
Analysis of the Bitcoin UTXO set

Sergi Delgado-Segura, Cristina Pérez-Solà,
Guillermo Navarro-Arribas, Jordi Herrera-Joancomart́ı

Department of Information Engineering and Communications,
Universitat Autònoma de Barcelona

{sdelgado, cperez, gnavarro, jherrera}@deic.uab.cat

Abstract. Bitcoin relies on the Unspent Transaction Outputs (UTXO)
set to efficiently verify new generated transactions. Every unspent out-
put, no matter its type, age, value or length is stored in every full node.
In this paper we introduce a tool to study and analyze the UTXO set,
along with a detailed description of the set format and functionality. Our
analysis includes a general view of the set and quantifies the difference
between the two existing formats up to the date. We also provide an ac-
curate analysis of the volume of dust and unprofitable outputs included
in the set, the distribution of the block height in which the outputs where
included, and the use of non-standard outputs.

1 Introduction

Bitcoin makes use of the Unspent Transaction Output (UTXO) set in order to
keep track of output transactions that have not been yet spent and thus can be
used as inputs to new transactions. Bitcoin full nodes keep a copy of the UTXO
set in order to validate transactions and produce new ones without having to
check the whole blockchain. This allows, for instance, the use of so called pruned
nodes (introduced in Bitcoin Core v0.11 [1]), which can operate without having
to persistently store the full blockchain.

The UTXO set is thus a key component of Bitcoin. The format, content, and
operation of this set has an important impact on Bitcoin nodes’ operations. The
size of the UTXO set directly impacts on the storage requirements of a Bitcoin
node, and its efficiency directly determines the node validation speed.

We believe that a deep understanding of the Bitcoin UTXO set is needed to
clearly understand the operation of Bitcoin, helping to find potential scalability
and efficiency problems. To that end, we present STATUS (STatistical Analysis
Tool for UTXO Set), a tool to analyze the UTXO set of Bitcoin. To the best of
our knowledge there is no clear description in the literature of the UTXO set,
its format, and how to actually analyze it. We provide such description along
with a deep analysis of the set, and the tools needed to perform it.

The paper is organized as follows. Section 2 describes the UTXO set, its
format, and introduces the STATUS analytical tool. Section 3 provides the actual
analysis, including a general overview, the analysis of dust and unprofitable
UTXOs, the distribution of the block height in which the outputs were included
and the use of non-standard outputs. Finally, Section 4 concludes the paper.



2 The UTXO set

The Unspent Transaction Output (UTXO) set is the subset of Bitcoin trans-
action outputs that have not been spent at a given moment. Whenever a new
transaction is created, UTXOs are used to claim the funds they are holding, and
new UTXOs are created. Basically, transactions consume UTXOs (in their in-
puts) and generate new ones (in their outputs). Therefore, transactions produce
changes in the UTXO set.

Since the UTXO set contains all unspent outputs, it stores all the required
information to validate a new transaction without having to inspect the full
blockchain. As the name already suggests, UTXOs are indeed Bitcoin outputs,
and, as such, they consist of two parts: the amount transferred to the output
and the locking script (scriptPubKey) that specifies the conditions to be met
in order to spend the output.

The UTXO set is stored in the chainstate, a LevelDB database that provides
persistent key-value storage. LevelDB [2] is used to store the chainstate database
since Bitcoin v0.8. Apart from the UTXO set, the chainstate database stores two
additional values: the block height at which the set is updated and an obfuscation
key that is used to mask UTXO data [3,4]. Such an obfuscation key is used to
obtain a different file signature of the UTXO set file for every different wallet in
order to avoid false-positives with antivirus software.

The format of the chainstate database changed in version v0.15 of the Bitcoin
Core. We will refer to the previous format as 0.14, although it has been used in
versions from 0.8 to 0.14.

2.1 The UTXO Bitcoin Core 0.14 format

The chainstate database of Bitcoin Core v0.14 uses a per-transaction model:
there exists a record in the database (i.e., a key-value pair) for each transaction
that has at least one unspent output. Multiple UTXOs belonging to the same
transaction are thus stored under the same key. The key of the record is the
32-byte transaction hash, preceded by the prefix “c”. This prefix is needed to
distinguish transactions from other data that are also stored in the database,
and is also used to discriminate v0.14 format from the recently released v0.151.

The value of the record stores metadata about the transaction (version, height
and whether it is coinbase or not) and a compressed representation of the UTXOs
of the transaction [5].

Regarding the UTXOs, the encoding first identifies the indexes of the ouputs
of the transaction that are unspent and then includes information about those
outputs. The encoding is optimized to favor the first two outputs. UTXOs are
then encoded taking into account their type. Six different types are specially
established, that allow to efficiently store P2PKH, P2SH and four different cases
of P2PK scripts. For these types, only the required data are stored since there is
no need to store the full script (the type uniquely determines it). For instance, for

1 Bitcoin Core v0.15.0 was released on 14th of September 2017.



P2PKH outputs only the address is stored. For scripts other than these specific
types, the full output script is stored. Additionally, for each output regardless
of its type, a compact representation of the amount of bitcoins is also stored.

2.2 The UTXO Bitcoin Core 0.15 format

One of the main changes from the last Bitcoin Core’s major release (v0.15) has
been a change of the internal representation of the chainstate in favor of a better
performance both in reading time and memory usage [6,7].

This new format uses a per-output model in contrast to the previously de-
fined per-transaction model, that is, every entry in the chainstate now represents
a single UTXO, instead of a collection of all the UTXOs available for a given
transaction. To achieve this, the key-value (known as outpoint-coin in the source
code) structure has been modified. Keys encode both the 32-byte transaction
hash and the index of the unspent output, preceded by the prefix “C”. Regard-
ing coins, each one encodes a code, that contains metadata about the block
height and whether the transaction is coinbase or not (notice that the transac-
tion version has been dropped), a compressed amount of bitcoins, and the output
type and script encoded in the same way as the version v0.14.

Storing unspent outputs one by one instead of aggregated in a same transac-
tion greatly simplifies the structure of the coin and reduces the UTXOs accessing
time. By using the previous structure when a transaction with more than one
unspent output was accessed all data needs to be decoded, and all the non used
outputs encoded and written back into the database. However, this new format
has the downside of increasing the total size of the database [7].

2.3 STATUS : The UTXO analytic tool

We have created STATUS (STatistical Analysis Tool for Utxo Set), an open
source code tool that provides an easy way to access, decode, and analyze data
from the Bitcoin’s UTXO set2 STATUS is coded in Python 2 and works for both
the existing versions of Bitcoin Core’s UTXO set, that is, the first defined format
(versions 0.8 - 0.14) and the recently defined one (version 0.15). STATUS reads
from a given chainstate folder and parses all the UTXO entries into a file. From
the parsed file STATUS allows you to perform two types of analysis: a UTXO
based one, and a transaction based one, by decoding all the parsed information
from the chainstate.

In the UTXO based analysis, apart from the data mentioned in Sections 2.1
and 2.2 that STATUS directly decodes, it also creates additional meta-data
about each parsed entry, such as dust and unprofitable fee rate limit, that will
be deeply analyzed in Section 3. Regarding transaction based analysis, STATUS
aggregates all the parsed UTXOs that belong to the same transaction, providing
additional meta-data such as total number of UTXOs from a given transac-
tion, total unspent value of the transaction, etc. Finally, STATUS uses numpy

2 It can be found under a bigger Bitcoin Tools library at https://git.io/vFcDz.

https://git.io/vFcDz


and matplotlib Python’s libraries to provide several statistical data analyses and
charts for all the analyzed data.

3 UTXO set analysis

In this section we analyze the UTXO set of the blockchain state at block 491,868,
corresponding to the 26th of October 2017 at 13:13:38 using the STATUS tool.
First, we provide a general view of the data included, regarding the total number
of outputs and their size depending on the Bitcoin Core UTXO set format.
We also analyze different output subsets within the UTXO set that could be
interesting to measure in order to provide some hints whether a more efficient
UTXO set codification could be used.

3.1 General view

Using STATUS, we can retrieve details related to the general numbers behind
the UTXO set. Table 1 presents a summary of such basic facts of the analyzed
UTXO set. There are 52 and a half million UTXOs in the set, belonging to
more than 23 million different transactions. Although this gives an average of
2.26 UTXOs per transaction, the distribution is very skewed, with most of the
transactions having just one unspent output.

v0.14 v0.15

Num. of tx 23,241,914

Num. of UTXOS 52,543,649

Avg. num. of UTXOS per tx 2.26

Std. dev. num. of UTXOS per tx 18.27

Median num. of UTXOS per tx 1

Size of the (serialized) UTXO set 2.02 GB 3.00 GB

Avg. size per register 93.45 B 61.46 B

Std. dev. size per register 443.20 7.65 B

Median size per register 62 61

Table 1: Summary

Figure 1a shows a cumulative distribution function (cdf) of the number
of UTXOs per transaction.3 Note that 87.9% of the transactions have only 1

3 All the analysis plots included in this section show cumulative distribution functions.
Therefore, a point (x, y) in the plot shows the probability y that a given variable
(depicted in the x axis label) will take a value less than or equal to x.



UTXO4 and 94.97% have less than 3. The maximum number of UTXOs per
transation is 3,452 [8] which originally had 5,419 outputs.

100 101 102 103 104

Number of utxos per tx

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
u
m

b
e
r 

o
f 

tx
.

(a) Number of UTXOs per transaction

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013

amount

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m

b
e
r 

o
f 

U
T
X

O
s

(b) Amount per UTXO (in satoshi)

Differences between both data formats (v0.14 and v0.15) are clear regarding
the serialized UTXO set size (see Table 1). While the v0.14 format uses 2.02GB
with an average size per record of 93.45 bytes (a total of 23, 241, 914 records),
the 0.15 format expands the information to 3.00GB which represents an average
size per record of 61.46 bytes (with 52, 543, 649 records). Such a difference is
due to the way outputs are stored in both formats, as detailed in Section 2.
However, the median size per register of both versions is very similar, with most
registers occupying between 59 and 64 bytes. Such measurement is sound since
both versions store the 32-byte transaction id and some identifier of the output,
so the size difference for every register is only significant when the transaction
has more than a single UTXO. Whereas the number of registers with less than
59 bytes is negligible (just 30 of them for v0.14 and 222 for v0.15), 83.25% of
them in v0.14 and 99.0% in v0.15 are ≤ 63-byte long.

As a matter of fact, the smallest stored register in v0.14 is just 41-byte long [9]
and contains a single non-standard UTXO with a 1-byte length script containing
an invalid opcode. This UTXO is also one of the smallest registers in v0.15, with
40 bytes (12 additional registers have also the same size in v0.15). Section 3.4
provides an exploration of non-standard transactions in the UTXO set.

Another interesting information of the UTXO set that can be retrieved with
STATUS is the amount of UTXOs of each type, as detailed in Table 2. Notice
that UTXOs are classified between the different standard types also providing
a distinction between compressed and uncompressed keys for the P2PK type.
As data show, more than 99% of the UTXO set are P2PKH and P2SH outputs,
being P2PKH the vast majority of stored outputs. In Section 3.4 we provide
detailed information regarding the 0.8% of UTXOs classified as others.

4 Notice that such measure indicates that, although the average number of outputs in
regular Bitcoin transactions is higher, the number of outputs that remain unspent
is, mostly, only one.



Num. of utxos 52,543,649 100%

Pay-to-PubkeyHash (P2PKH) 43,079,604 81.99%

Pay-to-ScriptHash (P2SH) 8,987,799 17.11%

Pay-to-Pubkey (P2PK) 66,759 0.12%

Compressed 29,977 0.06% (44.90%)

Uncompressed 36,782 0.07% (55.10%)

Others 409,487 0.8%

Table 2: UTXO types

Figure 1b provides information about the amount of satoshi deposited in
each UTXO, showing that 98.46% of the UTXOs store less than one Bitcoin,
with an average of 0.32B per UTXO.

3.2 Dust and unprofitable UTXOs

An interesting type of outputs included into the UTXO set are those whose
economical value is small enough to represent a problem when they have to be
spent. One well identified type of these UTXOs is tagged as dust. According to
the Bitcoin Core reference implementation [10], a dust output is the output
of a transaction in which the fee to redeem it is greater than 1/3 of its value.
Besides this well known definition we also define an unprofitable output as
the output of a transaction that holds less value than the fee necessary to be
spent, resulting in financial loses when used in a transaction.

In order to identify both types of outputs, it is important to recall that the
amount of fees a transaction has to pay to be included in a new block depends
on two factors: the fee-per-byte rate that the network is expecting at the time of
creating the transaction and the size of the transaction. The fee-per-byte rate,
measured in satoshi, is a highly variable factor that depends on the transaction
backlog (i.e. how many transactions are pending to be included in new blocks).

Since fees depend on the transaction size, in order to label the outputs in
the UTXO set as a dust or unprofitable, we need an estimation of the size of
data needed to spend such output. In order to identify the minimum information
needed, we can consider an already standard transaction with its inputs and its
outputs and enough fees to be relayed. Then, we define the minimum-input of
a UTXO as the smallest size input that spends such UTXO. The size of such
minimum-input, together with the value held in the output and the fee rate,
will determine whether a UTXO may be included into the dust or unprofitable
categories.

In order to measure the size of such minimum-input, we need to review the
structure of a Bitcoin transaction. As depicted in Figure 2, all transactions follow
a standard structure containing some fixed length parameters that determine a
minimum transaction size, and some variable length parameters, depending on
the transaction type. When a transaction is created, inputs are defined referring
to some UTXOs. Such inputs have different size depending on the output type



they are related to. On the other hand, new outputs are generated for every new
transaction, and thereby some additional size, which will depend on the new
output type, will be added to the transaction.

version #inputs #outputs nLockTime

4-byte var size var size 4-byte

value scriptPubKeyscriptPubKey length

8-byte var size var size

prev_out_index scriptSig length scriptSig nSequenceprev_tx_id

32-byte 4-byte 4-bytevar size var size

inputs

outputs

Fig. 2: Generic transaction structure

Depending on the UTXO type, its minimum-input size will be different.
Such measure can be split in two parts: fixed size and variable size. Regard-
ing the fixed size, as depicted in Figure 2 (taking into account only the input
box), we can identify three fields: prev tx id, pev out index and nSequence.
Therefore, for every UTXO, its minimum-input will be at least 40-byte long in-
dependently of its type. On the other hand, the content and length of the fields
scriptSig and scriptSig lenght depend on the UTXO type, specified in the
field scriptPubKey of the UTXO.

The different types of outputs, with their corresponding size, can be classified
as follows:
Pay-to-PubKey (P2PK) outputs: The minimum-input of this type of UTXO
specifies just a digital signature to redeem the output and the scriptSig includes
the following data:

PUSH sig (1 byte) + sig (71 bytes)

Bitcoin uses DER encoded ECDSA signatures in the scripts of its transac-
tions, which can be between 71 and 73 bytes long depending on their r and s

components. Such variability comes from the randomness of the r parameter,
so by iterating the signature generation it is possible to craft an specific signa-
ture within 71 bytes.5 Hence, minimum-input size for a P2PK UTXO will be

5 Notice that this procedure assumes, in contrast to the normal behaviour of standard
wallets, that the ECDSA implementation does not use a deterministic function to
compute r.



71-bytes long and scriptSig len field will be 1-byte long, so a total of 72 bytes.

Pay-to-PubkeyHash (P2PKH) outputs: For this UTXO to be redeemed,
both a signature (sig) and a public key (pk) are needed in the scriptSig, as
shown below:

PUSH sig (1 byte) + sig (71 bytes) + PUSH pk (1 byte) +

pk (33-65 bytes)

Regarding the signatures, the same assumptions as for P2PK outputs applies,
that is, 71-byte length can be considered. Regarding public keys used by Bitcoin,
they can either be compressed or uncompressed, which will significantly vary
their size:

– Uncompressed keys: Such keys were used, by default, in the first versions of
the Bitcoin core client, and they are 65-byte long.

– Compressed keys: By 30th March 2012 (around block height 173480) Bitcoin
core started using this more efficient type of keys, which are almost half size
of the previous ones (33 bytes), and therefore make smaller scripts.

So, the size for the scriptSig varies from 106 to 138 and then the scriptSig
length field will be 1-byte long, resulting in a total minimum-input size between
107 and 139 bytes.

Pay-to-multisig (P2MS) outputs: the size of the minimum-input to redeem
such a script highly varies depending on the number of signatures required,
which ranges up to 20 (20-of-20 multisig)6, so the scriptSig for redeeming such
output is as follows:

OP_0 (1 byte) + (PUSH sig (1 byte) + sig (71 bytes)) *

required_signatures (1-20)

Thus, the size of the scriptSig field will range between 73 and 1441 bytes,
making the scriptSig len field range between 1 and 2 bytes, so the total
minimum-input size will be between 74 and 1443.

Pay-to-ScriptHash (P2SH) outputs: unlike any previous output type, input
size created from P2SH outputs can not be straightforwardly defined in advance.
P2SH outputs hide the actual input script behind a hash, in order to make
smarter outputs, by making them smaller and thus, allowing the payer to pay
lower fees. However, the scripts held by those UTXOs give us no clue about how
the minimum-input should be build.

Table 3 summarizes the sizes of the minimum-input for each UTXO type.

6 Although the standard considers a maximum number of 3 signatures in a P2MS
output, up to 20 are valid regarding the consensus rule [11] so they could potentially
be found in the UTXO set.



scriptSig

UTXO type Fixed size scriptSig length sig pk push data Total size

P2PK 40 1 71 - 1 113
P2PKH 40 1 71 33-65 2 147-179
P2MS 40 1-2 71-1420 - 2-21 114-1483
P2SH 40 ? ? ? ? 40-?

Table 3: minimum-input size summary

Notice that the previous analysis does not take into account the new Seg-
Wit transaction format [12]. The minimum-input size for such type of outputs
needs an extended analysis. However, at present time, the total outputs in the
UTXO set that correspond to a SegWit output is upper bounded by a 2.26% (see
Section 3.1 and Section 3.4) so, giving such small amount of data, the results
presented here will not significantly change, we leave such analysis for further
research.

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

0

100

200

300

400

500

600

Fe
es

 (i
n 

Sa
to

sh
is)

Fig. 3: Evolution of fees (Source: Blockchain (https://www.blockchain.info).

Once we determined the amount of data of the minimum-input for each type
of UTXO, based on a defined fee-per-byte rate, we can identify those outputs
form the UTXO set that fall into both the dust and the unprofitable categories.
To obtain the data, the following considerations have been taken. The minimum-
input size for P2PK and P2MS outputs have been precisely computed since the
information to determine the exact size of the minimum-input can be derived
from the output data itself. However, it is not possible to exactly determine
such value for the P2PKH neither for the P2SH. In the first case, we have
taken the following approach. For those outputs up to block 173480 we have
considered uncompressed addressed and for the newer ones we have take the
of most conservative approach, assuming that all public keys from that point
onward are in compressed form (33 bytes) so reducing the number of UTXO
that fall into both categories. For the P2SH, being not able to set a proper lower

https://www.blockchain.info


bound for the variable part, we have performed the analysis assuming only the
fixed 40 bytes.

Finally, the last parameter to set is the fee-per-byte rate. As depicted in
Figure 3, such rate is far from fixed and has hight variability. Thus, in order
to measure different possible scenarios, we have considered a wide fee-per-byte
spectrum, ranging from 30 to for 340 satoshi/byte.

The volume of both dust outputs and unprofitable outputs (blue and dotted
green lines respectively) in the UTXO set are depicted in Figure 4.

(a) % of dust/unprofitable
UTXOs w.r.t. fee-per-byte.

(b) % of occupied space
w.r.t. fee-per-byte rate.

0 50 100 150 200 250 300 350

Fee per byte

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

P
e
rc

e
n
ta

g
e
 o

f 
to

ta
l 
v
a
lu

e

(c) % of economic value
w.r.t. fee-per-byte rate.

Fig. 4: Dust and unprofitable analysis.

Figure 4a shows the relative size of dust and unprofitable output sets within
the total UTXO set. Notice that for a fee-per-byte as small as 80 satoshi/byte
onwards, more than the 50% of UTXOs (26.29 million outputs) from the set can
be considered dust, whereas the same 50% size for the unprofitable set is reached
for 240 satoshi/byte onward. Regarding the size that such data, Figure 4b shows
how those UTXOs represent a relevant part of the total size from the set (more
than the 50% for around 70 satoshi/byte onward), while the same can be seen
for unprofitable UTXO for a rate of 200 satoshi/byte onward. Finally, from
an economic point of view, Figure 4c shows, as expected, how those dust and
unprofitable UTXOs represent a negligible amount from the total value of the
UTXO set, that is the total number of bitcoins in circulation.

3.3 Height

Another interesting type of UTXO outputs are those that were created a long
time ago. Although it is difficult to determine the average time in which a UTXO
will be spent, some old UTXOs may belong to keys that are lost, so such old
UTXOs may will never be spent.

Figure 5a depicts the height of the block where the transaction is included in
a per transaction (v0.14 register, blue line) and per UTXO (v0.15 register green
line) fashion. Half of the stored UTXOs are older than January 2017 (block
449,896 corresponds to the median), whereas the other half are younger. This
means that almost half of the current UTXO set is used by UTXOs created in



the current year (2017). On the other hand, there are still very old UTXOs: 2%
of them are older than August 2012 (block height 194,635).

In Figure 5b we can see the evolution in time of the different types of outputs
in the UTXO set. Notice that P2PKH and P2SH show a stable distribution
in time. On the other hand, outputs labelled as “others” are mainly from old
transactions since 95% of them are older than March 2016 (block height 403,052).
Finally, the graphic also shows that P2PK outputs have an irregular behaviour.
50% of them were created before block 91,542 which is an expected result since
P2PKH were developed afterwards as an improvement of P2PK. However, it is
interesting to see that, after a long time with very few outputs of this type,
around March 2017 and during 324 blocks, 15% of the actual P2PK outputs
included in the UTXO set were created.

(a) Height per transac-
tion/UTXO.

(b) UTXO type evolution
by height.

0 100000 200000 300000 400000 500000

height

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m

b
e
r 

o
f 

tx
.

(c) Coinbase evolution by
height.

Fig. 5: Output age-based analysis

Figure 5c shows an already known fact that indicates that most of the bitcoins
created at the beginning of the cryptocurrency are still pending to redeem. More
precisely, 75% of the coinbase outputs in the UTXO set were created before
block 274,946 (December 2013). In contrast, just 6% of the current UTXOs were
created before that block (see Figure 5a).

3.4 Non-standard

As shown in Table 2, we have labelled as “others” 409,487 UTXOs from the
UTXO set since they do not fall into the main categories P2PK, P2PKH and
P2SH. A detailed analysis of such UTXOs, provided in Table 4, shows that
almost all UTXOs correspond to a Pay-to-Multisig (P2MS) outputs being the
configuration of 1-2 and 1-3 the most popular cases. Notice that, the UTXOs
included are those with configuration up to three public keys, which is sound
according to the fact that this is the upper bound for a multisignature output
to be considered standard by the Bitcoin network transaction relaying policies.
Finally, it is worth to mention that there exist 828 UTXOs with 1-1 configuration,
a fact that does not make much sense since it is an output with functionality
equivalent to a P2PK but with a larger script size and so highers fees may be
needed to spent it.



1-1 828 0.20%

1-2 199,904 48.81%

2-2 1,353 0.33%

1-3 206,096 50.33%

2-3 117 0.02%

3-3 20 0.005%

Others 1,169 0.28%

Table 4: Multisig analysis.

Regarding the 1,169 outputs labeled as others in Table 4, 34.05% of them
(398) are new native SegWit type outputs. More precisely, Pay-to-Witness-
Public-Key-Hash (P2WPKH) account for 40 outputs and Pay-to-Witness-Script-
Hash (P2WSH) accounts a total of 358.

4 Conclusions and Further research

In this paper we have introduced STATUS, a tool to analyze the UTXO set
of Bitcoin (based on the Bitcoin Core implementation), and we have provided
an analysis of such set, paying special attention to dust and unprofitable trans-
actions. We have also provided a detailed description of the UTXO set format,
including the new format introduced in Bitcoin Core v0.15. The use of this format
as compared to the previous one does not have an impact on the analysis we have
presented in this paper. The new version provides more efficient access to the
UTXO information at the expense of slightly higher storage requirements. Ad-
ditionally, we provide interesting data that shows the high percentage of ”static
information” (in the sense that is not going to be spent -dust and unprofitable-)
included in the UTXO set that reduces the efficiency of the database in terms
of space. Finally, it is interesting to notice that currently there is a very low
percentage of SegWit UTXO, upper bounded by a 2.26% of the total outputs
stored in the UTXO set. As this will possibly increase in the future, the analysis
of dust and unprofitable transactions will need to be revisited in further research
in order to update the results with these new types of outputs.



References

1. Bitcoin Core. Bitcoin core 0.11.0 release notes. https://github.com/bitcoin/b

itcoin/blob/v0.11.0/doc/release-notes.md, July 2015.
2. S Ghemawat and J Dean. Leveldb. https://github.com/google/leveldb (last

accessed Oct. 2017), 2014.
3. Bitcoin Core. Bitcoin core 0.12.0 release notes. https://bitcoin.org/en/relea

se/v0.12.0, February 2016.
4. Bitcoin Core. Obfuscate database files. Bitcoin Core Github Issue 6613, https:

//github.com/bitcoin/bitcoin/issues/6613, July 2015.
5. The Bitcoin Core developers. Bitcoin core 0.14 source code: coins.h. Github:

https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h, 2017.
6. Bitcoin Core. Bitcoin core 0.15.0 release notes. https://bitcoin.org/en/relea

se/v0.15.0, September 2017.
7. Greg Maxwell. A deep dive into bitcoin core 0.15. SF Bitcoin Developers Meetup,

September 2017. http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-d
eep-dive-bitcoin-core-v0.15/.

8. Blockcypher. Bitcoin transaction d8505b78a4cddbd058372443bbce9ea74a313c27c5
86b7bbe8bc3825b7c7cbd7. https://live.blockcypher.com/btc/tx/d8505b78a

4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/ (last accessed
Oct. 2017).

9. Blockcypher. Bitcoin transaction 8a68c461a2473653fe0add786f0ca6ebb99b2572861
66dfb00707be24716a3f. https://live.blockcypher.com/btc/tx/8a68c461a

2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/ (last accessed
Oct. 2017).

10. Bitcoin Core developers. Bitcoin core 0.10.0rc3 source code: transaction.h, line
137. Github: https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/pr

imitives/transaction.h#L137, December 2014.
11. Peter Wuille. Answer to: What are the limits of m and n in m-of-n multisig

addresses? Bitcoin StackExchange, 2014. https://bitcoin.stackexchange.com/

a/28092/30668.
12. Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segregated witness (consensus

layer). Technical Report BIP-141, Bitcoin Improvement Proposal, 2015.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://github.com/google/leveldb
https://bitcoin.org/en/release/v0.12.0
https://bitcoin.org/en/release/v0.12.0
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h
https://bitcoin.org/en/release/v0.15.0
https://bitcoin.org/en/release/v0.15.0
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://live.blockcypher.com/btc/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/
https://live.blockcypher.com/btc/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/
https://live.blockcypher.com/btc/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/
https://live.blockcypher.com/btc/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://bitcoin.stackexchange.com/a/28092/30668
https://bitcoin.stackexchange.com/a/28092/30668

	Analysis of the Bitcoin UTXO set

