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Abstract—We propose a domain-specific language for smart
contracts, which allows participants to transfer cryptocurrency
according to agreed contract terms. We define a symbolic and a
computational model for reasoning about their security. In the
symbolic model, participants act according to the semantics of the
domain-specific language. Instead, in the computational model
they exchange bitstrings, and publish transactions on the Bitcoin
blockchain. A compiler is provided to translate smart contracts
into standard Bitcoin transactions. We prove the correctness of
our compiler, showing that computational attacks to compiled
smart contracts are also observable in the symbolic model.

Index Terms—Bitcoin, smart contracts, process calculi

I. INTRODUCTION

Cryptocurrencies like Bitcoin and Ethereum have revived
the idea of smart contracts, agreements between untrusted
parties that can be automatically enforced without a trusted
intermediary [1]. These agreements define protocols which
regulate cryptocurrency exchanges among participants. For
instance, a smart contract can be a lottery which collects bets
from a set of players, determines the winner in a fair manner,
and then transfers the whole pot to the winner.

Disintermediation is made possible by the blockchain, a
public, append-only record of transactions, and by the consen-
sus protocol of the cryptocurrency [2]. The execution of smart
contracts relies on the blockchain to log all the participants’
moves; further, the underlying logic of transactions is exploited
to enable all and only the moves permitted by the contract.
The consensus protocol is used to consistently update the
blockchain: economic incentives are provided to ensure that
the nodes of the cryptocurrency network have the same view
of the blockchain. In this way, the state of each contract (and
consequently, the asset of each user) is uniquely determined
by the sequence of its transactions on the blockchain.

Smart contracts have different incarnations, depending on
the cryptocurrency on which they are based. In Ethereum,
contracts are expressed as programs in a Turing-equivalent
language. Any user can publish a contract on the blockchain.
This makes the contract available to other users, who can
then run it by calling its functions (concretely, by publish-
ing suitable transactions on the blockchain). Such openness
comes at the price of a wide attack surface: attackers may
exploit vulnerabilities in the implementation of contracts, or
may publish themselves Trojan-horse contracts with hidden
vulnerabilities, to steal or tamper with the assets controlled
by contracts. Indeed, a series of vulnerabilities in Ethereum
contracts [3] have been exploited, causing money losses in
the order of hundreds of millions of dollars [4]–[6].

Unlike Ethereum, Bitcoin does not provide a language for
smart contracts: rather, they are described as cryptographic
protocols where participants send/receive messages, verify
signatures, and put/search transactions on the blockchain.
Lotteries [7]–[10], Poker [11], contingent payments [12]–[14],
and more general fair multi-party computations [15], [16]
witness the variety of smart contracts supported by Bitcoin.

Describing smart contracts at this level of abstraction is
complex and error-prone, for two reasons. First, they often
rely on advanced features of Bitcoin, (e.g., transaction scripts,
signature modifiers, temporal constraints), whose actual be-
haviour relies on low-level implementation details. Second,
establishing the correctness of each smart contract requires
to prove the computational security of its protocol. This
task requires the skills of expert cryptographers, and even in
this case it is a significant effort. By contrast, working in
an high-level symbolic model would relieve smart contract
programmers from (most of) this burden, since the much
higher level of abstraction would allow security proofs to be
carried out with automatic tools.

Contributions: We propose BitML, a domain-specific lan-
guage for Bitcoin smart contracts. BitML is a process calculus,
with primitives to stipulate contracts, and to exchange currency
according to the contract terms, possibly involving temporal
constraints. BitML can express most of the Bitcoin smart
contracts proposed so far in the literature [17], e.g. escrow
services, timed commitments, multi-player lotteries, etc.

We provide our calculus with a symbolic semantics, and
a security model where participants use strategies to choose
which moves to perform (among those allowed by the seman-
tics). Each honest participant has her own strategy, while the
dishonest ones are controlled by a single adversarial strategy.
The adversary is based on the (symbolic) Dolev-Yao model:
he schedules the participant moves, eavesdrops messages,
and impersonates other participants. However, we prevent the
adversary from dropping messages forever, coherently with
the peer-to-peer nature of the Bitcoin communication network,
where (proper) requests are always eventually processed. Since
BitML features temporal constraints, our security model han-
dles time. More specifically, we allow the adversary to let
time pass, but only provided that the other participants are also
willing to. In this way we rule out attacks where the adversary
advances the time making a participant miss a deadline.

Our main contribution is a compiler which translates BitML
contracts into standard Bitcoin transactions. Participants can



perform the actions of the contract by publishing the corre-
sponding transactions on the blockchain. The main technical
challenge is to guarantee the correctness of the compiler,
i.e. that the symbolic execution of the contract matches the
“computational” one performed on the Bitcoin network. This
correspondence must hold also in the presence of computa-
tional adversaries: otherwise, attacks at the Bitcoin level could
be unobservable at the level of the symbolic semantics.

To prove the correctness of the compiler, we start by defin-
ing a computational model of the honest participants and of the
adversary. Both are equipped with computational strategies,
which allow them to inspect the past run, and choose which
actions to perform. In the computational model, actions can
broadcast bitstrings, publish transactions on the blockchain,
and make time pass. Compared to the symbolic level, the
computational level extends the power of the adversary: he
can arbitrarily manipulate bitstrings, being only subject to
complexity bounds, and he can exploit any kind of valid
Bitcoin transaction, beyond those obtained by the compiler.

Then, we introduce a relation between symbolic and com-
putational runs, called coherence. Intuitively, coherence holds
when both runs perform “morally” equivalent actions: e.g.,
the same amount of bitcoins is spent in both runs at the same
time, for the same purpose. Defining coherence is technically
demanding, because the symbolic model is far more abstract
than the computational one; further, the computational adver-
sary can perform actions with no symbolic counterpart.

To illustrate one of the subtleties in formalising coherence,
suppose that a dishonest participant A owns vB, represented
both in the symbolic run (as a term 〈A, v〉) and in the com-
putational run (as a transaction T). Computationally, A can
redeem T with a transaction T′ which can not be represented
symbolically (e.g., because it can not be produced by the
compiler). In such case, a coherent symbolic step is to make
〈A, v〉 disappear, as if vB were destroyed. In subsequent steps,
coherence will not keep track of the descendants of T′ in the
symbolic run. This loss of information at the symbolic level
could in principle allow for computational attacks without
a symbolic counterpart. However, this is not the case, since
computational attacks can always be adapted so to have a
symbolic counterpart. Indeed, to attack honest participants, A
has to stipulate contracts with them: this requires A to put
a deposit, computationally represented as a transaction T′′.
Instead of obtaining T′′ from T′, which makes T′′ untraceable
at the symbolic level, A can perform symbolically-traceable
actions to create from T a deposit T′′′ with the same value
of T′′, to be used in the computational attack. This adaptation
is feasible, because untraceable computational actions do not
allow the adversary to artificially increase his wealth. Hence,
the value of T′′ can not exceed the value of T, so making it
possible to produce T′′′ with symbolic actions.

Leveraging on the definition of coherence, we establish the
correctness of the compiler, as a computational soundness
result [18]. Specifically, we prove that if honest participants
execute contracts using symbolic strategies and compiler-
generated transactions, then the computational runs resulting

from their interaction with the adversary will have a symbolic
counterpart (with overwhelming probability). Consequently,
proofs of trace-based security properties carried out in the
symbolic model can be lifted for free to the computational
model. This result is crucial, since it enables the development
of analysis and verification techniques at the symbolic level,
which would be much more burdensome to obtain at the (far
more concrete) computational level.

II. A CALCULUS FOR BITCOIN CONTRACTS

In BitML, contracts allow participants to interact according
to the following workflow:

1) A participant broadcasts a contract advertisement {G}C .
The component C is the contract, which specifies how
funds can be transferred among participants; G is a set
of preconditions to its execution. Roughly, G requires
participants to deposit some B, either upfront or during
the contract execution, and to commit to some secrets.

2) Participants can then choose whether to accept the adver-
tisement, or not. When all the involved participants have
accepted {G}C , satisfying its preconditions, the contract
C becomes stipulated. Then, participants can transfer the
deposited funds by acting as prescribed by C .

We assume a set Part of participants, ranged over by
A,B, . . ., and we denote with Hon ⊆ Part a non-empty set
of honest participants. We also assume a set of names, of two
kinds: x, y, . . . denote deposits of B, while a, b, . . . denote
secrets. We denote with x a finite sequence of deposit names,
and we adopt a similar notation for sequences of other kinds.

The preconditions in G have three possible forms:
• A:! v @x (“persistent deposit”) requires A to own vB in

a deposit x, and to spend it for stipulating the contract.
• A:? v @x (“volatile deposit”) only requires A to authorize

the spending of x during the execution of C . Since x
is not paid upfront, there is no guarantee that vB will
be available when C demands x, as A can spend it
for other purposes. Intuitively, volatile deposits A:? v @x
give A the option of contributing vB during the contract
execution, but there is no obligation for A to do so.

• A:secret a requires A to generate a random nonce a,
and commit to it by publishing its hash H(a) before C
starts. During the execution of C , A can choose whether
to reveal a to the other participants.

Definition 1 (Contract preconditions).

G ::= contract precondition
A:? v @x volatile deposit of vB, expected from A

| A:! v @x persistent deposit of vB, expected from A

| A:secret a committed secret by A

| G | G composition �

Once C is stipulated, it starts its execution with a balance,
initially set to the sum of the persistent deposits in its adver-
tisement. The execution of C will affect this balance, when
participants deposit/withdraw funds to/from the contract.



We formalise contracts using a process calculus. A contract
C is a choice among branches. Intuitively, a branch D per-
forms an action, and possibly proceeds with a continuation C ′.
The action putx & reveala if p atomically performs the
following: (i) spend all the volatile deposits x, adding their
values to the current balance; (ii) check that all the secrets a
have been revealed, and that they satisfy the predicate p.

The guarded contract split v1 → C1 | · · · | vn → Cn
divides the contract into n contracts Ci, each one with balance
vi. The sum of the vi must be equal to the current balance.

The prefix withdraw A transfers the whole balance to A
(to transfer only a part of it, one can perform a split).

Note that, when enabled, the above actions can be fired
by anyone at anytime. To restrict who can execute a branch
and when, one can use the decoration A :D , which requires
the authorization of A, and the decoration after t :D , which
requires to wait until time t.

Definition 2 (Contracts). We define the syntax of contracts
in Figure 1. We denote with 0 the empty sum. We abbreviate
putx& reveala if p as: (i) putx when a is empty and
p is true , (ii) reveala if p when x is empty, (iii) τ when
x and a are empty and p is true , and (iv) we omit “if p”
when the predicate p is true. In guarded contracts, we assume
that the order of decorations is immaterial, e.g., we consider
after t :A :B :D equivalent to B :A : after t :D . �

Definition 3 (Contract advertisement). A contract advertise-
ment is a term {G}C such that the following conditions hold:
(i) all the names in G are distinct; (ii) all the names in C occur
in G; (iii) all the names in putx& reveala if p are distinct;
further, all the names in p occur in a; (iv) each participant in
{G}C has a persistent deposit in G. �

The last condition is not restrictive in practice: we can craft
a contract that allows a participant A to deposit just a small
fraction of bitcoin, and then immediately transfer it back to A
through a split. In the following examples, we do not show
these dummy deposits in the contract preconditions.

Example 1 (Escrow). A buyer A wants to buy an item from
a seller B, but they do not trust each other. So, they would
like to use a contract to ensure that B will get paid if and
only if A gets her item. We would like to guarantee that, even
if either A or B are dishonest, exactly one of them will be
able to redeem the money: if they disagree, an arbiter C will
decide who gets the money.

We model this contract in BitML as follows. The precondi-
tion G = A:! v @x requires A to provide a persistent deposit
of vB. The contract C is a choice among four branches:

C = A : withdraw B + B : withdraw A

+ C : withdraw A + C : withdraw B

In the first branch, A : withdraw B , participant B can redeem
vB if A provides her authorization. The second branch is dual,
and can be used e.g., if the seller wants to refund the buyer
for a damaged item. The last two branches are used if neither

A nor B give their authorizations: in this case, the arbiter C
chooses whether to authorize A or B to redeem the deposit.

We also propose a variant of the contract where C can issue
a partial refund of ζvB to A, and of (1−ζ)vB to B (similarly
to [19], [20]). The possible values of ζ are given by a finite
set Z in the range [0, 1]. We model the new contract as:

C ′ = A : withdraw B + B : withdraw A +
∑
ζ∈Z C :Dζ

Dζ = split
(
ζv → withdraw A | (1− ζ)v → withdraw B

)
The case of full refunds is obtained with Z = {0, 1}. If Z =
{0, 1/2, 1}, C can also choose to refund v/2 B to both. �

Example 2 (Intermediated payment). Assume that A wants
to send an indirect payment of vCB to C, routing it through
an intermediary B who can choose whether to authorize the
payment, in this case retaining a fee vBB, or not. Since A
does not trust B, she wants to use a contract to guarantee
that: (i) if B is honest, then vCB are transferred to C; (ii) if
B is not honest, then A does not lose money.

In BitML, we use G = A:! (vB + vC) @x as precondition,
and the following contract:

C = B : split
(
vB → withdraw B | vC → withdraw C

)
+ after t : withdraw A

The first branch can only be taken if B authorizes the payment:
in this case, B gets his fee, and C gets his payment. If B denies
his authorization, after time t, A can redeem her deposit. �

Example 3 (Timed commitment). Assume that A wants
to choose a secret a, and reveal it after some time t —
guaranteeing that the revealed value is the chosen secret. This
can be obtained through a timed commitment protocol [15],
[21]–[23]. As in [15], we force A to pay to B a penalty of vB
if A does not reveal the secret within t. In BitML, we use the
precondition G = A:! v @x | A:secret a , and:

C =
(
reveal a. withdraw A

)
+
(
after t : withdraw B

)
Only A can choose the first branch, by revealing a. After that,
anyone can further reduce the contract, and transfer vB to A.
Only after time t, B can choose the second branch, and collect
A’s penalty. Before the deadline, A has the option to reveal a
(avoiding the penalty), or to keep it secret (paying the penalty).
If A reveals a after time t, a race condition occurs: in such
case, the first one who fires the withdraw gets the money.

We can also model mutual timed commitment as follows:

G = A:! v @x | A:secret a | B:! v @ y | B:secret b

C = reveal a.C ′ +
(
after t : withdraw B

)
C ′ = reveal b. C ′′ +

(
after t : withdraw A

)
C ′′ = split

(
v → withdraw A | v → withdraw B

)
The contract C can reduce to C ′ if A reveals a, otherwise
(after t) B can redeem 2vB. In C ′, if B reveals b, then both
participants can redeem their deposits, running C ′′. Otherwise,
A can redeem 2vB. �



C ::=
∑
i∈I Di contract

D ::= guarded contract
putx & reveala if p. C collect deposits x and secrets a

| withdraw A transfer the balance to A

| split v → C split the balance (|v| = |C |)
| A :D wait for A’s authorization
| after t :D wait until time t

p ::= predicate
true truth
| p ∧ p conjunction
| ¬p negation
| E = E equality
| E < E less than

E ::= arithmetic expression
N 32-bit constant
| |a| length of a secret
| E + E addition
| E − E subtraction

Fig. 1: Syntax of BitML contracts.

Example 4 (Two-players lottery). A multiparty lottery is a
protocol where n players put their bets in a pot, and a winner
— fairly chosen among the players — redeems the whole pot.
Various contracts for multiparty lotteries on Bitcoin have been
proposed in [8]–[10], [15], [24], [25].

We model the lottery in [15], for two players A and B who
bet 1B each. The contract preconditions are the following:

G = A:! 2 @ yA | A:? 1 @xA | A:secret a

| B:! 2 @ yB | B:? 1 @xB | B:secret b

where a and b are committed secrets, yA , yB , are collaterals
(used as compensations in case of dishonest behaviour), and
xA , xB are the bets. The contract C is the following:

putxAxB .
(
split

2→ reveal b if 0 ≤ |b| ≤ 1. withdraw B
+ after t′ : withdraw A

| 2→ reveal a if 0 ≤ |a| ≤ 1. withdraw A
+ after t′ : withdraw B

| 2→ reveal ab if |a| = |b|. withdraw A
+ reveal ab if |a| 6= |b|. withdraw B

)
+ after t : split (2→ withdraw A | 2→ withdraw B)

The players can put their bets by performing put; if they do
not place their bets within t, each player can use the after
branch to get their collateral back. After the bets are placed,
the balance is split in three parts. Player B must reveal b
before the deadline t′; otherwise, A can redeem B’s collateral
(note that this is a timed commitment, as in Example 3).
Similarly, A must reveal a. To fairly determine the winner,
we further require that the length of secrets is either 0 or 1
(after compiling to Bitcoin, the actual lengths are η + 0 and
η+1 so to avoid trivial preimage attacks). In this way, the third
part of the split can compute the winner: A if the secrets
have the same length, B otherwise. �

We now define a reduction semantics of contracts. It is
organised in two layers: a bottom layer, taking the form of
an LTS between (untimed) configurations, and a top layer, in
the form of a timed LTS between timed configurations.

An (untimed) configuration Γ is a parallel composition of:
• contract advertisements {G}C , representing a contract

which has been proposed, but not stipulated yet.
• active contracts 〈C, v〉x , representing a stipulated con-

tract, holding a current balance of vB. The name x
uniquely identifies the active contract.

• personal deposits 〈A, v〉x , representing a fund of vB
owned by A, and with unique name x.

• authorizations A[χ], representing the consent of A to
perform some operation χ.

• committed secrets {A : a#N}, i.e. A has committed a
random nonce a, by broadcasting its hash H(a). The
length of a, which is secret as well, is determined by N .

• revealed secrets A[a#N ], representing the fact that A has
revealed her secret a (hence, its length N ).

Definition 4 (Configurations). We define configurations
Γ,∆, . . . through the syntax in Figure 2, where we stipulate
that in a configuration there are no duplicate authorizations.
We assume that (|, 0) is a commutative monoid. Indexed
parallel compositions are denoted with ‖ . We say that Γ is
initial when it contains only terms of the form 〈A, v〉x. �

Definition 5 (LTS of untimed configurations). The LTS of
configurations is defined in Figure 3 (advertisements and stipu-
lation), Figure 4 (contracts), and Figure 8 (deposits). The latter
is deferred to Section A, as for the semantics of predicates
(Definition 24). The function cv from labels α to sets of names
is defined as: cv(put(x,a, y)) = cv(withdraw(A, v, y)) =
cv(split(y)) = {y}, otherwise cv(α) is empty. �

When a participant A owns a deposit 〈A, v〉x, she can
employ that amount for several operations. For instance, she
can divide the deposit into two smaller deposits, or join it
with another deposit of hers to form a larger one. The deposit
can also be transferred to another participant, or used to
stipulate a contract. Before such operations can be performed,
A must authorize it (at the Bitcoin level, this happens through
suitable signatures of A). For this reason, we model both the
authorization step and the actual operation using two distinct
LTS moves, formalized by two separate semantics rules. For
instance, rule [DEP-AUTHJOIN] authorizes the join of two deposits:

〈A, v〉x | 〈A, v′〉y | Γ −→ 〈A, v〉x | 〈A, v′〉y | A[χx ] | Γ

where χx = x, yB〈A, v + v′〉 authorizes to spend x. After we
also obtain the dual authorization χy , rule [DEP-JOIN] performs
the actual join. Given Γ = A[χx ] | A[χy ] | Γ′, we infer:

〈A, v〉x | 〈A, v′〉y | Γ −→ 〈A, v + v′〉z | Γ

Rules for contracts are better explained through an example.



Γ,∆ ::= untimed configuration
0 empty
| {G}C contract advertisement
| 〈C, v〉x an active contract containing vB
| 〈A, v〉x a deposit of vB redeemable by A

| A[χ] authorization of A to perform χ

| {A : a#N} committed secret of A (N ∈ N ∪ {⊥})
| A[a#N ] revealed secret of A (N ∈ N)
| Γ | ∆ parallel composition

χ ::= authorization to . . .
xB {G}C accept an advertised contracts {G}C
| xBD take branch D
| x, y B 〈A, v〉 join deposit x with y into a deposit for A

| xB 〈A, v〉, 〈A, v′〉 divide a deposit x in two deposits for A
| xB B donate deposit x to B

| x, iB y destroy i-th deposits in x through y

Fig. 2: Configurations.

{G}C contains at least one participant in Hon
a fresh, for each A:secret a in G

Γ contains 〈Ai, vi〉xi for all Ai:! vi @xi in {G}C
Γ contains 〈Ai, vi〉xi for all Ai:? vi @xi in {G}C

Γ
advertise({G}C )−−−−−−−−−−→ {G}C | Γ

[C-ADVERTISE]

a1 · · · ak secrets of A in G

∀i ∈ 1..k : @N : {A : ai#N} ∈ Γ

∆ = {A : a1#N1} | · · · | {A : ak#Nk}
∀i ∈ 1..k : Ni ∈

{
N if A ∈ Hon

N ∪ {⊥} otherwise

{G}C | Γ A:{G}C,∆−−−−−−−→ {G}C | Γ | ∆
[C-AUTHCOMMIT]

∀B : ∀a secret of B in G : ∃N :
(
{B : a#N} ∈ Γ or B[a#N ] ∈ Γ

)
G contains a deposit x of A

{G}C | Γ A:{G}C,x−−−−−−→ {G}C | Γ | A[xB {G}C ]
[C-AUTHINIT]

G =
(
‖ i∈IAi:? vi @xi

)
|
(
‖ i∈JBi:! v′i @ yi

)
|
(
‖ i∈KCi:secret ai

)
Γ =

(
‖ i∈IAi[xi B {G}C ]

)
|
(
‖ i∈JBi[yi B {G}C ]

)
| Γ′

x fresh

{G}C | Γ |
(
‖ i∈J〈Bi, v′i〉yi

) init(G,C )−−−−−−→ 〈C,
∑
i∈J v

′
i〉x | Γ

[C-INIT]

Fig. 3: Semantics of untimed configurations: rules for advertisement and stipulation.

v = v1 · · · vk C = C1 · · ·Ck
∑k
i=1 vk = v′ x1 · · ·xk fresh

〈split v → C , v′〉y | Γ
split(y)−−−−→

(
‖ ki=1〈Ci, vi〉xi

)
| Γ

[C-SPLIT]

N 6= ⊥

{A : a#N} A:a−−→ A[a#N ]
[C-AUTHREV]

x = x1 · · ·xm
a = a1 · · · an

Γ = ‖mi=1〈Ai, vi〉xi
∆ = ‖ ni=1Bi[ai#Ni]

z fresh

JpK∆ = true

〈putx& reveala if p. C, v〉y | Γ | ∆ | Γ′
put(x,a,y)−−−−−−−→ 〈C, v +

∑m
i=1 vi〉z | ∆ | Γ′

[C-PUTREV]

x fresh

〈withdraw A , v〉y | Γ
withdraw(A,v,y)−−−−−−−−−−→ 〈A, v〉x | Γ

[C-WITHDRAW]
D ≡ A :D ′

〈D + C, v〉x | Γ
A:x,D−−−−→ 〈D + C, v〉x | A[x BD] | Γ

[C-AUTHCONTROL]

D ≡ A1 : · · · :Ak : after t1 : · · · : after tm :D ′ D ′ 6≡ A : · · ·

〈D ′, v〉x | ‖ ki=1Ai[x BD] | Γ α−→ Γ′ x ∈ cv(α) D ′ 6≡ after t : · · ·
〈D + C, v〉x | ‖ ki=1Ai[x BD] | Γ α−→ Γ′

[C-CONTROL]

Fig. 4: Semantics of untimed configurations: rules for contracts.

Γ
α−→ Γ′ cv(α) = ∅
(Γ, t)

α−→ (Γ′, t)
[ACTION]

δ > 0

(Γ, t)
δ−→ (Γ, t+ δ)

[DELAY]

D ≡ after t1 : · · · : after tm :D ′ D ′ 6≡ after t′ : · · ·

〈D, v〉x | Γ
α−→ Γ′ x ∈ cv(α) t ≥ t1, . . . , tm(
〈D + C, v〉x | Γ, t

) α−→ (Γ′, t)
[TIMEOUT]

Fig. 5: Semantics of timed configurations.



Example 5. Recall the timed commitment in Example 3.
Assume that A ∈ Hon, and let Γ = 〈A, v〉x . A possible
(untimed) computation, where A reveals her secret and then
redeems the deposit, is the following:

Γ −→ Γ | {G}C (1)
−→ Γ | {G}C | {A : a#N} (2)
−→ Γ | {G}C | {A : a#N} | A[x B {G}C ] (3)
−→ 〈C, v〉x1 | {A : a#N} | A[x B {G}C ] = Γ1 (4)
−→ 〈C, v〉x1 | A[a#N ] | A[x B {G}C ] (5)
−→ 〈withdraw A , v〉x2 | A[a#N ] | A[x B {G}C ] (6)
−→ 〈A, v〉x3 | A[a#N ] | A[x B {G}C ] (7)

Step (1) advertises {G}C , by rule [C-ADVERTISE]. This move
is possible because A is honest, and her deposit is in Γ. At
step (2), A commits to a secret, by rule [C-AUTHCOMMIT]. This
is possible because there are no previous commitments of a
in Γ; the length N is a natural, since A is honest. At step (3),
A gives her authorization to stipulate C , by rule [C-AUTHINIT].
This is possible since the configuration contains A’s deposit
and committed secret. At step (4) the contract C becomes
stipulated, by rule [C-INIT]. Stipulation is possible because A
authorized it, and made available her persistent deposit x.
After the move, the vB in x are transferred to the contract. At
step (5), A reveals her secret by rule [C-AUTHREV], which verifies
that N 6= ⊥. After that, the action reveal a is performed
at step (6), by rule [C-PUTREV], followed by [C-CONTROL] with
k = m = 0. Finally, A withdraws vB at step (7) by rule [C-

WITHDRAW], obtaining a fresh deposit x3. �

We discuss a few subtleties in the rules. First, [C-ADVERTISE]

requires as a side condition that at least one of the participants
involved in each stipulation is honest (one of the weakest
assumptions in cryptographic protocols). The same effect of
running contracts among dishonest participants can still be
obtained by redistributing funds through the rules for deposits.
Hence, this side condition does not affect the power of the
adversary. A further motivation for the side condition is that
the correctness of our compiler will rely on this assumption.

Rule [C-AUTHCOMMIT] allows dishonest participants to choose
an “invalid” length ⊥ for their committed secrets. This reflects
the fact that, in the computational model, A commits to a
secret by broadcasting a bitstring, meant to be the hash of
the secret. If A is dishonest, she could instead broadcast an
arbitrary bitstring w, preventing herself later on to reveal a
preimage of w. Similarly, the length ⊥ prevents the reveal
action in the symbolic model.

Definition 6 (LTS of timed configurations). Timed config-
urations are pairs (Γ, t), where t ∈ N is the global time.
The LTS between timed configurations is defined in Figure 5,
where labels α are either untimed labels, or delays δ ∈ N. �
Example 6. Recall the configuration Γ1 from Example 5.
Starting from (Γ1, 0) we can have an alternative timed com-
putation, where B waits until t′ > t to redeem A’s deposit:

(Γ1, 0) −→ (Γ1, t
′) (8)

−→ (〈B, v〉y | {A : a#N} | A[xB {G}C ], t′) (9)

Step (8) lets the time pass, by rule [DELAY]. At step (9), B fires
the prefix withdraw B within the after, and in this way he
collects vB from A’s deposit. This is obtained by using rule
[C-WITHDRAW] in the premise of [C-TIMEOUT]. �

III. SYMBOLIC STRATEGIES AND ADVERSARIES

A symbolic strategy Σs is a PPTIME algorithm which
allows participants to select which action(s) to perform, among
those permitted by the semantics. We distinguish between
two kinds of strategies: those for honest participants, and
that for the adversary Adv (who also controls the dishonest
participants). Strategies can inspect the past execution.

Definition 7 (Symbolic runs). A symbolic run Rs is a
(possibly infinite) sequence (Γ0, t0)

α0−→ (Γ1, t1)
α1−→ · · ·

where Γ0 is initial, and t0 = 0. If Rs is finite, we write
ΓRs for its last untimed configuration, and δRs for the last
global time. We write Rs

α−→ Ṙs when Ṙs extends Rs with
the transition (ΓRs , δRs)

α−→ (ΓṘs , δṘs). �

The strategy of a participant can inspect the past run, except
for the (lengths of the) committed secrets which have not been
revealed yet. The stripping of a symbolic run censors this
information. Instead, revealed secrets are not censored.

Definition 8 (Stripping of symbolic runs). The strip-
ping of a symbolic run, denoted strip(Rs), is the se-
quence obtained from Rs by replacing each committed secret
{A : a#N} with {A : a#⊥}, and each label A : {G}C,∆
with A : {G}C, 0. We accordingly define label stripping. �

A strategy receives as input a stripped run Rs∗ . Further, the
strategy of A has access to an infinite sequence rA ∈ {0, 1}ω
of independent and uniformly random bits. Instead of mod-
elling the access to rA through an oracle, we simply pass rA
as input to the strategy.

Definition 9 (Randomness sources). A randomness source
is a function r from participants A ∈ Hon∪ {Adv} to infinite
bitstrings r(A) ∈ {0, 1}ω . We usually write rA for r(A). �

Definition 10 (Symbolic participant strategies). The sym-
bolic strategy of a participant A ∈ Hon is a PPTIME algorithm
Σs

A(Rs∗ , rA), taking as input a stripped symbolic run Rs∗ and
a random sequence rA . The output is a finite sequence of α-
moves such that the following constraints hold:

1) if α ∈ Σs
A(strip(Rs), rA), then Rs

α−→;
2) if B : · · · ∈ Σs

A(strip(Rs), rA), then B = A;
3) if A : {G}C,∆ and A : {G}C,∆′ in Σs

A(strip(Rs), rA),
then ∆ = ∆′;

4) if α ∈ Σs
A(strip(Rs), rA) and Rs

α1−→ Ṙs
α−→, then α ∈

Σs
A(strip(Ṙs), rA). �

The constraints in Definition 10 are needed to rule out ill-
formed strategies. (1) requires that Σs

A only chooses moves
enabled by the semantics; (2) states that Σs

A cannot choose
moves of B; (3) guarantees that the lengths of secrets are
chosen coherently (i.e., A cannot choose different lengths for
the same secret); (4) requires the strategy to be persistent: if



on a run Σs
A chooses α, and α is not taken as the next step

in the run (e.g., because some other participant acts earlier),
then Σs

A must still choose α after that step, if still enabled.
The adversary Adv acts on behalf of all the dishonest

participants. Her symbolic strategy has access to the current
(stripped) run, and to a random sequence rAdv . Following
the Dolev-Yao model, Adv controls the scheduling among all
participants. At each moment, Adv can see all the sequences of
moves Λsi chosen by each honest Ai, and can perform exactly
one action, denoted as λs. This can be one of the actions
in some Λsi (represented as a pair (Ai, j), where j ≤ |Λsi|),
or one action α not requiring the authorization of an honest
participant, or a delay δ if all the honest participants agree.

Definition 11 (Symbolic adversary strategies). A symbolic
adversary strategy is a PPTIME algorithm Σs

Adv(Rs∗ , rAdv ,Λ
s),

taking as input a stripped symbolic run Rs∗ , a random sequence
rAdv , and a list Λs = Λs1 · · ·Λsk of sequences of stripped moves
for each Ai ∈ Hon = {A1, . . . ,Ak}. The output is a single
adversary action λs such that, for all symbolic runs Rs, if
Σs

Adv(strip(Rs), rAdv ,Λ
s) = λs, one of the following holds:

1) λs = (Ai, j), Λsi = α1 · · ·αm, and αj = Ai : · · ·;
2) λs = α, α 6= A : · · · for any A, α 6∈ N, and Rs

α−→;
3) λs = B : · · ·, λs 6= B : a for any a, B 6∈ Hon and Rs

λs−→;
4) λs = δ, where ∀i ∈ 1..k :

(
Λsi = ∅ or ∃δi ∈ Λsi : δi ≥ δ

)
.

5) λs = B : a, where (i) B 6∈ Hon; (ii) Γstrip(Rs) con-
tains {B : a#⊥}; (iii) for some prefix Rs∗ of strip(Rs),
Σs

Adv(Rs∗ , rAdv , ε) = B : {G}C,∆ where {B : a#N} in
∆, for some N 6= ⊥ and {G}C ;

If Σs
Adv(strip(Rs), rAdv ,Λ

s) = B : {G}C,∆ for B 6∈ Hon,
we ask Σs

Adv(strip(Rs), rAdv , ε) = B : {G}C,∆. �

Conditions (1)–(4) are straightforward; in (5) the adversary
makes a dishonest participant B reveal a secret a. In such
case, we require that the (stripped) run contains the corre-
sponding committed secret {B : a#⊥}, and that, at some
previous point Rs∗ in the (stripped) run, Σs

Adv chose a non-⊥
length N for a. This requirement is achieved by considering
Σs

Adv(Rs∗ , rAdv , ε), where the use of ε is due to the ignorance of
the parameter Λs generated at the point Rs∗ . We consequently
require that the N chosen by Σs

Adv does not depend on Λs.
This restriction does not limit the power of Adv, who can first
perform a sequence of actions λs depending on Λs, appending
them to Rs, and then choose N depending on such actions λs.

We now characterise the runs obtained under an adversary
with strategy Σs

Adv taking as input the outputs of the participant
strategies. This notion, called conformance, also involves a
randomness source, fed as input to the strategies.

Definition 12 (Symbolic conformance). Let Σs be a set of
symbolic strategies, comprising those of honest participants
A1, . . . ,Ak and of the adversary, and let r be a randomness
source. We say that a symbolic run Rs conforms to (Σs , r)
when one of the following conditions hold:

1) Rs = (Γ, 0), with Γ initial;
2) Ṙs

α−→ Rs, where Ṙs conforms to (Σs , r), and, given
Λsi = Σs

Ai
(strip(Ṙs), rAi

) for all i ∈ 1..k and Λs
∗ =

strip(Λs1 · · ·Λsk), if λs = Σs
Adv(strip(Ṙs), rAdv ,Λ

s
∗) then

λs = α, or λs = (Ai, j) for α = αj and Λsi = α1 · · ·αm.
If Σs does not comprise the adversary strategy, we say that
Rs conforms to (Σs , r) when there exists some strategy Σs

Adv

such that Rs conforms to (ΣsΣs
Adv , r). �

IV. COMPUTATIONAL MODEL

In this section we introduce our computational model, which
will be the target of the BitML compiler. We rely on [26] for a
formal model of Bitcoin transactions and its blockchain. Here
we just briefly recap these notions, providing some intuition.

In Bitcoin, transactions describe transfers of currency (B).
The log of all transactions is maintained on a public, im-
mutable and decentralised data structure called blockchain. We
represent transactions as records, with fields in, wit, out and
absLock. Consider e.g. the transactions T1 and T2 below:

T1

in: · · ·
wit: · · ·

out:
0 7→ (λς.versigK(A)(ς), v0B)
1 7→ (λς.versigK(B)(ς), v1B)

T2

in: 0 7→ (T1, 0)
wit: 0 7→ sigK(A)

out: 0 7→ (λx.H(x) = k, v0B)
absLock: t

The transaction T1 has two outputs: the v0B in out(0) can be
redeemed by any transaction T whose in field refers to (T1, 0),
and whose wit field satisfies the predicate in out(0) (similarly
for the other output). This is the case e.g. of the transaction
T2 above. Its witness sigK(A) is the signature of A on T2

(excluding the wit field itself), as required by T1.out(0).
If T1 is on the blockchain and its out(0) is unspent, A

can update the blockchain by appending T2. This moves v0B1

from T1 to T2. The transaction T2 has only one output,
which can be redeemed by any transaction providing a witness
having hash k. The time t in T2.absLock represents the earliest
moment when T2 can be put on the blockchain. A subsequent
transaction can redeem (v1 + v0)B in a single shot. This
requires two inputs, (T1, 1) and (T2, 0), and two witnesses.
The witness associated to the first input is a signature of B;
the other is a preimage of k.

Definition 13 (Blockchain). A blockchain B is a sequence
(T0, t0) · · · (Tn, tn), where T0 is a coinbase transaction (i.e.,
T0.in = ⊥), and ti ≤ tj for all 0 ≤ i ≤ j ≤ n. �

Hereafter, we assume that blockchains are consistent, i.e.
obtained by appending transactions respecting the Bitcoin
protocol (as formalised in [26]). Borrowing from [26], we
write B B (T, t) when (T, t) consistently updates B.

We now introduce the computational counterparts of sym-
bolic runs and strategies. Our model uses PPTIME algorithms
w.r.t. a security parameter η ∈ N. We follow the random oracle
model [27] for cryptographic hashes. Namely, a special entity
O 6∈ Part provides to every A (including Adv) the access to
a hash functionality. To compute a hash, A sends a message
A → O : m, and waits for the reply O → A : H(m), where
H(m) comprises η random bits. We extend the randomness

1In the actual Bitcoin, the value the outputs of T2 must be strictly smaller
than v0, and the difference is paid to the Bitcoin network. For simplicity, in
this paper (as in [26]) we neglect these transaction fees.



source also to O, assuming rO ∈ {0, 1}ω to be defined. For
simplicity, we assume that all communications (except those
involving O) are (reliable) broadcasts.

Definition 14 (Computational labels). A computational label
λc is a bitstring, encoding one of the following actions, where
A ∈ Part ∪ {Adv}, and m is a bitstring:

A → ∗ : m A broadcasts message m
A → O : m A queries the oracle with message m
O → A : m O answers to A with message m
T put on the ledger a Bitcoin transaction
δ perform a delay �

We associate each A with two key pairs: KA for signing
messages, and K̂A for redeeming deposits. These key pairs
are generated through rA , if A ∈ Hon. We write KA(rA),
K̂A(rA) for the key pairs generated using the first 2η bits of
rA . For the participants not in Hon, denoted with B1, . . . ,Bk,
we write KBi(rAdv), K̂Bi

(rAdv) for the key pairs generated
from rAdv using the i-th 2η bits. Given any key pair K, we
denote with Kp its public part, and with Ks its private part.

Definition 15 (Computational runs). Let r be a randomness
source. A computational run Rc is a finite sequence of
computational labels, beginning with a prefix Rc0 such as:

T0 · · ·Ai → ∗ : (Kp
Ai

(rAi
), K̂p

Ai
(rAi

)) · · · (∀Ai ∈ Hon)

· · ·Bj → ∗ : (Kp
Bj

(rAdv), K̂p
Bj

(rAdv)) · · · (∀Bj 6∈ Hon)

where T0 is a coinbase transaction, and for each participant P
(honest or dishonest), there exists an output of T0 redeemable
with the private key K̂s

P . We say that the run Rc0 is initial. We
denote with δRc the sum of all the delays in Rc. �

The labels Pi → ∗ : (Kp
Pi
, K̂p

Pi
) represent a broadcast of

Pi’s public keys (of both kinds) to all participants. In this
way, each participant starts with some funds (possibly 0), and
knows the public keys of the others.

Analogously to Definition 8, we define the stripping of
a computational run. We denote with stripA(Rc) the run
obtained by removing from Rc all the messages not visible
by A, i.e. the messages between O and some other B 6= A.

Definition 16 (Stripping of computational runs). For each
computational run Rc and participant A ∈ Part ∪ {Adv}, we
define stripA(Rc) as the computational run obtained from Rc

by replacing each label λc with stripA(λc), defined as follows:

stripA(λc) =


ε if λc = B → O : m, with B 6= A

ε if λc = O → B : m, with B 6= A

λc otherwise
�

By extracting the transactions from a computational run,
we obtain a blockchain, whose consistency will be ensured
by Definition 20. This will be used to define strategies.

Definition 17 (Blockchain of a computational run). For each
Rc, we define the blockchain BRc inductively as follows:

BT0 = (T0, 0) BRcλc =

{
BRc(T, δRc) if λc = T

BRc otherwise
�

Definition 18 (Computational participant strategies). The
computational strategy of a participant A ∈ Hon is a PPTIME
algorithm Σc

A(Rc∗ , rA), taking as input a (A-stripped) compu-
tational run Rc∗ and a random sequence rA . The output is a
finite set Λc of computational labels, such that if λc ∈ Λc, then
one of the following items holds:

1) λc = A → ∗ : m or λc = A → O : m , for some m;
2) λc = T, where BRc

∗
B (T, δRc

∗
), where in Rc∗ we can

find (in this order): (i) all the inputs of T; (ii) a message
B → ∗ : T, for some B; (iii) for each witness w in T, a
message B → ∗ : w, for some B.

3) λc = δ.
We further require that participant strategies are persistent:
i.e., if Λc = Σc

A(Rc∗ , rA), then for all λc such that BRc
∗λ

c is
consistent, Σc

A(Rc∗λ
c, rA) includes the computational labels:

{T ∈ Λc | BRc
∗λ

c B (T, δRc
∗λ

c)} ∪
{A → ∗ : m ∈ Λc | (A → ∗ : m) 6= λc} ∪
{A → O : m ∈ Λc | (A → O : m) 6= λc} �

Persistency ensures that, if A at a certain point wants to
perform some λc (sending m or putting T on the blockchain),
she cannot change her mind in the future, until λc is performed.
Condition (2) requires that, before being able to append T, one
has to make both T and its witnesses public. This models the
fact that, before T actually appears on the blockchain, it has
to be broadcast on the Bitcoin network, potentially enabling
an adversary to know T beforehand.

Definition 19 (Computational adversary strategies). A
computational adversary strategy is a PPTIME algorithm
Σc

Adv(Rc∗ , rAdv ,Λ
c), taking as input a (Adv-stripped) compu-

tational run Rc∗ , a random sequence rAdv , and a list Λc of
sequences of moves of each Ai ∈ Hon = {A1, . . . ,Ak}.
The output is a single computational label λc such that if
Σc

Adv(Rc∗ , rAdv ,Λ
c) = λc, one of the following holds:

1) λc = A → ∗ : m or λc = Adv → O : m, for some m, A;
2) λc = T, where BRc

∗
B (T, δRc

∗
), where in Rc∗ we can

find (in this order): (i) all the inputs of T; (ii) a message
B → ∗ : T, for some B; (iii) for each witness w in T, a
message B → ∗ : w, for some B.

3) λc = δ, where ∀i ≤ k :
(
Λci = ∅ or ∃δi ∈ Λci : δi ≥ δ

)
. �

Note that (1) allows Adv to impersonate any A, to use either
A’s messages in Λc, or self-produced ones. The other cases
allow Adv to (consistently) extend the blockchain, and to delay
(if all the honest participants agree).

Given a set of strategies Σc for all the honest participants
and for the adversary, and a randomness source r, we now de-
fine which runs Rc can result from making everyone interact.
Such runs are said to conform to (Σc , r).



Definition 20 (Computational conformance). Let Σc be a
set of computational strategies, including those of the honest
participants A1, . . . ,Ak and of the adversary, and let r be a
randomness source. We say that a computational run Rc pre-
conforms to (Σc , r) if one of the following conditions holds:

1) Rc is initial;
2) Rc = Ṙcλc, where Ṙc pre-conforms to (Σc , r), and λc =

Σc
Adv(stripAdv(Ṙc), rAdv ,Λ

c), where Λc = Λc1 · · ·Λck,
Λci = Σc

Ai
(stripAi

(Ṙc), rAi
), O not occurring in Λc, λc.

3) Rc = Ṙc(Adv → O : m)(O → Adv : hm),
where Ṙc pre-conforms to (Σc , r), and
Σc

Adv(stripAdv(Ṙc), rAdv ,Λ
c) = Adv → O : m, where

Λc = Λc1 · · ·Λck, Λci = Σc
Ai

(stripAi
(Ṙc), rAi

), and O
does not occur in Λc.

4) Rc = Ṙc(Aj → O : m)(O → Aj : hm), where Ṙc pre-
conforms to (Σc , r), Λci = Σc

Ai
(stripAi

(Ṙc), rAi
), and

(Aj → O : m) is the first occurrence of a query to the
oracle in Λc1 · · ·Λck.

Further, in both Items 3 and 4, given n the number of
distinct queries to O in Rc, we require that if m was already
requested, then hm is its reply in Ṙc; otherwise, hm is the
portion of rO of length η starting from nη.

We say that Rc conforms to (Σc , r) if Rc is a prefix of a
run pre-conforming to (Σc , r). �

Above, in Items 3 and 4 we handle the queries to O,
modelling the hash functionality as in the random oracle
model. We let queries have higher priority than other actions.

V. COMPILING CONTRACTS TO BITCOIN TRANSACTIONS

We compile a contract advertisement {G}C into a sequence
of standard Bitcoin transactions2. Our compiler relies on the
following parameters, which depend on G and C :
• PartG is the set of all participants occurring in G;
• part maps deposit names in G to the corresponding

participants (e.g., part(x) = A if A:? v @x in G);
• txout maps deposit names in G to the corresponding

Bitcoin transaction output (T, o);
• val maps deposit names in G to the value contained in

the deposit (e.g., val(x) = v if A:? v @x in G);
• sechash maps secret names in G to the corresponding

committed hashes.
Further, we assume that participants generate the following

key pairs, and exchange their public parts:
• K(A), for each A ∈ PartG;
• K(D,A), for each subterm D of C , and each A ∈ PartG.
For a set of participants P = {A1, . . . ,An}, we denote with

K(D,P ) the set of key pairs {K(D,A1), . . . ,K(D,An)}.

Definition 21 (BitML compiler). The function Badv(·) from
contract advertisements to sequences of Bitcoin transactions
is defined by the rules in Figure 6. �

2Standard Bitcoin transactions are obtained from those obtained by our
compiler using the tool https://github.com/bitcoin-transaction-model. This is
crucial, since the Bitcoin network currently discards non-standard transactions.

The function Badv produces all the transactions for {G}C .
In particular, Tinit will be the first to be put on the blockchain,
representing the stipulation of C . Function BC assigns to a
contract C =

∑
iDi a transaction TC , which can be redeemed

only by using the keys of the subterms Di of C . The functions
BD and Bout handle the possible actions of each D . The
action split is handled by Bpar. We provide more intuition
through an example.

Example 7. We compile the timed commitment {G}C of
Example 3, where G = A:! v @x | A:secret a | B:! 0 @ y,
and C = D1 + D2, with D1 = reveal a. withdraw A
and D2 = after t : withdraw B . Assume that: A ∈ Hon,
txout(x) = (TA , 0) for some TA whose output 0 has value
v and is redeemable by A, sechash(a) = ha , val(x) = v.
Similarly, for B: txout(y) = (TB , 0), and val(y) = 0.

The compiler produces Badv({G}C ) = TinitT1T2, where:

T1 = BD(D1, D1,Tinit , 0, v, {A,B}, 0)

= BC(withdraw A , D1,Tinit , 0, v, ∅, {A,B}, 0)

= T′BD(withdraw A , withdraw A ,T′, 0, v, {A,B}, 0) = T′T′A

T2 = BD(D2, D2,Tinit , 0, v, {A,B}, 0)

= BD(withdraw B , D2,Tinit , 0, v, {A,B}, t) = T′B

The obtained transactions are in Figure 7, where:

e1 = Bout(D1)

= versigK(D1,{A,B})(ςAςB) ∧ H(b) = ha ∧ |b| ≥ η
e2 = Bout(D2) = versigK(D2,{A,B})(ςAςB)

e′ = Bout(withdraw A) = versigK(withdraw A ,{A,B})(ςAςB)

For the sake of readability we do not use distinct variables for
different signatures of the same participant. The participants
start by generating the transactions off chain, and exchanging
the signatures shown in Figure 7. Doing this, A commits to
her secret, whose hash ha occurs in the output script Tinit .out.
After that, both A and B sign Tinit , and put it on the ledger,
stipulating the contract. The transaction Tinit can be redeemed
either by T′ or by T′B . In the first case, T′ has to add to her
witness a value a such that H(a) = ha and |a| ≥ η. After
that, A can redeem her deposit (now in T′) by putting T′A on
the blockchain. In the second case, Tinit can be redeemed by
T′B : however, this transaction can be put on the blockchain
only after t, because of the timelock in T′B . �

VI. SECURITY OF THE COMPILER

In this section we prove the security of our compiler. We
start with two auxiliary definitions: coherence between sym-
bolic and computational runs (Section VI-A), and a mapping
from symbolic to computational strategies (Section VI-B). Our
computational soundess result (Theorem 1) is in Section VI-C.

A. Relating symbolic and computational runs

Two runs Rs and Rc are coherent when each symbolic
step in Rs is matched by its computational implementation
in Rc. We provide some intuition by discussing a few cases.
Advertising a contract (rule [C-ADVERTISE]) corresponds to a
broadcast of a suitable bitstring, where symbolic deposit names

https://github.com/bitcoin-transaction-model


G =
(
‖ i∈IAi:? vi @xi

)
|
(
‖ i∈JBi:! v′i @ yi

)
|
(
‖ i∈KCi:secret ai

)
C =

∑m
i=1 Di v =

∑
i∈J v

′
i

ei = Bout(Di) (∀i ∈ 1..m) x =
⊎m
i=1 fv(ei)

Ti = BD(Di, Di,Tinit , 0, v,PartG, 0) (∀i ∈ 1..m)

Tinit

in: i 7→ txout(yi) (∀i ∈ J)

wit: ⊥
out:

(
λx.

∨m
i=1 ei, v

)
Badv({G}C ) = TinitT1 · · · Tm

C =
∑m
i=1 Di I = {z1, . . . , zk}

ei = Bout(Di) (∀i ∈ 1..m)

x =
⊎m
i=1 fv(ei)

Ti = BD(Di, Di,TC , 0, v,PartG, 0) (∀i ∈ 1..m)

TC

in: 0 7→ (T, o), i 7→ txout(zi) (∀i ∈ 1..k)

wit: 0 7→ sigK(Dp,P ), i 7→ sigK(part(zi))
(∀i ∈ 1..k)

out:
(
λx.

∨m
i=1 ei, v

)
absLock: t

BC(C,Dp,T, o, v, I,P , t) = TCT1 · · · Tm

D 6≡ A1 : · · · :An : after t1 : · · · : after tk : put z & reveala if p. C ς fresh
Bout(D) = versigK(D,PartG)(ς)

D ≡ A1 : · · · :An : after t1 : · · · : after tk : put z & reveala if p. C a = a1 · · · am ς, b1 · · · bm fresh
Bout(D) = versigK(D,PartG)(ς) ∧ B(p) ∧

∧m
i=1 H(bi) = sechash(ai) ∧ |bi| ≥ η

D = withdraw A

BD(D,Dp,T, o, v,P , t) = {in : (T, o), wit : sigK(Dp,P ), out :
(
λς. versigK(A)(ς), v

)
, absLock : t}

D = putz & reveala if p. C v′ = v +
∑
x∈z val(x)

BD(D,Dp,T, o, v,P , t) = BC(C,Dp,T, o, v′,z,P , t)
D = split v → C v = v1 · · · vk

∑k
i=1 vi ≤ v

BD(D,Dp,T, o, v,P , t) = Bpar(C , Dp,T, o,v,P , t)

D = A :D ′

BD(D,Dp,T, o, v,P , t) = BD(D ′, Dp,T, o, v,P \ {A}, t)
D = after t′ :D ′

BD(D,Dp,T, o, v,P , t) = BD(D ′, Dp,T, o, v,P ,max{t, t′})

C = C1 · · ·Cn Ci =
∑ki
j=1 Di,j (∀i ∈ 1..n)

v = v1 · · · vn ei,j = Bout(Di,j) (∀i ∈ 1..n, j ∈ 1..ki)

xi =
⊎ki
j=1 fv(ei,j) (∀i ∈ 1..n)

Ti,j = BD(Di,j , Di,j ,TC , i− 1, vi,PartG, 0) (∀i ∈ 1..n, j ∈ 1..ki)

TC

in: (T, o)

wit: sigK(Dp,P )

out: i− 1 7→
(
λxi.

∨ki
j=1 ei,j , vi

)
(∀i ∈ 1..n)

absLock: t

Bpar(C , Dp,T, o,v,P , t) = TC (Ti,j)i∈1..n, j∈1..ki

B(true) = true B(p1 ∧ p2) = B(p1) ∧ B(p2) B(¬p) = ¬B(p) B(e1 ◦ e2) = B(e1) ◦ B(e2)

B(N) = N B(|a|) = |a| − η B(e1 • e2) = B(e1) • B(e2)

Fig. 6: Compiling contracts to Bitcoin transactions.

Tinit

in: 0 7→ (TA , 0), 1 7→ (TB , 0)

wit: ⊥
out: (λςAςBb.e1 ∨ e2, v)

T′

in: (Tinit , 0)

wit: sigK(D1,{A,B})
out: (λςAςB .e

′, v)

T′A

in: (T′, 0)

wit: sigK(withdraw A ,{A,B})
out: (λς. versigK(A)(ς), v)

T′B

in: (Tinit , 0)

wit: sigK(D2,{A,B})
out: (λς. versigK(B)(ς), v)

absLock: t

Fig. 7: Transactions obtained by compiling the timed commitment contract.



have been encoded as Bitcoin transaction outputs. Committing
a secret (rule [C-AUTHCOMMIT]) corresponds to a sequence of
computational actions: generating a nonce, obtaining its hash
(querying O), signing and broadcasting it. Contract stipulation
(rule [C-INIT]) corresponds to putting on the blockchain the
transaction Tinit obtained by the compiler. Moves related to
active contracts (e.g., [C-PUTREV]) correspond to putting on the
blockchain the related transactions, as generated by the com-
piler. Authorizing a move (rule [C-AUTHCONTROL]) corresponds
to broadcasting the needed signature. Revealing a secret (rule
[C-AUTHREV]) corresponds to broadcasting the associated nonce.

As anticipated in Section I, computational moves without a
symbolic representation are ignored by the coherence relation.
For instance, the computational Adv can broadcast arbitrary
bitstrings, with no symbolic meaning. Adv can also put on the
ledger any transaction T allowed by Bitcoin, including those
not generated by our compiler, which so has no symbolic coun-
terpart. In such case, coherence might still hold, depending on
the inputs of T. If no input of T is symbolically represented,
coherence holds, but we associate no corresponding move in
Rs. Another case when coherence holds is that in which T re-
deems transactions which implement deposits 〈A, v〉: here, we
represent T in Rs using [DEP-DESTROY]. Instead, coherence does
not hold if T redeems some transaction which implements an
active contract 〈C, v〉. Consequently, when coherence holds,
the computational behavior of transactions implementing con-
tracts closely matches their symbolic semantics.

Defining coherence is rather long, since it has to deal
with all the possible cases of the symbolic semantics, and
technically intricate, since computational runs have no intrinsic
structure. For these reasons, we defer the actual definition
to Appendix D (Definition 25). This definition exploits three
maps, txout , sechash and κ, the role of which is similar to
that of the compiler parameters. Hereafter we write Rs ∼r Rc
when the two runs are coherent w.r.t. the randomness source r.

B. Mapping symbolic to computational strategies

Given a symbolic strategy Σs of an honest participant A, we
translate it to a computational strategy Σc which emulates its
behaviour. We first describe how to translate the stipulation of
a contract advertisement {G}C , i.e. by providing a computa-
tional counterpart to the rules in Figure 3. In the computational
model, this is performed by following a stipulation protocol
(Definition 22), which will be exploited to construct Σc .

Note that, while in the symbolic setting we model contract
advertisements as terms {G}C , containing names x for the
deposits, in the computational setting we encode such adver-
tisements as bitstrings, using transaction outputs (T, o) instead
of deposit names x. In the stipulation protocol, we assume
as given this representation C, which we call computational
contract advertisement, and the parameters of Σc

A , i.e. the
computational run Rc and the random sequence rA . After
decoding C as a symbolic advertisement {G}C , A interacts
with the other participants to obtain all the parameters required
to compile {G}C . Then, A computes Badv({G}C ), and
finally she puts the generated Tinit transaction on the ledger.

Definition 22 (Stipulation protocol). Let A ∈ Hon, let Rc∗
be a (A-stripped) computational run, and let rA be a random
sequence. The stipulation protocol for a computational contract
advertisement C is the following.

1) A decodes C, constructing a symbolic contract advertise-
ment {G}C ; in doing this, A chooses distinct symbolic
names for all the transaction outputs in C. The mapping
txout is defined according to the used correspondence
between names and transaction outputs.

2) A infers from G the parameters part, PartG, and val.
3) A uses rA to obtain the key pairs KA(rA) and K̂A(rA).

The key KA(rA) is used by A to sign all the protocol
messages. Further, A reads, from the initial prefix of the
run Rc∗ , the public keys Kp

B(rB) and K̂p
B(rB) of the all

B ∈ PartG\{A}. The keys Kp
B(rB) are then used by A to

filter out the incoming messages with incorrect signatures.
4) A defines compiler keys: K(A) is K̂A(rA), while the

public part of K(B) is K̂p
B(rB) for B 6= A. The keys

K(D,A) are generated by A consuming ∼ η fresh bits
from rA , and their public parts are shared with the others.
Dually, A defines the public parts of keys K(D,B) using
the first broadcasts by the other participants. Let k be the
sequence of public keys known by A after this step.

5) A generates from rA a secret nonce of the desired length
(to be defined by Σc

A ) for every A:secret a in G. Then,
A computes the hashes h = h1 · · ·hk of secret nonces (by
querying O), and broadcasts all these hashes as a single
message m(C,h,k). Dually, A receives the hashes h′

from the other participants. When doing this, A defines
sechash using the first (correctly signed) m(C,h′,k) in
Rc∗ which has no duplicate hashes, and has no hashes
already occurring (signed) in Rc∗ .

6) A computes Badv({G}C ), generating a list of transac-
tions. The signatures by A occurring in the witnesses are
computed and shared with others, while the signatures
of other participants are received and verified. Note that
the Tinit transaction, (whose wit field is left to ⊥ by the
compiler), is not signed, yet.

7) Only at this point, after having verified all the other
signatures, A signs the first transaction, adding the sig-
natures for her persistent deposits using K̂A(rA). Dually,
she receives the signatures from the other participants for
their own persistent deposits.

8) Finally, A broadcasts the signed Tinit , and its witnesses,
and puts it on the ledger.

In order to define the mapping from symbolic to compu-
tational strategies, we first sketch how to parse a (stripped)
computational run Rc∗ so to obtain a (stripped) symbolic run
Rs∗ . This requires to find, when possible, a symbolic coun-
terpart to computational actions, mapping, e.g., computational
advertisements to symbolic ones, signatures to authorizations,
transactions to symbolic actions (involving deposits or con-
tracts), and secrets to reveal actions. This correspondence
closely follows Definition 25. Indeed, to perform the parsing,



we can exploit maps similar to txout , sechash and κ to keep
track of the correspondence at each step of Rs∗ .

Using such maps, we can detect when a transaction T in Rc∗
has some input with a symbolic counterpart (i.e. in ran txout).
When that happens, we can map T into its corresponding
action in Rs∗ . According to Definitions 18 and 19, T has to be
preceded by the broadcasts of its witnesses w, which, in turn,
must be preceded by the broadcast of T. This allows to parse
the signatures in w, so to generate authorizations in Rs∗ .

A few cases must be handled with more care. For instance,
Adv could broadcast a signature before the signed transaction.
When this happens, we simply ignore the message; duplicate
signatures are ignored as well. Further, a computational con-
tract advertisement could involve only dishonest participants:
we ignore that as well. Adv can consume her own deposits
(among those tracked by txout), to create an arbitrary trans-
action without a symbolic counterpart. In this case, in the
semantics we use the [DEP-DESTROY] move in Rs∗ , preceded by
its authorizations, making those deposits disappear from the
symbolic world. When the hash of a secret is committed, it
can not be parsed precisely as a [C-AUTHCOMMIT] move, since
the latter involves the length of the secrets, which can not be
inferred from the hash. However, this is not needed, since the
stripped run Rs∗ does not involve such lengths.

Definition 23 (From symbolic to computational strategies).
Let Σs

A be a symbolic strategy, with A ∈ Hon. We define
ℵ(Σs

A) = Σc
A below. Given the parameters Rc∗ , rA of Σc

A , we:

1) parse the (stripped) run Rc∗ , so to obtain a corresponding
symbolic (stripped) run Rs∗ , as sketched above;

2) halve the random sequence rA as (π1(rA), π2(rA));
3) evaluate Λs = Σs

A(Rs∗ , π1(rA));
4) convert the symbolic actions Λs into computational ac-

tions Λc, and define Σc
A(Rc∗ , rA) = Λc. When Λs contains

A : {G}C,∆ or A : {G}C, x, their conversion follows
the stipulation protocol (Definition 22), using π2(rA).
There, at item 5, we choose the length of each secret
by adding η to the corresponding value N in ∆. �

C. Computational soundness

Our main result follows. We assume that honest partic-
ipants have an associated symbolic strategy, and that their
computational strategy is consequently obtained through the
mapping ℵ. We also assume that Bitcoin uses secure cryp-
tographic primitives, namely ideal hash functions (according
to the random oracle model), and a digital signature scheme
which is robust against existential forgery attacks. We also
assume that the Bitcoin blockchain is append-only, i.e. that
there are no forks, and consistent, i.e. miners only append valid
transactions [26]. This is a rough abstraction of the security
properties established in [28]–[30]

Our computational soundness result establishes that any
computational run conforming to the (computational) strate-
gies, with overwhelming probability has a corresponding sym-
bolic run conforming to the (symbolic) strategies.

Theorem 1 (Computational soundness). Let Σs be a set
of symbolic strategies for all A ∈ Hon. Let Σc be a set of
computational strategies such that Σc

A = ℵ(Σs
A) for all A ∈

Hon, and with an arbitrary adversary strategy Σc
Adv . Fix k ∈

N. Then, the following set has overwhelming probability:{
r
∣∣∣ ∀Rc conforming to (Σc , r) with |Rc| ≤ ηk :

∃Rs conforming to (Σs , π1(r)) with Rs ∼r Rc
}

The proof of Theorem 1 is in Appendix D.

VII. CONCLUSIONS

Our computational soundness result bridges the gap between
the cryptography community, where smart contracts have been
investigated first, and the programming languages community.
It guarantees that, if some safety properties are violated at the
computational level, then they are also violated at the symbolic
level. So, reachability-based symbolic analyses can be soundly
used to prove safety properties of smart contracts.

BitML allows for writing contracts that never deadlock, e.g.
the timed commitment protocol and the lottery in Section II.
Intuitively, this symbolic property is preserved by the compiler,
which requires all the needed signatures in the stipulation
phase. We conjecture that this liveness property can be proved,
using the same notion of coherence of Theorem 1. Further, we
could strengthen Theorem 1 to take probabilities into account.
More specifically, when in the symbolic model an event has
probability p, then in the computational model the same event
should have a probability p± ε where ε is negligible.

A first proposal of an high-level language relying on Bitcoin
is [31]. This language allows to model the updates of a state
machine as affine logic propositions. Users can “run” this
machine by putting transactions on the blockchain, with the
guarantee that only the legit updates can be performed. Using
a computational model similar to ours (including coherence)
it would be possible to establish computational soundness also
for [31]. A downside of [31] is that liveness is guaranteed only
by assuming cooperative participants, i.e., a dishonest partic-
ipant can make the others unable to complete an execution.
Note instead that in BitML, honest participants can always
make a contract progress, regardless of the behaviour of the
environment. Cooperation is incentivized by punishing misbe-
haviour with penalties, like e.g. in the lottery in Example 4.

The expressivess of BitML could be improved by replacing
the Bitcoin scripting language, using e.g. the approach of [32].
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APPENDIX

A. Supplementary material for Section II

Definition 24 (Semantics of predicates).

JtrueKΓ = true

Jp1 ∧ p2KΓ = Jp1KΓ and Jp2KΓ

J¬pKΓ = not JpKΓ

JE1 ◦ E2KΓ = JE1KΓ ◦ JE2KΓ ◦ ∈ {=, <}
JNKΓ = N

J|a|KΓ = N if Γ contains A[a#N ]

JE1 • E2KΓ = JE1KΓ • JE2KΓ • ∈ {+,−}

The above semantics is well-defined, provided that there
exists a unique A[a#N ] in Γ for each |a| in the predicate.
Our semantics of contracts will ensure that is indeed the case.

We now describe the rules of deposits, starting from the
simplest ones: those which deal with deposits, without directly
affecting contracts.

The rule [DEP-AUTHJOIN] allows A to authorize the merge
of two deposits x, y into a single one, creating the needed
authorization. The label of the form A : · · · records that only
participant A can perform this move. The rule [DEP-JOIN] uses
this authorization to create a single deposit z of A. The rules
[DEP-AUTHDIVIDE] and [DEP-DIVIDE] act similarly, allowing a deposit
of A to be divided in two parts. The rules [DEP-AUTHDONATE] and
[DEP-DONATE] allow A to transfer one of her deposits to another
participant. The pair of rules [DEP-AUTHDESTROY] and [DEP-DESTROY]

allow a set of participants to destroy a set of deposits x1 · · ·xn.
To do that, first each participant Ai must provide the needed
authorization Ai[x, iB y] for their own deposit xi. When
all the authorizations have been collected, rule [DEP-DESTROY]

eliminates the deposits. The last pair of rules is needed to
properly represent the fact that computational participants can
create (and put on the ledger) transactions which do not have
a counterpart in our symbolic model. To achieve a meaningful
correspondence between the symbolic and the computational
models, putting on the ledger such transactions is rendered
with the rule [DEP-DESTROY].

B. Supplementary material for Section III

The following lemma states that stripping preserves the
symbolic transitions, except for those which reveal secrets.

Lemma 2. Let α 6= A : a, for any A and a. (i) if Rs α−→ Ṙs,
then strip(Rs)

α−→ strip(Ṙs); (ii) if strip(Rs)
α−→ Rs∗ , then

Rs
α−→ Ṙs, for some Ṙs such that strip(Ṙs) = strip(Rs∗).

Lemma 3. Let Rs∗ = strip(Rs) for some symbolic run Rs.
Also, let Hon = {A1, . . . ,Ak}, and let Λs = Λs1 · · ·Λsk, where
Λsi = Σs

Ai
(Rs∗ , rAi) for i ∈ 1..k. If Σs

Adv(Rs∗ , r,Λ
s) = λs, then:

1) if λs = (Ai, j), then Rs
αj−→, where Λsi = α1 · · ·αm;

2) otherwise, Rs λs−→.
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A,B, . . . ∈ Part Participants
x, y, . . . Deposit names
a, a′, b, . . . Secrets names
t, t′, δ, . . . ∈ N Delays
v, v′ . . . ∈ 10−8N Currency values
G,G′, . . . Preconditions
C,C ′, . . . Contracts
D,D ′, . . . Guarded contracts
{G}C Advertisement

Γ,∆, . . . Configuration (untimed)
(Γ, t) Configuration (timed)
α, α′, . . . Labels (including delays)
Rs, Ṙs, . . . Symbolic runs
Rs∗ , Ṙ

s
∗ , . . . Stripped symb. runs

λs Symbolic label
Λs Set of symbolic labels
Σs

A Symbolic strategy
Badv(·) Compiler

r Random generator
rA Random nonce (of A)
m,m′, . . . Bitstrings
T,T′, . . . Transactions
Rc, Ṙc, . . . Computational runs
Rc∗ , Ṙ

c
∗ , . . . Stripped comp. runs

λc Computational label
Λc Set of computational labels
Σc

A Computational strategy
ℵ(·) Strategy mapping

TABLE I: Summary of notation.

〈A, v〉x | 〈A, v′〉y | Γ
A:x,y−−−→ 〈A, v〉x | 〈A, v′〉y | A[x, y B 〈A, v + v′〉] | Γ

[DEP-AUTHJOIN]

Γ = A[x, y B 〈A, v + v′〉] | A[y, xB 〈A, v + v′〉] | Γ′ z fresh

〈A, v〉x | 〈A, v′〉y | Γ
join(x,y)−−−−−→ 〈A, v + v′〉z | Γ

[DEP-JOIN]

〈A, v + v′〉x | Γ
A:x,v,v′
−−−−−→ 〈A, v + v′〉x | A[x B 〈A, v〉, 〈A, v′〉] | Γ

[DEP-AUTHDIVIDE]

Γ = A[xB 〈A, v〉, 〈A, v′〉] | Γ′ y, y′ fresh

〈A, v + v′〉x | Γ
divide(x,v,v′)
−−−−−−−−−→ 〈A, v〉y | 〈A, v′〉y′ | Γ

[DEP-DIVIDE]

〈A, v〉x | Γ
A:x,B−−−→ 〈A, v〉x | A[x B B] | Γ

[DEP-AUTHDONATE]
Γ = A[xB B] | Γ′ y fresh

〈A, v〉x | Γ
donate(x,B)−−−−−−−→ 〈B, v〉y | Γ

[DEP-DONATE]

x = x1 · · ·xn j ∈ 1..n y fresh (except in destroy authorizations for x)(
‖ i∈1..n〈Ai, vi〉xi

)
| Γ

Aj :x,j
−−−−→

(
‖ i∈1..n〈Ai, vi〉xi

)
| Aj [x, j B y] | Γ

[DEP-AUTHDESTROY]

x = x1 · · ·xn Γ =
(
‖ i∈1..n Ai[x, iB y]

)
| Γ′(

‖ i∈1..n〈Ai, vi〉xi
)
| Γ destroy(x)−−−−−−→ Γ

[DEP-DESTROY]

Fig. 8: Semantics of untimed configurations: rules for deposits.

C. Supplementary material for Section IV

In Lemma 4 we will show that there exists exactly one such
maximal run.

Lemma 4. Let Σc be a set of computational strategies for
the honest participants and for the adversary, and let r be a
randomness source. There exist exactly one maximal run Rc

which conforms to (Σc , r).

D. Supplementary material for Section VI

Hereafter, we assume that at least one of the participants in
{G}C has a secret a in G. Since rule [C-ADVERTISE] requires
that secret names are fresh, this ensures that the same contract
can not be advertised twice. Expressiveness is not affected by
this assumption, since a needs not be used in C . In all our
examples, we implicitly assume this condition to be respected.

Definition 25 (Coherence). We inductively define the re-
lation coher(Rs,Rc, r, txout , sechash, κ), where (i) Rs is a
symbolic run, (ii) Rc is a computational run, (iii) r is a
randomness source, (iv) txout is an injective function from

names x (occurring in Rs) to transaction ouputs (T, o) (where
T occurs in Rc), respecting values; (v) sechash is a mapping
from secret names a (occurring in Rs) to bitstrings; (vi) κ
maps triples ({G}C,D,A), where D is a subterm of C , to
public keys.

Base case: coher(Rs,Rc, r, txout , sechash, κ) holds if all the
following conditions hold: (i) Rs = (Γ0, 0), with Γ0 initial;
(ii) Rc = T0 · · · initial; (iii) all the public keys in Rc are
generated from r, according to Definition 15; (iv) txout maps
exactly the x of 〈A, v〉x in Γ0 to an output in T0 of value
vB, and spendable with K̂A(rA); (v) dom sechash = ∅;
(vi) domκ = ∅.

Inductive case: coher(Ṙs
α−→ (Γ, t), Ṙcλc, r, txout , sechash, κ)

holds if coher(Ṙs, Ṙc, r, txout ′, sechash ′, κ′) and one of the
following cases applies.

1) α = advertise({G}C ), λc = A → ∗ : C, where C is ob-
tained by encoding {G}C as a bitstring, representing
each x in it as the transaction output txout ′(x). Further,
txout ′ = txout , sechash ′ = sechash , and κ′ = κ.



2) α = A : {G}C,∆, where: (i) for some B, Ṙc contains
B → ∗ : C, where C is obtained from {G}C and txout ′

as in Item 1. Note that Ṙc might contain several such
messages; below, we let C represent the first occurrence.
(ii) for some B, λc = B → ∗ : (C,h,k) (signed by A),
where h is a sequence comprising a bitstring hi with
|hi| = η for each secret ai in ∆, and k is a sequence
of keys, as the one produced by the stipulation protocol.
We require that λc is the first occurrence, in the run Ṙc,
of such a message after C. (iii) Let Ni be the length of
ai fixed in ∆. If Ni 6= ⊥, we require that Ṙc contains,
for some B, a query to the oracle B → O : mi, and a
subsequent reply O → B : hi such that |mi| = η + Ni.
Otherwise, if Ni = ⊥, we require that hi does not occur
as a reply from O to any query of length ≥ η. (iv) No
hash is reused: the hi are pairwise distinct, and also
distinct from sechash ′(b) for any b ∈ dom (sechash ′).
(v) txout = txout ′. (vi) sechash extends sechash ′ so
that for each secret ai we have sechash(ai) = hi. (vii) If
A ∈ Hon, we define κ by extending κ′ according to k, so
to record the public keys of all participants occurring in
G for each subterm D of C . If κ′ already defines such
keys, or A 6∈ Hon, we let κ = κ′.

3) α = A : {G}C, x, where: (i) λc = B → ∗ : m for
some B, where m is the signature of the transaction
Tinit of Badv({G}C ) relatively to the input x with
K̂A(rA). The parameters of the compiler are set as
follows: part, PartG and val are inferred from G,
we let txout = txout ′, sechash = sechash ′, and
K(B) = K̂p

B(rB), K(D,B) = κ′({G}C,D,B) for
each B, and D subterm of C . (ii) For some B, we
have B → ∗ : Tinit occurring in Ṙc. (iii) λc is the
first occurrence in Ṙc of a broadcast of m after Tinit .
(iv) txout = txout ′, sechash = sechash ′, and κ = κ′.

4) α = init(G,C ), where: (i) α consumes from Ṙs the ad-
vertisement {G}C and its persistent deposits to produce
〈C, v〉z . (ii) λc = Tinit where Tinit is the first transaction
in Badv({G}C ). The needed compiler parameters are
obtained as in Item 3. (iii) sechash = sechash ′, κ = κ′,
and txout extends txout ′, mapping z to Tinit .

5) α = A : x,D , where: (i) Ṙs contains 〈C ′, v〉x with
C ′ = D +

∑
iDi, for some D = A :D ′. (ii) In Ṙs,

we find that 〈C ′, v〉x has {G}C as its ancestor adver-
tisement. (iii) λc = B → ∗ : m, where m is a signature
with key κ′({G}C,D,A) of the first transaction T in
BD(D,D,T′, o, v,PartG, 0), where (T′, o) = txout ′(x).
The compiler parameters are obtained as in Item 3.
(iv) txout = txout ′, sechash = sechash ′, and κ = κ′.
(v) Ṙc contains B → ∗ : T for some B, and m is the first
signature of T in Ṙcλc after the first broadcast of T.

6) α = put(x,a, y), where: (i) x = x1 · · ·xk.
(ii) In ΓṘs , the action α consumes 〈D + C, v〉y and
the deposits 〈Ai, vi〉xi

to produce 〈C ′, v′〉y′ , where
D = · · · : put · · · reveal · · ·. C ′. Let t be maximum
deadline in an after in front of D . (iii) In Ṙs, we find
that 〈D + C, v〉y has {G}C ′′ as its ancestor advertise-

ment, for some G and C ′′. (iv) λc = T where T is
the first transaction of BC(C ′, D,T′, o, v′,x,PartG, t),
where (T′, o) = txout ′(y). The compiler parameters are
obtained as in Item 3. (v) txout extends txout ′ so that y′

is mapped to (T, 0), sechash = sechash ′, and κ = κ′.
7) α = A : a, where: (i) λc = B → ∗ : m

from some B with |m| ≥ η. (ii) Ṙc =
· · · (B → O : m)(O → B : sechash ′(a)) · · · , for some
B. (iii) txout = txout ′, sechash = sechash ′ and κ = κ′.
(iv) In Ṙs we find an A : {G}C,∆ action, with a in G,
with a corresponding broadcast in Ṙc of m′ = (C,h,k).
(v) λc is the first broadcast of m in Ṙc after the first
broadcast of m′.

8) α = split(y), where: (i) In Ṙs, the action α consumes
〈D + C, v〉y to obtain 〈C0, v0〉x0

| · · · | 〈Ck, vk〉xk

where D = · · · : split v → C and C = C0 . . . Ck.
Let t be the maximum deadline in an after in front
of D . (ii) In Ṙs, we find that 〈D + C, v〉y has {G}C ′
as its ancestor advertisement. (iii) λc = T where T is
the first transaction of Bpar(C , D,T

′, o,PartG, t) where
(T′, o) = txout ′(y). The compiler parameters are ob-
tained as for Item 3. (iv) txout extends txout ′ mapping
each xi to (T, i), sechash = sechash ′, and κ = κ′.

9) α = withdraw(A, v, y), where: (i) In Ṙs, the ac-
tion α consumes 〈D + C, v〉y to obtain 〈A, v〉x , where
D = · · · : withdraw A . (ii) In Ṙs, we find that
〈D + C, v〉y has {G}C ′ as its ancestor advertisement.
(iii) λc = T where T is the first transaction of
BD(D,D,T′, o, v,PartG, 0) where (T′, o) = txout ′(y).
The compiler parameters are obtained as for Item 3.
(iv) txout extends txout ′ mapping x to (T, 0),
sechash = sechash ′, and κ = κ′.

10) α = A : x, x′, where: (i) In Ṙs we find 〈A, v〉x and
〈A, v′〉x′ . (ii) In Ṙc we find B → ∗ : T for some B,T,
where T has as its two inputs txout ′(x) and txout ′(x′),
and a single output of value v + v′ redeemable with
K̂A(rA). (iii) λc = B → ∗ : m′ for some B,m′, where
m′ is the signature of T with K̂A(rA). (iv) λc is the
first broadcast of m′ in Ṙc after the first broadcast of T.
(v) txout = txout ′, sechash = sechash ′, and κ = κ′.

11) α = join(x, y), where: (i) In Ṙs the action α spends
〈A, v〉x and 〈A, v′〉x′ to obtain 〈A, v + v′〉y . (ii) λc = T
is a transaction having as inputs txout ′(x) and txout ′(x′),
and having one output of value v + v′ redeemable with
K̂A(rA). (iii) txout extends txout ′ mapping y to (T, 0),
sechash = sechash ′, and κ = κ′.

12) α = A : x, v, v′. Similar to Item 10.
13) α = divide(x, v, v′). Similar to Item 11.
14) α = A : x,B. Similar to Item 10.
15) α = donate(x,B). Similar to Item 11.
16) α = A : y, j, where: (i) y = y1 · · · yk. (ii) In Ṙs we

find 〈Bi, vi〉yi for i ∈ 1..k, with Bj = A. (iii) In Ṙc

we find B → ∗ : T for some B,T, where T has as its
inputs txout ′(yi) for i ∈ 1..k, and possibly others not in
ran txout ′. (iv) λc = B → ∗ : m from some B,m where
m is a signature of T with K̂A(rA), corresponding to



the j-th input. (v) λc is the first broadcast of m in Ṙc

after the first broadcast of T. (vi) λc does not correspond
to any of the other cases, i.e. there is no other symbolic
action α for which Ṙsα would be coherent with Ṙcλc.
(vii) txout = txout ′, sechash = sechash ′, and κ = κ′.

17) α = destroy(x), where: (i) x = x1 · · ·xk. (ii) In Ṙs, α
consumes 〈Ai, vi〉xi to obtain 0. (iii) λc = T from some T
having as inputs txout ′(x1), . . . , txout ′(xk), and possibly
others not in ran txout ′. (iv) λc does not correspond to
any of the other cases, i.e. there is no other symbolic
action α for which Ṙsα would be coherent with Ṙcλc.
(v) txout = txout ′, sechash = sechash ′, and κ = κ′.

18) α = δ = λc, and txout = txout ′, sechash = sechash ′,
and κ = κ′.

Inductive case 2: coher(Rs,Rcλc, r, txout , sechash, κ)
holds if coher(Rs,Rc, r, txout , sechash, κ) and one of the
following cases applies:

1) λc = T where no input of T belongs to ran txout .
2) λc = A → O : m or λc = O → A : m, for some A,m.
3) λc = A → ∗ : m, where λc does not correspond to any

symbolic move, according to the first inductive case.

We write Rs ∼r Rc iff coher(Rs,Rc, r, txout , sechash, κ) for
some txout , sechash , and κ. �

Proof of Theorem 1 (sketch): Assume that Rc satisfies the
hypotheses, but has no corresponding Rs which is coherent (to
Rc) and conforming (to the symbolic strategies). Consider the
longest prefix Ṙc of Rc having a corresponding Ṙs which
is coherent (to Ṙc) and conforming (to the computational
strategies). We have that Rc = Ṙcλc · · · . We now show that
either Ṙcλc has a corresponding symbolic run ṘsR̈s which
is coherent and conforming to the symbolic strategies (con-
tradicting the maximality of Ṙc), or the adversary succeeded
in a signature forgery, or in a preimage attack (which can
happen only with negligible probability). Note that, by obtain
coherence, R̈s must be either empty, or contain a single
symbolic action.

We proceed by cases on λc:
1) λc = B → ∗ : m. Then, coherence must hold for some

R̈s. Indeed, the definition of coherence maps m to an
authorization (if it is the first broadcast of a signature), a
revealed secret (if it is the first broadcast of a preimage),
or in all other cases it simply ignores m. So, we can
choose R̈s as the corresponding move, or to be empty,
and obtain coherence. In these cases, we also obtain
conformance. Indeed, in the last case (R̈s empty) the run
ṘsR̈s = Ṙs is trivially conforming. For the authorization
or reveal cases, we note that if the computational Adv was
able to generate m, it is either forged (with negligible
probability), or it originated from some honest A. Since
Σc

A = ℵ(Σs
A), it follows that, at some time in the past,

Σs
A enabled the authorization or reveal. By persistency, it

is also enabled at the end of Ṙs, hence Σs
Adv can choose

such action, and achieve conformance.

2) If λc = T, we consider the following subcases according
to the inputs of T:

a) If no input of T belongs to ran txout , then coherence
and conformance are achieved taking R̈s to be empty.

b) Otherwise, if at least one of the inputs of T belongs
to ran txout , then we look in Ṙs for all the deposits
and active contracts corresponding to such inputs. By
definition of computational strategy, we must find in
Ṙc a (first) broadcast B → ∗ : T followed by a (first)
broadcast B → ∗ : m for all witnesses m of T. By
the coherence of Ṙc, in Ṙs the messages B → ∗ : m
correspond to suitable authorization/reveal moves for
each of the (counterparts of the) inputs of T. We
consider the following subcases:
i) If all the inputs are deposits, then we let R̈s perform

the symbolic move corresponding to T (e.g., init
or join). Note that if T can not be represented
symbolically, we can choose R̈s to perform a
destroy. Such moves are feasible symbolically since
we already have their authorizations. Such R̈s leads
to a coherent run, which is also conforming, since
even if no honest strategy wants to perform the
move, Adv can perform it on its own, having all
the authorizations.

ii) Otherwise, some input T′ of T must correspond
to an active contract. This must be originated
from an advertisement, which has to involve at
least one honest participant A, by definition of the
symbolic semantics (rule [C-ADVERTISE]). However,
by construction, our compiler makes T′ require the
signatures of all the participants, hence including
A. Since such signature must occur as a witness in
T, the adversary Adv must have forged it (with
negligible probability), or must have obtained it
from A. In the latter case, Ṙs contains an autho-
rization for the symbolic move corresponding to λc.
By choosing R̈s accordingly, we obtain a coherent
and conforming run.

3) Finally, if λc = δ, we simply choose R̈s to perform δ.
Coherence trivially holds. For conformance, we note that
by definition of computational strategy, all the honest
participants must output a Λc which either contains some
δ′ ≥ δ, or is empty. By definition of ℵ, this must also be
the case in Λs, resulting in conformance.
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