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Abstract. This work studies the problem of automatically penalizing
intentional or unintentional data breach (APDB) by a receiver/custo-
dian receiving confidential data from a sender. We solve this problem
by augmenting a blockchain on-chain smart contract between the sender
and receiver with an off-chain cryptographic protocol, such that any
significant data breach from the receiver is penalized through a mone-
tary loss. Towards achieving the goal, we develop a natural extension
of oblivious transfer called doubly oblivious transfer (DOT) which, when
combined with robust watermarking and a claim-or-refund blockchain
contract provides the necessary framework to realize the APDB proto-
col in a provably secure manner. In our APDB protocol, a public data
breach by the receiver leads to her Bitcoin (or other blockchain) private
signing key getting revealed to the sender, which allows him to penalize
the receiver by claiming the deposit from the claim-or-refund contract.
Interestingly, the protocol also ensures that the malicious sender cannot
steal the deposit, even as he knows the original document or releases it in
any form. We implement our APDB protocol, develop the required smart
contract for Bitcoin and observe our system to be efficient and easy to
deploy in practice. We analyze our DOT-based design against partial ad-
versarial leakages and observe it to be robust against even small leakages
of data.

1 Introduction

Data breach attacks on cloud hosts are increasing every year [1,2,3,4], the reasons
for which vary from compromises of ill-maintained data servers to careless data
custodians. Although it has been observed and reported that 90% of these data
breaches can be avoided with good security practices on the custodian’s infras-
tructure [5], there is no evident decrease in the number. In these cases, taking
legal actions is not only expensive and time consuming but it is also difficult to
establish the responsibility in today’s geo-politically distributed data flows.

This work aims at raising the bar for the data receivers/custodians by in-
troducing a complementary security mechanism that is inexpensive, automated,
and is not restricted by the geo-political boundaries. In particular, our goal is
to make the data custodians more accountable through automatically enforce-
able monetary penalties resulting in immediate loss of funds, and we call the



associated contract the automated penalization of data breach (APDB) contract.
Applicability scenarios for APDB contracts range from industrial data custo-
dianship, leaking privately shared personal data of others on social media and
even to non-disclosure agreements between mutually distrusting entities [6].

Example Scenario: Data Custodianship. Data Custodianship refers to the
responsibility of safe storage and custody of the data [7]. A serious breach of the
storage typically results in criminal litigation against the custodian. APDB can
be useful when legal action is undesirable due to the uncertainty of recovering
the payment (which increases if the winning party is owed court costs in addi-
tion to the actual remedy) [8]. We assume that the data owner/sender and the
custodian/receiver agree on an amount of money that will be awarded to the
owner should specified documents be demonstrably leaked by the custodian. To-
wards automatically ensuring that the owner will receive the funds, this amount
could take the form of a surety bond that is held in trust by a Bitcoin or other
permission-less/permissioned blockchain based cryptocurrency smart contract.
Another simple example scenario can be in the case of a media download by
users that should not be publicly shared. Here, the users make a deposit which
will be forfeited by the media provider upon dishonest sharing of the content.

APDB does not preclude the use of the court system, it simply complements
it, or shifts the responsibility of bringing legal action to the entity seeking to
recover their bond. Allowing an escalation to court is important because some
disclosures are in the public interest (whistle-blowing) [9]. In fact, in certain
cases, a third party might pay the value of the bond for the information (news-
paper, media, crowdfunding, etc.).

Contributions. In the form of APDB, we formalize the problem of auto-
matically settling intentional or unintentional data breaches with a Bitcoin (or
other blockchain) smart contract, eschewing the traditional recourse of costly
legal action. Our APDB protocol is a crypto-augmented smart contract sys-
tem to obtain an arbitrator-free settlement. It consists of four main compo-
nents: a claim-or-refund smart contract, a robust watermarking scheme, a nat-
ural oblivious-transfer extension called Doubly Oblivious Transfer (DOT ), and
a non-interactive zero knowledge (NIZK) proof for mutually distrusting parties.

In our core protocol, the sender and receiver create a claim-or-refund trans-
action on Bitcoin [10,11,12] where an amount is deposited that can be spent
at any time with a jointly signed transaction, or spent after a period of time
by an sender-only signed transaction. The document provided to the receiver
has the receiver’s signing (private) key embedded in it with a robust binary
watermarking scheme that cannot be removed (or retrieved) by anyone except
the embedding party. The challenging aspects of the APDB protocol involve ar-
ranging for the signing key to be embedded such that (1) the sender does not
learn the value of the key at the time of embedding, (2) the receiver does not
learn the document contents until the key is embedded, and (3) the sender is
convinced the embedded key is the receiver’s correct signing key. Within these
constraints, to perform the embedding the parties must jointly perform a two-

2



party computation with their respective private inputs. Our novel DOT and
committed receiver oblivious transfer (CROT ) protocols, securely realize this
two-party computation to ensure that the sender can retrieve the receiver’s em-
bedded key from the document if it leaks (widely enough to reach the sender)
and spend the deposited cryptocurrency.

We have implemented the APDB system using the Relic library for the cryp-
tographic primitives, a robust image watermarking scheme and claim-or-refund
contract for Bitcoin. Given the prevalence of robust watermarking in the indus-
try [13,14], we find our APDB system to be easy to deploy. Our single-threaded
implementation takes on average 1.73 seconds when an 1.3MB image is used as
data for the transfer when the 256-bit key is embedded once.

Given the inherent non-cryptographic robustness guarantees of the robust
watermarking system, we also analyse partial data disclosures. In particular,
even when the receiver decides to reveal the document partially, our proposed
DOT protocol ensures that the embedding party or the sender can retrieve
significantly more number of bits than when the standard oblivious transfer is
used for the transfer. For example, when the receiver’s 256-bit signing key is
embedded 16 times in the document, even a 15% leakage of document blocks
reveals roughly 235 bits of receiver’s key to the sender with DOT as opposed to
roughly only 50 bits that are revealed when oblivious transfer is employed.

2 An Overview of APDB

Problem Definition. We consider a setting where a sender wishes to disclose
a document M to a receiver. The receiver is expected to hold a public key-secret
key pair (pk, sk), where the key sk is a signing key of a (say) Bitcoin wallet
corresponding to pk. Instead of the sender directly sending M to the receiver,
we expect the sender and receiver to jointly compute a function f((M,pk), sk)
which should provide the receiver a version Msk of M that has been tagged
(or robustly watermarked) with the key sk. The protocol should abort (or not
produce a meaningful Msk) if sk from the receiver and pk from the sender are
not a matching key pair. At the end of the protocol, the sender does not learn sk
or Msk and the receiver does not learn any further information about M . The
receiver’s Bitcoin wallet holds the escrow deposit for accountability.

We consider the problem in a mutually distrustful setting, and either the
sender or the receiver can be malicious. A malicious sender can try to learn
the signing key of the receiver so as to steal the deposit. When appropriate, he
can also make the document public and try to accuse the receiver of dishonest
disclosure. The malicious receiver, on the other hand, can try to remove/replace
the watermark from the obtained document, and release the modified version to
the public without revealing her key. In such an adversarial setting, we wish to
satisfy the following privacy and integrity goals:
- Sender Privacy : Before the transfer completes, no information regarding the
document is available to the receiver.
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- Receiver Privacy : Before the disclosure of document by the receiver, no infor-
mation regarding the receiver’s signing key is available to the sender.
- Sender Integrity : In case of false accusation by the sender, no action is taken.
- Receiver Integrity (Revealing property): In case of disclosure of the document
by the receiver, the signing key of the receiver is revealed to the sender.
We formalize these properties as an ideal functionality in Figure 7 in Section 5.
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Fig. 1: APDB Protocol: High-level View

Solution Overview. We propose the APDB protocol, depicted in Figure 1
involving the two parties Sender and Receiver. The sender has the document
M and the receiver has the signing key sk. The receiver initially makes a time-
locked bitcoin deposit of an agreed value of funds that can be opened only if
the signing-key of the receiver is available. The sender divides the document
into several blocks and creates two watermarked versions (corresponding to 0
and 1) for each block. The parties run multiple 1-out-of-2 Oblivious Transfer
(OT 2

1 ) protocol instances, one for transfer of each of the document blocks. The
sender uses the watermarked blocks as inputs while the receiver uses each of
the bits of his signing key as choice bits for the OT 2

1 s and obtains one version
of each block i.e., for a 256-bit signing key of the receiver, the sender (in the
simplest case) divides the document into 256 blocks and creates two versions for
each block using robust watermarking. The sender and receiver then perform 256
OT 2

1 s, where the choice bit for each OT 2
1 is each of the bits of 256-bit key of

the receiver. The receiver also proves to the sender in zero knowledge that the
signing key used for the deposit is indeed formed of the bits used for OT 2

1 s.
As the document is transferred through oblivious transfer, the sender can

not gain any information about the signing-key of the receiver. However, if the
document is revealed/disclosed before the time of expiry of the agreement, the
sender learns the signing key of the receiver from the watermark of the revealed
document. He can then proceed to penalize the malicious receiver by transferring
the funds to himself. The multiple OT 2

1 s, one for each block, ensure that the
watermark embedded in the document corresponds to the signing-key bits.

To transfer the funds out of the deposit, the sender needs both his and the
receiver’s signature which can not be obtained before the document is revealed
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to the public. Thus, he can penalize the receiver only if she is dishonest. If the
receiver is honest, the agreement would expire after the agreed time and the
funds will be transferred back to her. The transactional logic of the deposit is
depicted as pseudo-code in Algorithm 1.

Algorithm 1 Claim-or-Refund contract logic

1: if Current time tnow ≥ t then
2: Direct the locked funds back to the contract creator
3: else
4: if Both the sender and receiver sign the transaction

then
5: Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

The receiver instead of full disclosure, can disclose the document partially to
the public. She can reveal, say, half of the total 256 blocks received, so that only
half the number of bits of her signing-key are revealed to the sender. However,
for a 256-bit key of the receiver, the sender can in-fact divide the document into
more numbers of blocks than just 256. This way, he can embed the key multiple
times in the document, for example, the sender can divide it into 512 parts so
that the key gets embedded twice. The sender can perform 512 OT 2

1 s with the
receiver using her 256-bit key twice for the same. In such a scenario, the sender
can extract more number of bits upon partial disclosure. Also, the information
in the document may not be “uniform” throughout the document, so the sender
can also try to embed the key multiple times in a document part where there is
“more” information by dividing it into more number of parts at those document
locations.

The receiver understands that one bit of her signing key is watermarked
in each of document blocks received using that bit in OT 2

1 . She also knows
which particular bit is embedded in a particular document block, this is because,
the watermark embedded in a block is same as the choice bit used for OT 2

1 in
obtaining a document block. Leveraging this knowledge, the receiver can try to
minimize the number of bits revealed to the sender. For example, with the sender
dividing the document into 512 blocks and the receiver having a 256-bit signing-
key, the receiver can reveal 100 blocks of the received document revealing only
50 bits to the sender. She can achieve this by revealing two blocks received with
each bit for 50 bits. To prevent such an attack we propose a primitive called
Doubly Oblivious Transfer (DOT ). DOT prevents the receiver from learning
which bit (index of the bit) of her key is watermarked into a certain block.

In DOT the sender has two messages m0,m1 and the receiver has two bits
s0, s1 (refer Figure 2). The sender has an extra choice bit c using which he
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transfers msc (associated with the bit sc) to the receiver. At the end of DOT
instance, the receiver cannot determine the value of c and m1−sc and the sender
does not know the bit sc that has been used in the transfer of msc .3

Fig. 2: Doubly Oblivious Transfer Primitive

For APDB, the sender can use DOT to transfer the document to the receiver
such that she has no information about which of her bits is embedded in a certain
document block. As we analyze in Section 6.1, this greatly improves the expected
number of bits revealed to the sender in case of partial disclosure. For example,
with the sender dividing the document into 512 blocks and 256-bit key at the
receiver, upon disclosure of 100 blocks, the expected number of bits that the
sender can extract is 90.3 instead of 50 while using just oblivious transfer.

Notice that our APDB protocol augments cryptographic primitive with a
smart contract. Given the limited expressibility of Bitcoin contracts our (off-
chain) cryptographic solution seems necessary but this may not be the case
for turing-complete systems like Ethereum [15]. However, defining the complete
solution as a smart contract will not be or may not remain inexpensive enough.
Further comments regarding the contracts can be found in Section 8.1.

3 Functional Blocks

Robust Bit Watermarking. Once the dishonest receiver reveals the docu-
ment, the sender learns the signing-key using watermark of the revealed doc-
ument. For watermarking document blocks, we use a robust bit watermarking
scheme with the property that the watermarked bit 0 or 1 cannot be removed
without loss of significant information from the block. The actual watermarking
scheme used can vary based on the type of the document being watermarked.
We mostly follow the definition of robust watermarking by Adelsbach et al. [16].

Let M denote the set of all documents, WM ⊆ {0, 1} the set of two water-
marks. K indicates the set of all keys and λ indicates the security parameter.
The watermarking scheme is defined using three algorithms, one each for key
generation, embedding and detection of the watermark. Gen (λ) is a probabilis-
tic algorithm that outputs a key k ∈ K for the given λ. Embed (M,w, k) takes
the document M , watermark w ∈ WM and key k as inputs and generates a

3For s0 = s1 = b, the receiver knows that she received mb; however, that does not
constitute any privacy leakage in our application as c and m1−sc remain private.
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watermarked document M ′ while Detect (M ′,M, k, w) takes the watermarked
document M ′, the original document M , the key k and the watermark w as
input and outputs > if the watermark in M ′ matches w, else outputs ⊥.

We require the watermarking scheme to satisfy the three properties of Effec-
tiveness, Robustness and a weaker version of imperceptibility (as in [16]) called
Bit-imperceptibility. Effectiveness indicates that a key k used to embed a water-
mark should also detect the watermark i.e., i.e., ∀M ∈M,∀k ∈ K and ∀w ∈WM,
if Embed(M,w, k)→M ′, then Detect(M ′,M, k, w) = >. Robustness states that
no probabilistic polynomial-time (PPT) adversary should be able to effectively
change or remove the watermark in the watermarked document without leaving
the document itself unusable. Bit-imperceptibility indicates that the knowledge
of the watermarked document with some unknown watermark bit w ∈ WM

should not reveal any additional information on the watermark bit that can be
feasibly extracted. We discuss the robust watermarking algorithms in Section 7.

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT 2
1 ) is a two-party (a

sender and a receiver) computation mechanism, where the sender has two mes-
sages M0 and M1 and the receiver has a bit b ∈ {0, 1}. The goal is to transfer
Mb to the receiver and at the end of the protocol, the receiver should not learn
any information about M1−b and the sender should not learn b. We consider the
oblivious transfer protocol, called the Verified Simplest OT by Doerner et al.
[17] which is an extended version of OT protocol by Chou et.al. [18], recalled
in Appendix A along with Figure 9. The additional verification step forces the
receiver to make oracle queries before receiving the encryptions from the sender
there by making the protocol UC-Secure.

The other building block of our protocol would be a time-locked bitcoin
deposit. The basics of bitcoin, the script for time locked deposit and the way
two parties can create and verify a deposit can be found in Appendix B.

4 Doubly Oblivious Transfer — DOT

In our solution, the receiver receives the document blocks by running OT 2
1 mul-

tiple times with her signing key bits as the choice bits. However, while running
OT 2

1 , the receiver understands that each of the message that is received by using
choice bit is indeed affected by the choice bit. To overcome this, we propose
a primitive, in which the receiver, after giving multiple bits as input, receives
several messages corresponding to the input bits, but the receiver does not have
any information about which bit was used as choice bit for choosing a certain
message. In the simplest case the sender has two messages along with a choice bit
and the receiver has two bits. The sender chooses one of the indices of the bits of
the receiver and the receiver receives the message corresponding to the bit of the
chosen index. Here, the sender does not know which message has been received
by the receiver and the receiver does not know which of her two bits is chosen as
the choice bit to choose the messages. Hence we call it Doubly Oblivious Transfer
(DOT) Protocol.
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Ideal functionality FDOT interacts with sender S and receiver R.
- Upon receiving the input (s0, s1), s0, s1 ∈ {0, 1} from R, store both (s0, s1).
- Upon receiving the input (M0,M1) with M0,M1 ∈ {0, 1}∗ and the choice bit c ∈ {0, 1}
from S, store (M0,M1, c).
- After receiving all the inputs, check if s0, s1, c ∈ {0, 1},M0,M1 ∈ {0, 1}∗, if yes,
forward Msc to R, else abort.

Fig. 3: Ideal Functionality FDOT of DOT

What is presented in Figure 3 is a simplified ideal functionality with the
communication setup including public headers and private payloads along with
session ids being assumed in the background as has been suggested in the work
[19]. This simplified template is followed for all the ideal functionalities in the
paper. Recall that DOT hides the index c and m1−sc from the receiver, but it
need not essentially hide the value sc itself. For s0 = s1 = b, the receiver knows
the value b but not c.

Construction. We provide a construction which realizes the ideal functionality
of DOT with two messages M0,M1 and a choice bit c at the sender and two bits
s0, s1 at the receiver as given in the Figure 3. Both the parties possess public
key-secret key pairs (refer Figure 4) and pk = pkS ∗pkR where pkS , pkR are pub-
lic keys of sender and receiver. The sender samples two elements from the group
(can be points from the elliptic curve), encrypts the two messages using a sym-
metric encryption E(.)(.) with the keys obtained by hashing the elements. These
encryptions are randomly permuted and forwarded to the receiver in the form
of Ênci. This is the first step in DOT . The sender then transfers the elements
to the receiver such that the receiver can only decrypt Msc . The encryption and
forwarding of messages prevents the need to map random message strings onto
group elements for the ElGamal encryption in the next step.

The sender samples two more elements, populates gi,j , i, j ∈ {0, 1} as shown
in Figure 4 and encrypts all gi,j to the public key pk using Epk(.) - a Re-
randomizable encryption like ElGamal encryption to obtain ui,j . Now two OT 2

1

instances are run, one for each i with ui,j as inputs. The receiver inputs si as
the choice bit for the instance i of OT 2

1 . The encryption of the elements to the
key pk later helps the receiver to hide which keys have been obtained by her
through OT 2

1 and helps the sender to hide the order in which the keys have been
forwarded. Hiding the order implies hiding the mapping between bits si and
elements obtained by the receiver through OT 2

1 . The receiver after receiving the
different ui,si through OT 2

1 proceeds by applying Rpk(.), a re-randomization op-
eration to obtain vi,si . These re-randomized encryptions of obtained encrypted
elements are now forwarded back to the sender. If there was no re-randomization
step, the sender would know what elements have been obtained by the receiver
and so will know what version of the message was taken by the receiver. Hence
we use the re-randomization step to hide from the sender, information regarding
which messages have been obtained by the receiver through OT 2

1 . The sender
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Sender Receiver
Message blocks: M0 and M1, Choice bit: c Bits: s0, s1

Setup
Multiplicative (Public) Group G, Generator g

(pkS , skS) (pkR, skR)
pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ 1, execute the steps below

Symmetric encryption of Message Blocks
g0, g1 ←R G
Enc0 = EH(g0)(M0), Enc1 = EH(g1)(M1)

Ênci = π1(Enci), for permutation π1
Ênci−−−→

El-Gamal encryption of group elements
Set gc,0 = g0, gc,1 = g1
g1−c,0, g1−c,1 ←R G
ui,0 = Epk(gi,0), ui,1 = Epk(gi,1)

Oblivious Transfer [17]
Run OT 2

1 once for each i
Input ui,0, ui,1 Input si

Output ui,si
Re-randomization, Forwarding and Decryption

vi,si = Rpk(ui,si)
vi,si←−−−

xi,si = DskS (vi,si)
xc,sc−−−→

gc,sc = DskR(xc,sc)

Decrypt Êncsc using H(gc,sc) appropriately

Fig. 4: Doubly Oblivious Transfer (DOT) Protocol

from vi,si , decrypts his layer of ElGamal encryption using the decryption opera-
tion DskS (.) to obtain xi,si . He then drops x1−c,si and forwards only the element
xc,sc to the receiver. The element xc,sc (which at this point is only encrypted to
the receiver’s public key) is then decrypted by the receiver using her private key
using DskR(.) to obtain the element gc,sc . The key obtained as hash of gc,sc is
used to decrypt the initially obtained random permutation of messages. Only one
of them gets decrypted correctly. The receiver, while decrypting the encrypted
messages, would not know which message is the correct encryption using the
obtained key, she tries to decrypt each of the messages. For the receiver to be
able to recognize the correct message for the key, we need a mechanism.

To achieve the decryption and identification of the correct message block
by the receiver, the sender initially appends each of the messages with a string
which is obtained as a certain public function f̂(.) of key (like hash of the key)
used to encrypt the message before the encryption process. After decrypting each
block with the key, the receiver matches the appended string with the locally
calculated string using f̂(.) of the key. Whichever message has the correct match,
is the correct message. Thus the receiver decrypts Msc .
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Imagine the case when the initial encryptions are not permuted, then the
receiver knows that the the encryptions received correspond to bit indices 0 and
1 in that order, so she can try to attack the system by setting one of the bits,
say s0 = 0 and the other s1 = 1, then which ever encryption gets decrypted,
will reveal which of the two sis has been chosen by the sender. To prevent such
a scenario, the initial permutation of the encryptions is necessary.

For a construction of the DOT protocol for a general case where the receiver
has κ bits (of signing key) and the sender has 2κ messages, refer Appendix C.

Theorem 1. The DOT protocol securely implements the functionality FDOT
under the following conditions:

Corruption Model: Static corruption (the sender or receiver is corrupted at
the beginning of the protocol).

Hybrid Functionalities: H is modelled as a random oracle and secure channels
between the parties are assumed.

Computational Assumption: The encryption scheme used in the initial step
is symmetric, non-committing and robust [18]. Group used for OT 2

1 module G is
a Gap-DH group.

Proofs of all the theorems proving the security can be found in Section 6.

4.1 Committed Receiver Oblivious Transfer

Oblivious Transfer is used to transfer one message Mb where b ∈ {0, 1} of the
two messages M0 and M1 from sender to the receiver with bit b. However in our
APDB protocol which uses DOT (which in-turn uses OT 2

1 ) we further require
the bit b to be a bit of the signing-key of the receiver. With a simple OT 2

1 ,
the sender can not be sure if that is the case. To overcome this, we propose the
committed receiver oblivious transfer (CROT ) primitive. In CROT , the receiver
forwards a non-interactive zero knowledge (NIZK) proof of knowledge to prove
that the bit inputs from the receiver are in fact bits of the signing key. The
functionality of the protocol CROT is presented in the Figure 5. We depict the
construction of the protocol in Figure 6 .

Ideal functionality FCROT interacts with sender S and receiver R.
- R generates the key pair (sk, pk) and forwards the bits si ∈ {0, 1}, i ∈ [0, · · · , κ − 1]
and the κ bit signing-key sk to FCROT which stores them.
- S forwards the messages Mi,0,Mi,1; i ∈ [0, · · · , κ− 1] to FCROT which stores them.
- After receiving the inputs from both S and R, FCROT verifies if the bits of sk are the
bits si and (pk, sk) are a key pair. If the verification succeeds, it forwards the messages
Mi,si , i ∈ [0, · · · , κ− 1] to the receiver, else, aborts.

Fig. 5: Ideal Functionality FCROT of CROT .
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Construction. The protocol construction for the ideal functionality FCROT

as given is the Figure 5 is presented here. The sender has messages Mi,j for
0 ≤ i ≤ κ−1 and j ∈ {0, 1}. The receiver has a signing key sk (si for 0 ≤ i ≤ κ−1
are the bits of sk). Given a multiplicative group G and its generator g, the sender
initially chooses a random value a← Zq and forwards h = ga to the receiver. This
would be the Setup phase. In the next Commit and Prove phase, the receiver
chooses random ri ←R Zq and computes ci = grihsi for 0 ≤ i ≤ κ − 1. The ci
values are forwarded to the sender as commitments to the bits si. The receiver
also forwards r =

∑κ−1
i=0 2iri to the sender. Along with these, for 0 ≤ i ≤ κ− 1,

the receiver forwards non-interactive zero knowledge (NIZK) proofs of knowledge
of exponents ri and si such that ci = gri+asi . Each of these NIZK proofs is
realized using the standard Fiat-Shamir transformation [20] of an interactive
sigma protocol for Pedersen commitments in the random oracle model. Following
the formal symbolic notation introduced by Camenisch and Stadler [21], each
proof is depicted as PoK{(ri, si)|grihsi} in Figure 6. This phase is used by the
receiver to prove that the bits si used for the transfer are indeed the bits of the

signing key sk. The sender verifies if c = grpka for the computed c =
∏κ−1
i=0 c

(2i)
i .

He also verifies the NIZK proof. If both the verifications succeed, he proceeds
with the protocol, else, aborts. The verification would also fail if (pk, sk) are not
a key pair.

After successful verification the sender computes the keys ki,j = H((ci·h−j)a)
for each 0 ≤ i ≤ κ−1 and j ∈ {0, 1}. The sender verifies if the receiver computed
the keys using the verification step similar to Verified Simplest OT [17]. He
forwards the challenges pi = H(H(ki,0)) ⊕ H(H(ki,1)) for each i and receives
the responses in the form of p′i and the sender verifies if p′i = H(H(ki,0)). The
keys ki,j are used to encrypt messages Mi,j respectively to obtain the cipher
texts Ci,j . The cipher texts Ci,j are forwarded to the receiver who attempts to
decrypt the blocks Ci,si using the keys ki,si finishing the Transfer phase. The
receiver can not compute the keys ki,1−si (follows from Lemma 1 of [18]) and
so can not decrypt Ci,1−si . One can observe that the protocol does not enforce
the receiver to use “bits”, if the receiver uses any other values other than bits
in CROT , the receiver receives encryptions which can not be decrypted.

The model for CROT includes static corruption of parties, modelling H as
random oracle and group G being Gap-DH [22] while the encryption used is
symmetric, non-committing and robust [18].

Theorem 2. The CROT protocol securely implements the ideal functionality
FCROT under the following assumptions:
Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle and authenticated
channels between users are assumed.
Computational Assumptions: G is Gap-DH. The symmetric encryption used
is non-committing and robust.
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Sender Receiver
Multiplicative (Public) Group G, generator g

pk = gsk sk ∈ {0, 1}κ
For all i : 0 ≤ i ≤ κ− 1

Message blocks: Mi,0 and Mi,1 Bit decomposition of sk: si
Challenge

a←R Zq
h=ga−−−→

Commit and Prove
For all i : 0 ≤ i ≤ κ− 1

ri ←R Zq
r =

∑κ−1
i=0 2iri

ci = grihsi

gr,ci,PoK{(ri,si)|gri hsi}←−−−−−−−−−−−−−−−−−
c =

∏κ−1
i=0 c

(2i)
i

Abort if c 6= (grpka) or
if verfication of NIZK fails

Transfer
For all i : 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}

ki,j = H((ci · h−j)a) ki,si = H(hri)

pi = H(H(ki,0))⊕H(H(ki,1))
pi−→ p′i = H(ki,si)⊕ pisi

Verify p′i = H(H(ki,0))
p′i←−

Ci,j = Eki,j (Mi,j)
Ci,j−−−→ Decrypt Ci,si using ki,si

Fig. 6: Committed Receiver Oblivious Transfer (CROT) Protocol
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5 The APDB protocol

Here, we detail the steps of the APDB protocol which uses DOT with CROT .
The watermarking and the DOT protocol are the off-chain cryptographic com-
ponents while the smart-contract and the deposit are the on-chain parts.

1. NetworkSetup: The sender and receiver setup their Bitcoin identities by
generating secret key-public key pairs; the sender has the document M .

2. DepositSetup(sk, t, V alue): A time-locked bitcoin deposit is created by
the receiver with the signing key sk for a time t and for a amount of V alue. The
deposit is a 2-of-2 multisig deposit requiring the secret keys of both the sender
and the receiver to transfer the funds.

3. WaterMark(M): The document M is broken into κ blocks Mi, 0 ≤ i ≤
κ− 1 for a κ-bit long sk and each block Mi is watermarked to generate two ver-
sions Mi,0,Mi,1. Any watermarking scheme which satisfies the previously men-
tioned properties (refer section 3) can be used.

4. DOT with CROT (Mi,0,Mi,1, sk): The Doubly Oblivious Transfer pro-
tocol, used to transfer the document, takes the watermarked blocks as input. In
APDB, the DOT protocol instead of using OT 2

1 , uses CROT . The protocol is
same as the general case of DOT (as shown in Figure 10 of Appendix) but uses
CROT instead of OT 2

1 . The sender watermarks the document blocks to obtain
Mi,j , generates keys from sampled group elements and forwards the permuted
symmetric encrypted versions of the blocks to the receiver. He then encrypts
the group elements using El-Gamal encryption to the key pk = pkS ∗ pkR where
pkS , pkR are the public keys of sender and receiver. The sender inputs encrypted
elements in a permuted order to the CROT protocol. The receiver after proving
in zero knowledge that the input to the protocol is her signing key sk, receives
a set of encrypted elements which She re-randomizes sends back. The sender,
decrypts his layer of encryption, inverts the applied permutation to obtain the el-
ements in their original order and forwards them to the receiver who will be able
to decrypt them. The appropriately decrypted symmetrically encrypted blocks
are then joined together to form the receiver’s version of the document Msk.

5. Penalize(Msk, skS): Upon revelation of the document, the receiver’s secret
key sk is extracted from the document Msk and is used with the sender’s secret
key skS to transfer the deposited funds to the sender to penalize the receiver.

Analysis. Figure 7 presents the ideal functionality FAPDB for APDB, while
Theorem 3 proves its security. Here we show that the functionality achieves the
desirable properties discussed in Section 2. The properties of sender and re-
ceiver privacy are trivially satisfied by the functionality as it does not reveal
any information except transferring the corresponding watermarked blocks to
the receiver. If the receiver discloses the document, the sender can extract the
embedded watermark bits and hence the signing key of the receiver, thus satis-
fying the revealing property. If the sender tries to falsely accuse the receiver by
revealing the document in any form, the receiver does not lose the deposit as
the sender does not have the receiver’s key without disclosure, this achieves the
sender integrity property.
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Ideal functionality FAPDB interacts with sender S and receiver R.
- The receiver R generates the key pair (sk, pk), forwards the bits si ∈ {0, 1}, i ∈
[0, · · · , κ − 1] of the κ bit signing-key sk and sk to the functionality which stores the
received input.
- The sender S forwards the watermarked document blocks Mi,0,Mi,1 ∈ {0, 1}∗, i ∈
[0, · · · , γ − 1] to the functionality which stores the received input.
- The functionality verifies if the bits of sk are the bits si, if the verification succeeds,
it forwards the message blocks Mi,l where l = sπ(i) to R, else, it aborts.

Fig. 7: Ideal Functionality FAPDB of APDB

Theorem 3. The APDB protocol securely implements the ideal functionality
FAPDB under the following assumptions:
Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle and authenticated
channels between users are assumed.
Computational Assumptions: CDH and DDH are assumed to be hard in G,
G is Gap-DH. The symmetric encryption used is non-committing and robust.

6 Proofs of security of DOT, APDB and CROT

We prove the security of the DOT protocol by constructing a simulator which
generates an indistinguishable view in the real world - ideal world paradigm for
the adversary.

Corrupted Sender. At the beginning of the protocol, the simulator answers
all oracle queries randomly and stores the query and reply pairs in the form
of (qk, rk). At a later point of time, it receives the encrypted messages Ênci,
i ∈ {0, 1} and participates in oblivious transfer for the next step. The simu-
lator sets bits si, i ∈ {0, 1} randomly with values from {0, 1} as choice bits
before participating in the protocol. For OT 2

1 part of the protocol, the simulator
invokes the simulator of the Verified Simplest OT [17] (which is an extended
version of the oblivious transfer protocol and its simulator developed by Chou
et al. [18,22]) for the corrupted sender case (we call it, SOT ). Through OT 2

1 the
simulator SDOT receives the elements ui,si which it tries to decrypt (its layer of
encryption, the sender is expected to encrypt the messages with Epk(.)). If any
of the received elements results in an error during decryption, it aborts. Else,
it re-randomizes the encryption using Rpk(.) to obtain vi,si and forwards them
back to the sender. It then receives an encrypted group element as xc,sc which
it tries to decrypt and hashes it to obtain the decryption key. It decrypts one of
the received messages with the obtained key. If it results in an error, it aborts.
The simulator decrypts the initial Ênci as follows: for each i, k, from the initially
stored pairs (qk, rk), it does Decrk(Ênci). The first value that gets decrypted
meaningfully is set as Mi for any i. If no key rk decrypts meaningfully, it sets
Mi =⊥. Then the simulator obtains the choice bit c of the sender as follows:
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during the OT 2
1 protocol, the simulator SOT finds out message inputs from the

sender side [18] and forwards them to SDOT . For each OT 2
1 instance i, SDOT

receives two messages gi,0, gi,1 from SOT , the simulator SDOT stores all the ele-
ments in the form of gi,j . For each i, the simulator checks which of the elements
gi,j , j ∈ {0, 1}, matches with the decrypted element (obtained from sender in
the last step of the protocol). Whenever a match is seen, c is set to i. The sim-
ulator SDOT forwards the messages Mi, i ∈ {0, 1} and choice bit c to the ideal
functionality.

The adversary can not distinguish between a real world view and simulated
view owing to the following facts: the simulator SOT is UC-Secure [17] and
reports it to be secure against static corruption under Gap-DH assumption);
ElGamal encryption offers semantic security when DDH is hard; the real world
honest receiver’s output will be different only if the simulator decrypts the en-
cryptions received to a different value apart from the ones used by the sender,
but this happens with a negligible probability owing to the robustness of the
encryption scheme.

Corrupted Receiver. The simulator initially generates two strings C1 ←
A1(1λ) and C2 ← A1(1λ) and forwards to the receiver. It then samples four
group elements gi,j for i, j ∈ {0, 1} and encrypts them using ElGamal encryption
Epk(.) to obtain ui,j . It performs two instances of OT 2

1 and uses ui,j as inputs
for instance i of OT 2

1 . The receiver inputs si to the OT 2
1 instance i. For the

OT 2
1 protocol, the simulator invokes the simulator of Verified Simplest Oblivious

Transfer by Doerner et al. [17] for the corrupted receiver case (call it SOT ). At a
later point of time, it obtains an re-randomized elements vi,si , decrypts its layer
of encryption using DskS () to obtain xi,si and forwards xc,sc for a randomly
chosen bit c. It then answers all oracle queries randomly except at the points
gi,j . When queried on any of the points gi,j , the simulator sends the bits j, j to
the functionality and obtains a message m′. It then replies to the query with a
key k ← A2(Cp,m) where p is uniformly picked from {1, 2} for every instance of
the simulation.

The receiver can not distinguish the real and simulated view. This is be-
cause: ElGamal encryption offers semantic security when DDH is hard, OT 2

1

used is UC-secure [17] and the fact that when the simulator does not abort,
the indistinguishability holds from non-committing property of the encryption
scheme.

Proof of CROT. The security of the protocol directly follows from the fact that
the OT 2

1 protocol [17] is UC-secure under Gap-DH and ZK proof of knowledge
of exponent forwarded by the receiver does not leak any information regarding
si to the sender. Hence CROT is UC-secure. Let the simulator which simulates
the indistinguishable view for adversary in the real world - ideal world paradigm
for CROT be SCROT.

Proof of APDB. The simulator SAPDB would simply invoke the simulator
SDOT while interacting with corrupt sender and receiver. The protocol is secure
as the simulator SDOT which internally invokes SCROT (instead of SOT ), pro-
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duces an indistinguishable view for the adversary in the real world-ideal world
paradigm.

6.1 Illustration

We illustrate the utility of APDB with DOT using CROT with an example.
The sender can break the document down into more than κ blocks, say 2κ, to
perform CROT twice, there by embedding the receiver’s key two times. The finer
he breaks the document, the more number of times he will be able to embed the
receiver’s key and so can extract more number of bits upon partial disclosure.
For a receiver with 256 bit key, the sender for embedding the key twice divides
the document into 512 blocks and creates two watermarked versions for each of
the 512 blocks and wishes to transfer 512 messages.

The receiver wishes to selectively reveal parts of the document to the public
while not revealing too much of her key bits to the sender. It is understood
that the receiver reveals at least enough number of blocks (not too few) to carry
useful/sufficient information. Let us assume she wishes to reveal 100 document
blocks. We wish to compare how many bits she will actually reveal to the sender
when she reveals 100 document blocks when APDB with DOT is used, to a
scenario where just OT 2

1 is used to transfer the messages instead of DOT .
If the sender uses just OT 2

1 for the message transfer, he inputs one pair of
messages for each OT 2

1 and performs 512 such OT 2
1 instances to transfer the

512 messages. In this case, the receiver knows which document block has been
obtained using a particular key bit and so knows which two blocks have a certain
key bit embedded in them. As she knows which two blocks have the same bit
embedded in them, she will reveal 50 such pairs (with the same key bit) to the
public so that the sender can learn only 50 of her signing key bits .

However, if the sender uses DOT with CROT to transfer the document
and the receiver decides to reveal 100 document blocks, as she does not know
which key bit is embedded in a certain document block, she randomly picks
100 document blocks and reveals to the public. The expected number of key bits
revealed to the sender in such a scenario would be 90.3 for 100 blocks as opposed
to 50 bits with just OT 2

1 . Following [23,24], the expected number of bits revealed
to the sender when m blocks of the document are released with κ -bit key being

watermarked over ` times in the document is κ

[
1−

[(
(κ−1)∗`

m

)
/
(
κ∗`
m

)]]
.

Figure 8 indicates the number of bits revealed to the sender against the
percentage of blocks revealed to the public when the signing-key is watermarked
` times with ` ∈ {2, 4, 8, 16}. When the key is embedded 8 times, a leakage
of 20% of the document/file can leak up to 211 bits of the key whereas, when
it is embedded 16 times, even a 15% leak reveals as many as 235 bits. This
scenario is particularly useful with larger files like video files, where the key can
be embedded many number of times such that even a minor clip of the video can
reveal close to the whole of the signing key. The plot in the Figure 8 compares the
number of signing-key bits revealed to the sender when APDB uses DOT and
OT. It clearly indicates that higher the number of times the key is embedded,
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higher are the number of bits revealed to the sender upon leakage. However,
one has to note that the maximum number of times a key can be embedded by
dividing the document depends on the document and its entropy.

Computation and Communication Overhead. For the transfer protocol,
the number of exponentiations at the sender and receiver is linear in `. When
DOT uses CROT, the number of exponentiations performed by the sender would
be 11`κ+ ` and by the receiver would be 7`κ. The communication in the DOT
protocol involves forwarding two versions of AES encrypted blocks, messages of
CROT and forwarding of κ ElGamal encrypted points by the receiver and the
sender. In CROT, the sender forwards 2κ ElGamal encrypted elements while the
receiver forwards 3κ elements including the proof of knowledge messages.

Watermarking Full protocol

` = 1 0.357 ± 0.009 1.737 ± 0.226

` = 4 1.346 ± 0.213 16.067 ± 0.638

` = 16 1.643 ± 0.283 83.101 ± 1.623

Table 1: Time (mean ± standard devia-
tion) taken (in seconds) for steps of the
protocol when signing key is embedded
for ` = 1, 4 and 16
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7 Implementation and Analysis

We have implemented the APDB protocol as a single-threaded program and
analyzed its performance on a MacOS machine with 3.1 GHz Intel Core i7 and
16 GB RAM. Our implementation involves the DOT protocol with robust wa-
termarked images and a claim-or-refund contract as a Bitcoin script and as a
Hyperledger chain-code. An execution run involves the transfer of an image to
the receiver, and we examine the execution times for the different involved mod-
ules. The receiver’s key is 256-bit long and the sender breaks the document into
blocks before proceeding with the protocol.

Watermarking. The sender, after creating the document blocks, watermarks
each block with 0 and 1 to generate two versions. We employ the watermarking
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system by Meerwald [25] which implements the Cox algorithm [26] of robust wa-
termarking for the image blocks. The Cox algorithm is well-studied and bench-
marked against several attacks [27]. In our scheme, we watermark the image
document by embedding the key multiple times, Table 1 indicates the water-
marking time taken where the 256-bit is embedded for ` = 1, 4 and 16 indicating
embedding once, 4 and 16 times. For ` = 1, 4 the document in divided into 256
and 1024 blocks respectively which are transferred using the DOT protocol to the
receiver who reconstructs the image from the received blocks. For demonstrative
purposes, the original image before watermarking and the image reconstructed
at the receiver for ` = 1 are available in Figure 11 in Appendix. While we use the
Cox algorithm, we reiterate that depending on the data type and application,
any robust watermarking scheme can be used in our protocol for that specific
application. Works such as [28], [29], [30] present different audio watermarking
schemes while works like [31], [32] deal with robust video watermarking. For
software watermarking, schemes suggested in [33], [34] can be considered.

Cryptographic Module - DOT . For the cryptographic part, we used the
RELIC library [35]. The receiver’s key is 256-bit long. The sender breaks the
document into blocks, encrypts each of the watermarked document and forwards
the blocks to the receiver in the first step of DOT protocol. The encryption
used to for this step is AES in the counter mode. The sender generates group
elements while participating in the DOT protocol to transfer the blocks which are
ElGamal encrypted, which are later re-randomized by the receiver. The receiver
decrypts the AES encrypted document blocks with the keys obtained through
the ElGamal encryption and oblivious transfer.

Table 1 provides the computation timing details for the complete protocol
i.e., the time including breaking the document into blocks to the point where
the receiver reconstructs the document from received watermarked blocks. It
presents the statistics of execution times taken over 100 runs of the experiment.
Notice that the timing values reported are when the process is running in a
single-thread. With multi-threading and pre-processing ElGamal encryption ex-
ponentiation, we expect significant improvement in performance and reduction
in timing. To simulate the dishonest breach and eventual procurement of the
leaked document by the receiver, the reconstructed image is sent to the sender
of the document. The sender runs the key-extraction algorithm on the obtained
image and extracts the receiver’s key to perform the penalization.

8 Related work and Discussion

We are unaware of any academic research into cryptographically-enforceable
automated penalization of data breach. A closely related subject, one that is
well-studied, is traitor tracing [36,37]. In a traitor tracing scheme, decryption
boxes with unique private keys (for a common public key) are distributed to a
number of subscribers. If a device is reverse engineered and the key is leaked,
the device it came from can be determined by the service provider. A recent
proposal by Kiayias and Tang [38] adds a Bitcoin smart contract to hold a bond
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that is recoverable. This body of work has limited applicability to our APDB
problem for three main reasons: (1) we want to detect leaked documents that
have been meaningfully written, not keys which are arbitrary, random values;
(2) we want the entity distributing the values to not learn the value until it is
leaked; and (3) unlike in the smart contract variant [38], we cannot have the
provider provision the signing key for use by both parties. For these reasons, we
do not build our solution from traitor tracing schemes.

Using bitcoin contracts for collatorizing the fair and correct execution of
cryptographic protocols has been explored earlier [10,11,39]. Our bitcoin con-
tract is a standard claim-or-refund transaction common in this literature. The
main difference is that one party must prove that the singing key used in this
transaction is consistent with the one taken as input to a private computation.

8.1 Discussion

Multiple Receivers. In a scenario involving multiple receivers of the same
document, the sender can embed the signing key of a each receiver multiple
times into each receiver’s version of the document. He can do so by dividing the
document into higher number of parts compared to the receiver’s key length. This
ensures that, in case of collusion and each receiver contributing a small portion of
his document while colluding, the sender can still extract considerable amounts
of signing keys from the revealed document.

Contracts. In Section B, we developed a penalization smart contract for the
Bitcoin scripting system, which intentionally has a limited set of instructions.
Systems like Ethereum [15] expand this set of instructions into a fully-featured
programming language allowing it to perform much elaborate tasks where it is
easily possible to write our claim-or-refund contract. However, despite the much
better expressivity, it does not seem to be possible to create an elaborate contact
that can efficiently substitute the required DOT protocol and robust watermark-
ing scheme.We implemented the penalizing claim-or-refund smart contract as a
Bitcoin smart contract as well as a Hyperledger chaincode, as they allow the
systems to be executed in a permissionless as well as permissioned blockchain
setting. In the future, it would be interesting to create similar solutions using So-
lidity over the Ethereum network that can at least partially reduce the required
cryptographic tools.

Fairness. The receiver deposits the bitcoins before the commencement of the
protocol and so, if the document transfer does not go through, his funds will be
locked till the end of the deposit time period. This is not ‘fair’ for the receiver.
However, in a more realistic setting, in such a scenario the parties would just
re-run the protocol and transfer the document.

Miner. The receiver can indeed be a miner in a Bitcoin system. He can try to
pre-mine transactions to escape penalty incase of disclosure. This scenario can
be prevented by the approach taken in [12, Sec. 6]. In case the sender has the
knowledge only of the breach without having access to the revealed document,
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he can choose to make the watermarking algorithm’s private-key public to make
the receiver lose her deposit.

9 Conclusion

In this work, we have devised and implemented a crypto-augmented smart con-
tract that disincentives intentional or unintentional data breach by automated
penalization. Our aim here is to raise the bar for the data receivers/custodi-
ans by introducing a complementary security mechanism that is inexpensive,
automated, and is not restricted by the geo-political boundaries.

To realize our protocol, we have employed robust watermarking and a claim-
of-refund smart contract, and proposed a new primitive called Doubly Obliv-
ious Transfer (DOT ). DOT along with committed receiver oblivious transfer
(CROT ) not only ensures that the signing key used by the receiver for the
deposit is same as the one used to obtain the document, but also provides no in-
formation to the receiver about which of her signing key bits has been embedded
in a certain document part. We have implemented the complete smart-contract
protocol, and observed it to be practical and easy to deploy.
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A 1-out-of-2 Verified Simplest Oblivious Transfer:

Sender Receiver

Messages M0,M1 choice bit b

a←R Zq
h=ga−−−→ r ←R Zq
c=grhb

←−−−−−
k0 = H(ca)
k1 = H((c/h)a)

p = H(H(k0))⊕H(H(k1)
p−→ kb = H(hr)

Verify p′ = H(H(k0))
p′←− p′ = H(kb)⊕ pb

C0 = Ek0(M0)

C1 = Ek1(M1)
C0,C1−−−−→

Decrypt Cb

Fig. 9: 1-out-of-2 Oblivious Transfer [17]

In this protocol, by Doerner et.al. [17] (which is an augmented version of Simplest
Oblivious Transfer by Chou et al. [18]), given a multiplicative group G and its
generator g, the sender initially chooses a random value a←R Zq and the receiver
chooses a random value r ←R Zq. The sender transmits h = ga to the receiver
who computes c = gab+r and transmits to the sender. The sender then computes
two keys k0 and k1 as k0 = H(ca) and k1 = H(ch−1)a and computes a challenge
p = H(H(k0))⊕H(H(k1) and forwards it to the receiver. The receiver computes
the key kb = H(hr) and returns p′ = H(kb)⊕pb. After verifying if p′ = H(H(k)),
the sender encrypts M0 and M1 using these two keys generating C0 and C1 which
are then forwarded to the receiver. The receiver decrypts the message Mb using
the key kc = hr. Depending on b, only one of k0 and k1 would be equal to
gar computed by the receiver. The other key gar−r

2

can not be computed by
the receiver and hence learns no information about Mb−1. As the sender just
encrypts and forwards the two messages, learns no information about the bit
b. Figure 9 provides the depiction of the protocol. The advantage of adding
the verification step is that it forces the receiver to compute the keys before
receiving the encryptions and makes the protocol (UC)secure in the real-world
ideal paradigm.
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B Bitcoin Claim-or-Refund Contract

Bitcoin [40] is a peer-to-peer decentralized network where participants are rep-
resented by a public and private key pair. The hash of the public key serves as
the user’s address and the private key is used to sign and authorize transactions.
Script in Bitcoin is a stack-based language simulating a Push Down Automata
and is used to write a smart contract. Spending funds typically involves exe-
cuting/running two scripts on the spender’s machine. The first is scriptPubKey
which is embedded in the input transaction under the script field. It entails the
conditions that must be met to spend the unspent transaction outputs (UTXO).
The second one is scriptSig which is an unlocking script provided by the user
who wants to spend the UTXO. When scriptSig and scriptPubKey are executed
in sequence, the user gets to know if the transaction is valid. Bitcoin offers both
sender and receiver of the funds an aspect of privacy until the funds in the de-
posit are directed to a recipient i.e., in our case, after the documents become
public and the key gets revealed to the sender. Such privacy is not observable in
any other non-blockchain financial system.

Time-Locked Compensation Deposits. We construct scriptPubKey with
two prominent Bitcoin scripting language operators:
OP CHECKLOCKTIMEVERIFY and OP CHECKMULTISIGVERIFY.

OP CHECKLOCKTIMEVERIFY allows users to create transactions whose
outputs can only be spent in the future. OP MULTISIGVERIFY allows the
creation of transactions which need multiple signatures. In our case, the receiver
creates a deposit which is locked till a future time t. The funds of the deposit can
be transferred only if both the signatures of sender and the receiver are submitted
before the time t. After time t, the unspent funds are transferred back to the
receiver. Embedding such instructions into the funds is commonly referred to as a
smart contract. Our smart contract automates the claim-or-refund functionality.
The funds are transferred either when the time of the agreement expires or when
the signatures of both sender and receiver are available. The scriptPubKey that
receiver uses in the contract is

IF
OP CHECKLOCKTIMEVERIFY OP DROP
pkR OP CHECKSIGVERIFY
ELSE
OP 2 pkR pkS OP 2 OP CHECKMULTISIGVERIFY
ENDIF

Utilizing Bitcoin. Before the protocol begins, after the two parties agree on
the APDB process, the sender shares his/her public key pkS with the receiver
to create a deposit. The sender will assert that the receiver creates a transaction
TX that is valid for a mutually agreed upon time t, and can be redeemed by the
sender instantly with the signing keys of the sender (skS) and the receiver(skR).
Here, the deposit should hold the funds equal to an agreed upon value V alue.
VerifyDeposit(TX) at the sender verifies the above mentioned criterion. This
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algorithm receives the hash of the transaction as an input and verifies that the
transaction meets the above mentioned criteria, i.e. it is a valid deposit that
directs V alue to the sender if the sender has both the signing/private keys.
Earlier versions of Bitcoin allowed senders to broadcast time locked transactions
and these transactions would be in the unverified transactions pool until the
time lock expired or an unlocking scriptSig was provided by the spender of TX.
However, current (as of April 2018) Bitcoin transaction does not permit nodes
to propagate transactions that have an active time lock. Therefore, the receiver
sends TX over any secure communication channel so that the sender can verify
and sign the transaction. Once the document becomes public, we are assured
from the watermarking scheme that the leaked copy of the document will have
the receiver’s signing key. Using the extraction algorithm Extract(M , Msk) the
sender can reconstruct the signing key sk. Once the sender has sk, he can sign
the transaction TX with the Sign(TX, sk) and broadcast the signed transaction
directing the funds in TX to his Bitcoin address.

Sender Receiver
Setup

Multiplicative (Public Group) G, Generator g
(pkS , skS) (pkR, skR)

pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ κ− 1, j ∈ {0, 1} execute the following steps

Message blocks: Mi,j Bits: sk for 0 ≤ k ≤ κ− 1
gi,j ←R G
Enci,j = EH(gi,j)(Mi,j)

Ênci,j = π1(Enci,j)
Ênci,j−−−−→

for permutation π1

El-Gamal encryption of group elements
For each j, ĝi,j = π(gi,j) for Permutation π
ui,j = Epk(ĝi,j)

Oblivious Transfer[17]
(Run OT 2

1 once for each i)
Input ui,j Input si

Output ui,si
Re-randomization, Forwarding and Decryption

vi,si←−−− vi,si = Rpk(ui,si)
xi,si = DskS (vi,si)

wi,si = π−1(xi,si)
wi,si−−−→ ĝi,si = DskR(wi,si)

Decrypt Ênci,si using H(ĝi,si) appropriately

Fig. 10: Doubly Oblivious Transfer Protocol (General Case)
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C Generalization of DOT protocol

The DOT protocol can be easily extended to work with multiple messages at the
sender and κ-bit signing key of the receiver as shown in Figure 10. In the general
case, the sender has a total of 2κ messages Mi,j , for 0 ≤ i ≤ κ − 1, j ∈ {0, 1}
and the receiver has bits sn, 0 ≤ n ≤ κ− 1. After participating in the protocol,
the receiver receives Mi,l, l = sπ(i) for a permutation π of set of indices i chosen
at the sender. The permutation of indices is the general case equivalent of the
choice bit c of the two bit case.

Forwarding a random permuted order of encrypted messages remains similar
for the general case. When the elements are sampled in the general case, sampling
extra elements is not necessary. The sender performs a permutation π on the
rows i of the elements gi,j to obtain ĝi,j which are encrypted using Epk(.) as
before. Now, ĝi,j are input to i instances of OT 2

1 to which the receiver inputs si
as the choice bits for each instance i. The receiver obtains ui,si , re-randomizes
the encryption using Rpk(.) and sends back vi,si . After receiving vi,si , the sender
reverses the permutation order to obtain wi,si = π−1(vi,si). He then decrypts his
layer of encryption using DskS (.) and forwards xi,si to the receiver who decrypts
her layer of decryption to obtain ĝi,si . These ĝi,si are hashed to obtain the final

keys which are then used to decrypt the Ênci received in the first step. Note that
if the number of messages is not a multiple of 2κ, the sender can sample extra
elements and encrypt them to input them in OT 2

1 . After receiving the encrypted
elements from the receiver, he can discard the elements at the indices where the
extra elements have been placed in the OT 2

1 step. Also, if the receiver tries to
attack the protocol by manipulating the cipher texts after the re-randomization
step, she will not be able to receive meaningful keys for the correct decryption,
she can gain no information regarding the sender’s messages or permutation
applied on encrypted messages.
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(a) Original image before watermark-
ing at the sender

(b) Watermarked image reconstructed
by the receiver

Fig. 11: Original and reconstructed images
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