

in: U1B

A

wit: · · ·

out: (ε, eV , 1B)

TS

in: TV

wit: sig
A

(TS)

out: (B, eS , 1B)

T

in: TS

wit: sig
B

(T)
out: (ε, versig(B, rtx.wit), 1B)
relLock: 100

Fig. 6: Transactions for the basic vault.

TV

in: U1B

A

wit: · · ·
out: (0, eR, 1B)

TS

in: TV

wit: sig
A

(TS)
out: (1 B, eR, 1B)

TR

in: TS

wit: sig
Ar

(TR)
out: (0, eR, 1B)

Fig. 7: Transactions for the recursive vault.

The issue can be solved by using a recursive covenant in the vault script:

eR =

if(ctx.arg(1).1 = 0)
then versig(A, rtx.wit) and verrec(1) and rtx.arg(1).1 = 1
else (relAfter 100 : versig(ctx.arg(1).2, rtx.wit)

or versig(Ar, rtx.wit) and verrec(1) and rtx.arg(1).1 = 0)

In this version, the vault and de-vaulting transactions (in Figure 7) have the
same script. The first argument of the script encodes the contract state: 1 models
the vault state, and 2 to the de-vaulting state. The recovery key Ar can only be
used to append the re-vaulting transaction TR, locking again the bitcoin into
the vault. Key theft is now ineffective: indeed, even if both keys are stolen, the
thief cannot take control of the bitcoin in the vault, as A can keep re-vaulting.

4.4 A pyramid scheme

Ponzi schemes are financial frauds which lure users under the promise of high
profits, but which actually repay them only with the investments of new users.
A pyramid scheme is a Ponzi scheme where the scheme creator recruits other
investors, who in turn recruit other ones, and so on. We design a pyramid scheme
in Bitcoin using the transactions in Figure 8, where:

eP =
verscr(1, versig(ctx.arg(outidx), rtx.wit))
and rtx.arg(1) = ctx.arg(outidx) and rtx.val(1) = 2
and verrec(2) and verrec(3)

To start the scheme, a user A0 deposits 1B in the transaction T0 (we burn
this bitcoin for uniformity, so that each user earns at most 1B from the scheme).
To make a profit, A0 must convince other two users, say A1 and A2, to join the
scheme. This requires the cooperation of A1 and A2 to publish a transaction
which redeems T0. The script eP ensures that this redeeming transaction has
the form of T1 in Figure 8, i.e. out(1) transfers 2B to A0, while the scripts in

T0

in: U1B

A0

wit: sig
A0

(T0)

out: (A0, eP , 0B)

T1

in: 1 7→ T0, 2 7→ U1B

A1
, 3 7→ U1B

A2

wit: 1 7→ ⊥, 2 7→ sig
A1

(T1), 3 7→ sig
A2

(T1)

out:
1 7→ (A0, versig(ctx.arg(outidx), rtx.wit), 2B)
2 7→ (A1, eP , 0B)
3 7→ (A2, eP , 0B)

Fig. 8: Transactions for the pyramid scheme.

out(2) and out(3) ensure that the same behaviour is recursively applied to A1

and A2. Overall, the contract ensures that, as long as new users join the scheme,
each one earns 1B. Of course, as in any Ponzi scheme, at a certain point it will
no longer be possible to find new users, so those at the leaves of the transaction
tree will just lose their investment.

4.5 King of the Ether Throne

King of the Ether Throne [3] is an Ethereum contract, which has been popular
for a while around 2016, until a bug caused its funds to be frozen. The contract
is initiated by a user, who pays an entry toll v0 to become the “king”. Another
user can usurp the throne by paying v1 = 1.5v0 to the old king, and so on
until new usurpers are available. Of course this leads to an exponential growth
of the currency needed to become king, so subsequent versions of the contract
introduced mechanisms to make the current king die if not ousted within a
certain time. Although the logic to distribute currency substantially differs from
that in Section 4.4, this is still an instance of Ponzi scheme, since investors are
only paid with the funds paid by later investors.

We implement the original version of the contract, fixing the multiplier to 2
instead of 1.5, since Bitcoin scripts do not support multiplication. The contract
uses the transactions in Figure 9 for the first two kings, A0 and A1, where:

eKET =
verrec(1) and rtx.arg(2) = ctx.arg(1) and rtx.val(2) ≥ 2 ctx.val(2) and

verscr(2, versig(ctx.arg(2), rtx.wit))

The transactions use arg(1) to store the (public key of) the new king, and arg(2)
for the old one. The clause rtx.arg(2) = ctx.arg(1) in eKET ensures that the
old king is correctly recorded in the redeeming transaction, while rtx.val(2) ≥
2 ctx.val(2) ensures that his compensation is twice the value he paid. Finally, the
verscr guarantees that the old king can redeem his compensation via out(2).

5 Implementing covenants on Bitcoin

We now discuss how to implement covenants in Bitcoin, and their computa-
tional overhead. First, during the script verification, we need to access both the

T0

in: U
v0B

A0

wit: sig
A0

(T0)

out:
1 7→ (A0, eKET , 0B)
2 7→ (A0, versig(A0, rtx.wit), v0B)

T1

in: 1 7→ (T0, 1), 2 7→ U
v1B

A1

wit: 1 7→ ⊥, 2 7→ sig
A1

(T1)

out:
1 7→ (A1, eKET , 0B)
2 7→ (A0, versig(ctx.arg(2), rtx.wit), v1B)

Fig. 9: Transactions for King of the Ether Throne.

redeeming transaction and the one containing the output being spent. This can
be implemented by adding a new data structure to store unspent or partially
unspent transactions, and modifying the entries of the UTXO set to link each
unspent output to the enclosing transaction. Note that the witnesses of this
transaction must be left available, in order to implement ctx.wit(e).

The language primitives that check the redeeming transaction script, verscr
and verrec, can be implemented through an opcode similar to CheckOutputVerify

described in [26]. While [26] uses placeholders to represent variable parts of the
script, e.g., versig(<pubKey >, rtx.wit), we use operators to access the needed parts
of a transaction, e.g., versig(ctx.arg(1), rtx.wit). Thus, to check if two scripts are
the same we just need to compare their hashes, while [26] needs to instantiate the
placeholders. Similarly, we can use the hash of the script within verscr. The work
[27] implements covenants without introducing operators to explicitly access
the redeeming transaction. Instead, they exploit the current implementation of
versig, which checks a signature on data that is build by implicitly accessing the
redeeming transaction, to define a new operator CheckSigFromStack.

The arg part of each output can be stored at the beginning of the output
script, without altering the structure of pure Bitcoin transactions. Similarly to
the implementation of parameters in Balzac [5,11], the arguments are pushed on
the alternative stack at the beginning of the script, then duplicated and copied
in the main stack before the actual output script starts. Note that arguments
need to be discharged when hashing the script for verrec/verscr. For this, it is
enough to skip a known-length prefix of the script.

Note that, even though the use cases in Section 4 make extensive use of non-
standard scripts, they can be encoded into standard transaction using P2SH, as
done in [5, 11]. Crucially, the hash also covers the arg part of the output, which
is therefore not malleable.

6 Using covenants in high-level contract languages

As witnessed by the use cases in Section 4, crafting a contract at the level of
Bitcoin transactions can be complex and error-prone. To simplify this task, the
work [15] has introduced a high-level contract language, called BitML, with a
secure compiler to pure Bitcoin transactions. BitML has primitives to withdraw

funds from a contract, to split a contract (and its funds) into subcontracts, to
request the authorization from a participant A before proceeding with a sub-
contract C (written A :C), to postpone the execution of C after a given time

t (written after t :C), to reveal committed secrets, and to branch between
two contracts (written C +C ′). A recent paper [13] extends BitML with a new
primitive that allows participants to (consensually) renegotiate a contract, still
keeping the ability to compile into pure Bitcoin.

Despite the variety of use cases shown in [10], BitML has known expressive-
ness limits, given by the requirement to have pure Bitcoin as its compilation
target. For instance, it is not possible to specify in BitML (and, we believe,
not even in pure Bitcoin) recursive contracts, unless all participants agree to
perform the recursive call [13]. In this section we discuss how to improve the
expressiveness of BitML, assuming to use Bitcoin with covenants as compilation
target. We illustrate our point by a couple of examples, postponing the formal
treatment of this extended BitML and of its secure compilation to future work.

A possible extension of BitML is the construct:

?x if b. X〈x〉

Intuitively, the prefix ?x if b can be fired whenever a participant provides a
sequence of arguments x and makes the predicate b true. Once the prefix is fired,
the contract proceeds as the continuation X〈x〉, which will reduce according to
the equation defining X.

Using this construct, we model the “King of the Ether Throne” contract
from Section 4.5 (started by A with an investment of 1B) as X〈A, 1〉, where:

X〈p, v〉 = ?q if val ≥ 2v. Y〈p, q, val〉

Y〈p, q, v〉 = split
(

v → withdraw p | 0 → X〈q, v〉
)

The contract X〈p, v〉 models a state where p is the current king, and v is his
investment. The guard val ≥ 2v becomes true when some participant injects
funds into the contract, making its value greater than 2v. This participant can
choose the value for q, i.e. the new king. The contract proceeds as Y〈p, q, val〉,
which has two parallel branches. The first branch makes valB available to the
old king; the second branch has zero value, and it reboots the game, recording
the new king q and his investment.

The output of the compiler is the script in Figure 10. Executing each step
of the BitML contract corresponds, in Bitcoin, to appending a transaction con-
taining the script in the first output. The script implements a state machine,
using arg.1 to record the current state. The other arguments of out(1) store,
respectively, the old king, the new king, and the value v. The verrec(1) at line 1

ensures that the script is preserved in out(1). To pay the old king, we use the
verscr at line 17, which constrains the script in out(2) of the transaction which
corresponds to the BitML state v → withdraw p | 0 → X〈q, v〉.

We now apply our extended BitML to specify a more challenging use case, i.e.
a recursive coin-flipping game where two players A and B repeatedly flip coins,
and the one who wins two consecutive flips takes the pot. The precondition to
stipulate the contract requires each player to deposit 1B as a bet. The game first
makes each player commit to a secret, using a timed-commitment protocol [18].

1 verrec(1) and

2 if ctx. arg.1 = 0 then // state X(A ,1)

3 rtx. arg.1 = 1 // advance the state
4 and rtx. val (1) > 2 * ctx. val (1) // investment at least 2v

5 and rtx. arg.2 = ctx. arg.2 // preserve old king (p)
6 and rtx. arg.4 = 2 * ctx. val (1) // instantiate v
7 else if ctx. arg.1 = 1 then // state Y(p,q,v)

8 rtx. arg.1 = 2 // advance the state
9 and rtx. val (1) = ctx. val (1) // preserve value in out (1)

10 and rtx. arg.2 = ctx. arg.2 // preserve old king (p)
11 and rtx. arg.3 = ctx. arg.3 // preserve new king (q)
12 and rtx. arg.4 = ctx. arg.4 // preserve v

13 else if ctx. arg.1 = 2 then // state v->withdraw p | 0->X<q,v>
14 rtx. arg.1 = 3 // advance the state

15 and rtx. arg.2 = ctx. arg.3 // new king in ctx = old king in rtx
16 and rtx. arg.4 = ctx. arg.4 // preserve v

17 and verscr (2, versig(ctx. arg (2).1, rtx. wit)) // pay the old king
18 and rtx. arg (2).1 = ctx. arg (1).2 // set arg(2) to the old king
19 and rtx. val (2) = ctx. val (1) // set out(2) value to v

20 else if ctx. arg.1 = 3 then // state X<q,v>
21 rtx. arg.1 = 1 // advance the state

22 and rtx. val (1) > 2 * ctx. arg.4 // investment at least 2v
23 and rtx. arg.2 = ctx. arg.2 // preserve old king (p)

24 and rtx. arg.4 = 2 * ctx. arg.4 // update v

Fig. 10: Script for King of the Ether Throne, obtained by compiling BitML.

The secrets are then revealed, and the winner of a flip is determined as a function
of the two secrets. The game starts another coin flip if the current winner is
different from that of the previous flip, otherwise the pot is transferred to the
winner.

We model the recursive coin-flipping game as the (extended) BitML contract
XA〈C〉, where C 6= A,B, using the following defining equations:

XA〈w〉 = A : ?hA . XB〈w, hA〉 + afterRel t : withdraw B

XB〈w, hA〉 = B : ?hB . YA〈w, hA , hB〉 + afterRel t : withdraw A

YA〈w, hA , hB〉 = ?sA ifH(sA) = hA . YB〈w, sA , hB〉 + afterRel t : withdraw B

YB〈w, sA , hB〉 = ?sB ifH(sB) = hB and 0 ≤ sB ≤ 1 . W〈w, sA , sB〉

+ afterRel t : withdraw A

W〈w, sA , sB〉 = if sA = sB and w = A : withdraw A

+ if sA = sB and w 6= A : XA〈A〉

+ if sA 6= sB and w = B : withdraw B

+ if sA 6= sB and w 6= B : XA〈B〉

The contract XA〈w〉 models a state where w is the last winner, and A must
commit to her secret. To do that, A must authorize an input hA , which rep-
resents the hash of her secret. If A does not commit within t, then the pot
can be redeemed by B as a compensation (here, the primitive afterRel t :C
models a relative timeout). Similarly, XB〈w〉 models B’s turn to commit. In
YA〈w, hA , hB〉, A must reveal her secret sA , or otherwise lose her deposit. The
contract YB〈w, sA , hB〉 is the same for B, except that here we additionally check

that B’s secret is either 0 or 1 (this is needed to ensure fairness, as in the two-
player lottery in [15]). The flip winner is A if the secrets of A and B are equal,
otherwise it is B. If the winner is the same as the previous round, the winner
can withdraw the pot, otherwise the game restarts, recording the last winner.

This coin flipping game is fair, i.e. the expected payoff of a rational player is
always non-negative, notwithstanding the behaviour of the other player.

7 Conclusions and future work

We have proposed a formalisation of Bitcoin covenants, and we have exploited it
to present a series of use cases which seem to be unfeasible in current Bitcoin. We
have introduced high-level contract primitives that exploit covenants to enable
recursion, and allow contracts to receive new funds and parameters at runtime.

Known limitations Most of the scripts crafted in our use cases would produce
non-standard transactions, that are rejected by Bitcoin nodes. To produce stan-
dard transactions from non-standard scripts, we can exploit P2SH. This requires
the transaction output to commit to the hash of the script, while the actual
script is revealed in the witness of the redeeming transaction. Since, to check its
hash, the script needs to be pushed to the stack, and the maximum size of a
stack element is 520 bytes, longer scripts would be rejected. This clearly affects
the expressiveness of contracts, as already observed in [10]. In particular, note
that the size of a script grows with the number of “states” of a contract (see e.g.
Figure 10), and so complex contracts would easily violate the 520 bytes limit.
The introduction of Taproot [28] would be helpful to mitigate this limitation.
For scripts with multiple disjoint branches, Taproot allows the witness of the re-
deeming transaction to reveal just the needed branch. Therefore, the 520 bytes
limit would apply to branches instead of the whole script. Another limitation to
the expressiveness of contracts derives from the fact that our scripts can only
access the current and redeeming transactions: e.g., it is not possible to express
conditions on the value of a transaction in the inputs of the current one.

Verification Although designing contracts in the UTXO model seems to be
less error-prone than in the shared memory model, e.g. because of the absence
of reentrancy vulnerabilities (like the one exploited in the Ethereum DAO at-
tack [4]), Bitcoin contracts may still contain security flaws. Therefore, it is impor-
tant to devise verification techniques to detect security issues that may lead to
the theft or freezing of funds. Recursive covenants make this task harder than in
pure Bitcoin, since they can encode infinite-state transition systems, as in most
of our use cases. Hence, model-checking techniques based on the exploration of
the whole state space, like the one used in [7], cannot be applied.

High-level Bitcoin contracts The compiler of our extension of BitML is just
sketched in Section 6, and we leave as future work its formal definition, as well
as the extension of the computational soundness results of [15], ensuring the
correspondence between the symbolic semantics of BitML and the underlying

computational level of Bitcoin. Continuing along this line of research, it would be
interesting to study new linguistic primitives that fully exploit the expressiveness
of Bitcoin covenants, and to extend accordingly the verification technique of [16].
Note that our extension of the UTXO model is more restrictive than the one
in [20], as the latter abstracts from the script language, just assuming that scripts
denote any pure functions [32]. This added flexibility can be exploited to design
expressive high-level contract languages like Marlowe [31] and Plutus [19].

References

1. Bitcoin wiki - contracts - assurance contracts.
https://en.bitcoin.it/wiki/Contract#Example_3:_Assurance_contracts

(2012)
2. ERC-20 token standard (2015), https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

3. King ot the Ether Throne (2016), https://web.archive.org/web/20160211005112/https://www.kingoftheether.com/

4. Understanding the DAO attack (June 2016),
http://www.coindesk.com/understanding-dao-hack-journalists/

5. Balzac: Bitcoin abstract language, analyzer and compiler.
https://blockchain.unica.it/balzac/ (2018)

6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.:
Fair two-party computations via Bitcoin deposits. In: Financial Cryp-
tography Workshops. LNCS, vol. 8438, pp. 105–121. Springer (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Modeling Bit-
coin contracts by timed automata. In: International Conference on Formal Mod-
eling and Analysis of Timed Systems (FORMATS). LNCS, vol. 8711, pp. 7–22.
Springer (2014). https://doi.org/10.1007/978-3-319-10512-3 2

8. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014).
https://doi.org/10.1109/SP.2014.35, first appeared on Cryptology ePrint Archive,
http://eprint.iacr.org/2013/784

9. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling Bit-
coin smart contracts. In: POST. LNCS, vol. 10804, pp. 217–242. Springer (2018).
https://doi.org/10.1007/978-3-319-89722-6

10. Atzei, N., Bartoletti, M., Lande, S., Yoshida, N., Zunino, R.: De-
veloping secure Bitcoin contracts with BitML. In: ESEC/FSE (2019).
https://doi.org/https://doi.org/10.1145/3338906.3341173

11. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transac-
tions. In: Financial Cryptography and Data Security. LNCS, vol. 10957. Springer
(2018). https://doi.org/10.1007/978-3-662-58387-6

12. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016). https://doi.org/10.1007/978-3-319-45741-3 14

13. Bartoletti, M., Murgia, M., Zunino, R.: Renegotiation and recursion
in Bitcoin contracts. In: COORDINATION. LNCS, Springer (2020).
https://doi.org/10.1007/978-3-662-58387-6, (To appear)

14. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin.
In: Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0

https://en.bitcoin.it/wiki/Contract#Example_3:_Assurance_contracts
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://web.archive.org/web/20160211005112/https://www.kingoftheether.com/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://blockchain.unica.it/balzac/
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1109/SP.2014.35
http://eprint.iacr.org/2013/784
https://doi.org/10.1007/978-3-319-89722-6
https://doi.org/https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-319-70278-0

15. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: ACM
CCS (2018). https://doi.org/10.1145/3243734.3243795

16. Bartoletti, M., Zunino, R.: Verifying liquidity of Bitcoin contracts. In: POST.
LNCS, vol. 11426, pp. 222–247. Springer (2019)

17. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair pro-
tocols. In: CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014).
https://doi.org/10.1007/978-3-662-44381-1 24

18. Boneh, D., Naor, M.: Timed commitments. In: CRYPTO. LNCS, vol. 1880, pp.
236–254. Springer (2000). https://doi.org/10.1007/3-540-44598-6

19. Brünjes, L., Gabbay, M.J.: UTxO- vs account-based smart contract blockchain
programming paradigms. CoRR abs/2003.14271 (2020)

20. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended UTXO model. In: Workshop on Trusted Smart Contracts
(2020)

21. Dashjr, L.: BIP 0002 (2016), https://en.bitcoin.it/wiki/BIP_0002

22. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014). https://doi.org/10.1145/2660267.2660380

23. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to
play decentralized poker. In: ACM CCS. pp. 195–206 (2015).
https://doi.org/10.1145/2810103.2813712

24. Maxwell, G.: CoinCovenants using SCIP signatures, an amusingly bad idea (2013),
https://bitcointalk.org/index.php?topic=278122.0

25. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017). https://doi.org/10.1109/EuroSPW.2017.44

26. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryp-
tography Workshops. LNCS, vol. 9604, pp. 126–141. Springer (2016).
https://doi.org/10.1007/978-3-662-53357-4 9

27. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants.
In: Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0 12

28. Pieter Wuille, Jonas Nick, A.T.: Taproot: SegWit version 1 spending rules (2020),
BIP 341, https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

29. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable off-chain instant
payments (2015), https://lightning.network/lightning-network-paper.pdf

30. Rubin, J.: CHECKTEMPLATEVERIFY (2020), BIP 119,
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki

31. Seijas, P.L., Thompson, S.J.: Marlowe: Financial contracts on
blockchain. In: ISoLA. LNCS, vol. 11247, pp. 356–375. Springer (2018).
https://doi.org/10.1007/978-3-030-03427-6 27

32. Zahnentferner, J.: An abstract model of utxo-based cryptocurren-
cies with scripts. Cryptology ePrint Archive, Report 2018/469 (2018),
https://eprint.iacr.org/2018/469

https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/3-540-44598-6
https://en.bitcoin.it/wiki/BIP_0002
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2810103.2813712
https://bitcointalk.org/index.php?topic=278122.0
https://doi.org/10.1109/EuroSPW.2017.44
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-319-70278-0_12
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://lightning.network/lightning-network-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://doi.org/10.1007/978-3-030-03427-6_27
https://eprint.iacr.org/2018/469

	Bitcoin covenants unchained

