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Abstract—We present a formal model of synchronous processes
without distinct identifiers (i.e., anonymous processes) that com-
municate using one-way public broadcasts. Our main contribu-
tion is a proof that the Bitcoin protocol achieves consensus in this
model, except for a negligible probability, when Byzantine faults
make up less than half the network. The protocol is scalable, since
the running time and message complexity are all independent of
the size of the network, instead depending only on the relative
computing power of the faulty processes. We also introduce a
requirement that the protocol must tolerate an arbitrary number
of passive clients that receive broadcasts but can not send. This
leads to a tight 2f + 1 resilience bound.

I. INTRODUCTION

We consider the Byzantine consensus problem in a large
public peer-to-peer network: all processes in the network
must come to unanimous agreement about some value, in
spite of a minority of faulty processes that deviate arbitrarily
from the protocol. Consensus is a powerful tool, enabling
distributed applications such as dynamic name resolution [1],
certificate revocation [2], mutable file systems [3], and dig-
ital currency [4]. Unfortunately, networks without admission
controls are inherently vulnerable to the Sybil attack [5], in
which selfish or malicious processes claim multiple fraudulent
identities. This is detrimental to consensus protocols, which
typically involve collecting a majority of votes. What stops an
attacker from voting several times?

In 2009, Satoshi Nakamoto presented Bitcoin [4], a digital
currency implemented as a public peer-to-peer network. At
its core, Bitcoin is based on a novel Byzantine consensus
protocol, in which cryptographic puzzles keep a computa-
tionally bounded adversary from gaining too much influence.
We provide the first formal presentation of this protocol. Our
model assumes synchronous processors and communications,
as well as the existence of a random oracle [6] (i.e., an ideal
hash function). We state the requirements for consensus using
Monte Carlo rules: disagreement is permitted with positive but
negligible probability and running time must be bounded. Our
main result is a proof that Bitcoin achieves consensus when the
adversary controls less than half the overall computing power
(i.e., 2f + 1 resilience). The protocol is scalable, in that the
running time and total message bits are all independent of the
size of the network, instead depending only on the ratio of
faulty processes.

To make the problem more realistic, we introduce an
additional requirement that even passive clients of the network
must also decide on the same value. This requirement leads to

a simple impossibility proof, since the clients must distinguish
between the actual network and an impostor. Specifically, we
provide a matching lower bound that shows Bitcoin achieves
optimal resilience.

II. RELATED WORK

A. Monte Carlo Consensus

Many consensus protocols use randomization, especially
in order to circumvent the well-known FLP impossibility
result [7] for deterministic asynchronous networks. The non-
deterministic restatement of the consensus problem typically
involves Las Vegas rules: the network must eventually reach
consensus (with probability 1), although the amount of time
taken may be unbounded [8]–[10]. King and Saia [11] sug-
gested this requirement is too strict for large scale networks.
Since deterministic consensus requires at least O(n2) message
bits [12], any randomized protocol using fewer than quadratic
messages must be a Monte Carlo protocol that fails with
nonzero probability [13], [14].

We therefore introduce a global security parameter, k, and
require only that a consensus protocol succeeds except for
negligible probability, meaning a probability that approaches
zero faster than the inverse of any polynomial function of k.
This requirement is standard in modern cryptography [6], [15].
In particular, any instantiation of authenticated communica-
tions channels (as in [12]), even using idealized cryptographic
primitives, will introduce an equivalent parameter.

The Bitcoin protocol meets these requirements, using a
number of messages independent of the overall size of the
network. If there are no faults, then the expected number of
distinct messages is simply O(k). In the worst case, when
the number of Byzantine faults is f = bn−1

2 c, the expected
message complexity is O(kn2).

B. Anonymous Networks

Traditionally, the Byzantine agreement problem allows pro-
cesses to be configured with distinct initial states - in particu-
lar, the mapping from unique names to processes is a known
parameter, and each process knows its own name. For a large
scale public network, this assumption is too strong.

Angluin [16] showed that anonymous message passing
networks are strictly weaker than traditional eponymous net-
works. Other work has focused on anonymous shared-memory
systems [17]–[19]. Crash-fault tolerant Consensus can be
achieved in anonymous networks of unknown size [20]. Okun



and Barak [21], [22] provided Byzantine agreement protocols
for a stronger message-passing model that assumes authenti-
cated channels between each pair of processes have initially
been established. Delporte-Gallet et al [23] made a unifying
effort in considering homonymous (partially anonymous) net-
works with a limited number of authentic identities. Inter-
estingly, they found that deterministic Byzantine agreement
depends only on the number of authentic identities, rather than
the total number of processes. This builds the argument that
anonymous (or homonymous) models are important for large
networks.

C. Moderately Hard Puzzles

Aspnes suggested using moderately-hard puzzles to assign
identities in an initially anonymous network [24]. The diffi-
culty of the puzzles prevents a computationally bounded ad-
versary from claiming too many identities. This is essentially
the same approach taken by Bitcoin [4].

A moderately-hard computational puzzle can be solved, but
only with considerable effort, time, and/or cost, as controlled
by an adjustable difficulty parameter. Puzzles were first used
by Merkle [25] in the development of public-key cryptography.
Later, Dwork and Naor [26], [27] proposed using puzzles to
slow down email spammers. Subsequently, puzzles have been
used thwart Sybil attacks in a variety of settings [28]–[31].
Other uses have included timed-release encryption [32] and
amortized micropayments [33].

Computational puzzles are typically constructed using a
random oracle (i.e., an ideal hash function) that maps inputs
to random outputs. The random oracle is a one-way function
and can not be inverted. The puzzles are designed so that the
most efficient way to find a solution is a brute force guess-
and-check approach. Thus, the rate at which an adversary can
solve puzzles is limited by the rate at which hashes can be
computed.

The protocol Aspnes described [24] relies on pairwise
authenticated communication channels between processes. The
Bitcoin protocol eliminates this requirement by using non-
interactive publicly-verifiable puzzles. The processes commu-
nicate using only unauthenticated broadcast messages.

III. COMPUTING MODEL

A. Message Passing Processes

We consider a network to be a set of n identically configured
processes, {p1, p2, ..., pn}. An execution is a sequence of
alternating states and transitions, π0, s0, π1, s1, ..., πi, si, ...,
where a mapping from states to sets of available transitions
specifies the admissible executions. This mapping is described
by the following rules:
• (Synchronous Processors) Each transition is associated

with a monotonic timestamp, ri ≤ ri+1, each of which
is an integer multiple of a real-valued time increment dr.
The distinct timestamps are called rounds. Each process
executes its compute procedure exactly once per round,
and each must take its turn before any process moves on
to the next round. We assume the processes have identical

computing power with respect to a random oracle: each
process may query the oracle (i.e., call the oracle pro-
cedure) at most once per round. We additionally assume
that a common random string, CRS, is announced at the
beginning of the protocol (as in [34]). This assumption
precludes an adversary that takes a head start. We will
consider the continuous limit of this model as dr → 0.

• (Synchronous Communications) The anonymous pro-
cesses communicate using a broadcast(m) instruction,
which places message m into mailboxes (unordered sets)
associated with each process. When a message is re-
ceived, the receiving process has no way of knowing
where the message came from. Messages in a mailbox
may be delivered in any order, and at any time, except
there is a maximum delay of ∆. If m is broadcast at time
r, then every process executes receive(m) at or before
r + ∆. We do not count the receive procedure against
the total number of oracle queries.

• (Nondeterminism) The particular execution order is deter-
mined by an explicit adversary, a mapping from partial
executions to available transitions. Processes may access
a coinflip instruction that produces random elements in
[0, 1) ⊂ R. We also assume that H : [0, 1) → [0, 1)
is a random oracle function that maps inputs to outputs
uniformly selected in the range. The adversary has full
information and may depend on the entire execution
history including the internal state of each process (our
processes have no secrets), although it may not depend
on the outcomes of future random events. An adversary
thus defines a probability distribution over the admissible
executions.

• (Byzantine faults) The adversary is given control over
f of the processes, which are called faulty processes or
pawns. The adversary is non-adaptive and must designate
its pawns at the outset. The adversary is computationally
bounded relative to the random oracle; it may only query
the oracle via its pawns, once per round per faulty
process.

• (Passive clients) In addition to the n processes, we model
an arbitrary set of passive clients that represents users of
the network. They are identical to processes except they
cannot send any messages (their broadcast instruction
is replaced with a no-op). Clients means the union
of passive clients and correct processes (but excluding
faulty processes). Clients use an irrevocable, one-time-
use instruction, decide(v), that outputs v as a final value.

B. Problem Statement

Each correct process pi is initially provided with an input
value, vi ∈ {0, 1}. A Monte Carlo consensus protocol must
satisfy the following three requirements:
• (Termination): All clients must decide in bounded time.
• (Agreement): Clients must decide on the same value

(except with negligible probability).
• (Unanimity): The decided value must be one of the inputs

(with non-negligible probability).



Our version of the unanimity requirement prevents the ad-
versary from influencing the network too much. In particular, if
the protocol is repeated, as in a transaction processing system,
then the input of a process will be chosen after an expected
polynomial number of updates. Unanimity also rules out the
trivial protocol that has every process decide on a fixed value.

IV. BITCOIN CONSENSUS PROTOCOL (2f + 1 RESILIENCE)

The Bitcoin network [4] provides an implementation of
digital money, modeled as a conserved quantity of arbitrary
units. Like the stone money of Yap [35], it is unimportant if
the currency itself is entirely abstract (or submerged under the
sea). What really matters is that ownership of the currency is
undisputable - everyone can agree on who owns what. Owner-
ship in Bitcoin is determined using public key cryptography:
the network unanimously agrees on an association between
public keys and portions of the money supply. Money can
be transferred from one public key to another using digitally
signed messages. Bitcoin is therefore best understood as a
distributed state machine, where the state at any given time
corresponds to a ledger of account balances. We focus our
attention the mechanism by which the network establishes
consensus about the state for a single time instant.

In the Bitcoin consensus protocol (Algorithm 1), processes
vote for their preferred values by attempting to solve a moder-
ately hard puzzle through brute force effort (i.e., by mining).
The particular puzzle (Algorithm 6) is based on partial hash
collision, similar to HashCash [30]. When a correct process
finds a puzzle solution, it broadcasts it to the rest of the
network. Each puzzle solution is counted as a vote for a single
value, and each process prefers (i.e., mines on), the value that
appears to have the most votes.

Since no strategy for solving the puzzle does better than
random guessing, the adversary is forced to compete in a
race that it cannot win (similar to the consensus protocols
of Chor-Israeli-Li [36] and Bracha-Rachman [37]). Our cor-
rectness proof extends and formalizes the approach suggested
by Nakamoto [4], based on an analysis of Poisson processes.

Assume without loss of generality that we measure time
in units equal to the message delay bound, so ∆ = 1. Since
no strategy for finding puzzle solution outperforms querying
the oracle with random inputs, we restrict our attention to
a worst-case adversary that does precisely this. Therefore,
each of the n processes performs an i.i.d. Bernoulli trial with
success probability p = dr

nµ . As dr approaches zero, the overall
network produces puzzle solutions according to a Poisson
arrival process where the interarrival time between each pair
of successive solutions is an i.i.d. exponential variable with
scale parameter µ. Let Ax indicate the time at which the xth

puzzle solution is found.
Let the random variable Mr,i be the number of votes that

process pi associates with its preferred value at time r, (i.e.,
|Votes|). Let Mr be the minimum of these variables among
the correct processes. If Mr̂ < x, then Line 13 of Algorithm 1
implies all clients decide on a value associated with x or more
votes. If additionally A2x > r̂, then fewer than 2x votes have

Algorithm 1: Bitcoin Consensus Protocol (for process pi)

1 initially do
2 Votes ← ∅
3 Prefer ← proposedi

4 on receive (Votes′,Prefer′) do
5 if verify (v,Prefer′) for all v ∈ Votes′ and

|Votes′| > |Votes| then
6 Votes ← Votes′

7 Prefer ← Prefer′

8 on compute (r) do
9 nonce ← coinflip // nonce ∈ [0, 1) ⊂ R

10 if verify (nonce,Prefer) then
11 broadcast (Votes∪{nonce}, Prefer)

1313 if r ≥ r̂ then decide Prefer

Algorithm 2: Bitcoin’s Moderately-Hard Puzzle

1 Assume parameters µ, n, and dr are given. Let p := dr
nµ .

Also assume CRS is a Common Random String
announced at the outset of the protocol. Finally, assume
H : [0, 1)− > [0, 1) is a random oracle function with
uniformly distributed random outputs.

2 procedure oracle (x)
3 return H(x)

4 procedure verify (Vote, Prefer)
5 hash ← oracle (CRS‖Prefer‖Vote)
6 if hash

{0,1}k′ ≤ p then return True

been cast in total, and hence all clients must have decided on
a single unique value.

It is difficult to describe Mr directly since it depends on
the particular adversary. Instead, we proceed with an argument
by coupling; we construct a random process B related to M
such that we can describe B precisely. Let B be a subset
of n − f correct processes. Poisson processes are infinitely
divisible, so the subset B finds puzzle solutions according
to a Poisson arrival process with expected interarrival time
µB = δ

2µ, where δ = 2(n−f)
n > 1 (in particular, faster than

half the overall rate). We define B as a sequence of alternating
phases: (1) mining and (2) delay. In the mining phase, we
wait for a process in B to find a puzzle solution. When a
solution is found, we switch to the delay phase and wait for
a constant time ∆ = 1. Puzzle solutions found during a delay
phase are disregarded. Let Bx denote the time at which B
has completed x cycles through each phase. 1 We now have a
useful relationship between B and M:

1A could also be described as an Erlang process, Ax ∼ Erlang(x, µ).
Process B is equivalent to an M/D/1/1 queue (in Kendall notation), where
Bx is the time after which x clients have been served (see Chapter 9 of [38]).



Lemma IV.1. Let Bx and Mr be defined as above. Then for
any r ≥ 0 and x ≥ 0, Bx = r implies Mr ≥ x.

Proof: Assume that the protocol begins at time r = 0, so
B0 = 0 and M0 = 0. Suppose (for induction) that Bx = r and
Mr ≥ x. Now, suppose r′ ≥ r is the time at which the next
puzzle solution is found by a correct process, and therefore
Bx+1 = r′ + ∆. Since ∆ is a maximum message delay, then
from Lines 10-11 and 5-7 of Algorithm 1, we know that every
correct process associates some value with at least x+1 votes
by time r′ + ∆. Thus, Mr′+∆ ≥ Mr′ + 1 ≥ x + 1, and by
induction the lemma holds for all r and x.

We now construct values for the parameters µ, p, x, and
r̂, that give us A2x > r > Bx with high probability. The
correct processes have a δ-advantage over half the network. We
divvy up this advantage by thirds: one third each for deviation
bounds on A2x and Bx respectively, and one third to account
for the delay phases endured by B. Our goal is to make the
puzzle difficult enough that on average, the correct processes
find and propagate a solution before two solutions are found
overall.

First, we define x in terms of δ and security parameter k,

x := k/DKL(δ( 1
3 )‖1), (1)

where DKL(µP ‖µQ) is the Kullback-Leibler divergence (KL-
divergence) between exponential distributions P and Q with
scale parameters µP and µQ respectively. The KL-divergence
is related to the number of bits needed to distinguish between
two probability distributions [39]. We write out the formulas
for two instances we will need later:

DKL(δ( 1
3 )‖1) = δ( 1

3 ) − 1− log δ( 1
3 ) (2)

DKL(δ−( 1
3 )‖1) = δ−( 1

3 ) − 1− log δ−( 1
3 ). (3)

Next we solve for r̂ such that

(r̂−x)

xµB
=

2xµ

r̂
= δ( 1

3 ), (4)

resulting in a quadratic equation that simplifies to

r̂ :=
4x

4− δ( 5
3 )
. (5)

Next we state a lemma that these parameters are satisfactory.
The proof, based on Chernoff bounds, is in the appendix.

Lemma IV.2. Let k > 0 be a global security parameter, and
let parameters µ, r̂, and x be defined as in Equations 1, 4,
and 5. As described above, let A be a Poisson arrival process
with scale parameter µ; A2x is the time of the 2xth arrival.
Let B be a process with alternating phases of (1) Poisson
arrivals (scale parameter δ

2µ) followed by (2) constant time
delay ∆ = 1; Bx is the time at which B has completed x
cycles through both phases. Then A2x > r̂ > Bx except for
a negligible probability.

Proof: See Appendix.

Theorem IV.3. The Bitcoin protocol (Algorithm 1) achieves
consensus, except for negligible probability, in a model with
anonymous synchronous processes and a minority of Byzantine
faults.

Proof: Each of the three problem requirements are met:
• (Termination) All clients must decide in bounded time.

By Line 13 in Algorithm 1, clients decide at time r̂.
• (Agreement): Clients must decide on the same value (ex-

cept with negligible probability). It follows from Lemmas
(IV.1) and (IV.2), with probability at least 1− 2e−k, that
all clients decide on a value with x votes, yet the network
has produced fewer than 2x puzzle solutions in total.
Therefore the value with x votes is unique.

• (Unanimity): The decided value must be one of the inputs
(with non-negligible probability).
Suppose we initialize a counter to 0 at the beginning of
the protocol. If a correct process finds and propagates a
solution before two are found in total (i.e., B1 < A2),
then we increment the counter at time B1. Otherwise, we
decrement the counter at time A2. In either case, after
we modify the counter, we repeat the experiment, a total
of 2x+ 1 times. The value of the counter is a simple
random walk. It follows from (4) and the definitions of
A and B that

E[B1] = µB + 1 < 2µ = E[A2], (6)

and therefore the random walk is positive-biased. Since
an odd number of steps have been taken, the final value is
positive with probability better than 1/2. If the final value
is positive, then we know from the Ballot theorem [40]
that with probability 1

2x+1 the counter never returned to
zero. When this occurs, the correct processes converge to
one of their inputs in the first step and ultimately decide
on that value.

V. 2f + 1 RESILIENCE LOWER BOUND

The use of passive clients in our model leads to a simple
impossibility result based on indistinguishability. We show that
2f + 1 is the optimal resilience for protocols using random
oracles, regardless of the nature of the puzzle. If the adversary
controls half the network, then it can perfectly simulate the
correct processes, querying the oracle an equal number of
times. Passive clients must distinguish between the correct
processes and the impostors.

Theorem V.1. In an anonymous network with passive clients,
if Byzantine faulty processes make up half the network (i.e.,
n ≤ 2f ), then no protocol achieves consensus with high
probability.

Proof: Suppose to the contrary that a protocol exists.
Divide the processes in two groups, P and Q. Consider the
following two scenarios:
• (Scenario 1): The correct processes are in P , the pawns

are in Q, and all processes are given input 0.



• (Scenario 2): The correct processes are in Q, the pawns
are in P , and all processes are given input 1.

In either case, the pawns simulate the correct protocol as
though given the opposite input. No messages are delivered
between

By unanimity, the processes decide 0 with probability 1.
Divide the processes in two groups, P and Q. except for

the wrong input. No messages are delivered between P and Q,
but a passive client receives all broadcasts from both groups.
The Consider two scenarios:
• (Scenario 1): The correct processes are in P and the

pawns in Q. All processes receive input 0. The pawns
simulate the correct protocol but with input 1. By una-
nimity, the passive client decides on 0 with non-negligible
probability.

• (Scenario 2): The correct processes are in Q and the
pawns in P . All processes receive input 1. The pawns
simulate the correct protocol but with input 0. By una-
nimity, the correct processes agree on 0.

processes are given input 0 or the processes are given input
1; in either case, the pawns simulate the correct protocol as
though they were given the opposite input. However, since
the two scenarios are indistinguishable so the client can do
no better than to pick a bit at random and disagree with
probability 1

2 .

VI. RUNNING TIME AND MESSAGE COMPLEXITY

We analyze the asymptotic complexity of the Bitcoin pro-
tocol. It follows from Lemma IV.2 that the number of distinct
messages sent by correct processes is bounded by x, which is
defined in terms of the dimensionless ‘advantage’ parameter δ
(see Equation 1). Each message contains an entire set of votes,
but most are duplicated; we only count the distinct elements.
Interestingly, this bound is independent of both the total size
of the network, n, and the message delay bound ∆. Since
n is a number of discrete processes, and since we assume
that the adversary controls fewer than half the processes, the
worst tolerable parameter is f = bn−1

2 c. Since δ = n−f
n ,

we can calculate the limit as n → ∞ and observe that the
asymptotic number of messages is x = O(n2k). Similarly,
since the running time r̂ is measured in units of ∆, we find
that r̂ is asymptotically O(∆n2k).

In Section V we explained that our model requires pas-
sive clients to distinguish between the correct network and
a computationally-challenged impostor only by observing
broadcast messages. We can thus relate the Byzantine consen-
sus problem to a statistical test. At each instant, every process
prefers the value that is most likely, given the available infor-
mation, to be preferred by the largest number of processes.
For the particular puzzle we defined, the only discriminating
information is the number of distinct puzzle solutions found.
Consider the number of bits of certainty obtained per mes-
sage, (i.e., k

x ). From Equation 1, this is equal to the KL-
divergence between two exponential distributions, where δ is
the ratio between the respective scale parameters. Since the

KL-divergence is a measure of the amount of information
gained from a single sample from one of two distributions,
our consensus protocol is information-theoretically optimal,
at least for puzzles based on Bernoulli trials.

VII. DISCUSSION

The Bitcoin consensus protocol is scalable in that message
complexity and running time depend on the dimensionless
parameter δ, rather than on the overall scale of the network,
n. In this sense, it may be preferable to replace f with δ in
defining the resiliency of a consensus protocol. In fact, we
could state the problem more generally, using n to refer to
the total computational power of the network, rather than a
discrete number of processes; neither of our proofs would be
affected by this change.

We would like to be able to assess the overall cost-
effectiveness of Bitcoin. In a peer-to-peer network, the scale,
n, is not directly controlled but instead depends on the
perceived usefulness and security of the network. Instead of
bounding the adversary’s computational rate as a fraction of
the network size (expressed in oracle queries per second), we
may prefer to define an absolute bound A for the adversary’s
total work (expressed in oracle queries). Our proofs would
be unaffected if we allowed the pawns to perform A = f r̂

dr
total queries at any time, not necessarily in lockstep with the
correct processes. Thus, for fixed A, an inverse relationship
exists between the size of the network and the running time
r̂. To proceed further, we would also need to examine the
relationship between n and A: should a larger network tolerate
a proportionally stronger adversary?

It would be preferable if consensus could be achieved
without needing to expend so much effort solving otherwise-
useless puzzles. This apparent waste of resource may be
unavoidable. We mentioned earlier that anonymous public
networks are inherently vulnerable to the Sybil attack [5].
A closely related concept is the social cost of cheap
pseudonyms [41] incurred when strangers cooperate, e.g., in
internet commerce [42]. This cost must be paid, either through
explicit entry fees, or else through dues paying as newcomers
gradually build a trustworthy reputation. The Bitcoin protocol
does not spare the cost of cheap pseudonyms, but rather
provides a scalable and decentralized mechanism for paying
it using computational resources.

The protocol we have described relies on parameters set
according to correct presumptions about network character-
istics, in particular the size of the network and the overall
message propagation time. In an actual peer-to-peer network,
these quantities can expected to change over time. Thus,
without an internal mechanism to compensate, an instantiation
of this network must attain consensus about these quantities
through some external mechanism, begging the problem. We
would prefer a consensus protocol that did not require global
configuration of such parameters. We leave open the question
of whether Bitcoin could be extended to function when the
network size and communications delay are unknown (i.e., a
protocol for the model of partial synchrony [43]).



VIII. CONCLUSION AND FUTURE WORK

We presented the Bitcoin consensus protocol in a model
of anonymous peer-to-peer networks. Such a protocol could
enable a world wide transaction processor, a wide public
network for which any clients will receive consistent view,
regardless of their identity and their location in the network.
We showed that this protocol meets its objectives, at least when
knowledge of the network size and communications latency is
assumed, as well as that a majority of or processes execute the
protocol correctly. In future work we will attempt to improve
the viability of this approach and avoid these assumptions.
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APPENDIX

Recall from Section IV that we constructed two stochastic
processes, A and B: A represents the total number of puzzle
solutions found by the network, while B is a lower bound
for the minimum number of puzzle solutions that the clients
associate with their preferred values. Our goal is to provide
a high-probability bound that A2x > r̂ > Bx so all clients
decide on a unique value with x votes.

Lemma A.1. Let k > 0 be a global security parameter, and
let parameters µ, r̂, and x be defined as in Equations 1, 4,
and 5. As described above, let A be a Poisson arrival process
with scale parameter µ; A2x is the time of the 2xth arrival.
Let B be a process with alternating phases of (1) Poisson
arrivals (scale parameter δ

2µ) followed by (2) constant time
delay ∆ = 1; Bx is the time at which B has completed x
cycles through both phases. Then A2x > r̂ > Bx except for
a negligible probability.

Proof: We derive Chernoff bounds [38] that give us the
desired result. Since A is a Poisson arrival process with an
expected interarrival time µ,

Ax ∼
x∑
Exp(µ).

Since B is a process with alternating phases of a Poisson
arrivals and constant delay,

Bx ∼
x∑

(Exp(µB) + ∆) .

Consider A1, which is an exponential distribution with scale
parameter µ. The moment generating function of A1 is

E[etA1 ] = (1− tµ)−1. (7)

The moment generating function for a sum of independent
distributions is simply the product of the respective moment
generating functions. Thus, for any x,

E[etAx ] = (1− tµ)−x. (8)

Process B is also a sum of independent variables, where the
moment generating function for degenerate value ∆ = 1 is et.
So,

E[etBx ] = (1− tµB)−xetx. (9)

Let R be a non-negative random variable. By Markov’s
inequality, Pr[R ≥ r̂] ≤ E[R]/r̂. This inequality provides
a maximum probability of deviating from the expected value.
The Chernoff bound technique is to apply this inequality to
an exponential transformation on R. For any t > 0, we have

Pr[R ≥ r̂] = Pr[etR ≥ etr̂] ≤ E[etR]/etr̂. (10)

A similar inequality exists for R ≤ r̂. For any t < 0, we have

Pr[R ≤ r̂] = Pr[etR ≥ etr̂] ≤ E[etR]/etr̂. (11)

In order to obtain the tightest bounds, we solve for t to min-
imize the probability. Using this technique, and by assuming
E[A2x] > r̂ > E[Bx], we obtain the following bounds:

Pr[Bx ≥ r̂] ≤ exp

(
x− (r̂−x)/µB − x log

xµB
(r̂−x)

)
(12)

Pr[A2x ≤ r̂] ≤ exp

(
2x− r̂/µ− 2x log

2xµ

r̂

)
(13)

Beginning with (12) and applying (4) then (3), we have an
bound for B,

Pr[Bx ≥ r̂] ≤ exp

(
x− (r̂ − x)/µB + x log

(r̂ − x)

xµB

)
= exp

(
x

(
1− (r̂ − x)

xµB
+ log

(r̂ − x)

xµB

))
= exp

(
−x
(
δ( 1

3 ) − 1− log δ( 1
3 )
))

= exp
(
−xDKL(δ( 1

3 )‖1)
)

= e−k. (14)

Finally, since DKL(δ( 1
3 )‖1) ≥ DKL(δ−( 1

3 )‖1) for all δ, we
can easily provide a matching bound for A using (13), (4),
and (2),

Pr[A2x ≤ r̂] ≤ exp

(
2x− r̂/µ+ 2x log

r̂

2xµ

)
= exp

(
2x

(
1− r̂

2xµ
− log

r̂

2xµ

))
= exp

(
−2x

(
δ−( 1

3 ) − 1− log δ−( 1
3 )
))

= exp
(
−2xDKL(δ−( 1

3 )‖1)
)

≤ exp
(
−xDKL(δ( 1

3 )‖1)
)

= e−k. (15)

Thus, both bounds hold except for a negligible probability,

Pr[A2x > r̂ > Bx] ≥ 1− 2e−k. (16)
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