
Lecture Notes in Computer Science 4515
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Moni Naor (Ed.)

Advances
in Cryptology -
EUROCRYPT 2007

26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Barcelona, Spain, May 20-24, 2007
Proceedings

13



Volume Editor

Moni Naor
Weizmann Institute of Science
Department of Computer Science and Applied Mathematics
Rehovot 76100 ISRAEL
E-mail: moni.naor@weizmann.ac.il

Library of Congress Control Number: 2007926705

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-72539-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72539-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association of Cryptologic Research 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12064380 06/3180 5 4 3 2 1 0



Preface

These are the proceedings of Eurocrypt 2007, the 26th Annual IACR Eurocrypt
Conference. The conference was sponsored by the International Association for
Cryptologic Research (IACR; see www.iacr.org), this year in cooperation with
the Research Group on Mathematics Applied to Cryptography at UPC and the
Research Group on Information Security at UMA. The Eurocrypt 2007 Program
Committee (PC) consisted of 24 members whose names are listed on the next
page.

The PC decided on several policies: zero PC papers - no Program Committee
member could submit papers; optional anonymity - authors could choose to
anonymize their papers or not. Anonymous papers were treated as usual, i.e.,
the author’s identity was not revealed to the PC. The submission software used
was “Web Submission and Review Software” written and maintained by Shai
Halevi. There were 173 papers submitted to the conference and the PC chose
33 of them. Each paper was assigned to at least three PC members, who either
handled it themselves or assigned it to an external referee. After the reviews were
submitted, the committee deliberated both online for several weeks and finally
in a face-to-face meeting held in Paris. In addition to notification of the decision
of the committee, authors received reviews. Our goal was to provide meaningful
comments to authors of all papers (both those selected for the program and
those not selected). The default for any report given to the committee was that
it should be available to the authors as well.

The committee decided to give the Best Paper Award to Shien Jin Ong and
Salil Vadhan for their paper “Zero Knowledge and Soundness are Symmetric.”
In addition the PC chose two more notable papers for invitation to the Journal
of Cryptology. These are “Chosen-prefix Collisions for MD5 and Colliding X.509
Certificates for Different Identities,” by Marc Stevens, Arjen Lenstra and Benne
de Weger, and “An L(1/3 + ε) Algorithm for the Discrete Logarithm Problem
for Low-Degree Curves,” by Andreas Enge and Pierrick Gaudry. The conference
program included two invited lectures: by Jacques Stern (IACR Distinguished
Lecture) titled “Cryptography from A to Z” and by Victor Miller titled “Elliptic
Curves and Cryptography: Invention and Impact.”

I wish to thank all the people who made the conference possible. First and
foremost the authors who submitted their papers. The hard task of reading, com-
menting, debating and finally selecting the papers for the conference fell on the
PC members. I am indebted to the committee members’ collective knowledge,
wisdom and effort. I have learned a lot from the experience. The committee also
used external reviewers, whose names are listed on the following pages, to extend
the expertise and ease the burden. My deepest gratitude to them as well. I thank
Shai Halevi for handling the submissions and reviews server and Michel Abdalla



VI Preface

for organizing the PC Meeting in Paris. I am grateful to previous PC Chairs who
have shared their experiences with me. Finally, the Eurocrypt General Chairs
Javier López and Germán Sáez and the local organizing committee Monica
Breitman, Paz Morillo and Jorge L. Villar deserve many thanks from all the
IACR community for the organization of the conference.

March 2007 Moni Naor



Eurocrypt 2007

Barcelona, Spain, May 20–24, 2007

Sponsored by the International Association for Cryptologic Research.

Organized in cooperation with the
Technical University of Catalonia (UPC) and the University of Malaga (UMA).

General Chairs

Javier López and Germán Sáez

Program Chair

Moni Naor, Weizmann Institute of Science

Program Committee

Michel Abdalla ENS and CNRS, Paris
Anne Canteaut INRIA-Rocquencourt
Dario Catalano University of Catania
Jung Hee Cheon Seoul National University
Stefan Dziembowski Warsaw University and University of Rome

“La Sapienza”
Serge Fehr CWI, Amsterdam
Marc Fischlin TU Darmstadt
Jens Groth UCLA
Shai Halevi IBM T.J. Watson Research Center
Yuval Ishai Technion
Joe Kilian Rutgers University
Anna Lysyanskaya Brown University
Alexander May TU Darmstadt
Steven Myers Indiana University
Moni Naor Weizmann Institute of Science
Phong Nguyen ENS and CNRS, Paris
Jesper Buus Nielsen University of Aarhus
Giuseppe Persiano University of Salerno
Ron Rivest MIT
Alon Rosen Harvard
Eran Tromer MIT



VIII Organization

Xiaoyun Wang Tsinghua University
Brent Waters SRI
Stefan Wolf ETH, Zurich

External Reviewers

Ben Adida
Roberto Araujo
Thomas Baignères
Boaz Barak
Amos Beimel
Ian F. Blake
Carlo Blundo
Alexandra Boldyreva
Xavier Boyen
Jan Camenisch
Jean Camp
Ran Canetti
Melissa Chase
Liqun Chen
Benôıt Chevallier-Mames
Joo Yeon Cho
Paul Crowley
Chris Crutchfield
Ivan Damg̊ard
Cécile Delerablée
Alex Dent
Claus Diem
Jintai Ding
Christophe Doche
Martin Döring
Orr Dunkelman
Jean-Charles Faugère
Nelly Fazio
Matthias Fitzi
Pierre-Alain Fouque
Fabien Galand
Steven Galbraith
Clemente Galdi
Pierrick Gaudry
Rosario Gennaro
Vipul Goyal
Tim Güneysu
Robbert de Haan
Iftach Haitner

Guillaume Hanrot
Danny Harnik
Alex Healy
Martin Hirt
Dennis Hofheinz
Susan Hohenberger
Thomas Holenstein
Nick Howgrave-Graham
Vasyltsov Ihor
Stanislaw Jarecki
Antoine Joux
Pascal Junod
Jonathan Katz
Nathan Keller
Eike Kiltz
Jaeheon Kim
Matthias Kleinmann
Hugo Krawczyk
Konrad Kulikowski
Soonhak Kwon
Taekyoung Kwon
Tanja Lange
Cédric Lauradoux
Dong Hoon Lee
Hyang-Sook Lee
Anja Lehmann
Gaëtan Leurent
Pierre Loidreau
Mira Meyerovich
Marine Minier
Tal Moran
Sean Murphy
Christophe Nègre
Gregory Neven
Antonio Nicolosi
Kobbi Nissim
Shien Jin Ong
Yossi Oren
Raphael Overbeck



Organization IX

Adriana Palacio
Omkant Pandey
Alan Park
Rafael Pass
Michael Østergaard Pedersen
Chris Peikert
Ludovic Perret
Duong Hieu Phan
Krzysztof Pietrzak
Gilles Piret
David Pointcheval
Manoj Prabhakharan
Bartosz Przydatek
Charles W. Rackoff
H̊avard Raddum
Mario Di Raimondo
Dominik Raub
Christian Rechberger
Omer Reingold
Leonid Reyzin
Thomas Ristenpart
Maike Ritzenhofen
Phil Rogaway
Amit Sahai
Louis Salvail
Berry Schoenmakers
Dominique Schröder

Gil Segev
Nicolas Sendrier
Emily Shen
Peter Shor
Alice Silverberg
William Speirs
François-Xavier Standaert
Damien Stehlé
Andreas Stein
Lakshminarayanan Subramanian
Madhu Sudan
Qiang Tang
Thomas Toft
Vinod Vaikuntanathan
Mayank Varia
Carmine Ventre
Ivan Visconti
David Wagner
Samuel Wagstaff
Shabsi Walfish
Bogdan Warinschi
Ralf-Philipp Weinmann
Enav Weinreb
Douglas Wikstrom
Jürg Wullschleger
Hyojin Yoon
Aram Yun



Table of Contents

Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for
Different Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Marc Stevens, Arjen Lenstra, and Benne de Weger

Non-trivial Black-Box Combiners for Collision-Resistant Hash-Functions
Don’t Exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Krzysztof Pietrzak

The Collision Intractability of MDC-2 in the Ideal-Cipher Model . . . . . . . 34
John P. Steinberger

An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Yehuda Lindell and Benny Pinkas

Revisiting the Efficiency of Malicious Two-Party Computation . . . . . . . . . 79
David P. Woodruff

Efficient Two-Party Secure Computation on Committed Inputs . . . . . . . . 97
Stanis�law Jarecki and Vitaly Shmatikov

Universally Composable Multi-party Computation Using Tamper-Proof
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jonathan Katz

Generic and Practical Resettable Zero-Knowledge in the Bare
Public-Key Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Moti Yung and Yunlei Zhao

Instance-Dependent Verifiable Random Functions and Their
Application to Simultaneous Resettability . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Yi Deng and Dongdai Lin

Conditional Computational Entropy, or Toward Separating
Pseudoentropy from Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin

Zero Knowledge and Soundness Are Symmetric . . . . . . . . . . . . . . . . . . . . . . 187
Shien Jin Ong and Salil Vadhan

Mesh Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Xavier Boyen

The Power of Proofs-of-Possession: Securing Multiparty Signatures
against Rogue-Key Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Thomas Ristenpart and Scott Yilek



XII Table of Contents

Batch Verification of Short Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Jan Camenisch, Susan Hohenberger, and
Michael Østergaard Pedersen

Cryptanalysis of SFLASH with Slightly Modified Parameters . . . . . . . . . . 264
Vivien Dubois, Pierre-Alain Fouque, and Jacques Stern

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy . . . . 276
Hongjun Wu and Bart Preneel

Secure Computation from Random Error Correcting Codes . . . . . . . . . . . . 291
Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and
Vinod Vaikuntanathan

Round-Efficient Secure Computation in Point-to-Point Networks . . . . . . . 311
Jonathan Katz and Chiu-Yuen Koo

Atomic Secure Multi-party Multiplication with Low Communication . . . . 329
Ronald Cramer, Ivan Damg̊ard, and Robbert de Haan

Cryptanalysis of the Sidelnikov Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 347
Lorenz Minder and Amin Shokrollahi

Toward a Rigorous Variation of Coppersmith’s Algorithm on Three
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Aurélie Bauer and Antoine Joux

An L(1/3 + ε) Algorithm for the Discrete Logarithm Problem for Low
Degree Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Andreas Enge and Pierrick Gaudry

General Ad Hoc Encryption from Exponent Inversion IBE . . . . . . . . . . . . . 394
Xavier Boyen

Non-interactive Proofs for Integer Multiplication . . . . . . . . . . . . . . . . . . . . . 412
Ivan Damg̊ard and Rune Thorbek

Ate Pairing on Hyperelliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Robert Granger, Florian Hess, Roger Oyono, Nicolas Thériault, and
Frederik Vercauteren

Ideal Multipartite Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Oriol Farràs, Jaume Mart́ı-Farré, and Carles Padró

Non-wafer-Scale Sieving Hardware for the NFS: Another Attempt to
Cope with 1024-Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Willi Geiselmann and Rainer Steinwandt

Divisible E-Cash Systems Can Be Truly Anonymous . . . . . . . . . . . . . . . . . . 482
Sébastien Canard and Aline Gouget



Table of Contents XIII

A Fast and Key-Efficient Reduction of Chosen-Ciphertext to
Known-Plaintext Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Ueli Maurer and Johan Sjödin

Range Extension for Weak PRFs; The Good, the Bad, and the Ugly . . . . 517
Krzysztof Pietrzak and Johan Sjödin

Feistel Networks Made Public, and Applications . . . . . . . . . . . . . . . . . . . . . 534
Yevgeniy Dodis and Prashant Puniya

Oblivious-Transfer Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Jürg Wullschleger

Simulatable Adaptive Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Jan Camenisch, Gregory Neven, and abhi shelat

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591



Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different

Identities

Marc Stevens1, Arjen Lenstra2, and Benne de Weger1

1 TU Eindhoven, Faculty of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 EPFL IC LACAL, Station 14, and Bell Laboratories
CH-1015 Lausanne, Switzerland

Abstract. We present a novel, automated way to find differential paths
for MD5. As an application we have shown how, at an approximate
expected cost of 250 calls to the MD5 compression function, for any
two chosen message prefixes P and P ′, suffixes S and S′ can be con-
structed such that the concatenated values P‖S and P ′‖S′ collide under
MD5. Although the practical attack potential of this construction of
chosen-prefix collisions is limited, it is of greater concern than random
collisions for MD5. To illustrate the practicality of our method, we con-
structed two MD5 based X.509 certificates with identical signatures but
different public keys and different Distinguished Name fields, whereas
our previous construction of colliding X.509 certificates required identi-
cal name fields. We speculate on other possibilities for abusing chosen-
prefix collisions. More details than can be included here can be found on
www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

1 Introduction

In March 2005 we showed how Xiaoyun Wang’s ability [17] to quickly construct
random collisions for the MD5 hash function could be used to construct two dif-
ferent valid and unsuspicious X.509 certificates with identical digital signatures
(see [10] and [11]). These two colliding certificates differed in their public key
values only. In particular, their Distinguished Name fields containing the iden-
tities of the certificate owners were equal. This was the best we could achieve
because

– Wang’s hash collision construction requires identical Intermediate Hash Val-
ues (IHVs);

– the resulting colliding values look like random strings: in an X.509 certifi-
cate the public key field is the only suitable place where such a value can
unsuspiciously be hidden.

A natural and often posed question (cf. [7], [3], [1]) is if it would be possible to
allow more freedom in the other fields of the certificates, at a cost lower than 264

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 1–22, 2007.
c© International Association for Cryptology Research 2007

www.win.tue.nl/hashclash/ChosenPrefixCollisions/


2 M. Stevens, A. Lenstra, and B. de Weger

calls to the MD5 compression function. Specifically, it has often been suggested
that it would be interesting to be able to select Distinguished Name fields that
are different and, preferably, chosen at will, non-random and human readable
as one would expect from these fields. This can be realized if two arbitrarily
chosen messages, resulting in two different IHVs, can be extended in such a way
that the extended messages collide. Such collisions will be called chosen-prefix
collisions.

We describe how chosen-prefix collisions for MD5 can be constructed, and
show that our method is practical by constructing two MD5 based X.509 certifi-
cates with different Distinguished Name fields and identical digital signatures.
The full details of the chosen-prefix collision construction and the certificates
can be found in [16] and [14], respectively.

Section 2 contains a bird’s eye view of the chosen-prefix collision construction
method and its complexity. Its potential applications are discussed in Section 3
with Section 4 containing implications and details of the application to X.509
certificates. Details of the automated differential path construction for MD5 are
provided in Section 5.

2 Chosen-Prefix Collisions for MD5

The main contribution of this paper is a method to construct MD5 collisions
starting from two arbitrary IHVs. Given this method one can take any two
chosen message prefixes and construct bitstrings that, when appended to the
prefixes, turn them into two messages that collide under MD5. We refer to
such a collision as a chosen-prefix collision. Their possibility was mentioned
already in [3, Section 4.2 case 1] and, in the context of SHA-1, in [1] and on
www.iaik.tugraz.at/research/krypto/collision/.

We start with a pair of arbitrarily chosen messages, not necessarily of the same
length. Padding with random bits may be applied so that the padded messages
have the same bitlength which equals 416 modulo 512 (incomplete last block).
Equal length is unavoidable, because Merkle-Damg̊ard strengthening, involving
the message length, is applied after the last message block has been compressed
by MD5. The incomplete last block condition is a technical requirement. In our
example of colliding certificates the certificate contents were constructed in such
a way that padding was not necessary, to allow for shorter RSA moduli.

Given the padded message pair, we followed a suggestion by Xiaoyun Wang1

to find a pair of 96-bit values that, when used to complete the last blocks by
appending them to the messages and applying the MD5 compression function,
resulted in a specific form of difference vector between the IHVs. Finding these
96-bit values was done using a birthdaying procedure.

The remaining differences between the IHVs were then removed by appending
near-collision blocks. Per pair of blocks this was done by constructing new differ-
ential paths using an automated, improved version of Wang’s original approach.
This innovative differential path construction is described in detail in Section 5
1 Private communication.

www.iaik.tugraz.at/research/krypto/collision/


Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 3

below. Due to the specific form of the near-collisions and the first difference vec-
tor, essentially one triple of bit differences could be removed per near-collision
block, thus shortening the overall length of the colliding values. For our example
8 near-collision blocks were needed to remove all differences. Thus, a total of
96 + 8 × 512 = 4192 bits were appended to each of the chosen message prefixes
to let them collide.

The birthdaying step can be entirely avoided, thereby making it harder to
find the proper differential paths and considerably increasing the number of
near-collision blocks. Or the birthdaying step could be simplified, increasing the
number of near-collision blocks from 8 to about 14. Our approach was inspired
by our desire to minimize the number of near-collision blocks. Using a more
intricate differential path construction it should be possible to remove more than
a single triple of bit differences per block, which would reduce the number of
near-collision blocks. Potential enhancements and variations, and the full details
of the construction as used, will be discussed in [16].

The expected complexity of the birthdaying step is estimated at 249 MD5
compression function calls. Estimating the complexity of the near-collision block
construction is hard, but it turned out to be a small fraction of the birthday-
ing complexity. Based on our observations we find it reasonable to estimate the
overall expected complexity of finding a chosen-prefix collision for MD5 at about
250 MD5 compression function calls. For the example we constructed, however,
we had some additional requirements and also were rather unlucky in the birth-
daying step, leading to about 252 MD5 compression function calls. Note that,
either way, this is substantially faster than the trivial birthday attack which has
complexity 264.

The construction of just a single example required, apart from the develop-
ment of the automated differential path construction method, substantial compu-
tational efforts. Fortunately, the work is almost fully parallelizable and suitable
for grid computing. It was done in the “HashClash” project (see www.win.tue.
nl/hashclash/ ) and lasted about 6 months: using BOINC software (see boinc.
berkeley.edu/ ) up to 1200 machines contributed, involving a cluster of com-
puters at TU/e and a grid of home PCs. We expect that another chosen-prefix
collision can be found much faster, but that it would again require substan-
tial effort, both human and computationally: say 2 months real time assuming
comparable computational resources.

3 Applications of Chosen-Prefix Collisions

We mention some potential applications of chosen-prefix collisions.

– The example presented in the next section, namely colliding X.509 certifi-
cates with different fields before the appended bitstrings that cause the col-
lision. Those bitstrings are ‘perfectly’ hidden inside the RSA moduli, where
‘perfect’ means that inspection of either one of the RSA moduli does not
give away anything about the way it is constructed (namely, crafted such



4 M. Stevens, A. Lenstra, and B. de Weger

that it collides with the other one). In particular it could be of interest to
be able to freely choose the Distinguished Name fields, which contain the
identities of the alleged certificate owners.

– It was suggested to combine different Distinguished Names with equal public
keys, to lure someone to encrypt data for one person, which can then be
decrypted by another. It is unclear to us how realistic this is—or why one
would need identical digital signatures. Nevertheless, if the appendages are
not hidden in the public key field, some other field must be found for them,
located before or after the public key field. Such a field may be specially
defined for this purpose, and there is a good chance that the certificate
processing software will not recognize this field and ignore it. However, as
the appendages have non-negligible length, it will be hard to define a field
that will not look suspicious to someone who looks at the certificate at bit
level.

– A way to realize the above variant is to hide the collision-causing appendages
in the public exponent. Though the public exponent is often taken from a
small set (3, 17, and 65537 are common choices), a large, random looking
one is in principle possible. It may even be larger than the modulus, but that
may raise suspicion. In any case, the two certificates can now have identical
RSA moduli, making it easy for the owner of one private key to compute the
other one.

– Entirely different abuse scenarios are conceivable. In [2] (see also [4]) it was
shown how to construct a pair of Postscript files that collide under MD5, and
that send different messages to output media such as screen or printer. How-
ever, in those constructions both messages had to be hidden in each of the
colliding files, which obviously raises suspicions upon inspection at bit level.
With chosen-prefix collisions, this can be avoided. For example, two differ-
ent messages can be entered into a document format that allows insertion
of color images (such as Microsoft Word), with one message per document.
At the last page of each document a color image will be shown—a short
one pixel wide line will do, for instance hidden inside a layout element, a
company logo, or in the form of a nicely colored barcode claiming to be
some additional security feature, obviously offering far greater security than
those old-fashioned black and white barcodes—carefully constructed such
that the hashes of the documents collide when their color codes are inserted.
In Figure 1 the actual 4192-bit collision-causing appendages computed for
the certificates are built into bitmaps to get two different barcode examples.
Each string of 4192 bits leads to one line of 175 pixels, say A and B, and
the barcodes consist of the lines ABBBBB and BBBBBB respectively. Apart

Fig. 1. A collision built into bitmap images.



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 5

from the 96 most significant bits corresponding to the 4 pixels in the upper
left corner, the barcodes differ in only a few bits, which makes the result-
ing color differences hard to spot for the human eye. As noted above the
‘obviously differing’ 4 initial pixels can be avoided at the cost of more near-
collision blocks (thus longer barcodes), and the barcodes can be shortened
again at the cost of more elaborate differential path constructions.

– In [12] and [8] it was shown how to abuse existing MD5 collisions to mislead
integrity checking software based on MD5. Similar to the colliding Postscript
applications, they also used the differences in the colliding inputs to construct
deviating execution flows of some programs. Here too chosen-prefix collisions
allow a more elegant approach, especially since common operating systems
ignore bitstrings that are appended to executables: the programs will run un-
altered. Thus one can imagine two executables: a ‘good’ one (say Word.exe)
and a bad one (the attacker’s Worse.exe). A chosen-prefix collision for those
executables is computed, and the collision-causing bitstrings are appended
to them. The resulting altered file Word.exe, functionally equivalent to the
original Word.exe, can then be offered to Microsoft’s Authenticode signing
program and receive an ‘official’ MD5 based digital signature. This signature
will be equally valid for the attacker’s Worse.exe, and the attacker might be
able to replace Word.exe by his Worse.exe (renamed to Word.exe) on the
appropriate download site. This construction affects a common functionality
of MD5 hashing and may pose a practical threat, also because there is no a
priori reason why the collision-causing bitstrings could not be hidden inside
the executables.

– More ideas can be found on www.iaik.tugraz.at/research/krypto/
collision/.

Further study is required to assess the impact of chosen-prefix collisions on appli-
cations of hash functions. Commonly used protocols and message formats such
as SSL, S/MIME (CMS) and XML Signatures should be studied, with special
attention to whether random looking data can be hidden in these protocols and
data formats, in such a way that some or all implementations will not detect
them. For instance, it was suggested by Pascal Junod to let a ‘proper’ certificate
collide with one that contains executable code in the Distinguished Name field,
thereby potentially triggering a buffer overflow, but we have not seen an actually
working example of this idea yet. It also requires more study to see if there are
formats that even allow the much easier random collision attacks.

4 Colliding X.509 Certificates for Different Identities

In this section we concentrate on the first application mentioned above, that
of two X.509 certificates with identical digital signatures but different Distin-
guished Name fields, where the collisions are perfectly hidden inside the public
key moduli.



6 M. Stevens, A. Lenstra, and B. de Weger

4.1 Attack Scenarios

Though our current X.509 certificates construction, involving different Distin-
guished Names, should have more attack potential than the one with identical
names fields in [11], we have not been able to find truly convincing attack sce-
narios yet. Ideally, a realistic attack targets the core of PKI: provide a relying
party with trust, beyond reasonable cryptographic doubt, that the person indi-
cated by the Distinguished Name field has exclusive control over the private key
corresponding to the public key in the certificate. The attack should also enable
the attacker to cover his trails.

Getting two certificates for the price of one could be economically advanta-
geous in some situations, e.g. with two different owner names, or for two different
validity periods. Such certificates undermine the proof of knowledge of the secret
key corresponding to a certified public key. These possibilities have been noted
before (cf. [10]) and do, in our opinion, not constitute attacks.

Our construction requires that the two colliding certificates are generated
simultaneously. Although each resulting certificate by itself is completely unsus-
picious, the fraud becomes apparent when the two certificates are put alongside,
as may happen during a fraud analysis. An attacker can generate one of the
certificates for a targeted person, the other one for himself, and attempt to use
his own credentials to convince an external and generally trusted CA to sign the
second one. If successful, the attacker can then distribute the first certificate,
which will be trusted by relying parties, e.g. to encrypt messages for the tar-
geted person. The attacker however is in control of the corresponding private key,
and can thus decrypt confidential information embedded in intercepted messages
meant for the targeted person. Or the attacker can masquerade as the targeted
person while signing messages, which will be trusted by anyone trusting the CA.
In this scenario it does not matter whether the two certificates have different
public keys (as in our example) or identical ones (in which case the colliding
blocks would have to be hidden somewhere else in the certificate).

A problem is, however, that the CA will register the attacker’s identity. As
soon as a dispute arises, the two certificates will be produced and revealed as
colliding, and the attacker will be identified. Another problem is that the at-
tacker must have sufficient control over the CA to predict all fields appearing
before the public key, such as the serial number and the validity periods. It has
frequently been suggested that this is an effective countermeasure against col-
liding certificate constructions in practice, but there is no consensus how hard
it is to make accurate predictions. When this condition of sufficient control over
the CA by the attacker is satisfied, colliding certificates based on chosen-prefix
collisions are a bigger threat than those based on random collisions.

Obviously, the attack becomes effectively impossible if the CA adds a sufficient
amount of fresh randomness to the certificate fields before the public key, such as
in the serial number (as some already do, though probably for different reasons).
This randomness is to be generated after the approval of the certification request.
On the other hand, in general a relying party cannot verify this randomness.
In our opinion, trustworthiness of certificates should not crucially depend on



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 7

such secondary and circumstantial aspects. On the contrary, CAs should use a
trustworthy hash function that meets the design criteria. Unfortunately, this is
no longer the case for MD5, or SHA-1.

We stress that our construction (we prefer this wording to ‘attack’) is not a
preimage attack. As far as we know, existing certificates cannot be forged by
chosen-prefix collisions if they have not been especially crafted for that purpose.
However, a relying party cannot distinguish any given trustworthy certificate
from a certificate that has been crafted by our method to violate PKI principles.
Therefore we repeat, with more urgency, our recommendation that MD5 is no
longer used in new X.509 certificates. Similar work [1] is in development for the
SHA-1 hash function, so we feel that a renewed assessment of the use of SHA-1
in certificate generation is also appropriate.

4.2 Certificate Construction Outline

Table 1 outlines the to-be-signed fields of the colliding certificates that were
constructed.

Table 1. The to-be-signed parts of the colliding certificates

field comments value first certificate value second certificate

X.509 version number identical, standard X.509 version 3
serial number different, chosen by CA 0x010C0001 0x020C0001
signature algorithm identifier identical, standard X.509 md5withRSAEncryption
issuer distinguished name identical, chosen by CA CN = “Hash Collision CA”

L = “Eindhoven”
C = “NL”

not valid before identical, chosen by CA Jan. 1, 2006, 00h00m01s GMT
not valid after identical, chosen by CA Dec. 31, 2007, 23h59m59s GMT
subject distinguished name different, chosen by us CN = “Arjen K. Lenstra” CN = “Marc Stevens”

O = “Collisionairs” O = “Collision Factory”
L = “Eindhoven” L = “Eindhoven”
C = “NL” C = “NL”

public key algorithm identical, standard X.509 rsaEncryption
subject public key info different, constructed by us modulus Sb‖Sc‖E as below modulus S′

b‖S′
c‖E as below

version 3 extensions identical, standard X.509 (irrelevant for the present description)

Here, Sb and S′b are 96-bit values found using birthdaying, Sc and S′c each consist
of 8 near-collision blocks found using the automated method to find differential
paths, and E is a 4000-bit value such that the 8192-bit values Sb‖Sc‖E and
S′b‖S′c‖E are both RSA moduli. The details of the construction are set forth
below.

Before the collision search (i.e., the searches for Sb, S′b and for Sc, S′c) is
started the contents needs to be known of all to-be-signed fields of the certifi-
cate that appear before the modulus. Therefore, to be able to construct the
certificates, sufficient control over the CA is necessary. This was achieved by im-
plementing and operating this CA ourselves. In fact, we used the CA that had
already been set up for [10]. It is used solely for the purposes of signing colliding
certificates.



8 M. Stevens, A. Lenstra, and B. de Weger

4.3 Certificate Construction Details

We provide a detailed description of our construction.

1. We construct two templates for the certificates in which all fields are filled in,
with the exception of the RSA public key moduli and the signature, meeting
the following three requirements:
– The data structures must be compliant with the X.509 standard and the

ASN.1 DER encoding rules (see [5], but see also the final section of [14]);
– The byte lengths of the moduli and the public exponent (in fact, also

the byte lengths of the entire to-be-signed parts of the certificates) must
be fixed in advance, because these numbers have to be specified as parts
of the ASN.1 structure, coming before the modulus;

– The position where the RSA moduli start must be controlled. We chose
to have this at an exact multiple of 64 bytes (512 bits) minus 96 bits,
after the beginning of the to-be-signed fields. This gives convenient space
for the results of the birthdaying step (described below).

The third condition can be dealt with by adding dummy information to the
subject Distinguished Name. This we did in the Organization-field (i.e., the
value O in the outline above).

2. We apply MD5 to each of the first parts of the two to-be-signed fields,
truncated at the last full block (thus excluding the incomplete blocks whose
last 96 bits will consist of the most significant bits of the RSA moduli under
construction), suppressing the padding normally used in MD5. As output we
get a pair of IHVs that we use as input for the next step. These IHVs will
be completely different and have no special properties built in.

3. Using the IHVs and their corresponding incomplete blocks (the ones that still
fail their last 96 bits) as input, we complete these blocks by appending 96-bit
values Sb and S′b. These values are computed by birthdaying, to satisfy 96 bit
conditions on the output IHV difference. For this purpose each output IHV
is interpreted as 4 little endian 32-bit integers, and the difference between
the output IHVs is defined as the 4-tuple of differences modulo 232 between
the four corresponding 32-bit integers. If we represent this IHV difference
as δa‖δb‖δc‖δd for 32-bit δa, δb, δc, δd, then the conditions are δa = 0 and
δb = δc = δd, as suggested to us by Xiaoyun Wang. The reason for this
choice is that it facilitates the search for near-collision blocks, as explained in
Section 5.3. The resulting δb can be expressed as only 8 signed bit differences
(these are not bitwise XOR but additive differences).

4. Using the techniques developed in [16] and described in Section 5, we com-
pute two different bitstrings Sc and S′c, of 4096 bits (8 near-collision blocks)
each. Each near-collision block is used to eliminate one (triple) of the bit
differences in the IHVs from the previous step, so that at the end of the 8
near-collision blocks the IHVs are equal, and a complete MD5 collision has
been constructed. We now have S = Sb‖Sc and S′ = S′b‖S′c that form the
leading 4192 bits of the RSA moduli, such that the two to-be-signed fields
up to and including S and S′, respectively, collide under MD5. Therefore,



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 9

in order not to destroy the collision, everything that is to be appended from
now on must be identical for the two certificates.

5. Next we used the method from [10] to craft two secure 8192-bit RSA moduli
from the two bitstrings S and S′ of 4192 bits each, by appending to each the
same 4000-bit E. As explained in [11] this means that we could in principle
construct moduli that are products of primes of sizes roughly 2000 and 6192
bits. In order to speed up the RSA modulus construction process, we aimed
somewhat lower here and settled for products of 1976 and 6216-bit primes.
This took about an hour on a regular laptop. The strongly unbalanced RSA
moduli may be unusual, but for our parameter choices (smallest prime factor
around 1976 bits for a modulus of 8192 bits) we see no reason to believe that
these moduli are less secure than more balanced, regular RSA moduli of the
same size, given the present state of factoring technology.

6. We insert the subject public key info into the template for the first certifi-
cate, thereby completing the to-be-signed part of the first certificate. We
compute the MD5 hash of the entire to-be-signed part, and from it we com-
pute the signature, which is added to the certificate. The first certificate is
now complete. To obtain the second valid certificate, we put the proper sub-
ject public key info and the same signature at their locations in the template
for the second certificate.

Finding the chosen-prefix MD5 collisions (i.e., Steps 3 and 4) is by far the com-
putationally hardest part of the above construction, a remark that is similar to
one made in [10]. However, in the meantime the methods for constructing MD5
collisions with identical initial IHVs have been improved considerably: such colli-
sions can now be found within seconds, see [15] and [9]. So in the scenario of [10]
the bottleneck may now have shifted from the collision search to the moduli
construction.

An example pair of colliding certificates is available in full detail in [14] and
on www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

5 Chosen-Prefix Collision Construction

5.1 Preliminaries

MD5 operates on 32-bit words, and uses little endian byte ordering.
A binary signed digit representation (BSDR) for a 32-bit word X is defined

as (ki)31i=0, where

X =
31∑

i=0

2iki, ki ∈ {−1, 0, +1}.

Many different BSDRs may exist for any given X . The weight of a BSDR is the
number of non-zero ki’s. A particularly useful BSDR is the Non-Adjacent Form
(NAF), where no two non-zero ki’s are adjacent. The NAF is not unique since
we work modulo 232 (making k31 = +1 equivalent to k31 = −1), but uniqueness

www.win.tue.nl/hashclash/ChosenPrefixCollisions/


10 M. Stevens, A. Lenstra, and B. de Weger

of the NAF can be enforced by choosing k31 ∈ {0, +1}. Among the BSDRs of
an integer, the NAF has minimal weight. We use the following notation:

– Integers are denoted in hexadecimal as 12EF16 and in binary as 000100101110
11112;

– X ∧ Y is the bitwise AND of X and Y ;
– X ∨ Y is the bitwise OR of X and Y ;
– X ⊕ Y is the bitwise XOR of X and Y ;
– X̄ is the bitwise complement of X ;

for 32-bit integers X and Y :

– X [i] is the i-th bit of the regular binary representation of X ;
– X + Y resp. X − Y is the addition resp. subtraction modulo 232;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n

bit positions:

RL(10100100 . . . 000000012, 5) = 10000000 . . . 001101002;

and for a 32-digit BSDR X :

– X�i� is the i-th signed bit of X ;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n

positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that P‖S
and P ′‖S′ collide under MD5. In this section a variable occurring during the
construction of S and intermediate P -related MD5 calculations, may have a
corresponding variable during the construction of S′ and intermediate P ′-related
MD5 calculations. If the former variable is X , then the latter is denoted X ′.
Furthermore, δX = X ′ − X for such a ‘matched’ 32-bit integer variable X , and
ΔX = (X ′[i] − X [i])31i=0, which is a BSDR of δX . For a ‘matched’ variable Z
that consist of tuples of 32-bit integers, say Z = (z1, z2, . . .), we define δZ as
(δz1, δz2, . . .).

5.2 Description of MD5

5.2.1 MD5 Message Processing
MD5 can be split up into these parts:

1. Padding. Pad the message with: first the ‘1’-bit, next as many ‘0’ bits until
the resulting length equals 448 mod 512, and finally the bitlength of the
original message as a 64-bit little-endian integer. The total bitlength of the
padded message is 512N for a positive integer N .

2. Partitioning. Partition the padded message into N consecutive 512-bit blocks
M1, M2, . . . , MN .



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 11

3. Processing. MD5 goes through N + 1 states IHVi, for 0 ≤ i ≤ N , called
the intermediate hash values. Each intermediate hash value IHVi consists of
four 32-bit words ai, bi, ci, di. For i = 0 these are initialized to fixed public
values:

(a0, b0, c0, d0) = (6745230116, EFCDAB8916, 98BADCFE16, 1032547616),

and for i = 1, 2, . . .N intermediate hash value IHVi is computed using the
MD5 compression function described in detail below:

IHVi = MD5Compress(IHVi−1, Mi).

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four
words aN , bN , cN , dN , converted back from their little-endian representation.

5.2.2 MD5 Compression Function
The input for the compression function MD5Compress(IHV, B) is an interme-
diate hash value IHV = (a, b, c, d) and a 512-bit message block B. There are 64
steps (numbered 0 up to 63), split into four consecutive rounds of 16 steps each.
Each step uses a modular addition, a left rotation, and a non-linear function.
Depending on the step t, Addition Constants ACt and Rotation Constants RCt

are defined as follows:

ACt =
⌊
232 |sin(t + 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X, Y, Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (X, Y, Z) = (X ∧ Y ) ⊕ (X̄ ∧ Z) for 0 ≤ t < 16,

G(X, Y, Z) = (Z ∧ X) ⊕ (Z̄ ∧ Y ) for 16 ≤ t < 32,

H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z̄) for 48 ≤ t < 64.

The message block B is partitioned into sixteen consecutive 32-bit words m0, m1,
. . . , m15 (with little endian byte ordering), and expanded to 64 words Wt, for
0 ≤ t < 64, of 32 bits each:

Wt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.



12 M. Stevens, A. Lenstra, and B. de Weger

We follow the description of the MD5 compression function from [6] because
its ‘unrolling’ of the cyclic state facilitates the analysis. For t = 0, 1, . . . , 63,
the compression function algorithm maintains a working register with 4 state
words Qt, Qt−1, Qt−2 and Qt−3. These are initialized as (Q0, Q−1, Q−2, Q−3) =
(b, c, d, a) and, for t = 0, 1, . . . , 63 in succession, updated as follows:

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62).

5.3 Outline of the Collision Construction

A chosen-prefix collision is a pair of messages M and M ′ that consist of arbi-
trarily chosen prefixes P and P ′ (not necessarily of the same length), together
with constructed suffixes S and S′, such that M = P‖S, M ′ = P ′‖S′, and
MD5(M) = MD5(M ′). The suffixes consist of three parts: random padding
bitstrings Sr, S

′
r, followed by ‘birthday’ bitstrings Sb, S

′
b, followed by ‘near colli-

sion’ blocks Sc, S
′
c. The random padding bitstrings are chosen to guarantee that

the bitlengths of P‖Sr‖Sb and P ′‖S′r‖S′b are both equal to 512n for a positive
integer n. (In our example of the colliding certificates we engineered the prefixes
such that Sr and S′r were both empty.) The MD5 compression function applied
to P‖Sr‖Sb resp. P ′‖S′r‖S′b will result in IHVn resp. IHV ′n, in the notation from
Section 5.2.1. The birthday bitstrings Sb, S

′
b are taken in such a way that the

resulting δIHVn has certain desirable properties, to be described below.
The idea is to eliminate the difference δIHVn using a series of pairs of near-

collision blocks that together constitute Sc, S
′
c. For each near-collision we need

to construct a differential path such that the NAF weight of the new δIHVn+j

is lower than the NAF weight of δIHVn+j−1, until after r pairs of near-collision
blocks we have reached δIHVn+r = 0.

For the j-th pair of near-collision blocks, i.e., Mn+j and M ′
n+j , we fix all but

one of the 32-bit words δmi of δMn+j as 0, and allow only δm11 to be ±2d

with varying d, 0 ≤ d < 32. This was suggested by Xiaoyun Wang because with
this type of message difference the number of bitconditions over the final two
and a half rounds can be kept low. This is illustrated in Table 2, where the
corresponding partial differential path is shown for the final 31 steps. For these
types of message differences we try to find in an automated way a differential
path with the right properties, and then try to find a pair of near-collision blocks
Mn+j, M ′

n+j that satisfies the differential path.
The differential paths under consideration can only add (or substract) a tuple

(0, 2i, 2i, 2i) to δIHVn+j and therefore cannot eliminate arbitrary δIHVn. To



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 13

Table 2. Partial differential path with δm11 = ±2d

t δQt δFt δWt δTt δRt RCt

30 ∓2d

31 0
32 0
33 0 0 ±2d 0 0 16

34 − 60 0 0 0 0 0 ·
61 0 0 ±2d ±2d ±2d+10 mod 32 10
62 ±2d+10 mod 32 0 0 0 0 15
63 ±2d+10 mod 32 0 0 0 0 21
64 ±2d+10 mod 32

solve this we first use a birthday attack to find ‘birthday’ bitstrings Sb and
S′b such that δIHVn = (0, δb, δb, δb) for some δb. The birthday attack actually
searches for a collision (a, b − c, b − d) = (a′, b′ − c′, b′ − d′) between IHVn =
(a, b, c, d) and IHV ′n = (a′, b′, c′, d′), implying indeed δa = 0 and δb = δc = δd.
The search space consists of 96 bits and therefore the birthday step can be
expected to require on the order of 2

√
296 = 249 calls to the MD5 compression

function.
One may extend the birthdaying by searching for a δb of low NAF weight, as

this weight is the number of near-collision block pairs to be found. On average
one may expect to find a δb of NAF weight 11. In the case of our colliding
certificates example we found a δb of NAF weight only 8, after having extended
the search somewhat longer than absolutely necessary.

Let (ki) be the NAF of δb. Then we can reduce δIHVn = (0, δb, δb, δb) to
(0, 0, 0, 0) by using, for each non-zero ki, a differential path based on the partial
differential path in Table 2 with δm11 = −ki2i−10 mod 32. In other words, the
signed bit difference at position i in δb can be eliminated by choosing a message
difference only in δm11, with just one opposite-signed bit set at position i −
10 mod 32. Let ij for j = 1, 2, . . . , r be the indices of the non-zero ki. Starting
with n-block M = P‖Sr‖Sb and M ′ = P ′‖S′r‖S′b and the corresponding resulting
IHVn and IHV ′n we do the following for j = 1, 2, . . . , r in succession:

1. Let δm11 = −kij 2ij−10 mod 32 and δm� = 0 for � 	= 11 (note the slight
abuse of notation, since we define just the message block differences, without
specifying the message blocks themselves).

2. Starting from IHVn+j−1 and IHV ′n+j−1, find a differential path.
3. Find message blocks Sc,j and S′c,j = Sc,j+δMn+j, that satisfy the differential

path. This can be done by using collision finding techniques such as Klima’s
tunnels, cf. [9] and [15].

4. Let IHVn+j = MD5Compress(IHVn+j−1, Sc,j), IHV ′n+j = MD5Compress
(IHV ′n+j−1, S

′
c,j), and append Sc,j to M and S′c,j to M ′.

It remains to explain step 2 in this algorithm.



14 M. Stevens, A. Lenstra, and B. de Weger

Fig. 2. δIHV s for the colliding certificates

Figure 2 visualizes the entire process. The horizontal lines represent the NAFs of
δIHVi for i = 0, 1, . . . , 21. The section P‖Sr‖Sb consists of 4 blocks (i.e., n = 4),
so at i = 4 only r = 8 triples of bit differences are left. They are annihilated one
by one by the 8 near-collision block pairs (i.e., Sc,j and S′c,j for j = 1, 2, . . . , 8),
so that at i = 12 a full collision is reached. The blocks after that (which include
E from Section 4.3) are identical for the two messages, so that the collision is
retained.

5.4 Differential Paths and Bitconditions

Assume MD5Compress is applied to pairs of inputs for both intermediate hash
value and message block, i.e., to (IHV, B) and (IHV ′, B′). A differential path for
MD5Compress is a precise description of the propagation of differences through
the 64 steps caused by δIHV and δB:

δFt = ft(Q′t, Q
′
t−1, Q

′
t−2) − ft(Qt, Qt−1, Qt−2);

δTt = δFt + δQt−3 + δWt;
δRt = RL(T ′t , RCt) − RL(Tt, RCt);

δQt+1 = δQt + δRt.

Note that δFt is not uniquely determined by δQt, δQt−1 and δQt−2, so it is
necessary to describe the value of δFt and how it can result from the Qi, Q

′
i in

such a way that it does not conflict with other steps. Similarly δRt is not uniquely
determined by δTt and RCt, so also the value of δRt has to be described.

5.4.1 Bitconditions
We use bitconditions on (Qt, Q

′
t) to describe differential paths, where a sin-

gle bitcondition specifies directly or indirectly the values of the bits Qt[i] and
Q′t[i]. Thus a differential path consists of a matrix of bitconditions with 68
rows (for the possible indices t = −3, −2, . . . , 64 in Qt, Q

′
t) and 32 columns

(one for each bit). A direct bitcondition on (Qt[i], Q′t[i]) does not involve other
bits Qj [k] or Q′j[k], while an indirect bitcondition does, and specifically one of
Qt−2[i], Qt−1[i], Qt+1[i] or Qt+2[i]. Using only bitconditions on (Qt, Q

′
t) we can

specify all the values of δQt, δFt and thus δTt and δRt = δQt+1−δQt by the rela-
tions above. A bitcondition on (Qt[i], Q′t[i]) is denoted by qt[i], and symbols like
0, 1, +, -, ^, . . . are used for qt[i], as defined below. The 32 bitconditions (qt[i])31i=0
are denoted by qt. We discern between differential bitconditions and boolean



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 15

Table 3. Differential bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) ki

. Qt[i] = Q′
t[i] 0

+ Qt[i] = 0, Q′
t[i] = 1 +1

- Qt[i] = 1, Q′
t[i] = 0 −1

Note: δQt =
�31

i=0 2iki and ΔQt = (ki).

Table 4. Boolean function bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) direct/indirect direction

0 Qt[i] = Q′
t[i] = 0 direct

1 Qt[i] = Q′
t[i] = 1 direct

^ Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

v Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

y Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

m Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

w Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

# Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

h Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨ Qt−2[i] = 0) indirect backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨ Qt[i] = 0) indirect forward

function bitconditions. The former, shown in Table 3, are direct, and specify
the value ki = Q′t[i] − Qt[i] which together specify δQt =

∑
2iki by how each

bit changes. Note that (ki) is also a BSDR. The boolean function bitconditions,
shown in Table 4, are used to resolve any ambiguity in

ΔFt�i� = ft(Q′t[i], Q
′
t−1[i], Q

′
t−2[i]) − ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0, +1}

caused by different possible values for Qj[i], Q′j [i] for given bitconditions. As an
example, for t = 0 and (qt[i], qt−1[i], qt−2[i]) = (., +, -) there is an ambiguity:

if Qt[i] = Q′t[i] = 0 then ΔFt�i� = ft(0, 1, 0) − ft(0, 0, 1) = −1,

but if Qt[i] = Q′t[i] = 1 then ΔFt�i� = ft(1, 1, 0) − ft(1, 0, 1) = +1.

To resolve this ambiguity the bitcondition (.,+,-) can be replaced by (0,+,-) or
(1,+,-).

All boolean function bitconditions include the constant bitcondition Qt[i] =
Q′t[i], so they do not affect δQt. Furthermore, indirect boolean function bitcon-
ditions never involve a bit with condition + or -, since then it could be replaced
by one of the direct bitconditions ., 0 or 1. We distinguish in the direction of
indirect bitconditions, since that makes it easier to resolve an ambiguity later
on. It is quite easy to change all backward bitconditions into forward ones in a
valid (partial) differential pathm, and vice versa.



16 M. Stevens, A. Lenstra, and B. de Weger

When all δQt and δFt are determined by bitconditions then also δTt and
δRt can be determined, which together describe the bitwise rotation of δTt in
each step. Note that this does not describe if it is a valid rotation or with
what probability the rotation from δTt to δRt occurs. The differential paths
we constructed for our example can be found at www.win.tue.nl/hashclash/
ChosenPrefixCollisions/.

5.4.2 Differential Path Construction Overview
The basic idea in constructing a differential path is to construct a partial lower
differential path over steps t = 0, 1, . . . , 11 and a partial upper differential path
over steps t = 16, 17, . . . , 63, so that the Qi involved in the partial paths meet
but do not overlap. Then try to connect those partial paths over the remaining
4 steps into one full differential path. Constructing the partial lower path can
be done by starting with bitconditions q−3, q−2, q−1, q0 that are equivalent to
the values of IHV, IHV ′ and then extend this step by step. Similarly the partial
upper path can be constructed by extending the partial path in Table 2 step by
step. To summarize, step 2 in the algorithm of section 5.3 consist of the following
substeps:

2.1 Using IHV and IHV ′ determine bitconditions (qi)0i=−3.
2.2 Generate a partial lower differential path by extending (qi)0i=−3 forward up

to step t = 11.
2.3 Generate a partial upper differential path by extending the path in Table 2

down to t = 16.
2.4 Try to connect these lower and upper differential paths over t = 12, 13, 14, 15.

If this fails generate other partial lower and upper differential paths and try
again.

5.5 Extending Differential Paths

When constructing a differential path one must fix the message block differences
δm0, . . . , δm15. Suppose we have a partial differential path consisting of at least
bitconditions qt−1 and qt−2 and that the values δQt and δQt−3 are known. We
want to extend this partial differential path forward with step t resulting in
the value δQt+1 and (additional) bitconditions qt, qt−1, qt−2. We assume that all
indirect bitconditions are forward and do not involve bits of Qt. If we also have
qt instead of only the value δQt (e.g. q0 resulting from given values IHV, IHV ′),
then we can skip the carry propagation and continue at Section 5.5.2.

5.5.1 Carry Propagation
First we want to use the value δQt to select bitconditions qt. This can be done
by choosing any BSDR of δQt, which directly translates into a possible choice
for qt as given in Table 3. Since we want to construct differential paths with as
few bitconditions as possible, but also want to be able to randomize the process,
we may choose any low weight BSDR (such as the NAF).



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 17

5.5.2 Boolean Function
For some i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i]) be any triple of bitconditions such
that all indirect bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i]. The triple
(a, b, c) is associated with the set Uabc of tuples of values (x, x′, y, y′, z, z′) =
(Qt[i], Q′t[i], Qt−1[i], Q′t−1[i], Qt−2[i], Q′t−2[i]):

Uabc =
{
(x, x′, y, y′, z, z′) ∈ {0, 1}6 satisfies bitconditions (a, b, c)

}
.

If Uabc = ∅ then (a, b, c) is said to be contradicting and cannot be part of any
valid differential path. We define Ft as the set of all triples (a, b, c) such that all
indirect bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i] and Uabc 	= ∅.

We define Vabc as the set of all possible boolean function differences ft(x′, y′, z′)
− ft(x, y, z) for given bitconditions (a, b, c) ∈ Ft:

Vabc = {ft(x′, y′, z′) − ft(x, y, z) | (x, x′, y, y′, z, z′) ∈ Uabc} ⊂ {−1, 0, +1}.

If |Vabc| = 1 then (a, b, c) leaves no ambiguity and the triple (a, b, c) is said
to be a solution. Let St be the set of all solutions. If |Vabc| > 1 then for each
g ∈ Vabc we define Wabc,g as the set of solutions (d, e, f) ∈ St that are compatible
with (a, b, c) and that have g as boolean function difference:

Wabc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vdef = {g}} .

Note that for all g ∈ Vabc there is always a triple (d, e, f) ∈ Wabc,g that consists
only of direct bitconditions 01+-, hence Wabc,g 	= ∅. The direct and forward
(resp. backward) boolean function bitconditions were chosen such that for all t,
i and (a, b, c) ∈ Ft and for all g ∈ Vabc there exists a triple (d, e, f) ∈ Wabc,g

consisting of direct and forward (resp. backward) bitconditions such that

Udef is equal to {(x, x′, y, y′, z, z′) ∈ Uabc | ft(x′, y′, z′) − ft(x, y, z) = g} .

In other words, these boolean function bitconditions allows one to resolve an
ambiguity in an optimal way. If the triple (d, e, f) is not unique, then we pre-
fer direct over indirect bitconditions and short indirect bitconditions (vy^!)
over long indirect bitconditions (whqm#?) for simplicity reasons. For given t,
bitconditions (a, b, c), and g ∈ Vabc we define FC(t, abc, g) = (d, e, f) and
BC(t, abc, g) = (d, e, f) as the preferred triple (d, e, f) consisting of direct and
forward, respectively backward bitconditions. These should be precomputed for
all cases.

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) =
(qt[i], qt−1[i], qt−2[i]) where only c can be an indirect bitcondition. If so, it
must involve Qt−1[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1 there is no ambi-
guity and we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose any
gi ∈ Vabc and we resolve the ambiguity left by bitconditions (a, b, c) by replacing
them by (d, e, f) = FC(t, abc, gi), which results in boolean function difference
gi. Given all gi, the values δFt =

∑31
i=0 2igi and δTt = δFt + δQt−3 + δWt can be

determined.



18 M. Stevens, A. Lenstra, and B. de Weger

5.5.3 Bitwise Rotation
The integer δTt does not uniquely determine the value of δRt = RL(T ′t , n) −
RL(Tt, n), where n = RCt. Nevertheless, we simply use δRt = RL(NAF (δTt), n)
and determine δQt+1 = δQt +δRt to extend our partial differential path forward
with step t.

Another approach to determine δRt uses the fact that any BSDR (ki) of δTt

determines δRt:

δRt =
31∑

i=0

2i+n mod 32(T ′t [i] − Tt[i]) =
31∑

i=0

2i+n mod 32ki

= 2n
31−n∑

i=0

2iki + 2n−32
31∑

i=32−n

2iki.

Different BSDRs (ki) and (�i) of δTt result in the same δRt as long as

31−n∑

i=0

2iki =
31−n∑

i=0

2i�i and
31∑

i=32−n

2iki =
31∑

i=32−n

2i�i.

In general, let (α, β) ∈ Z
2 be a partition of the integer δTt with α + β = δTt

mod 232, |α| < 232−n, |β| < 232 and 232−n|β. For a BSDR (ki) of δTt we say that
(α, β) ≡ (ki) if α =

∑31−n
i=0 2iki and β =

∑31
i=32−n 2iki. The rotation of (α, β) is

defined as RL((α, β), n) = 2nα + 2n−32β mod 232.
Let x = (δTt mod 232−n) and y = (δTt − x mod 232), then 0 ≤ x < 232−n

and 0 ≤ y < 232. This gives rise to at most 4 partitions of δTt:

1. (α, β) = (x, y);
2. (α, β) = (x, y − 232), if y 	= 0;
3. (α, β) = (x − 232−n, y + 232−n mod 232), if x 	= 0;
4. (α, β) = (x−232−n, (y+232−n mod 232)−232), if x 	= 0 and y+232−n 	= 0

mod 232.

The probability of each partition (α, β) equals

p(α,β) =
∑

(ki)≡(α,β)

2−weight of (ki).

One then chooses any partition (α, β) for which p(α,β) ≥ 1
4 and determines δRt as

RL((α, β), n). In practice NAF (δT ) most often leads to the highest probability,
which validates the simpler approach we used.

5.5.4 Extending Backward
Similar to extending forward, suppose we have a partial differential path con-
sisting of at least bitconditions qt and qt−1 and that the differences δQt+1 and
δQt−2 are known. We want to extend this partial differential path backward with
step t resulting in δQt−3 and (additional) bitconditions qt, qt−1, qt−2. We assume
that all indirect bitconditions are backward and do not involve bits of Qt−2.



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 19

We choose a BSDR of δQt−2 with weight at most 1 or 2 above the lowest
weight, such as the NAF. We translate the chosen BSDR into bitconditions
qt−2.

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) =
(qt[i], qt−1[i], qt−2[i]) where only b can be an indirect bitcondition. If so, it must
involve Qt−2[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1 there is no ambiguity and
we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose any gi ∈ Vabc

and we resolve the ambiguity left by bitconditions (a, b, c) by replacing them by
(d, e, f) = BC(t, abc, gi), which results in boolean function difference gi. Given
all gi, the value δFt =

∑31
i=0 2igi can be determined.

To rotate δRt = δQt+1 − δQt over n = 32 − RCt bits, we simply use δTt =
RL(NAF (δRt), n). Or we may choose a partition (α, β) of δRt with p(α,β) ≥ 1

4
and determine δTt = RL((α, β), n). As in the ‘forward’ case, NAF (δRt) often
leads to the highest probability. Finally, we determine δQt−3 = δTt − δFt − δWt

to extend our partial differential path backward with step t.

5.6 Constructing Full Differential Paths

Construction of a full differential path can be done as follows. Choose δQ−3 and
bitconditions q−2, q−1, q0 and extend forward up to step 11. Also choose δQ64
and bitconditions q63, q62, q61 and extend backward down to step 16. This leads
to bitconditions q−2, q−1, . . . , q11, q14, q15, . . . , q63 and differences δQ−3, δQ12,
δQ13, δQ64. It remains to finish steps t = 12, 13, 14, 15. As with extending back-
ward we can, for t = 12, 13, 14, 15, determine δRt, choose the resulting δTt after
right rotation of δRt over RCt bits, and determine δFt = δTt − δWt − δQt−3.

We aim to find new bitconditions q10, q11, . . . , q15 that are compatible with
the original bitconditions and that result in the required δQ12, δQ13, δF12, δF13,
δF14, δF15, thereby completing the differential path. First we can test whether
it is even possible to find such bitconditions.

For i = 0, 1, . . . , 32, let Ui be a set of tuples (q1, q2, f1, f2, f3, f4) of 32-bit
integers with qj ≡ fk ≡ 0 mod 2i for j = 1, 2 and k = 1, 2, 3, 4. We want
to construct each Ui so that for each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui there exist
bitconditions q10[�], q11[�], . . . , q15[�], determining the ΔQ11+j��� and ΔF11+k���
below, over the bits � = 0, . . . , i − 1, such that

δQ11+j = qj +
i−1∑

�=0

2�ΔQ11+j���, j = 1, 2,

δF11+k = fk +
i−1∑

�=0

2�ΔF11+k���, k = 1, 2, 3, 4.

This implies U0 = {(δQ12, δQ13, δF12, δF13, δF14, δF15)}. The other Ui are con-
structed inductively by Algorithm 1. Furthermore, |Ui| ≤ 26, since for each qj , fk

there are at most 2 possible values that can satisfy the above relations.
If we find U32 	= ∅ then there exists a path u0, u1, . . . , u32 with ui ∈ Ui where

each ui+1 is generated by ui in Algorithm 1. Now the desired new bitconditions



20 M. Stevens, A. Lenstra, and B. de Weger

Algorithm 1. Construction of Ui+1 from Ui.
Suppose Ui is constructed as desired in Section 5.6.
Let Ui+1 = ∅ and (a, b, e, f) = (q15[i], q14[i], q11[i], q10[i]).
For each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui do the following:

1. For each bitcondition d = q12[i] ∈
�

{.} if q1[i] = 0
{-, +} if q1[i] = 1 do

2. Let q′
1 = 0, −1, +1 for resp. d =.,-,+

3. For each different f ′
1 ∈ {−f1[i], +f1[i]} ∩ Vdef do

4. Let (d′, e′, f ′) = FC(12, def, f ′
1)

5. For each bitcondition c = q13[i] ∈
�

{.} if q2[i] = 0
{-, +} if q2[i] = 1 do

6. Let q′
2 = 0, −1, +1 for resp. c =.,-,+

7. For each different f ′
2 ∈ {−f2[i], +f2[i]} ∩ Vcd′e′ do

8. Let (c′, d′′, e′′) = FC(13, cd′e′, f ′
2)

9. For each different f ′
3 ∈ {−f3[i], +f3[i]} ∩ Vbc′d′′ do

10. Let (b′, c′′, d′′′) = FC(14, bc′d′′, f ′
3)

11. For each different f ′
4 ∈ {−f4[i], +f4[i]} ∩ Vab′c′′ do

12. Let (a′, b′′, c′′′) = FC(15, ab′c′′, f ′
4)

13. Insert (q1 −2iq′
1, q2 −2iq′

2, f1 −2if ′
1, f2 −2if ′

2, f3 −2if ′
3, f4 −2if ′

4)
into Ui+1.

Keep only one of each tuple in Ui+1 that occurs multiple times. By construction we
find Ui+1 as desired.

(q15[i], q14[i], . . . , q10[i]) are (a′, b′′, c′′′, d′′′, e′′, f ′), which can be found at step 13
of Algorithm 1, where one starts with ui and ends with ui+1.

5.7 Implementation Details

Implementation of these techniques was done in C++ using the general purpose
library Boost and the BOINC framework. BOINC is an open source distributed
computing framework that allows volunteers on the Internet to join a project
and donate cpu-time. Each project running a BOINC server automatically han-
dles compute-client inputs and outputs specific to any number of applications,
including output validation and re-assignment of jobs, if required. Volunteers,
which can form teams, can monitor their own and others’ progress, thus pro-
viding an inspiring competitive environment. Our BOINC project had a peak
performance of approximately 400 GigaFLOPS.

To construct our chosen-prefix collision we used six applications:

1. One that generates birthday trails ending in a distinguished point [13];
2. One that collects birthday trails and computes collisions when found;
3. One that loads a set of partial lower differential paths and extends those

forward with step t and saves only the paths with the fewest bitconditions;
4. One that loads a set of partial upper differential paths and extends those

backward with step t and saves only the paths with the fewest bitconditions;



Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates 21

5. One that loads sets of lower and upper differential paths and tries to connect
each combination;

6. One that searches for near-collision blocks that satisfy a given full differential
path.

While extending a partial differential path we exhaustively try all BSDRs of δQt

with weight at most 2 above the lowest weight, and all possible δFt and all high-
probability rotations. We keep only the N paths with the fewest bitconditions,
for some preset value of N . Also we keep only those paths that have a preset
minimum total tunnel strength over the Q4, Q5, Q9, Q10-tunnels [9]. With the
exception of the 2nd, all applications can be fully parallelized. For the 1st and 5th
application, which were by far the most cpu-time consuming, we used BOINC;
the others were run on a cluster.

6 Concluding Remark

We have presented an automated way to find differential paths for MD5, have
shown how to use them to construct chosen-prefix collisions, and have con-
structed two X.509 certificates with different name fields but idential signatures.
Our construction required substantial cpu-time, but chosen-prefix collisions can
be constructed much faster by using a milder birthday condition (namely, just
δa = 0 and δc = δd) and allowing more near-collision blocks (about 14). See [16]
for details.

Acknowledgements

This work benefited greatly from suggestions by Xiaoyun Wang. We are grateful
for comments and assistance received from the Eurocrypt 2007 reviewers, Bart
Asjes, Stuart Haber, Paul Hoffman, Pascal Junod, Vlastimil Klima, Bart Pre-
neel, NBV, Gido Schmitz, Eric Verheul, and Yiqun Lisa Yin. Finally, we thank
hundreds of BOINC enthousiasts all over the world, most unknown to us, who
donated an impressive amount of cycles to the HashClash project running with
BOINC software.

References

1. Christophe de Cannière and Christian Rechberger, Finding SHA-1 Characteristics:
General results and applications, AsiaCrypt 2006, Springer LNCS 4284 (2006), 1–
20.

2. M. Daum and S. Lucks, Attacking Hash Functions by Poisoned Messages, ”The
Story of Alice and her Boss”, June 2005, www.cits.rub.de/MD5Collisions/.

3. P. Gauravaram, A. McCullagh and E. Dawson, Collision Attacks on MD5 and SHA-
1: Is this the “Sword of Damocles” for Electronic Commerce?, AusSCERT 2006
R&D Stream, May 2006, www.isi.qut.edu.au/people/subramap/AusCert-6.pdf.

www.cits.rub.de/MD5Collisions/
www.isi.qut.edu.au/people/subramap/AusCert-6.pdf


22 M. Stevens, A. Lenstra, and B. de Weger

4. M. Gebhardt, G. Illies and W. Schindler, A Note on Practical Value of
Single Hash Collisions for Special File Formats, NIST First Cryptographic
Hash Workshop, October/November 2005, csrc.nist.gov/pki/HashWorkshop/
2005/Oct31%5FPresentations/Illies%5FNIST%5F05.pdf .

5. R. Housley, W. Polk, W. Ford and D. Solo, Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) Profile, IETF RFC 3280,
April 2002, www.ietf.org/rfc/rfc3280.txt.

6. Philip Hawkes, Michael Paddon and Gregory G. Rose, Musings on the
Wang et al. MD5 Collision, Cryptology ePrint Archive, Report 2004/264,
eprint.iacr.org/2004/264.

7. P. Hoffman and B. Schneier, Attacks on Cryptographic Hashes in Internet Protocols,
IETF RFC 4270, November 2005, www.ietf.org/rfc/rfc4270.txt.

8. D. Kaminsky, MD5 to be considered harmful someday, December 2004,
www.doxpara.com/md5%5Fsomeday.pdf.

9. Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute,
Cryptology ePrint Archive, Report 2006/105, eprint.iacr.org/2006/105.

10. A.K. Lenstra, X. Wang and B.M.M. de Weger, Colliding X.509 certificates, Cryp-
tology ePrint Archive, Report 2005/067, eprint.iacr.org/2005/067. An updated
version has been published as an appendix to [11].

11. A.K. Lenstra and B.M.M. de Weger, On the possibility of constructing meaningful
hash collisions for public keys, ACISP 2005, Springer LNCS 3574 (2005), 267–279.

12. O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest,
Cryptology ePrint Archive, Report 2004/356, eprint.iacr.org/2004/356.

13. Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with crypt-
analytic applications, Journal of Cryptology 12(1), 1–28, 1999.

14. Marc Stevens, Arjen Lenstra and Benne de Weger, Target Collisions for MD5 and
Colliding X.509 Certificates for Different Identities, Cryptology ePrint Archive,
Report 2006/360, eprint.iacr.org/2006/360.

15. Marc Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive, Report
2006/104, eprint.iacr.org/2006/104.

16. Marc Stevens, TU Eindhoven MSc thesis, in preparation. See
www.win.tue.nl/hashclash/.

17. X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, EuroCrypt
2005, Springer LNCS 3494 (2005), 19–35.

file:csrc.nist.gov/pki/HashWorkshop/2005/Oct31%5FPresentations/Illies%5FNIST%5F05.pdf 
file:csrc.nist.gov/pki/HashWorkshop/2005/Oct31%5FPresentations/Illies%5FNIST%5F05.pdf 
www.ietf.org/rfc/rfc3280.txt
eprint.iacr.org/2004/264
www.ietf.org/rfc/rfc4270.txt
www.doxpara.com/md5%5Fsomeday.pdf 
eprint.iacr.org/2006/105
eprint.iacr.org/2005/067
eprint.iacr.org/2004/356
eprint.iacr.org/2006/360
eprint.iacr.org/2006/104
www.win.tue.nl/hashclash/


Non-trivial Black-Box Combiners for
Collision-Resistant Hash-Functions Don’t Exist

Krzysztof Pietrzak�

CWI Amsterdam
pietrzak@cwi.nl

Abstract. A (k, �)-robust combiner for collision-resistant hash-functions
is a construction which from � hash-functions constructs a hash-function
which is collision-resistant if at least k of the components are collision-
resistant. One trivially gets a (k, �)-robust combiner by concatenating
the output of any � − k + 1 of the components, unfortunately this is
not very practical as the length of the output of the combiner is quite
large. We show that this is unavoidable as no black-box (k, �)-robust
combiner whose output is significantly shorter than what can be achieved
by concatenation exists. This answers a question of Boneh and Boyen
(Crypto’06).

1 Introduction

A function H : {0, 1}∗ → {0, 1}v is a collision-resistant hash-function (CRHF),
if no efficient algorithm can find two inputs M �= M ′ where H(M) = H(M ′),
such a pair (M, M ′) is called a collision for H .1

In the last few years we saw several attacks on popular CRHFs previously
believed to be secure [18,19]. Although provably secure2 hash-functions exist
(see e.g. [3] and references therein), they are rather inefficient and rarely used in
practice. As we do not know which of the CRHFs used today will stay secure, it
is natural to investigate combiners for CRHFs. In its simplest form the problem
is the following: given two hash-functions

H1, H2 : {0, 1}∗ → {0, 1}v,

can we construct a new hash-function which is collision-resistant if either H1 or
H2 is? The answer is that of course we can, just concatenate the outputs:

H(X) = H1(X)‖H2(X). (1)
� Supported by DIAMANT, the Dutch national mathematics cluster for discrete in-

teractive and algorithmic algebra and number theory. This work was partially done
while the author was a postdoc at the Ecole Normale Supérieure, Paris.

1 This definition is very informal as there are some issues which make it hard to have a
definition for collision-resistant hash-functions which is theoretically and practically
satisfying, see [15] for recent discussion on that topic.

2 Provably secure means that finding a collision can be shown to be at least as hard
as solving some concrete (usually number theoretic) problem.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 23–33, 2007.
c© International Association for Cryptology Research 2007



24 K. Pietrzak

As any collision M, M ′ for H is also a collision for H1 and H2, if either H1 or
H2 is collision-resistant, so is H . Unfortunately the length of the output of H
is the sum of the output lengths of H1 and H2, this makes the combiner quite
unattractive for practical purposes.

1.1 The Boneh-Boyen and Our Result

Boneh and Boyen [2] ask whether one can combine CRHFs such that the output
length is (significantly) less than what can be achieved by concatenation. They
prove a first negative result in this direction, namely that there is no black-box
construction for combining CRHFs in such a way that the output is shorter than
what can be achieved by concatenation under the additional assumption that
this combiner queries each of the components exactly once. They ask whether
a similar impossibility result can be obtained in the general case where the
combiner is allowed to query the components several times. We answer this
question in the affirmative: any combiner for � functions with range {0, 1}v must
have output length at least (v − O(log(q)))� bits3, where q is the number of
oracle calls made by the combiner. Stated in asymptotic terms, if q ∈ 2o(v) is
subexponential, then the output length is in (1 − o(1))v�, and if q is constant
the output length is in v� − O(1), this must be compared to v� which is trivially
achieved by concatenation.

(k, �)-Robust Combiner. In this paper we will consider the more general ques-
tion whether secure and non-trivial (k, �)-robust combiners for collision-resistant
hash-functions exist. A (k, �)-robust combiner is collision-resistant, if at least k
(and not just one) of the components used are secure. We trivially get a (k, �)-
robust combiner by concatenating any � − k + 1 of the components,4 which
gives an output length of v(� − k + 1). We show that this cannot be signifi-
cantly improved as any (k, �)-robust combiner must have output length at least
(v − O(log(q)))(� − k + 1) − �.

The main technical contribution of this paper is Lemma 2, which generalizes
(and as a special case contains the statement of) Theorem 3 from [2]. Roughly,
this lemma states that there exist hash-functions and a collision for any combiner
with sufficiently short output, such that this collision does not trivially lead to
collisions for all5 of the hash-functions. The proof of this lemma follows from a
simple application of the probabilistic method, and in particular is much simpler
than the proof of Theorem 3 in [2].

An Information Theoretic Argument. There is a quite intuitive infor-
mation theoretic argument why (k, �)-robust combiners for CHRFs {0, 1}∗ →
{0, 1}v whose output is significantly shorter than v(� − k + 1) bits can’t exist.
We give this argument below, it will turn out that this simple approach gives
an impossibility result which is much weaker than what we prove in this paper.
This argument is shown only for motivational reasons and is not relevant for the
3 In this paper all logarithms are to base 2.
4 We’ll look at this construction in more detail in the next section.
5 Or for � − k + 1 of the hash-functions if we consider (k, �)-robust combiners.



Non-trivial Black-Box Combiners for CRHFs Don’t Exist 25

rest of the paper, the reader can skip the rest of this section if this does not seem
to be of interest.

Basically, the argument uses the fact that one can encode a collision for any
function with output length w using roughly w bits6 and if the function is uni-
formly random, then w bits are also necessary. Now if a combiner with short
output is instantiated with uniformly random functions, (the encoding of) a
collision for the combiner will simply be too short to encode the information
necessary to find collisions for the components. A bit more precisely, for (1, 2)-
robust combiners this argument goes as follows. Assume we are given a combiner
C for two functions {0, 1}∗ → {0, 1}v whose output length is 2v − t (i.e. t bits
less than concatenation). Now we simply sample two uniformly random functions
H1, H2 : {0, 1}∗ → {0, 1}v and output a collision M, M ′ for CH1,H2 , such a colli-
sion can be encoded using 2v−t bits. To encode a collision for a random function
{0, 1}∗ → {0, 1}v, v bits are necessary and sufficient. Thus given the collision for
the combiner, we still lack about t/2 bits of information (i.e. we have that much
min-entropy) about a collision for one of the Hi’s, and would have to make about
2t/2 more queries to this Hi in order to find a collision.This argument only rules
out very strong combiners, where from any collision on the combiner we expect
to get a collision for both components very efficiently. For example it does not
rule out the possibility of (1, 2)-robust combiners with range 3v/2 (which we can
consider significantly less than 2v), where each collision for the combiner gives
collisions for both components if we are ready to invest an additional O(2v/4)
queries. Such a combiner would still be sufficient if we are willing to assume that
at least one of the components we combine has security (slightly more than)
2v/4. This assumption is very mild, as usually v is something like 160 or 256,
such that the birthday bound 2v/2 is infeasible, but if a collision can be found
after 2v/4 queries, the CRHF would be considered completely broken. More gen-
erally, the above argument does not rule out (1, 2)-robust combiners with output
length 2v − t for a t where 2t/2 queries are considered feasible (for an attacker).
In contrast, the theorem proven in this paper rules out (1, 2)-robust combiners
with output length 2v − t, unless the combiner itself makes 2t/2 invocations to
the components.

6 The following is a possible encoding. To define the encoding choose values X1, X2, . . .
in {0, 1}w+1 uniformly at random. Now given a function f : {0, 1}∗ → {0, 1}w (which
can be chosen adversarialy, but independent of the Xi’s) let i be minimal such that
f(Xi) has at least 2 preimages in {0, 1}w+1 and output any X ∈ {0, 1}w+1 where
X �= Xi and f(X) = f(Xi). The expectation of i is at most 2 (as the probability that
f(Z) has only one preimage in {0, 1}w+1 for a random Z is at most 1/2). Thus given
X, we must make an expected number of at most 3 queries to f to find a collision
(i.e. first compute f(X) and then try f(X1), f(X2), . . . until f(X) = f(Xi)). If we
only have w + 1 − c (not w + 1) bits for the encoding, we can simply omit the last
c bits in the encoding just described, and when decoding trying all 2c possibilities
for this bits, thus we need an expected number of 2 + 2c evaluations of f to find a
collision given w + 1 − c bits of X, which is better than no information at all if c is
less than w/2.



26 K. Pietrzak

1.2 Related Work

Combiners. The idea of combining two or more cryptographic components in
order to get a system which is secure whenever at least one of the underlying
primitives is secure is quite old.7 The early results are on symmetric encryption
schemes [1,6,11]. Combiners for asymmetric primitives were constructed by Dodis
and Katz [5] (for CCA secure encryption schemes) and Harnik et al. [7] (for key-
agreement). The general notion of a combiner was put forward by Herzberg
[8] who calls them “tolerant combiners”. In recent works one often calls them
“robust combiners”, a term introduced in [7]. Combiners have been generalized
in several ways:

(k, �)-Robust Combiners: [7] put forward the notion of (k, �)-robust combin-
ers as discussed in the last section. Such combiners are only guaranteed to
be secure if at least k (and not just one) of the � components used is secure.
Interestingly, for natural primitives as statistically hiding commitments [8]
and oblivious transfer [7,13] only 2-3 but no 1-2 combiners are known.

Cross-Primitive Combiners: In a cross-primitive combiner the combined
primitive is different from the components used, one can think of this as
simultaneously being a reduction and a combiner. This notion was introduced
by Meier and Przydatek [12] who construct a 1-2 private information retrieval
to oblivious transfer cross-primitive combiner, which is interesting as normal
1-2 combiners for oblivious transfer might not exist [7].

Efficiency and Other Parameters: In practice the mere existence of a
combiner is not enough, as the parameters of a combiner are important.
Efficiency is always of concern, fortunately for most primitives where com-
biners are known to exist, also efficient realizations are known [7,8], with bit-
commitments being a notable exception [8] to that rule. Besides efficiency,
for different primitives also other parameters are important, in particular
this paper is about the output-length of combiners for CRHFs.

Collision Resistance. collision-resistant hash-functions are very important
and subtle [15] cryptographic primitives which have attracted a lot of research,
even more in the recent years as widely used (presumably) collision-resistant
hash-functions as MD5 or SHA-1 have been broken [18,19]. Here we only mention
some of the generic results on CRHFs.

Simon shows that collision-resistant hash-functions cannot be constructed
from one-way functions via a black-box reduction [17]. On the positive side,
Naor and Yung [14] show that for some applications (in particular for signature
schemes) collision resistance is not necessary, as universal one-way hash-functions
are enough. Those can be constructed from one-way functions [10,16].

Merkle and Damg̊ard show that by iterating a CRHF with fixed input length,
one gets a CRHF for inputs of arbitrary length. Most CRHFs used today follow
7 We also see many combiners in the physical world, for example one often has several

different locks on a door. This does not to simply increase the time a burglar needs
to break the k locks by a factor of k, but there’s hope that some particular lock
might turn out to be much harder to come by than the others.



Non-trivial Black-Box Combiners for CRHFs Don’t Exist 27

this approach. Coron et al. [4] show that the Merkle-Damg̊ard construction does
not give a random function if instantiated with a random function (which was
not the design goal of this construction), but that this can be achieved with
some small modifications. Joux [9] shows that for iterated hash-functions (like
the Merkle-Damg̊ard construction) finding many values which hash to the same
value is not much harder than finding an ordinary collision. As a consequence
concatenating the output of such hash-functions does not increase the security:
let H1, H2 be iterated hash-functions with v bits output, then one can find a
collision for H(X) = H1(X)‖H2(X) in time O(v2v/2).

2 Combiners for CRHFs

Informally, a (k, �)-robust combiner for CRHFs is a construction (modeled as an
oracle circuit C) which, if instantiated with any � hash-functions H1, . . . , H� :
{0, 1}∗ → {0, 1}v, is collision-resistant if at least k of the Hi’s are. In order
to show that a construction is a (k, �)-robust combiner, one must provide an
efficient procedure P which given two colliding inputs for the combiner, finds
collisions for at least � − k + 1 of the underlying Hi’s. In this paper we only
consider black-box combiners as defined in [7], this means that C and P are
only given oracle access to the Hi’s.

The following definition of a (k, �)-robust combiner is a generalization of the
definition given in [2], where only the case k = 1 was considered.
Definition 1. A combiner for � collision-resistant hash-functions
{0, 1}∗ → {0, 1}v is a pair (C, P ) where C is an oracle circuit and P is an oracle
probabilistic polynomial-time Turing machine (PPTM)8

C : {0, 1}m → {0, 1}n P : {0, 1}2m → {0, 1}∗.
There are � types of oracle gates (tapes) in C (P ). With BH1,...,H�(X) (where
B is C or P ) we denote the output of B on input X when the � types of oracle
gates are instantiated with functions H1, . . . , H� : {0, 1}∗ → {0, 1}v respectively.

We say that P k-succeeds on M, M ′ ∈ {0, 1}∗ and oracles H1, . . . , H� if its
output contains collisions for all but at most k − 1 of the Hi’s, i.e. for

PH1,...,H�(M, M ′) → (U1, . . . , U�, U
′
1, . . . , U

′
�)

we have

∃J ⊆ {1, . . . , �}, |J | ≥ � − k + 1 : (Ui, U
′
i) is a collision for Hi.

Let Advk
P [(H1, . . . , H�), (M, M ′)] denote the probability (over P ’s coin tosses)

that PH1,...,H�(M, M ′) k-succeeds. Then (C, P ) is an ε-secure (k, �)-combiner,
if for all (compatible) H1, . . . , H� and all collisions (M, M ′) on CH1,...,H� we have

Advk
P [(H1, . . . , H�), (M, M ′)] > 1 − ε.

We say that (C, P ) is an (k, �)-robust combiner if it is ε-secure for a small ε.9

8 The only reason P is defined as a Turing machine and not as a circuit is that we
don’t want to put an a priori bound on the output length of P .

9 Here “small” usually means negligible in some security parameter.



28 K. Pietrzak

For example consider the following (k, �)-robust combiner (C, P )

CH1,...,H�(M) → H1(M)‖ . . . ‖H�−k+1(M)

P H1,...,H�(M, M ′) → (M, . . . , M), (M ′, . . . , M ′)

As any collision M, M ′ for CH1,...,H� is a collision for Hi for i = 1, . . . , � − k + 1,

Advk
P [(H1, . . . , H�), (M, M ′)] = 1.

So (C, P ) can be considered a secure (k, �)-robust combiner, as from any collision
on CH1,...,H� we get from P collisions for all but k − 1 of the Hi’s, thus if k of
the Hi’s are secure, also CH1,...,H� must be secure. The output length of C is
n = v(�− t+1), by the following theorem this cannot be significantly improved.

Theorem 1. Let (C, P ) be a (k, �)-robust combiner, where C : {0, 1}m →
{0, 1}n has qC oracle gates and P makes at most qP oracle calls. Suppose that

n < (v − 2 log(2qC))(� − k + 1) − � − 1 and m > n. (2)

Then there exist M, M ′ ∈ {0, 1}m and functions Ĥi : {0, 1}∗ → {0, 1}v for
i = 1, . . . , � relative to which

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ (qP + qC)2 + k

2v
. (3)

For the special case where k = 1 and C queries each Ĥi exactly once (which are
the constructions considered in [2]) the bound on n can be improved to

n < v� − 1 and m > n

or
n < v� and m − 1 > n.

The last statement slightly improves on the main result from [2] where a stronger
n < m− log � bound was needed in order to get n < v�. As we can find a collision
for any function with range {0, 1}v in 2v/2 steps, in order to reason about CRHFs
with range {0, 1}v the value 2v/2 must be unfeasibly large. In particular for any
reasonable combiner qP + qC 
 2v/2 and thus the advantage (3) will be very
small.

Let us remark that in [2] the ranges of the Hi’s were allowed to be different,
for the sake of exposition we drop this generalization, but it is straight forward
to adapt (the proof of) Theorem 1 to this more general case. Note that when
the Hi’s have different output lengths, say Hi has length vi where v1 ≤ v2 ≤
v3 ≤ . . . ≤ v�, then we can construct a (k, �)-robust combiner by concatenating
the outputs of H1, . . . , H�−k+1 (i.e. the Hi’s with the shortest outputs), which
will give a combiner with output length

∑�−k+1
i=1 vi. Again, this is basically best

possible, as for this setting Theorem 1 holds by generalizing equation (2) to

n <
�−k+1∑

i=1

(vi − 2 log(2qC)) − � − 1 and m > n.

and replacing v with v1 in (3).



Non-trivial Black-Box Combiners for CRHFs Don’t Exist 29

Following [2], to prove Theorem 1 it is sufficient to prove that hash-functions
H1, . . . , H� and a collision M, M ′ exists where in the computation of CH1,...,H�

on inputs M and M ′ at least k of the Hi’s are not queried on two distinct inputs
X, X ′ where Hi(X) = Hi(X ′). Note that this means that one does not trivially
get a collision for those Hi’s when learning M, M ′. Let J ⊆ {1, . . . , �}, |J | = k
be the indices of these k Hi’s. We prove the existence of such Hi’s and M, M ′

in Lemma 2 below. Then, from such H1, . . . , H� and M, M ′ we can get the
Ĥ1, . . . , Ĥ� as required by Theorem 1, by setting Ĥi(X) = Hi(X) for all in-
puts X which appear as input to Hi in the computation of CH1,...,H�(M) or
CH1,...,H�(M ′), and Ĥi(X) is assigned a random value otherwise. Clearly M, M ′

is also a collision for CĤ1,...,Ĥ� , moreover all Ĥi where i ∈ J are “very” collision-
resistant, as we just randomly defined their outputs, except on a subset of inputs
which itself does not contain a collision, Lemma 1 below is a formal statement
of this intuitive argument.

Proof (of Theorem 1). The theorem follows from Lemmata 1 and 2.

In the lemmata below10 let

– Wi(X) be the set of oracle queries to Hi made while evaluating CH1...H�(X).
– Vi(X) = {Hi(W ) : W ∈ Wi(X)} be the set of corresponding outputs (taken

without repetition).

Lemma 1. Let (C, P ) be a (k, �)-robust combiner, where C has qC oracle gates
and P makes at most qP oracle calls. Assume there exist oracles Hi : {0, 1}∗ →
{0, 1}v, i = 1, . . . , � and messages M, M ′ such that

– M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′).
– |Vj(M)∪Vj(M ′)|= |Wj(M)∪Wj(M ′)| for at least k different j ∈{1, . . . , �}.

Then there exist deterministic Ĥi : {0, 1}∗ → {0, 1}v, i = 1, . . . , � relative to
which

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ (qP + qC)2 + k

2v
.

Proof. Let J ⊆ {1, . . . , �}, |J | = k be the indices of the k hash-functions for
which no collision occurs during the computation of CH1,...,H� on input M and
M ′, i.e.

∀j ∈ J : |Vj(M) ∪ Vj(M ′)| = |Wj(M) ∪ Wj(M ′)|.

For i �∈ J we let Ĥi := Hi, and for each i ∈ J let Ri : {0, 1}∗ → {0, 1}v be
uniformly random and

Ĥi(W ) :=
{

Hi(W ) if W ∈ Wi(M) ∪ Wi(M ′)
Ri(W ) otherwise

Note that CĤ1,...,Ĥ�(M) = CĤ1,...,Ĥ�(M ′) as for each i, Hi(W ) = Ĥi(W ) for
inputs W ∈ Wi(M) ∪ Wi(M ′) which come up on the computation of CH1,...,H�

10 Our Lemma 1 is basically Theorem 2 from [2], the only difference is that we consider
(k, �)-robust combiners whereas [2] were only interested in the case k = 1.



30 K. Pietrzak

on inputs M, M ′, let Q denote all those inputs together with the corresponding
outputs.

Q =
�⋃

i=1

{Vi(M),Wi(M),Vi(M ′),Wi(M ′)}

Let P ′ be the oracle PPTM which makes at most qP oracle calls and maximizes
the probability α defined below.

α = Pr
P ′Ĥ1,...,Ĥ� (Q)→{U1,...,U�,U ′

1,...,U ′
�}]

[∃i ∈ J : Ui �= U ′i ∧ Ĥi(Ui) = Ĥi(U ′i)] (4)

α is an upper bound on Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)], as one possible strategy

for P ′ is to first compute M, M ′, which given Q can be done without access
to the Ĥi oracles, and then simulate P Ĥ1,...,Ĥ�(M, M ′) and output the output
of this simulation.11 To save on notation let P ∗ denote P ′Ĥ1,...,Ĥ�(Q). We say
that P ∗ found a collision if for some12 Ĥi, i ∈ J it makes an oracle query Ĥi(X)
where either for a previous query X ′ �= X to Ĥi we have Ĥi(X) = Ĥi(X ′) or
Ĥi(X) ∈ Vi(M) ∪ Vi(M ′) and X �∈ Wi(M) ∪ Wi(M ′). For i = 1, . . . , qP let Ci

denote the event that P ∗ found a collision after the i’th oracle query is made. If
the i’th oracle query is to a Ĥj where j �∈ J or a query which has already been
made we cannot get a collision, so

Pr[Ci|¬Ci−1] = 0.

So assume that the i’th oracle query is a new query X to a Ĥj where j ∈ J . Then
Ĥi(X) = Ri(X) is uniformly random and independent of any previous outputs,
thus the probability that it will collide with any of the ≤ i previous queries to
Ĥi or with one the ≤ 2qC values in Vi(M) ∪ Vi(M ′) is at most (2qC + i)/2v,
we get

Pr[CqP ] =
qP∑

i=1

Pr[Ci|Ci−1] ≤
qP∑

i=1

2qC + i

2v
≤ qP (2qC + qP )

2v
≤ (qP + qC)2

2v
.

Even if ¬CqP , i.e. P ∗ does not find a collision for some Ĥi, i ∈ J , there still is a
tiny chance that P ∗ guesses Ui, U

′
i where Ĥi(Ui) = Ĥi(U ′i) for some of the i ∈ J .

The probability of this is at most |J |/2v ≤ k/2v. Taking everything together:

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ α ≤ Pr[CqP ] + k/2v ≤ (qP + qC)2 + k

2v
. (5)

We’re almost done, except that in the above inequality, the Ĥi’s are not deter-
ministic as required by the lemma, but randomized (as the Ri’s were chosen at
11 The reason we give away the full Q is that that M, M ′ will usually leak some

information on Q, and the simplest way to deal with this leakage is to simply
assume that P ′ knows all those values.

12 Note that we don’t care about collision for Ĥi, i �∈ J as Q contains collisions for
those Ĥi’s.



Non-trivial Black-Box Combiners for CRHFs Don’t Exist 31

random). We can get fixed Ĥi’s for which (5) holds by choosing the Ri’s so they
minimize the left hand side of (5). ��

Lemma 2. Let C : {0, 1}m → {0, 1}n be as in the previous lemma. Then when-
ever

n < (v − 2 log(2qC))(� − k + 1) − � − 1 and m > n

there exist functions H1, . . . , H� and messages M, M ′ such that

– M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′).
– |Vj(M)∪Vj(M ′)|= |Wj(M)∪Wj(M ′)| for at least k different j ∈{1, . . . , �}.

For the special case where k = 1 and C queries each Hi exactly once (which are
the constructions considered in [2]) the bounds on n can be improved to

n < v� − 1 and m > n

or
n < v� and m − 1 > n.

Proof. Consider the following random experiment. First we sample � functions
Hi : {0, 1}∗ → {0, 1}v uniformly at random.13 Then M, M ′ ∈ {0, 1}m are sam-
pled uniformly at random. We define the events E1 and E2 as

E1 ⇐⇒ M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′)
E2 ⇐⇒ ∃J ⊆ {1, . . . , �}, |J | > � − k

where ∀j ∈ J : |Vj(M) ∪ Vj(M ′)| �= |Wj(M) ∪ Wj(M ′)|

We will show that Pr[E1] > Pr[E2], which then implies Pr[E1 ∧ ¬E2] > 0. This
will prove the lemma as it shows that random H1, . . . , H� and M, M ′ have the
property as claimed by the lemma with non-zero probability, and thus H1, . . . , H�

and M, M ′ with this property exist.
As Pr[M = M ′] = 2−m, Pr[CH1,...,H�(M) = CH1,...,H�(M ′)] ≥ 2−n and m > n

we get
Pr[E1] ≥ 2−n − 2−m ≥ 2−n−1. (6)

Let qi denote the number of Hi oracle gates in C, note that
∑�

i=1 qi = qC . We can
upper bound Pr[E2] by the probability that the best oracle algorithm AH1,...,H�

which can query the i’th oracle Hi at most 2qi times finds a collision for at least
� − k + 1 of the Hi’s.14 As the Hi’s are all independent random functions, the
best A can do is to query it i’th oracle on 2qi distinct inputs (which ones is

13 One can’t simply sample a Hi as this would need infinite randomness, but one can
use lazy sampling here, this means that Hi(X) is only assigned a (random) value
when Hi is actually invoked on input X.

14 This is an upper bound as one possible strategy for AH1,...,H� is to simply evaluate
CH1,...,H� on two random inputs M, M ′ to get success probability exactly Pr[E2].



32 K. Pietrzak

irrelevant), by the birthday bound15 the probability of finding a collision for any
Hi is at most 2qi(2qi − 1)/2v+1, now

Pr[E2] ≤ Pr[AH1,...,H� finds � − k + 1 collisions ]

≤
∑

J⊆{1,...,�}
|J|=�−k+1

Pr[∀i ∈ J : AH1,...,H� finds a collision for Hi]

≤
∑

J⊆{1,...,�}
|J|=�−k+1

∏

i∈J

2qi(2qi − 1)
2v+1

<
∑

J⊆{1,...,�}
|J|=�−k+1

(2q2
C)�−k+1

2v(�−k+1) ≤
(

� − k + 1
�

)
(2q2

C)�−k+1

2v(�−k+1) <
2�(2q2

C)�−k+1

2v(�−k+1) .

From the above equation, (6) and n < (v − 2 log(2qC))(� − k + 1)− � − 1 we now
get log(Pr[E1]) > log(Pr[E2]), and thus Pr[E1] > Pr[E2], as

log(Pr[E1]) ≥ log(2−n−1) = −n − 1 > −(v − 2 log(2qC))(� − k + 1) + �

and

log(Pr[E2]) < log
(

2�(2q2
C)�−k+1

2v(�−k+1)

)
= −(v − 2 log(2qC))(� − k + 1) + �

Our estimate on Pr[E2] has some slack as to keep the expression simple. For
the special case k = 1 and qi = 1, i = 1, . . . , � which covers the constructions
considered in [2] we get

Pr[E2] ≤
∏

i∈{1,...,�}

2qi(2qi − 1)
2v+1 = 2−v�

which satisfies Pr[E1] > Pr[E2] already for n < v� − 1. If we additionally assume
that n < m − 1 (not just n < m) then we can strengthen (6) to Pr[E1] > 2−n−1

and Pr[E1] > Pr[E2] holds for the optimal n < v�. ��

References

1. C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and
Mathematics with Applications, pages 447–450, 1981.

2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision
resistant hash functions. In CRYPTO, 2006.

3. Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. Vsh, an efficient and provable
collision-resistant hash function. In EUROCRYPT, pages 165–182, 2006.

15 This bound states that when randomly throwing q balls into N buckets, some bucket
will contain more than one element with probability at most q(q − 1)/2N .



Non-trivial Black-Box Combiners for CRHFs Don’t Exist 33

4. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-damg̊ard revisited : How to construct a hash function. In Advances in
Cryptology — CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science,
pages 430–448, 2005.

5. Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple en-
cryption. In TCC, pages 188–209, 2005.

6. Shimon Even and Oded Goldreich. On the power of cascade ciphers. ACM Trans.
Comput. Syst., 3(2):108–116, 1985.

7. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, pages 96–
113, 2005.

8. Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, pages 172–
190, 2005.

9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In CRYPTO, pages 306–316, 2004.

10. Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash func-
tions from arbitrary one-way functions, 2005. Cryptology ePrint Archive: Report
2005/328.

11. Ueli M. Maurer and James L. Massey. Cascade ciphers: The importance of being
first. J. Cryptology, 6(1):55–61, 1993.

12. Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In Cynthia Dwork, editor, CRYPTO ’06, volume
4117 of Lecture Notes in Computer Science, pages 555–569, 2006.

13. Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In TCC 2007, volume 4392 of Lecture Notes in Computer Sci-
ence, pages 404–418, 2007.

14. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33–43, 1989.

15. Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without
the keys, 2006. Cryptology ePrint Archive: Report 2006/281.

16. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394, 1990.

17. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In CRYPTO, pages 17–36, 2005.

19. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
EUROCRYPT, pages 19–35, 2005.



The Collision Intractability of MDC-2
in the Ideal-Cipher Model

John P. Steinberger

Dept. of Mathematics, University of California, Davis, California 95616 USA
jpsteinb@math.ucdavis.edu

Abstract. We provide the first proof of security for MDC-2, the most
well-known construction for turning an n-bit blockcipher into a 2n-bit
cryptographic hash function. Our result, which is in the ideal-cipher
model, shows that MDC-2, when built from a blockcipher having block-
length and keylength n, has security much better than that delivered by
any hash function that has an n-bit output. When the blocklength and
keylength are n = 128 bits, as with MDC-2 based on AES-128, an ad-
versary that asks fewer than 274.9 queries usually cannot find a collision.

Keywords: Collision-resistant hashing, cryptographic hash functions,
ideal-cipher model, MDC-2.

1 Introduction

Overview. A double block length hash-function uses an n-bit blockcipher as
the building block by which it maps (possibly long) strings to 2n-bit ones. The
classical double block length hash-function is MDC-2, illustrated in Figure 1.
This nearly 20-year-old technique [5, 22] is specified in the ANSI X9.31 and
ISO/IEC 10118-2 standards [1, 13], and it is implemented in popular libraries
and toolkits, such as OpenSSL.

This paper gives the first proof of security for MDC-2. Our result establishes
that when MDC-2 is based on an ideal blockcipher with keylength and block-
length of n bits, the adversary must ask well over 2n/2 queries to find a collision.
In particular, for n = 128, no adversry can find a collision with so much as a
50% chance if it asks fewer than 274.9 forward-or-backward queries of a 128-bit
blackbox-modeled blockcipher.

Getting a collision-resistance bound of 274.9 queries when n = 128 is still far
from the optimum one might hope for, which is a bound of 2128 queries for an
output of 2n = 256 bits (the birthday bound). But obtaining any bound above
264 (a trivial lower bound) has proved elusive to researchers thus far, given the
combinatorial complexity of the problem.

What is MDC-2? Traditionally, MDC-2 was instantiated using DES, and some
people may understand MDC-2 to mean MDC-2 based on DES. This is not our
meaning. Indeed this paper assumes a common keylength and blocklength n
bits, and so our results don’t directly apply to MDC-2 based on DES. (We as-
sume that, with signficant work, one could extend our analysis to handle the

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 34–51, 2007.
c© International Association for Cryptology Research 2007



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 35

Fig. 1. Left: Definition of the MDC-2 algorithm based on a blockcipher E with key
length and block length n. The message being acted on is X = X1 · · · Xm where m ≥ 1
and |Xi| = n. Strings A1 and B1 are distinct n-bit constants. For an even-length sting
S we let SL and SR be its left and right half. Right: Illustration of the algorithm
acting on a three-block messsage X = X1X2X3. The resulting hash is H(X) = V3 W3.
The darkened edge of the box representing the blockcipher indicates the input that is
the key.

DES parameters of 56-bit keys and 64-bit blocks, but we haven’t done this.) In
this paper we consider MDC-2 using a blockcipher E: {0, 1}n ×{0, 1}n → {0, 1}n

with equal-length blocks and keys. We make this assumption for simplicity, while
preserving contemporary applicability: eliminating “bit-dropping” makes the al-
gorithm cleaner, while the usage of MDC-2 that people nowadays envisage is
with the blockcipher AES-128 [30]. All future mention of MDC-2 in this paper
assumes equal blocklength and keylength.

The MDC-2 algorithm is simple and elegant: building on the usual Merkle-
Damg̊ard approach [6, 21], the compression function uses two parallel invocations
of the Matyas-Meyer-Oseas compression function [20] and then swaps the right



36 J.P. Steinberger

halves of the outputs. It is defined and illustrated in Figure 1. It is easy to
see that the algorithm doesn’t work (that is, it admits efficient attacks) if it is
“over-simplified” by dropping the left/right swapping, the feed-forward XOR, or
both.

The version of MDC-2 that we consider does not incorporate a “bit fixing”
step like replacing the leftmost bit of each left-column blockcipher key in Figure 1
with a 0-bit and replacing the leftmost bit of each right-column blockcipher key
with a 1-bit. Such bit-fixing was employed in MDC2-DES [1, 13] to overcome
the key-complementation property of the primitive and also, conceivably, as a
security measure.

We also comment that in the version of MDC-2 that we consider, no length-
annotation or padding is used, and the domain is correspondingly restricted
to ({0, 1}n)+. It is easy and customary to use padding and length-annotation
to extend MDC-2 to handle a domain of any string of less than 2n bits. Provable-
security results immediately extend: a collision-intractability result for the
({0, 1}n)+ domain version of a hash function will always lift to give essentially
the same bound for the {0, 1}<n domain version one gets after padding and
length annotation.

Our results. We work in the ideal-cipher model, as in [4, 8, 15]. This is the
customary model for proving the security of a blockcipher-based hash function.
In the ideal-cipher model the underlying primitive, a blockcipher E, is modeled
as a family of random permutations {EK} with a random permutation chosen
independently for each key K. The adversary may make a query EK(X) to
discover the corresponding value Y = EK(X), or the adversary may make a
query E−1

K (Y ) so as to learn the corresponding value X = E−1
K (Y ) for which

EK(X) = Y . We are interested in the chance that an adversary can find a colli-
sion, namely a pair of distinct messages that collide under MDC2E , by asking q
queries. More formal definitions will be given below.

It is easy to show that finding a collision for MDC2 implies finding K, X, K ′, X ′

with (K, X) �= (K ′, X ′) such that EK(X)⊕X = EK(X ′)⊕X ′. From this it eas-
ily follows (see [4]) that an adversary’s chance of finding a collision in q queries
is at most q(q + 1)/2n ≈ q2/2n where n = |X | = |K| is the block size. This is a
trivial upper bound, only as good as the conventional bound one expects for a
hash function with n-bit output.

Ideally one would like to prove a bound of q2/22n for MDC-2, the bound
corresponding to the birthday attack, since the output length of MDC-2 is 2n.
However, despite the lack of known attacks on MDC-2, no one has even been
able to exhibit an improvement on the trivial bound of q2/2n. In this paper we
give the first improvement by showing that an adversary has chance O(q5/23n)
of finding an attack and therefore needs at least q ≈ 23n/5 queries to have an
even chance of finding a collision. For example when n = 128 (the main case
of interest) we show that an adversary needs q = 274.9 queries to have an even
chance of obtaining a collision, which is over 210 greater than the trivial bound
of 263.5. Figure 2 shows our upper bound as function of q for the case n = 128.



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 37

50 60 63.5 70 74.9 80 90

0.2

0.4

0.6

0.8

1

Fig. 2. Our upper bound on AdvMDC2
128 (q) as a function of q (solid line) compared to

the previous best upper bound of q(q + 1)/2128 (dotted line)

2 Preliminaries

Let Bloc(n) be the set of functions E: {0, 1}n × {0, 1}n → {0, 1}n such that
E(K, ·) = EK(·) is a permutation on {0, 1}n. Given a blockcipher E ∈ Bloc(n)
we define MDC2E : ({0, 1}n)+ → {0, 1}2n by the algorithm of Fig. 1. The hash
of a word X where |X | is a multiple of n by MDC2E is denoted by MDC2E(X).

An adversary is a computationally unbounded but always-halting algorithm
A with access to an oracle E ∈ Bloc(n). We can assume (by standard argu-
ments) that A is deterministic. The adversary can make either a “forward”
query (Ki, Xi)fwd to its oracle E or a “backward” query (Ki, Yi)bwd. The for-
ward query is answered by Yi = EKi(Xi) and the backward query is answered by
Xi = E−1

Ki
(Yi). Either way the result of the query is stored in a triple (Xi, Ki, Yi)

and the query history of AE , denoted Q = Q(AE), is the tuple (Q1, . . . , Qq)
where Qi = (Xi, Ki, Yi) is the result of the i-th query made by the adversary,
and where q is the total number of queries made by the adversary. If (Xi, Ki, Yi)
is an element of the query history then we refer to Xi as the “word input” of the
query, to Ki as the “key” of the query, and to Yi as the “output” of the query.
The quantity Xi ⊕ Yi is called the “XOR output” of the query.

The adversary’s goal is to output a pair of nonempty strings X , X ′ such that
X �= X ′ and MDC2E(X) = MDC2E(X ′). Moreover we impose the condition
that the adversary must have made all queries necessary to compute MDC2E(X)
and MDC2E(X ′). This restriction is reasonable since otherwise the adversary
can output very long words X , X ′ where MDC2E(X) = MDC2E(X ′) with
good probability but where computing MDC2E(X), MDC2E(X ′) is infeasible.
(For example, without making any queries, the adversary could simply output



38 J.P. Steinberger

0Kn and 02Kn where K is the lcm of all numbers between 1 and 2n and have
probability 1 of obtaining a collision, but this isn’t a reasonable type of attack.)

Since we may tell simply from the adversary’s query history Q whether it is
possible for the adversary to output words X �= X ′ such that MDC2E(X) =
MDC2E(X ′) and such that Q contains all the queries necessary for the com-
putation of MDC2E(X), MDC2E(X ′), we will in fact dispense the adversary
from having to output X , X ′ and simply determine whether the adversary has
been successful or not by examining its query history Q. Formally, we say that
CollE(Q) holds if there are two distinct nonempty words X , X ′ of lengths di-
visible by n such that MDC2E(X) = MDC2E(X ′) and such that Q contains all
the queries necessary to compute MDC2E(X), MDC2E(X ′) as defined by the
algorithm of Fig. 1. The goal of the adversary A is thus to make some sequence
of queries Q = Q(A) such that CollE(Q). We define the adversary’s ability to
break MDC-2 by

AdvMDC2
n (A) = Pr[E $← Bloc(n); Q ← AE : CollE(Q)].

We let AdvMDC2
n (q) be the max over all adversaries A making at most q queries

of AdvMDC2
n (A). Our goal is thus to upper bound AdvMDC2

n (q). We can assume
without loss of generality that A always asks exactly q queries and thus that
|Q(AE)| = q.

Say that numbers n and q have been fixed as well as an adversary A such
that |Q(AE)| = q for all E ∈ Bloc(n). If P is any predicate that can be true or
false for a sequence of queries Q (such as CollE(Q)) then we write Pr[P(Q)] as
a shorthand for Pr[E $← Bloc(n); Q ← AE : P(Q)]. With this notation we have
AdvMDC2

n (A) = Pr[CollE(Q)]. We will often use this simpler notation to avoid
over-complicating our formulas.

3 Our Security Bound

Our upper bound can be stated in varying degrees of generality and compre-
hensibility. The most general and least comprehensible statement of our upper
bound is the following:

Theorem 1. Let n, q be natural numbers with q < 2n. Let N = 2n, N ′ = N − q
and let ma, mb, mc be any positive numbers with eqN

1
2 /N ′ ≤ mb ≤ N

1
2 , eq/N ′ ≤

mc. Finally let Mb = mbN
′/qN

1
2 , Mc = mcN

′/q and N ′′ = N ′(N
1
2 − mb)/N

1
2 .

Then

AdvMDC2
n (q) ≤

q2/maN ′ + 2qN
1
2 eqN

1
2 Mb(1−ln(Mb))/N ′

+ qNeqMc(1−ln(Mc))/N ′
+ (1)

q(m2
a + mam2

b + m4
b)/N

′ + (2)
q(4mamb)/N ′ + q(2mamb)/N ′′ + (3)
q(m2

bmc + 5m2
b + mamc + 6ma)/N ′ + q(4ma + 8m2

b)/N
′′ + (4)

q(4 + 10mb + 2mbmc)/N ′′ + 3q/N ′ + 4q/N ′′ + q2/N ′2 (5)



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 39

q AdvMDC2
128 (q) ≤ ma mb mc

264 7.57 × 10−7 2.64 × 106 44.01 3.7147
268.22 10−4 7.01 × 106 128.09 3.9448
272.19 1/100 1.75 × 107 898.95 4.1899
274.00 1/10 2.66 × 107 2902.32 4.3082
274.72 1/3 3.14 × 107 4687.89 4.3523
274.91 1/2 3.29 × 107 5355.49 4.3640
275.21 1 – – –

Fig. 3. Upper bounds on AdvMDC2
128 (q) given by Theorem 1. The right three columns

specify the values ma, mb, and mc used to obtain the bound of the second column.

For Theorem 1 to give a good bound one must choose suitable values for the
constants ma, mb, mc. Choosing large values of ma, mb, mc reduces the terms of
line (1) but increases the terms of lines (2)-(5). Unfortunately there is no good
closed form for the optimal values of ma, mb, mc (these will change with every
q), hence the complex-looking form of Theorem 1. The meaning of the constants
ma, mb, mc is explained in the proof.

What Theorem 1 concretely means for n = 128 is shown in Figs. 2–3. Fig. 3
shows specific numerical upper bounds for AdvMDC2

128 (q) for various values of q.
The threshold value where Theorem 1 gives an upper bound of 1/2 is q = 274.91

(to be compared with the previous best threshold of q = 263.5). For each value
of q we also show the values of ma, mb, mc which yield the stated upper bound.
Fig. 2 plots our upper bounds on AdvMDC2

128 (q) as a function of q, compared to the
previous upper bound of q(q +1)/N . The method for optimizing ma, mb, mc for
given values of n, q in order to obtain the best bound on AdvMDC2

n (q) is discussed
in the full version of this paper [29]. There we also show (via straightforward
calculus) that Theorem 1 implies the following:

Theorem 2. Let q = 2
3
5 n−ε where ε > 0. Then AdvMDC2

n (q) → 0 as n → ∞.

Asymptotically as n → ∞, thus, our bound for AdvMDC2
n (q) behaves like the

function min(1, q5/23n), though the two functions still look significantly different
for n = 128 (e.g. q5/23n has a threshold of 276.6 for n = 128 whereas our bound
on AdvMDC2

128 (q) has a threshold of 274.9). Though the two functions converge
asymptotically there does not seem to be any good closed form relating our
bound on AdvMDC2

n (q) to the function q5/23n.

4 Analysis

Overview. Rather than analyzing the probability that the queries Q made
by the adversary contain the means of constructing a collision we simplify the
problem by analyzing the probability that the queries Q contain the means of
constructing the last two rounds of a collision. Effectively we look to see whether
there exist keys K0, K1, K ′0, K ′1 and n-bit words X1, X2, X ′1, X ′2 such that the



40 J.P. Steinberger

MDC-2 hash of X1X2 using the incoming keys K0, K1 (rather than A1, B1)
equals the MDC-2 hash of X ′1X

′
2 using the incoming keys K ′0, K ′1, and such that

Q contains all the queries necessary to make both hashes. Naturally a collision
does not necessarily involve two words of at least two blocks each, as either or
both words may consist of a single block, and our analysis also allows for this
contingency.

To upper bound the probability of the adversary obtaining queries that can
be used to construct the last two rounds (or fewer) of a collision we upper bound
the probability of the adversary making a query that can be used as the final
query to complete such last two rounds. Namely for each i, 1 ≤ i ≤ q, we upper
bound the probability that the answer to the adversary’s i-th query (Ki, Xi)fwd
or (Ki, Yi)bwd (depending) will allow the adversary to use the i-th query to
complete (what looks like) the last two rounds of a collision. In the latter case
we say the i-th query is “successful”, and we give the attack to the adversary.

Naturally this probability will depend on the adversary’s first i − 1 queries.
In particular we need to make sure that the adversary hasn’t already been too
“lucky” with its first i− 1 queries, or else the probability of the i-th query being
successful will be hard to upper bound. An example of being “lucky” would be
if there exists a large subset of the first i − 1 queries that all have the same
XOR output (there are two more ways of being lucky defined below). Our upper
bound thus breaks down into two pieces: an upper bound for the probability of
the adversary getting lucky in one of three specific ways defined below, and the
probability of the adversary ever making a successful i-th query, conditioned on
the fact that the adversary has not yet become lucky by its (i − 1)-th query.

Details. Fix numbers n, q and an adversary A asking q queries to its oracle. We
upper bound Pr[CollE(Q)] by exhibiting predicates Win0(Q), . . ., Win8(Q) such
that CollE(Q) =⇒ Win0(Q)∨ . . . ∨Win8(Q) and then by upper bounding sepa-
rately the probabilities Pr[Win0(Q)], . . ., Pr[Win8(Q)]. Obviously Pr[CollE(Q)] ≤
Pr[Win0(Q)] + · · · + Pr[Win8(Q)]. (The event Win0(Q) happens if the adversary
is lucky, whereas if the adversary is not lucky but makes a successful i-th query
then one of the predicates Win1(Q), . . ., Win8(Q) will hold.)

To state the predicates Win0(Q), . . . , Win8(Q) we need some extra definitions.
Define functions a, b, bL, bR and c on query sequences of length q as follows:

a(Q) = |{(i, j) ∈ [1 . . . q]2 : i �= j, Xi ⊕ Yi = Xj ⊕ Yj}| is the number of
ordered pairs of distinct queries in Q with same XOR outputs

bL(Q) = maxY ∈{0,1}n/2 |{i : (Xi ⊕ Yi)L = Y }| is the maximum size of a set
of queries in Q whose XOR outputs all have the same left n/2 bits

bR(Q) = maxY ∈{0,1}n/2 |{i : (Xi ⊕Yi)R = Y }| is the maximum size of a set
of queries in Q whose XOR outputs all have the same right n/2
bits

b(Q) = max(bL(Q), bR(Q))
c(Q) = maxY ∈{0,1}n |{i : Xi ⊕ Yi = Y }| is the maximum size of a set of

queries in Q whose XOR outputs are all the same



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 41

The event Win0(Q) is simply defined by

Win0(Q) = (a(Q) ≥ ma) ∨ (b(Q) ≥ mb) ∨ (c(Q) ≥ mc)

where ma, mb, mc are the constants from Theorem 1. Thus as ma, mb, mc are
chosen larger Pr[Win0(Q)] diminishes.

The events Win1(Q), . . . , Win8(Q) are different in nature from the event
Win0(Q); they concern the feasibility of fitting certain subconfigurations of
MDC-2 using queries from Q = (X1, K1, Y1), . . ., (Xq, Kq, Yq). Take for example
the configuration 1a of Fig. 5. In this configuration, the two strings marked A are
equal and the queries marked i, !i are different. These are the only constraints;
unmarked strings may or may not be equal, and other queries in the diagram
may or may not be equal. Since the bottom left and bottom right queries are
distinct fitting the diagram means using two distinct queries Qi = (Xi, Ki, Yi)
and Qi′ = (Xi′ , Ki′ , Yi′) from Q for these two positions. We say that four queries
Qi = (Xi, Ki, Yi), Qi′ = (Xi′ , Yi′ , Yi′), Qj = (Xj , Kj , Yj), Qk = (Xk, Kk, Yk) in
Q “fit” configuration 1a if i �= i′ and if Qi, Qi′ , Qj, Qk can be placed in re-
spectively the bottom left, bottom right, top left and top right positions of
configuration 1a such that the wiring constraints of the diagram are respected
and such that the two strings marked A are equal. Formally, the four queries Qi,
Qi′ , Qj , Qk fit configuration 1a if and only if

(i �= i′) ∧ (Xi = Xi′) ∧ (Xj = Xk) ∧ (Xi ⊕ Yi = Xi′ ⊕ Yi′) ∧
((Xj ⊕ Yj)L = KL

i ) ∧ ((Xj ⊕ Yj)R = KR
i′ ) ∧

((Xk ⊕ Yk)L = KL
i′ ) ∧ ((Xk ⊕ Yk)R = KR

i ).

Moreover we say that ExistsFit1a(Q) holds if there exist i, i′, j, k ∈ [1 .. q] such
that queries Qi, Qi′ , Qj , Qk fit configuration 1a. The predicates ExistsFit1b,
ExistsFit2, ExistsFit3, ExistsFit4a, ExistsFit4b, ExistsFit6a, ExistsFit6b, ExistsFit6c,
ExistsFit6d, ExistsFit7a, ExistsFit7b, whose configurations are shown in Figs. 5–6,
are likewise defined. In these configurations strings marked by the same letter
must be equal but strings marked with different letters may or may not be equal;
likewise queries marked i, !i or j, !j are different but two queries marked with
different letters may be the same. We also let ExistsFit1 = ExistsFit1a∨ExistsFit1b,
ExistsFit4 = ExistsFit4a∨ExistsFit4b, and so on. Note that ExistsFit6a = ExistsFit6b

and that ExistsFit6c = ExistsFit6d, thus ExistsFit6 = ExistsFit6a ∨ExistsFit6c (con-
figurations 6b, 6d are only provided to facilitate referencing).

Some additional notation is required to indicate inequality between queries in
configurations 5 and 8. In these configurations, pairs of queries from the bottom
row that do not both contain a ‘1’ or both contain a ‘0’ (namely, queries with
different labels) are presumed different; there are no constraints relating top
row to bottom row queries, and queries with the same label are not presumed
equal (see Fig. 4 for an explanation of “top row”, “bottom row”). The predicates
ExistsFit5(Q), ExistsFit8(Q) then denote the existence of a set of queries in Q
fitting respectively configurations 5 and 8 under these constraints.



42 J.P. Steinberger

Fig. 4. The query labels

Let NotWin j = Win0(Q) ∨ · · · ∨ Win j(Q) for 1 ≤ j < 8. We now define:

Win1(Q) = NotWin0(Q) ∧ ExistsFit1(Q)
Win2(Q) = NotWin1(Q) ∧ ExistsFit2(Q)

...

and so forth. Thus Win4(Q), for example, is the predicate which is true if and
only if a(Q) < ma, b(Q) < mb, c(Q) < mc (these conditions being NotWin0(Q))
and Q contains queries that fit configurations 4a or 4b but Q does not contain
queries fitting configurations 1a, 1b, 2 or 3.

The reader will note that all configurations in Figs. 5–6 have at most two pieces
and each piece is a subportion of two rounds of MDC-2. If the configuration has
two pieces (such as configurations 2, 4a, 4b, 5, 6a, 6b, 6c, 6d, 7a, 7b, 8 as opposed
to configurations 1a, 1b, 3) then the left portion of the configuration is called
“Word 1” and the right portion of the configuration is called “Word 2” (Fig. 4).
Queries in the right-hand column of a two-round piece are called “right column”
queries and queries in the left-hand column of a two-block portion are called “left
column” queries. “Top row” and “bottom row” queries are defined the expected
way. A query in the configuration is given coordinates 1TR for “Word 1, Top
row, Right column” or 2BL for “Word 2, Bottom row, Left column”, etc. If the
configuration has only one piece then we drop the prefix “1” or “2” and simply
give coordinates TL, TR, etc. for the queries. The reader should refer to Fig. 4.

We now show that CollE(Q) =⇒ Win0(Q) ∨ · · · ∨ Win8(Q):

Lemma 1. CollE(Q) =⇒ Win0(Q) ∨ · · · ∨ Win8(Q).

Proof. First note that ExistsFit1(Q) ∨ · · · ∨ ExistsFit8(Q) =⇒ Win0(Q) ∨ · · · ∨
Win8(Q), so it is sufficient to show that CollE(Q) =⇒ ExistsFit1(Q) ∨ · · · ∨
ExistsFit8(Q).

Say CollE(Q). Then a collision can be constructed from the queries Q. We can
assume that the collision is earliest possible in the sense that one cannot truncate



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 43

Fig. 5.



44 J.P. Steinberger

Fig. 6.



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 45

either one or both words involved to form a collision from the leftover prefixes
(otherwise, take this smaller pair of words). By definition collisions involve words
with at least one block, so the collision must either (i) use two words that are
one block long each (ii) use one word of at least two blocks and one word of
one block or (iii) use two words of at least two blocks each. If the collision uses
two words that are one block long each then obviously ExistsFit2(Q) (if query i
where equal to !i, the two words would be the same), so we can assume either
(ii) or (iii).

Say first the collision is of type (ii), namely that the collision has one word
with m ≥ 2 blocks, which is wlog word 1, and one word of with one block,
which is word 2. Note first that when word 1 is hashed via MDC-2 there can
never be a round where the same query appears both on the left and right-hand
sides unless ExistsFit1(Q) holds (to see this, take the earliest such round; since
the constant keys A1, B1 are different this is not the first round and the two
queries from the round before are different but have the same XOR output, so
ExistsFit1(Q)). Therefore we can assume that at every round in the hashing of
word 1, different queries appear on the left and right-hand sides. Naturally the
same query may appear both in the left and right columns in different rounds.

We now examine the last two rounds of the hashing of word 1. The four (not
necessarily distinct) queries comprising these two rounds are labeled 1TL, 1TR,
etc. as in Fig. 4 and as per our convention described above. The two queries
making up the unique round for the hashing of word 2 are simply labeled 2L
and 2R, where 2L is the query with key input A1 and 2R is the query with key
input B1. By our previous remark, queries 1TL and 1TR are distinct as well
as queries 1BL and 1BR. If query 1BL equals query 2L and query 1BR equals
query 2R then ExistsFit3(Q). On the other hand if query 1BL is not equal to
query 2L and query 2BR is not equal to query 2R then ExistsFit5(Q). Therefore
we can assume (by symmetry) that query 1BL is not equal to query 2L but that
query 1BR equals query 2R. But then ExistsFit4a(Q). This concludes the case
when the adversary’s collision is of type (ii).

We now assume that both of the words involved in the collision have at least
two rounds. We examine the last two rounds of the hashing of each word; the
queries for these last two rounds are labeled as in Fig. 4. By the same remark
as above, the same query cannot appear in both left and right positions at the
same round of the same word, so the top row constraints of configuration 8 are
satisfied. If query 1BL equals 2BL and query 1BR equals query 2BR then the
collision is not earliest possible, a contradiction, so we can assume (by symmetry)
that query 1BL is not equal to query 2BL. If queries 1BR and 2BR are equal
then ExistsFit7a(Q) so they too must be unequal. But then ExistsFit8(Q) so we
are done. ��

The reader may have noted that ExistsFit6(Q) does not actually appear in the
proof of Lemma 1. However Win6(Q) will be used to upper bound Pr[Win7(Q)]
(as Pr[Win7(Q)] ≤ Pr[Win6(Q)] + Pr[NotWin6(Q) ∧ Win7(Q)]).

Let WinFit(Q) = Win1(Q) ∨ . . . ∨ Win8(Q), so Pr[CollE(Q)] ≤ Pr[Win0(Q)] +
Pr[WinFit(Q)]. We show:



46 J.P. Steinberger

Lemma 2. Let N , N ′, N ′′, ma, mb, Mb, mc, Mc be as in Theorem 1. Then
Pr[Win0(Q)] ≤ q2/maN ′+2qN

1
2 eqN

1
2 Mb(1−ln(Mb))/N ′

+qNeqMc(1−ln(Mc))/N ′
.

and:

Lemma 3. Let N , N ′, N ′′, ma, mb, mc be as in Theorem 1. Then:

Pr[WinFit(Q)] ≤ q(m2
a + mam2

b + m4
b)/N

′ +
q(4mamb)/N ′ + q(2mamb)/N ′′ +
q(m2

bmc + 5m2
b + mamc + 6ma)/N ′ + q(4ma + 8m2

b)/N
′′ +

q(4 + 10mb + 2mbmc)/N ′′ + 3q/N ′ + 4q/N ′′ + q2/N ′2.

Lemmas 2 and 3 imply Theorem 1 (by Lemma 1). The proof of Lemma 2 uses
straightforward balls-in-bins probability and can be found in the full version
of our paper [29]. The proof of Lemma 3 is more involved and in some sense
constitutes the heart of our paper. Here we only give a grief glimpse of the
type of analysis involved by showing how to upper bound Pr[NotWin0(Q) ∧
ExistsFit1a(Q)], which establishes “half” of the upper bound for Pr[Win1(Q) =
NotWin0(Q)∧(ExistsFit1a(Q)∨ExistsFit1b(Q))]. (Again, the full proof of Lemma 3
is found in the full version.)

For the next proof we use the notational convention that (Ki, Xi) denotes a
forward query (Ki, Xi)fwd and that (Ki, Yi) denotes a backward query
(Ki, Yi)bwd. The constants N , N ′, N ′′ will remain throughout as defined in
Theorem 1, namely N = 2n, N ′ = N − q, N ′′ = N ′(N

1
2 − mb)/N

1
2 .

Proposition 1. Pr[NotWin0(Q)∧ExistsFit1a(Q)] ≤ q(ma+m2
b)/N

′+2qmb/N
′′.

Proof. Let Qi denote the first i queries made by the adversary. The term “last
query” means the latest query made by the adversary (we examine the adver-
sary’s queries (Ki, Xi) or (Ki, Yi) one at a time, in succession as they come in).
The last query is always given index i. We say the last query is “successful” if
the output Yi or Xi for the last query is such that a(Qi) < ma, b(Qi) < mb,
c(Qi) < mc and such that the adversary can use the query (Xi, Ki, Yi) to fit
configuration 1a using only queries in Qi (in particular, the last query must be
used in the fitting for that query to count as successful). The goal is thus to
upper bound the adversary’s chance of ever making a successful last query.

The strategy for upper bounding the probability of the last query being suc-
cessful is to consider separately the different ways in which the last query can
be used to fit the configuration and to upper bound the probability of success
in each case, and finally to sum the various upper bounds. For example, the
adversary may use the last query only once in the configuration or otherwise in
several different positions of the configuration (such as, say, TL and BL). The
basic setup for upper bounding the probability of success in a given case is to
upper bound the maximum number of different outputs Yi or Xi (depending on
whether the last query is a forward or backward query) that would allow the
query (Xi, Ki, Yi) to be used to fit the configuration, and then to divide this
number by N ′ = N − q (since either Yi or Xi, depending, is chosen randomly



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 47

among a set of at least N ′ different values). That ratio is then multiplied by q,
since the adversary makes q queries in all, each of which could become a suc-
cessful last query.

Case 1: The last query is used exactly once in the configuration. We can assume
wlog that it is used in the left column.

Subcase 1.1: The last query is used in position BL. Say first that the last
query is a forward query (Ki, Xi). Since the last query cannot be successful if
b(Qi−1) ≥ mb (by definition) we can assume that b(Qi−1) < mb. Then since the
left half of the XOR output of the query used in position TL must be equal to the
left half of Ki there are at most mb different queries in Qi−1 that could be used
in position TL, for the given inputs (Ki, Xi) of the last query. Likewise because
the right half of the XOR output of the query used in position TR must be equal
to the right half of Ki there are at most mb different queries in Qi−1 that could
be used in position TR. Since Xi together with the outputs of the queries used
in positions TL, TR completely determine the query used in position BR, there
are therefore at most m2

b different queries in Qi−1 which can be used in position
BR for the given inputs (Ki, Xi). Therefore there are at most m2

b outputs Yi

which would enable the last query be used to fit the configuration at position BL
(namely which would enable the XOR output Xi ⊕ Yi of query BL to be equal
to the XOR output of query BR), so the chance of success of the last query if it
is forward is ≤ m2

b/N
′.

Now say the last query is a backward query (Ki, Yi). We cannot reason like
for the forward query case that there are only m2

b queries in Qi−1 that that
can appear in position BR since we do not know the word input Xi anymore.
However because the query used in position BR has same XOR output and same
word input as the query in position BL it must also have the same output as the
query in position BL, which means the output of the query in position BR is
actually Yi. Now because E is a blockcipher, there is exactly at most one possible
query for position BR in Qi−1 for any given value of the key of the query in
position BR, and since the key can take at most m2

b different values (as in the
forward case) there are again at most m2

b different queries that can be used in
position BR. Therefore there are at most m2

b different values for Xi which would
make the backwards query (Ki, Yi) successful, so the last query again has chance
of success ≤ m2

b/N
′.

Thus the last query has chance of success ≤ m2
b/N

′ whether it is a forward
or backward query. Multiplying by q, we obtain that the chance of ever making
a successful last query of this type is ≤ qm2

b/N
′. This concludes the analysis of

Subcase 1.1.

Note: we will not always give as many details as in Subcase 1.1. In particular, we
will not continue to remind that one can assume a(Qi−1) < ma, b(Qi−1) < mb,
c(Q)i−1 < mc (or else the last query is by definition not successful) and we will
often shorten phrases of the type “query used in position TL” to simply “query
TL”.



48 J.P. Steinberger

Subcase 1.2: The last query is used in position TL. Because the queries use
in positions BL, BR are distinct but have the same XOR output there are at
most ma different ordered pairs of queries in Qi−1 that can be used for the pair
BL, BR. But the pair of queries for BL, BR completely determines what the
XOR output Xi ⊕ Yi of the last query should be. Therefore the last query has
chance at most ma/N ′ of success and the total probability of making this type
of successful last query is ≤ qma/N ′.

Note: Subcase 1.2 does not require a separate analysis for the forward and back-
ward case because we can upper bound the maximum number of successful XOR
outputs for the last query without looking at the inputs for the last query; by
contrast, in Subcase 1.1 we inspected Xi in the forward case and Yi in the back-
ward case in order to determine the maximum possible number of successful
XOR outputs. In general, whenever an upper bound on the total number of
successful XOR outputs for the last query can be found without inspecting any
inputs for the last query besides the key, the same analysis will work both for
the forward and backward cases.

Case 2: The last query is used twice or more in the configuration. Because
queries BR and BL are distinct the queries TR and TL are also distinct and
so the last query must in fact appear exactly twice in the configuration. We can
assume wlog that it is used in position TL.

The type of analysis we use for this case is slightly different than the analysis
for Subcases 1.1, 1.2. To estimate the probability of the last query succeeding
we will first look at the left n/2 bits of XOR output, estimate their probability
Pl of success (the left bits are “successful” if they do not preclude the last query
from being successful) and then we estimate the probability of success Pr|l of the
right n/2 bits of XOR output being successful, conditioned on the fact that the
left n/2 bits are successful (the right n/2 bits are “successful” if the last query
is successful). The probability of success of the last query is then PlPr|l. Note
that if the set of left half of XOR outputs which are successful has size T then
Pl ≤ TN

1
2 /N ′ since the return to any query has chance ≤ N

1
2 /N ′ of having its

left half of XOR output equal to any particular value (there are at most N
1
2

strings that have that left half, each of which is returned with chance at most
1/N ′). Then if the left half is successful and there are U different possible ways
of completing the left half into a successful string, namely U different successful
right halfs, the chance of the right half being successful given NotWin0(Qi−1)
is ≤ U/(N

1
2 − mb) since the XOR output could be any of at least N

1
2 − mb

values with equal probability (there are at most mb values which we know will
not appear because they have already appeared for this left half). So the total
chance of success of the last query in this case (assuming U was independent of
the left half, as it will be in our analysis) is ≤ TUN

1
2 /N ′(N

1
2 −mb) or ≤ TU/N ′′.

Subcase 2.1: The last query is used in positions TL, BL. Since the last query
appears in positions TL, BL the left half of the last query’s XOR output must



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 49

be equal to the left half of its key input, so the left half of output has chance
Pl ≤ N

1
2 /N ′ chances of succeeding. If it succeeds, there are at most mb queries

for BR in Qi−1 with that left half of XOR output (which must be shared with
query BL), so the right half of XOR output has chance Pr|l ≤ mb/(N

1
2 − mb)

of succeeding if the the left half succeeds. Therefore the last query has chance
PlPr|l ≤ mbN

1
2 /N ′(N

1
2 − mb) = mb/N

′′ of succeeding and the adversary’s total
chance of making this kind of successful last query is ≤ qmb/N

′′.

Subcase 2.2: The last query is used in position TL and in position BR. One
can apply the same type of analysis as for Subcase 2.1, showing that the total
chance of a successful last query of this type is ≤ qmb/N

′′.

Subcase 2.2 concludes Case 2 and thus all possible cases of making a suc-
cessful query for configuration 1a. Summing up the probabilities we get that
Pr[NotWin0(Q) ∧ ExistsFit1a(Q)] ≤ q(ma + m2

b)/N
′ + 2qmb/N

′′. ��

5 Conclusion

We have proved the first nontrivial security bound for MDC-2. While such a
bound has been a long time coming, we expect that our result is only a first
foot in the door. In particular there remains a large gap between the best-known
collision-finding attack, which is the trivial attack that succeeds with chance
q2/22n, and the security bound of Theorem 1. Likely our security bound is far
from optimal, and it remains an interesting open question to find matching upper
and lower bounds.

Acknowledgments

This work was supported in part by NSF CCR-0208842 and a gift from Intel
Corporation; thanks to Jesse Walker for sponsoring this research. Part of this
work was carried out while the author was visiting NTT labs in Yokosuka, Japan;
thanks to Tatsuaki Okamoto for his kind support. The research topic was sug-
gested to the author by Phillip Rogaway, who also provided patient mentoring
and guidance throughout the project.

References

1. ANSI X9.31. Public key cryptography using reversible algorithms for the financial
services industry. American National Standards Institute, 1998.

2. B. den. Boer and A. Bosselaers. Collisions for the compression function of MD5.
Advances in Cryptology – EUROCRYPT ’93, Lecture Notes in Computer Science,
vol. 765, Springer, pp. 293–304, 1993.

3. J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly efficient
blockcipher-based hash functions. Advances in Cryptology – EUROCRYPT ’05,
Lecture Notes in Computer Science, vol. 3494, Springer, pp.–546-541, 2005.



50 J.P. Steinberger

4. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. Advances in Cryptology –
CRYPTO ’02, Lecture Notes in Compuer Science, vol. 2442, Springer, pp. 320–
355, 2002.

5. B. Brachtl, D. Coppersmith, M. Hyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel,
and M. Schilling. Data authentication using modification detection codes based on
a public one-way encryption function. US Patent #4,908,861. Awarded March 13,
1990 (filed Auguest 28, 1987).

6. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology –
CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, Springer, pp. 416–427,
1990.

7. H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes 2 (2), 1996.
8. S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-

dom permutation. Advances in Cryptology – ASIACRYPT ’91, Lecture Notes in
Computer Science, vol. 739, Springer, pp. 210–224, 1991.

9. M. Hattori, S. Hirose, and S. Yoshida. Analysis of double block lengh hash func-
tions. Cryptography and Coding, 9th IMA International Conference, Lecture Notes
in Computer Science, vol. 2898, Springer, pp. 290–302, 2003.

10. S. Hirose. Provably secure double-block-length hash functions in a black box model.
Information Security and Cryptology—ISISC ’04, Lecture Notes in Computer Sci-
ence, vol. 3506, Springer, pp. 330-342, 2005.

11. S. Hirose. Some plausible constructions of double-block-length hash functions. Fast
Software Encryption (FSE ’06). Lecture Notes in Computer Science, vol. 4047,
Springer, pp. 210–225, 2005.

12. W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of iterated hash functions
based on block ciphers. Advances in Cryptology – CRYPTO ’93. Lecture Notes in
Computer Science, vol. 773, Springer, pp. 303–311, 1993.

13. ISO/IEC 10118-2:2000. Information technology – Security techniques – Hash func-
tions – Hash functions using an n-bit block cipher. International Organization for
Standardization, Geneva, Switzerland, 2000. First released in 1992.

14. A. Joux. Multicollisions in iterated hash functions, applications to cascaded con-
structions. Advances in Cryptology – CRYPTO ’04. Lecture Notes in Computer
Science, vol. 3152, Springer, pp. 306–316, 2004.

15. J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search.
Journal of Cryptology, vol. 14, no. 1, pp. 17–35, 2001.

16. L. Knudsen, X. Lai, and B. Preneel. Attacks on fast double block length hash
functions. Journal of Cryptology, vol. 11, no. 1, pp. 59–72, 1998.

17. X. Lai and J. Massey. Hash functions based on block ciphers. Advances in Cryptol-
ogy – EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658, Springer,
pp. 55–70, 1992.

18. W. Lee, M. Nandi, P. Sarkar, D. Chang, S. Lee, and K. Sakurai. PGV-style block-
cipher-based hash families and black-box analysis. IEICE Transactions 88-A(1),
pp. 39–48, 2005.

19. S. Lucks. Design principles for iterated hash functions. Cryptology ePrint Archive,
Report 2004/253, 2004.

20. S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with
cryptographic algorithm. IBM Technical Disclosure Bulletin, 27, pp. 5658–5659,
1985.

21. R. Merkle. One way hash functions and DES. Advances in Cryptology – CRYPTO
’89. Lecture Notes in Computer Science, vol. 435, Springer, pp. 428–446, 1990.



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 51

22. C. Meyer and S. Matyas. Secure program load with manipulation detection code.
Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM ’88), pp. 111–130, 1988.

23. M. Nandi, W. Lee, K. Sakurai, and S. Lee. Security analysis of a 2/3-rate double
length compression function in the black-box model. Fast Software Encryption
(FSE ’05), Lecture Notes in Computer Science, vol. 3557, pp. 243–254, 2005.

24. M. Nandi. Towards optimal double-length hash functions. Progress in Cryptogra-
phy – INDOCRYPT ’05, Lecture Notes in Computer Science, vol. 3797, Springer,
pp. 77–89, 2005.

25. M. Rabin. Digitalized signatures. In R. DeMillo, D. Dobkin, A. Jones, and R.
Lipton, editors, Foundations of Secure Computation, Academic Press, pp. 155–
168, 1978.

26. R. Rivest. The MD4 message digest algorithm. Advances in Cryptology – CRYPTO
’90, Lecture Notes in Comptuer Science, vol. 537, pp. 303–311, 1991.

27. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision Resistance. Fast Software Encryption (FSE ’04), Lecture Notes in
Computer Science, vol. 3017, pp. 371-388, Springer, vol. 3017, 2004.

28. T. Satoh, M. Haga, and K. Kurosawa. Towards secure and fast hash functions. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E82–A No. 1, pp. 55–62.

29. J. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model. Full
version of this paper. Cryptology ePrint Archive, Report 2006/294, 2006.

30. J. Viega. The AHASH mode of operation. Manuscript, 2004. Available from
www.cryptobarn.com.

31. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions
MD4 and RIPEMD. Advances in Cryptology – EUROCRYPT ’05, Lecture Notes
in Computer Science, vol. 3494, Springer, pp. 1–18. 2005.

32. X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. Advances in Cryp-
tology – CRYPTO ’05, Lecture Notes in Computer Science, vol. 3621, Springer,
pp. 17–36, 2005.



An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious

Adversaries

Yehuda Lindell1,� and Benny Pinkas2,��

1 Dept. of Computer Science, Bar-Ilan University, Israel
lindell@cs.biu.ac.il

2 Dept. of Computer Science, University of Haifa, Israel
benny@pinkas.net

Abstract. We show an efficient secure two-party protocol, based on
Yao’s construction, which provides security against malicious adversaries.
Yao’s original protocol is only secure in the presence of semi-honest ad-
versaries. Security against malicious adversaries can be obtained by ap-
plying the compiler of Goldreich, Micali and Wigderson (the “GMW
compiler”). However, this approach does not seem to be very practical
as it requires using generic zero-knowledge proofs.

Our construction is based on applying cut-and-choose techniques to
the original circuit and inputs. Security is proved according to the ideal/
real simulation paradigm, and the proof is in the standard model (with
no random oracle model or common reference string assumptions). The
resulting protocol is computationally efficient: the only usage of asym-
metric cryptography is for running O(1) oblivious transfers for each in-
put bit (or for each bit of a statistical security parameter, whichever is
larger). Our protocol combines techniques from folklore (like cut-and-
choose) along with new techniques for efficiently proving consistency of
inputs. We remark that a naive implementation of the cut-and-choose
technique with Yao’s protocol does not yield a secure protocol. This is
the first paper to show how to properly implement these techniques, and
to provide a full proof of security.

Our protocol can also be interpreted as a constant-round black-box
reduction of secure two-party computation to oblivious transfer and
perfectly-hiding commitments, or a black-box reduction of secure two-
party computation to oblivious transfer alone, with a number of rounds
which is linear in a statistical security parameter. These two reductions
are comparable to Kilian’s reduction, which uses OT alone but incurs a
number of rounds which is linear in the depth of the circuit [18].

1 Introduction

Secure two-party computation. In the setting of two-party computation, two par-
ties with respective private inputs x and y, wish to jointly compute a functionality
� Research supported in part by an Infrastructures grant from the Ministry of Science,

Israel.
�� Research supported in part by the Israel Science Foundation (grant number 860/06).

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 52–78, 2007.
c© International Association for Cryptology Research 2007



An Efficient Protocol for Secure Two-Party Computation 53

f(x, y) = (f1(x, y), f2(x, y)), such that the first party receives f1(x, y) and the sec-
ond party receives f2(x, y). Loosely speaking, the security requirements are that
nothing is learned from the protocol other than the output (privacy), and that
the output is distributed according to the prescribed functionality (correctness).
The actual definition follows the simulation paradigm and blends the above two
requirements. Of course, security must be guaranteed even when one of the parties
is adversarial. Such an adversary may be semi-honest (or passive), in which case
it correctly follows the protocol specification, yet attempts to learn additional in-
formation by analyzing the transcript of messages received during the execution.
In contrast, the adversary may be malicious (or active), in which case it can arbi-
trarily deviate from the protocol specification.

The first general solutions for the problem of secure computation were pre-
sented by Yao [29] for the two-party case (with security against semi-honest
adversaries) and Goldreich, Micali and Wigderson [11] for the multi-party case
(with security even against malicious adversaries). Thus, the results of [29]
and [11] constitute important and powerful feasibility results for secure two-
party and multi-party computation.

Yao’s protocol. In [29], Yao presented a constant-round protocol for securely
computing any functionality in the presence of semi-honest adversaries. Denote
party P1 and P2’s respective inputs by x and y and let f be the functionality that
they wish to compute (for simplicity, assume that both parties wish to receive
f(x, y)). Loosely speaking, Yao’s protocol works by having one of the parties (say
party P1) first generate a “garbled” (or encrypted) circuit computing f(x, ·) and
then send it to P2. The circuit is such that it reveals nothing in its encrypted
form and therefore P2 learns nothing from this stage. However, P2 can obtain
the output f(x, y) by “decrypting” the circuit. In order to ensure that P2 learns
nothing more than the output itself, this decryption must be “partial” and must
reveal f(x, y) only. Without going into unnecessary details, this is accomplished
by P2 obtaining a series of keys corresponding to its input y, such that given
these keys and the circuit, the output value f(x, y), and only this value, may
be obtained. Of course, P2 must somehow receive these keys without revealing
anything about y to P1. This can be accomplished by running |y| instances of
a secure 1-out-of-2 Oblivious Transfer protocol [27,7]. Yao’s generic protocol is
highly efficient, and even practical, for functionalities that have relatively small
circuits. An actual implementation of the protocol was presented in [21], with
very reasonable performance.

Security against malicious behavior. Yao’s protocol is only secure in the presence
of relatively weak semi-honest adversaries. Thus, an important question is how
to “convert” the protocol into one that is secure in the presence of malicious
adversaries, while preserving the efficiency of the original protocol to the greatest
extent possible. Of course, one possibility is to use the compiler of Goldreich,
Micali and Wigderson [11]. This compiler converts any protocol that is secure
for semi-honest adversaries into one that is secure for malicious adversaries, and
as such is a powerful tool for demonstrating feasibility. However, it is based on



54 Y. Lindell and B. Pinkas

reducing the statement that needs to be proved (in our case, the honesty of the
parties’ behavior) to an NP-complete problem, and using generic zero-knowledge
proofs to prove this statement. The resulting secure protocol therefore runs in
polynomial time but is rather inefficient. (For more details on existing methods
for proving security against malicious behavior see the section on related work
below.)

Malicious behavior and cut-and-choose. Consider for a moment what happens
if party P1 is malicious. In such a case, it can construct a garbled circuit that
computes a function that is different to the one that P1 and P2 agreed to com-
pute. A folklore solution to this problem uses the “cut-and-choose” technique.
According to this technique, P1 first constructs many garbled circuits and sends
them to P2. Then, P2 asks P1 to “open” half of them (namely, reveal the de-
cryption keys corresponding to these circuits). P1 opens the requested half, and
P2 checks that they were constructed correctly. If they were, then P2 evaluates
the rest of the circuits and derives the output from them. The idea behind this
methodology is that if a malicious P1 constructs the circuits incorrectly, then P2
will detect this with high probability. Clearly, this solution solves the problem
of P1 constructing the circuit incorrectly. However, it does not suffice. First, it
creates new problems within itself. Most outstandingly, once the parties now
evaluate a number of circuits, some mechanism must be employed to make sure
that they use the same input when evaluating each circuit (otherwise, as we
show below, an adversarial party could learn more information than allowed).
Second, in order to present a proof of security based on simulation, there are ad-
ditional requirements that are not dealt with by just employing cut-and-choose
(e.g., input extraction). Third, the folklore description of cut-and-choose is very
vague and there are a number of details that are crucial when implementing
it. For example, if P2 evaluates many circuits, then the protocol must specify
what P2 should do if it does not receive the same output in every circuit. If the
protocol requires P2 to abort in this case (because it detected cheating from P1),
then this behavior actually yields a concrete attack in which P1 can always learn
a specified bit of P2’s input. It can be shown that P2 must take the majority
output and proceed, even if it knows that P1 has attempted to cheat. This is
just one example of a subtlety that must be dealt with. Another example relates
to the fact that P1 may be able to construct a circuit that can be opened with
two different sets of keys: the first set opens the circuit correctly and the second
incorrectly. In such a case, an adversarial P1 can pass the basic cut-and-choose
test by opening the circuits to be checked correctly. However, it can also supply
incorrect keys to the circuits to be computed and thus cause the output of the
honest party to be incorrect.

Our contributions. This paper provides several contributions:
• Efficient protocol for malicious parties: We present an implementation of

Yao’s protocol with the cut-and-choose methodology, which is secure in the
presence of malicious adversaries and is computationally efficient: the pro-
tocol does not use public-key operations, except for performing oblivious



An Efficient Protocol for Secure Two-Party Computation 55

transfers for every input bit of P2. For n-bit inputs and a statistical security
parameter s the protocol uses O(max(s, n)) oblivious transfers. Thus, when
the input is as large as the security parameter, only O(1) oblivious transfers
are needed per input bit.

Beyond carefully implementing the cut-and-choose technique on the cir-
cuits in order to ensure that the garbled circuits are constructed correctly,
we present a new method for enforcing the parties to use the same input in
every circuit. This method involves “consistency checks” that are based on
cut-and-choose tests which are applied to sets of commitments to the gar-
bled values associated with the input wires of the circuit, rather than to the
circuits themselves.

In actuality, we combine the cut-and-choose test over the circuits together
with the cut-and-choose test over the commitments in order to obtain a secure
solution. The test is rather complex conceptually, but is exceedingly simple to
implement. Specifically, P1 just needs to generate a number of commitments
to the garbled values associated with the input wires, and then open them
based on cut-and-choose queries from P2. (Actually, these cut-and-choose
queries are chosen jointly by the parties using a simple coin-tossing protocol;
this is necessary for achieving simulation.)

We note that the use of cut-and-choose inevitably incurs a higher commu-
nication overhead. We also note that in this work we emphasized providing a
clear and full proof of the protocol, rather than fully optimizing its overhead
at the expense of complicating the proof.

• Simulation based proof: We present a rigorous proof of the security of the pro-
tocol, based on the real/ideal-model simulation paradigm [5,9]. The proof is in
the standard model, with no random oracle model or common random string
assumptions. The protocol was designed to support such a proof, rather than
make do with separate proofs of privacy and correctness. (It is well-known
that it is strictly harder to obtain a simulation based proof rather than se-
curity under such definitions.) One important advantage of simulation based
proofs is that they enable the use of the protocol as a building block in more
complicated protocols, while proving the security of the latter using general
composition theorems like those of [5,9]. (For example, the secure protocol
of [1] for finding the kth ranked element is based on invoking several secure
computations of simpler functions, and provides simulation based security
against malicious adversaries if the invoked computations have a simulation
based proof. However, prior to our work there was no known way, except
for the GMW compiler, of efficiently implementing these computations with
this level of security.) See [5,9] for more discussion on the importance of
simulation-based definitions.

• A black-box reduction: Our protocol can be interpreted as a constant-round
black-box reduction of secure two-party computation to oblivious transfer
and perfectly-hiding commitments. The perfectly-hiding commitments are
only used for conducting, in O(1) rounds, joint coin-tossing of a string of



56 Y. Lindell and B. Pinkas

length s, where s is a statistical security parameter. This coin-tossing can
be done sequentially (bit by bit), without using perfectly-hiding commit-
ments. We therefore also obtain an O(s) round black-box reduction of secure
two-party computation to oblivious transfer alone. These two reductions are
comparable to Kilian’s reduction, which uses OT alone but incurs a number
of rounds which is linear in the depth of the circuit [18]. In addition, our
reduction is much more efficient than that of [18].

Related work. As we have mentioned, this paper presents a protocol which (1)
has a proof of security against malicious adversaries in the standard model,
according to the real/ideal model simulation definition, (2) has essentially the
same computational overhead as Yao’s original protocol (which is only secure
against semi-honest adversaries), and (3) has a somewhat larger communication
overhead, which depends on a statistical security parameter s.

We compare this result to other methods for securing Yao’s protocol against
malicious parties. There are several possible approaches to this task:

– The parties can reduce the statement about the honesty of their behavior to
a statement which has a well-known zero-knowledge proof, and then prove
this statement. This is the approach taken by the GMW compiler [11]. The
resulting secure protocol is not black-box, and is rather inefficient.

– Another approach is to apply a cut-and-choose modification to Yao’s proto-
col. Mohassel and Franklin [23] show such a protocol which has about the
same overhead as ours, namely a communication overhead of O(|C|s + n2s)
for a circuit C with n inputs, and a statistical security parameter s. This
result was improved by Woodruff [28], who describes how to reduce the com-
munication to O(|C|s+ns) = O(|C|s), using expanders. The protocol of [23]
provides output to the circuit evaluator alone. It enables, however, the cir-
cuit constructor to carry out the following attack: it can corrupt, say, its OT
input which corresponds to a 0 value of the first input bit of the circuit eval-
uator, while not corrupting the OT input for the 1 value. Other than that it
follows the protocol. This behavior forces the circuit evaluator to abort if its
first input bit is 0, while if its first input bit is 1 it does not learn anything at
all about the attack. If the evaluator complains, then the circuit constructor
can conclude that its first input bit is 0, and therefore the evaluator can-
not complain if it wants to preserve its privacy. (This attack is similar to
the attack we describe in Section 3.2 where we discuss the encoding of P2’s
input.) The protocol therefore does not provide security according to a stan-
dard definition. (We note however that this attack can be prevented using
the methods we describe in Section 3.2 for encoding P2’s input.) Another
protocol which is based on cut-and-choose is described in [19]. This protocol
uses committed OT to address attacks similar to the one described above.
We stress that both of these papers ([23,19]) lack a full proof of security, and
to our best judgment they need considerable changes in order to support
security according to a simulation based definition.

– Jarecki and Shmatikov [15] designed a protocol in which the parties efficiently
prove, gate by gate, that their behavior is correct. The protocol is based on



An Efficient Protocol for Secure Two-Party Computation 57

the use of a special homomorphic encryption system, which is used to encode
the gates of the table (compared to the use of symmetric encryption in Yao’s
original protocol and in our paper). The protocol is secure in a universally
composable way under the decisional composite residuosity and the strong
RSA assumptions, assuming a common reference string.

In this paper, we construct an efficient protocol for general secure computation.
Thus, we do not (and cannot) compete with protocols that are constructed for
specific tasks, like voting, auctions, etcetera. We also do not discuss here the large
body of work that considers the efficiency of secure multi-party computation.

Organization. We present standard definitions of security for secure two-party
computation in Section 2.1. Then, in Section 2.2 we show that a functionality
that provides outputs to both parties can be securely reduced to one which
provides output for a single party, and therefore we can focus on the latter
case. In Section 3 we describe our protocol, prove its security, and analyze its
efficiency. The basic protocol we describe increases the number of inputs, and
therefore the number of OT invocations. In Section 5.2 we show how to reduce
this number of OT invocations in order to improve efficiency. We remark that
a description of Yao’s basic protocol for two-party computation, secure against
semi-honest adversaries, is provided in [20].

2 Preliminaries

2.1 Definitions – Secure Computation

In this section we present the definition for secure two-party computation. The
following description and definition is based on [9, Chapter 7], which in turn
follows [12,22,4,5].

Two-party computation. A two-party protocol problem is cast by specifying a
random process that maps pairs of inputs to pairs of outputs (one for each party).
We refer to such a process as a functionality and denote it f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y), the
output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings.
The first party (with input x) wishes to obtain f1(x, y) and the second party
(with input y) wishes to obtain f2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol
is to protect an honest party against dishonest behavior by the other party. In
this paper, we consider malicious adversaries who may arbitrarily deviate from
the specified protocol. When considering malicious adversaries, there are certain
undesirable actions that cannot be prevented. Specifically, a party may refuse
to participate in the protocol, may substitute its local input (and use instead a
different input) and may abort the protocol prematurely. One ramification of the



58 Y. Lindell and B. Pinkas

adversary’s ability to abort, is that it is impossible to achieve “fairness”. That
is, the adversary may obtain its output while the honest party does not. As is
standard for two-party computation, in this work we consider a static corruption
model, where one of the parties is adversarial and the other is honest.

Security of protocols (informal). The security of a protocol is analyzed by com-
paring what an adversary can do in the protocol to what it can do in an ideal
scenario that is secure by definition. This is formalized by considering an ideal
computation involving an incorruptible trusted third party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Loosely speaking, a protocol is
secure if any adversary interacting in the real protocol (where no trusted third
party exists) can do no more harm than if it was involved in the above-described
ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior
cannot be prevented (for example, early aborting). This behavior is therefore
incorporated into the ideal model. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for P1, and w = y for
P2).

Send inputs to trusted party: An honest party always sends w to the trusted
party. A malicious party may, depending on w, either abort or send some
w′ ∈ {0, 1}|w| to the trusted party.

Trusted party answers first party: In case it has obtained an input pair
(x, y), the trusted party first replies to the first party with f1(x, y). Otherwise
(i.e., in case it receives only one valid input), the trusted party replies to both
parties with a special symbol ⊥.

Trusted party answers second party: In case the first party is malicious it
may, depending on its input and the trusted party’s answer, decide to stop
the trusted party by sending it ⊥. In this case the trusted party sends ⊥ to
the second party. Otherwise the trusted party sends f2(x, y) to the second
party.

Outputs: An honest party always outputs the message it has obtained from
the trusted party. A malicious party may output an arbitrary (probabilistic
polynomial-time computable) function of its initial input and the message
obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ �→ {0, 1}∗ × {0, 1}∗ be a functionality, where f =
(f1, f2), and let M = (M1, M2) be a pair of non-uniform probabilistic expected
polynomial-time machines (representing parties in the ideal model). Such a pair
is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows
the honest party instructions in the above-described ideal execution). Then, the
joint execution of f under M in the ideal model (on input pair (x, y)), denoted
idealf,M (x, y), is defined as the output pair of M1 and M2 from the above ideal
execution.



An Efficient Protocol for Secure Two-Party Computation 59

Execution in the real model. We next consider the real model in which a real
(two-party) protocol is executed (and there exists no trusted third party). In
this case, a malicious party may follow an arbitrary feasible strategy; that is, any
strategy implementable by non-uniform probabilistic polynomial-time machines.

Let f be as above and let Π be a two-party protocol for computing f . Further-
more, let M = (M1, M2) be a pair of non-uniform probabilistic polynomial-time
machines (representing parties in the real model). Such a pair is admissible if
for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the strategy
specified by Π). Then, the joint execution of Π under M in the real model (on
input pair (x, y)), denoted realΠ,M (x, y), is defined as the output pair of M1
and M2 resulting from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that a secure two-party protocol emulates the ideal model
(in which a trusted party exists). This is formulated by saying that admissible
pairs in the ideal model are able to simulate admissible pairs in an execution of
a secure real-model protocol.

Definition 1. (secure two-party computation): Let f and Π be as above. Pro-
tocol Π is said to securely compute f (in the malicious model) if for every pair
of admissible non-uniform probabilistic polynomial-time machines A = (A1, A2)
for the real model, there exists a pair of admissible non-uniform probabilistic
expected polynomial-time machines B = (B1, B2) for the ideal model, such that

{
idealf,B(x, y)

}

x,y s.t. |x|=|y|
c≡

{
realΠ,A(x, y)

}

x,y s.t. |x|=|y|

Namely, the two distributions are computationally indistinguishable.

We note that the above definition assumes that the parties know the input
lengths (this can be seen from the requirement that |x| = |y|). Some restriction
on the input lengths is unavoidable, see [9, Section 7.1] for discussion. We also
note that we allow the ideal adversary/simulator to run in expected (rather than
strict) polynomial-time. This is essential for achieving constant-round protocols;
see [3].

We denote the security parameter by n and, for the sake of simplicity, unify
it with the length of the inputs (thus we consider security for “all sufficiently
long inputs”). Everything in the paper remains the same if a separate security
parameter n is used, and we consider security for inputs of all lengths. We will
also use a statistical security parameter s; see the beginning of Section 3.1 for
an explanation of the use of this separate parameter.

The hybrid model. Our protocol uses a secure oblivious transfer protocol as a
subprotocol. It has been shown in [5] that it suffices to analyze the security of
such a protocol in a hybrid model in which the parties interact with each other and



60 Y. Lindell and B. Pinkas

have access to a trusted party that computes the oblivious transfer protocol for
them. We remark that the composition theorem of [5] holds for the case that the
subprotocol executions are all run sequentially (and the messages of the protocol
calling the subprotocol do not overlap with any execution). We also remark that
if the oblivious transfer subprotocol is secure under parallel composition, then it
is straightforward to extend [5] so that the subprotocols may be run in parallel
(again, as long as the messages of the protocol calling the subprotocol do not
overlap with any execution).

2.2 Functionalities That Provide Output to a Single Party

In the definition above, we have considered the case that both parties receive
output, and these outputs may be different. However, the presentation of our
protocol is far simpler for the case that only party P2 receives output. We will
show now that this suffices for the general case. That is, any protocol that
can securely compute any efficient functionality f(x, y) where only P2 receives
output, can be used to securely compute any efficient functionality f = (f1, f2)
where party P1 receives f1(x, y) and party P2 receives f2(x, y).

Let f = (f1, f2) be a functionality. We wish to construct a secure proto-
col in which P1 receives f1(x, y) and P2 receives f2(x, y); as a building block
we use a protocol for computing any efficient functionality with the limita-
tion that only P2 receives output. Let F be a field that contains the range
of values {f1(x, y)}x,y∈{0,1}n , and let p, a, b be randomly chosen elements in
F . Then, in addition to x, party P1’s input includes the elements p, a, b. Fur-
thermore, define a functionality g (that has only a single output) as follows:
g((p, a, b, x), y) = (α, β, f2(x, y)), where α = p + f1(x, y), β = a · α + b, and the
arithmetic operations are defined in F . Note that α is a one-time pad encryption
of P1’s output f1(x, y), and β is an information-theoretic message authentica-
tion tag of α (specifically, aα + b is a pairwise-independent hash of α). Now, the
parties compute the functionality g, using a secure protocol in which only P2
receives output. Following this, P2 sends the pair (α, β) to P1. Party P1 checks
that β = a · α + b; if yes, it outputs α − p, and otherwise it outputs ⊥.

It is easy to see that P2 learns nothing about P1’s output f1(x, y), and that it
cannot alter the output that P1 will receive (beyond causing it to abort), except
with probability 1/|F|. (We assume that 1/|F is the required probability for
detecting attempts to alter the output. If it is required instead that any change
by P2 to P1’s output is detected with probability 2−s, then the parameters a, b
and the computation of β = a·α+b can be defined in a field whose representation
is s bits long.) We remark that it is also straightforward to construct a simulator
for the above protocol. (Note that in order to meet Definition 1, one must actually
switch the roles of P1 and P2 above.)

We remark that the circuit for computing g is only mildly larger than that
for computing f . Thus, the construction above is also efficient and has only a
mild effect on the complexity of the secure protocol.



An Efficient Protocol for Secure Two-Party Computation 61

3 The Protocol

Our protocol is based upon Yao’s garbled circuit construction, which is secure in
the presence of semi-honest adversaries [29]. That protocol has two parties: P1
(who is the the sender, or circuit constructor), and P2 (who is the receiver, or the
circuit evaluator). The protocol is described and proved in [20]. Our presentation
from here on assumes full familiarity with Yao’s basic protocol.

There are a number of issues that must be dealt with when attempting to make
Yao’s protocol secure against malicious adversaries rather than just semi-honest
ones (beyond the trivial observation that the oblivious transfer subprotocol must
now be secure in the presence of malicious adversaries).

First and foremost, a malicious P1 must be forced to construct the garbled
circuit correctly so that it indeed computes the desired function. The method
that is typically referred to for this task is called cut-and-choose. According to
this methodology, P1 constructs many independent copies of the garbled circuit
and sends them to P2. Party P2 then asks P1 to open half of them (chosen
randomly). After P1 does so, and party P2 checks that the opened circuits are
correct, P2 is convinced that most of the remaining (unopened) garbled circuits
are also constructed correctly. (If there are many incorrectly constructed circuits,
then with high probability, one of those circuits will be in the set that P2 asks to
open.) The parties can then evaluate the remaining unopened garbled circuits
as in the original protocol for semi-honest adversaries, and take the majority
output-value.1

The cut-and-choose technique described above indeed solves the problem of
a malicious P1 constructing incorrect circuits. However, it also generates new
problems! The primary problem that arises is that since there are now many
circuits being evaluated, we must make sure that both P1 and P2 use the same
inputs in each circuit; we call these consistency checks. (Consistency checks are
important since if the parties were able to provide different inputs to different
copies of the circuit, then they can learn information that is different from the
desired output of the function. It is obvious that P2 can do so, since it observes
the outputs of all circuits, but in fact even P1, who only gets to see the majority

1 The reason for taking the majority value as the output is that the aforementioned test
only reveals a single incorrectly constructed circuit with probability 1/2. Therefore,
if P1 generates a single or constant number of “bad” circuits, there is a reasonable
chance that it will not be caught. In contrast, there is only an exponentially small
probability that the test reveals no corrupt circuit and at the same time a majority
of the circuits that are not checked are incorrect. Consequently, with overwhelming
probability it holds that if the test succeeds and P2 takes the majority result of the
remaining circuits, the result is correct. We remark that the alternative of aborting
in case not all the outputs are the same (namely, where cheating is detected) is not
secure and actually yields a concrete attack. The attack works as follows. Assume
that P1 is corrupted and that it constructs all of the circuits correctly except for
one. The “incorrect circuit” is constructed so that it computes the exclusive-or of
the desired function f with the first bit of P2’s input. Now, if P2’s policy is to abort
as soon as two outputs are not the same then P1 learns the first bit of P2’s input.



62 Y. Lindell and B. Pinkas

output, can learn additional information: information2.) Another problem that
arises when proving security is that the simulator must be able to fool P2 and
give it incorrect circuits (even though P2 runs a cut-and-choose test). This is
solved using rather standard techniques, like choosing the circuits to be opened
via a coin-tossing protocol (to our knowledge, this issue has gone unnoticed in all
previous applications of cut-and-choose to Yao’s protocol). Yet another problem
is that P1 might provide corrupt inputs to some of P2’s possible choices in the
OT protocols. P1 might then learn P2’s input based on whether or not P2 aborts
the protocol.

We begin by presenting a high-level overview of the protocol. We then proceed
to describe the consistency checks, and finally the full protocol.

3.1 High-Level Overview

We work with two security parameters. The parameter n is the security pa-
rameter for the commitment schemes, encryption, and the oblivious transfer
protocol. The parameter s is a statistical security parameter which specifies how
many garbled circuits are used. The difference between these parameters is due
to the fact that the value of n depends on computational assumptions, whereas
the value of s reflects the possible error probability that is incurred by the cut-
and-choose technique and as such is a “statistical” security parameter. Although
it is possible to use a single parameter n, it may be possible to take s to be much
smaller than n. Recall that for simplicity, and in order to reduce the number of
parameters, we denote the length of the input by n as well.

Protocol 1. (high-level overview): Parties P1 and P2 have respective inputs x
and y, and wish to compute the output f(x, y) for P2.

0. The parties decide on a circuit computing f . They then change the circuit
by replacing each input wire of P2 by a gate whose input consists of s new
input wires of P2 and whose output is the exclusive-or of these wires (such
an s-bit exclusive-or gate can be implemented using s−1 two-bit exclusive-or
gates). Consequently, the number of input wires of P2 increases by a factor
of s. (In Section 5.2, we show how to reduce the number of inputs.)

1. P1 commits to s different garbled circuits computing f , where s is a statistical
security parameter. P1 also generates additional commitments to the garbled
values corresponding to the input wires of the circuits. These commitments
are constructed in a special way in order to enable consistency checks.

2. For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious trans-
fer protocol in which P2 learns the garbled values of input wires corresponding
to its input.

2 Suppose, for example, that the protocol computes n invocations of a circuit comput-
ing the inner-product between n bit inputs. A malicious P2 could provide the inputs
〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉, and learn all of P1’s input. If, on the other hand,
P1 is malicious, it could also provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉. In
this case, P2 sends it the value which is output by the majority of the circuits, and
which is equal to the majority value of P2’s input bits.



An Efficient Protocol for Secure Two-Party Computation 63

3. P1 sends to P2 all the commitments of Step 1.
4. P1 and P2 run a coin-tossing protocol in order to choose a random string

that defines which commitments and which garbled circuits will be opened.
5. P1 opens the garbled circuits and committed input values that were chosen in

the previous step. P2 verifies the correctness of the opened circuits and runs
consistency checks based on the decommitted input values.

6. P1 sends P2 the garbled values corresponding to P1’s input wires in the un-
opened circuits. P2 runs consistency checks on these values as well.

7. Assuming that all of the checks pass, P2 evaluates the unopened circuits and
takes the majority value as its output.

3.2 Checks for Correctness and Consistency

As can be seen from the above overview, P1 and P2 run a number of checks, with
the aim of forcing a potentially malicious P1 to construct the circuits correctly
and use the same inputs in (most of) the evaluated circuits. This section describes
these checks.

Encoding P2’s input: As mentioned above, a malicious P1 may provide corrupt
input to one of P2’s possible inputs in an OT protocol. If P2 chooses to learn this
input it will not be able to decode the garbled tables which use this value, and it
will therefore have to abort. If P2 chooses to learn the other input associated with
this wire then it will not notice that the first input is corrupt. P1 can therefore
learn P2’s input based on whether or not P2 aborts. (Note that checking that
the circuit is well-formed will not help in thwarting this attack, since the attack
is based on changing P1’s input to the OT protocol.) The attack is prevented by
the parties replacing each input bit of P2 with s new input bits whose exclusive-
or is used instead of the original input (this step was described as Step 0 of
Protocol 1). P2 therefore has 2s−1 ways to encode a 0 input, and 2s−1 ways
to encode a 1, and given its input it chooses the encoding to use with uniform
probability. The parties then execute the protocol with the new circuit, and
P2 uses oblivious transfer to learn the garbled values of its new inputs. As is
shown in the full paper, if P1 supplies incorrect values as garbled values that are
associated with P2’s input, the probability of P2 detecting this cheating is almost
independent (up to a bias of 2−s+1) of P2’s actual input. This is not true if P2’s
inputs are not “split” in the way described above. The encoding presented here
increases the number of P2’s input bits and, respectively, the number of OTs,
from n to ns. In Section 5.2 we show how to reduce the number of new inputs
for P2 (and thus OTs) to a total of only O(max(s, n)).

An unsatisfactory method for proving consistency of P1’s input: Consider the
following idea for forcing P1 to provide the same input to all circuits. Let s be
a security parameter and assume that there are s garbled copies of the circuit.
Then, P1 generates two ordered sets of commitments for every wire of the cir-
cuit. Each set contains s commitments: the “0 set” contains commitments to the
garbled encodings of 0 for this wire in every circuit, and the “1 set” contains



64 Y. Lindell and B. Pinkas

commitments to the garbled encodings of 1 for this wire in every circuit. P2
receives these commitments from P1 and then chooses a random subset of the
circuits, which will be defined as check-circuits. These circuits will never be eval-
uated and are used only for checking correctness and consistency. Specifically,
P2 asks P1 to de-garble all of the check-circuits and to open the values that
correspond to the check-circuits in both commitment sets. (That is, if circuit i
is a check-circuit, then P1 decommits to both the 0 encoding and 1 encoding of
all the input wires in circuit i.) Upon receiving the decommitments, P2 verifies
that all opened commitments from the “0 set” correspond to garbled values of
0, and that a similar property holds for commitments from the “1 set”.

It now remains for P2 to evaluate the remaining circuits. In order to do this,
P1 provides (for each of its input wires) the garbled values that are associated
with the wire in all of the remaining circuits. Then, P1 must prove that all of
these values come from the same set, without revealing whether the set that they
come from is the “0 set” or the “1 set” (otherwise, P2 will know P1’s input). In
this way, on the one hand, P2 does not learn the input of P1, and on the other
hand, it is guaranteed that all of the values come from the same set, and so P1
is forced into using the same input in all circuits. This proof can be carried out
using, for example, the proofs of partial knowledge of [6]. However, this would
require n proofs, each for s values, thereby incurring O(ns) costly asymmetric
operations which we want to avoid.

Proving consistency of P1’s input: P1 can prove consistency of its inputs without
using public-key operations. The proof is based on a cut-and-choose test for the
consistency of the commitment sets, which is combined with the cut-and-choose
test for the correctness of the circuits. (Note that in the previous proposal, there
is only one cut-and-choose test, and it is for the correctness of the circuits.)
We start by providing a high level description of the proof of consistency: The
proof is based on P1 constructing, for each of its input wires, s pairs of sets of
commitments. One set in every pair contains commitments to the 0 values of
this wire in all circuits, and the other set is the same with respect to 1. The
protocol chooses a random subset of these pairs, and a random subset of the
circuits, and checks that these sets provide consistent inputs for these circuits.
Then the protocol evaluates the remaining circuits, and asks P1 to open, in each
of the remaining pairs, and only in one set in every pair, its garbled values for all
evaluated circuits. (In this way, P2 does not learn whether these garbled values
correspond to a 0 or to a 1.) In order for the committed sets and circuits to pass
P2’s checks, there must be large subsets C and S, of the circuits and commitment
sets, respectively, such that every choice of a circuit from C and a commitment
set from S results in a circuit and garbled values which compute the desired
function f . P2 accepts the verification stage only if all the circuits and sets it
chooses to check are from C and S, respectively. This means that if P2 does
not abort then circuits which are not from C are likely to be a minority of the
evaluated circuits, and a similar argument holds for S. Therefore the majority
result of the evaluation stage is correct. The exact construction is as follows:



An Efficient Protocol for Secure Two-Party Computation 65

Stage 1 – Commitments: P1 generates s garbled versions of the circuit. Fur-
thermore, it generates commitments to the garbled values of the wires corre-
sponding to P2’s input in each circuit. These commitments are generated in
ordered pairs so that the first item in a pair corresponds to the 0 value and
the second to the 1 value. The procedure regarding the input bits of P1 is more
complicated (see Figure 1 for a diagram explaining this construction). P1 gener-
ates s pairs of sets of committed values for each of its input wires. Specifically,
for every input wire i of P1, it generates s sets of the form {Wi,j , W

′
i,j}s

j=1;
we call these commitment sets. Before describing the content of these sets, de-
note by kb

i,r the garbled value that is assigned to the value b ∈ {0, 1} in wire
i of circuit r. Then, the sets Wi,j and W ′

i,j both contain s + 1 commitments
and are defined as follows. Let b ∈R {0, 1} be a random bit, chosen indepen-
dently for every {Wi,j , W

′
i,j} pair. Define Wi,j to contain a commitment to b,

as well as commitments to the garbled value corresponding to b in wire i in
all of the s circuits, and define W ′

i,j similarly, but with respect to 1− b. In
other words, Wi,j = {com(b), com(kb

i,1), . . . , com(kb
i,s)} and W ′

i,j = {com(1−
b), com(k1−b

i,1 , . . . , com(k1−b
i,s )}. We stress that in each of the pairs (Wi,1, W

′
i,1), . . . ,

(Wi,s, W
′
i,s), the values that are committed to are the same. The only difference

is that independent randomness is used in each pair for choosing b and con-
structing the commitments. We call the first bit committed to in a commitment
set the indicator bit.

Fig. 1. The commitment sets corresponding to P1’s first input wire

After constructing these circuits and commitment sets, party P1 sends to P2
all of the s garbled circuits (i.e., the garbled gate-tables and output-tables, but
not the garbled values corresponding to the input wires), and all the commitment



66 Y. Lindell and B. Pinkas

sets. Note that if P1’s input is of length n, then there are sn pairs of commitment
sets; and a total of sn(2s + 2) = O(s2n) commitments.

Stage 2 – Challenge: Two random strings ρ, ρ′ ∈R {0, 1}s are chosen and
sent to P1 (in the actual protocol, these strings are determined via a simple coin-
tossing protocol). The string ρ is a challenge indicating which garbled circuits to
open, and the string ρ′ is a challenge indicating which commitment sets to open.
We call the opened circuits check-circuits and the unopened ones evaluation-
circuits. Likewise, we call the opened sets check-sets and the unopened ones
evaluation-sets. A circuit (resp., commitment set) is defined to be a check-circuit
(resp., check-set) if the corresponding bit in ρ (resp., ρ′) equals 1; otherwise, it
is defined to be an evaluation-circuit (resp., evaluation-set).

Stage 3 – Opening: First, party P1 opens all the commitments corresponding
to P2’s input wires in all of the check-circuits. Second, in all of the check-sets
P1 opens the commitments that correspond to check-circuits. That is, if circuit
r is a check circuit, then P1 decommits to all of the values com(k0

i,r), com(k1
i,r)

in check-sets, where i is any of P1’s input bits. Finally, for every check-set, P1
opens the commitment to the indicator bit, the initial value in each of the sets
Wi,j , W

′
i,j . See Figure 2 for a diagram in which the values which are opened are

highlighted (the diagram refers to only one of P1’s input wires in the circuit).

Fig. 2. In every check-set, the commitment to the indicator bit, and the commitments
corresponding to check-circuits are all opened.

Stage 4 – Verification: In this step, party P2 verifies that all of the check-
circuits were correctly constructed. In addition, it verifies that all of the opened
commitments in sets whose first item is a commitment to 0 are to garbled en-
codings of 0; likewise for 1. These checks are carried out as follows. First, in
all of the check-circuits, P2 receives the decommitments to the garbled values



An Efficient Protocol for Secure Two-Party Computation 67

corresponding to its own input, and by the order of the commitments P2 knows
which value corresponds to 0 and which value corresponds to 1. Second, for every
check-circuit, P2 receives decommitments to the garbled input values of P1 in
all the check-sets, along with a bit indicating whether these garbled values cor-
respond to 0 or to 1. It first checks that for every wire, the garbled values of 0
(resp., of 1) are all equal. Then, the above decommitments enable the complete
opening of the garbled circuits (i.e., the decryption of all of the garbled tables).
Once this has been carried out, it is possible to simply check that the check-
circuits are all correctly constructed. Namely, that they agree with a specific
and agreed-upon circuit computing f .

Stage 5 – Evaluation and Verification: Party P1 reveals the garbled values
corresponding to its input: If i is a wire that corresponds to a bit of P1’s input and
r is an evaluation-circuit, then P1 decommits to the commitments kb

i,r in all of the
evaluation-sets, where b is the value of its input bit. This is depicted in Figure 3.
Finally, P2 verifies that (1) for every input wire, all of the opened commitments
that were opened in evaluation-sets contain the same garbled value, and (2) for
every i, j P1 opened commitments of evaluated circuits in exactly one of Wi,j or
W ′

i,j . If these checks pass, it continues to evaluate the circuit.

Fig. 3. P1 opens in the evaluation-sets, the commitments that correspond to its input.
In every evaluation-set these commitments come from the same item in the pair.

Intuition. Having described the mechanism for checking consistency, we now
provide some intuition as to why it is correct. A simple cut-and-choose check
verifies that most of the evaluated circuits are correctly constructed. The main
remaining issue is ensuring that P1’s inputs to most circuits are consistent. If
P1 wants to provide different inputs to a certain wire in two circuits, then all
the Wi,j (or W ′

i,j) sets it opens in evaluation-sets must contain a commitment
to 0 in the first circuit and a commitment to 1 in the other circuit. However,



68 Y. Lindell and B. Pinkas

if any of these sets is chosen to be checked, and the circuits are among the
checked circuits, then P2 aborts. This means that if P1 attempts to provide
different inputs to two circuits and they are checked, it is almost surely caught.
Now, since P2 outputs the majority output of the evaluated circuits, the result
is affected by P1 providing different inputs only if these inputs affect a constant
fraction of the circuits. But since all of these circuits must not be checked, P1’s
probability of success is exponentially small in s.

3.3 The Full Protocol

We now describe the full protocol in detail. We use the notation comb to refer to
a perfectly binding commitment scheme, and comh to refer to a perfectly hiding
commitment scheme (See [8] for definitions).

Protocol 2. (protocol for computing f(x, y)):
• Input: P1 has input x ∈ {0, 1}n and P2 has input y ∈ {0, 1}n.

• Auxiliary input: a statistical security parameter s and the description of a
circuit C0 such that C0(x, y) = f(x, y).

• Specified output: party P2 should receive f(x, y) and party P1 should re-
ceive no output. (Recall that this suffices for the general case where both
parties receive possibly different outputs; see Section 2.2.)

• The protocol
0. Circuit construction: The parties replace C0 with a circuit C which

is constructed by replacing each input wire of P2 by the result of an
exclusive-or of s new input wires of P2. (We show in Section 5.2 how
the number of new input bits can be reduced.) The number of input
wires of P2 is increased from |y| = n to sn. Let the bit-wise represen-
tation of P2’s original input be y = y1 . . . yn. Denote its new input as
ŷ = ŷ1, . . . , ŷns. P2 chooses its new input at random subject to the con-
straint yi = ŷ(i−1)·s+1 ⊕ · · · ⊕ ŷi·s.

1. Commitment construction: P1 constructs the circuits and commits
to them, as follows:
(a) P1 constructs s independent copies of a garbled circuit of C, denoted

GC1, . . . , GCs.

(b) P1 commits to the garbled values of the wires corresponding to P2’s
input to each circuit. That is, for every input wire i corresponding
to an input bit of P2, and for every circuit GCr, P1 computes the
ordered pair (comb(k0

i,r), comb(k1
i,r)), where kb

i,r is the garbled value
associated with b on input wire i in circuit GCr.

(c) P1 computes commitment-sets for the garbled values that correspond
to its own inputs to the circuits. That is, for every wire i that corre-
sponds to an input bit of P1, it generates s pairs of commitment sets
{Wi,j , W

′
i,j}s

j=1, in the following way:



An Efficient Protocol for Secure Two-Party Computation 69

Denote by kb
i,r the garbled value that was assigned by P1 to the value

b ∈ {0, 1} of wire i in GCr. Then, P1 chooses b ∈R {0, 1} and com-
putes

Wi,j = 〈comb(b), comb(kb
i,1), . . . , comb(kb

i,s)〉, and

W ′
i,j = 〈comb(1−b), comb(k1−b

i,1 ), . . . , comb(k1−b
i,s )〉

For each i, j, the sets are constructed using independent random-
ness, and in particular the value of b is chosen independently for
every j = 1 . . . s. There are a total of ns commitment-sets. We di-
vide them into s supersets, where superset Sj is defined as Sj =
{(W1,j , W

′
1,j), . . . , (Wn,j , W

′
n,j)}. Namely, Sj is the set containing the

jth commitment set for all wires.

2. Oblivious transfers: For every input bit of P2, parties P1 and P2 run
a 1-out-of-2 oblivious transfer protocol in which P2 receives the garbled
values for the wires that correspond to its input bit (in every circuit).
That is, let cb

i,r denote the commitment to the garbled value kb
i,r and let

dcb
i,r denote the decommitment value for cb

i,r. Furthermore, let i1, . . . , ins

be the input wires that correspond to P2’s input.
Then, for every j = 1, . . . , ns, parties P1 and P2 run a 1-out-of-2 OT

protocol in which:
(a) P1’s input is the pair of vectors ([dc0

ij ,1, . . . , dc0
ij ,s], [dc1

ij ,1, . . . , dc1
ij ,s]).

(b) P2’s input is its jth input bit ŷj (and its output should thus be
[dc

ŷj

ij ,1, . . . , dc
ŷj

ij ,s]).
If the oblivious transfer protocol provides security for parallel execution, then
these executions are run in parallel. Otherwise, they are run sequentially.

3. Send circuits and commitments: P1 sends to P2 the garbled circuits
(i.e., the gate and output tables), as well as all of the commitments that
it prepared above.

4. Prepare challenge strings: (1) P2 chooses a random string ρ2 ∈R

{0, 1}s and sends comh(ρ2) to P1. (2) P1 chooses a random string ρ1 ∈
{0, 1}s and sends comb(ρ1) to P2. (3) P2 decommits, revealing ρ2. (4) P1
decommits, revealing ρ1. (5) P1 and P2 set ρ = ρ1 ⊕ ρ2. The above steps
are run a second time, defining an additional string ρ′.3

5. Decommitment phase for check-circuits: From here on, we refer
to the circuits for which the corresponding bit in ρ is 1 as check-circuits,

3 Recall that ρ and ρ′ are used to ensure that P1 constructs the circuits correctly
and uses consistent input in each circuit. Thus, it may seem strange that they are
generated via a coin-tossing protocol, and not just chosen singlehandedly by P2.
Indeed, in order to prove the security of the protocol when P1 is corrupted, there
is no need for a coin-tossing protocol here. However, having P2 choose ρ and ρ′

singlehandedly creates a problem for the simulation in the case that P2 is corrupted.
We therefore use a coin-tossing protocol instead.



70 Y. Lindell and B. Pinkas

and we refer to the other circuits as evaluation-circuits. Likewise, if the jth

bit of ρ′ equals 1, then the commitments sets in Sj = {(Wi,j , W
′
i,j)}i=1...n

are referred to as check-sets; otherwise, they are referred to as evaluation-
sets.

For every check-circuit GCr, party P1 operates in the following way:

(a) For every input wire i corresponding to an input bit of P2, party P1
decommits to the pair (com(k0

i,r), com(k1
i,r)) (namely to both of P2’s

inputs).

(b) For every input wire i corresponding to an input bit of P1, party
P1 decommits to the appropriate values in the superset Sj, in the
check-sets {Wi,j , W

′
i,j}. Specifically, P1 decommits to the com(k0

i,r)
and com(k1

i,r) values in (Wi,j , W
′
i,j), for every check-set Sj (see Fig-

ure 2).

For every pair of check-sets (Wi,j , W
′
i,j), party P1 decommits to the first

value in each set (i.e., to the value that is supposed to be a commitment
to the indicator bit, com(0) or com(1)).

6. Decommitment phase for P1’s input in evaluation-circuits: P1
decommits to the garbled values that correspond to its inputs in evaluation-
circuits. Let i be the index of an input wire that corresponds to P1’s input
(the following procedure is applied to all such wires). Let b be the binary
value that P1 assigns to input wire i. In every evaluation-set (Wi,j , W

′
i,j),

P1 chooses the set (out of (Wi,j , W
′
,j)), which corresponds to the value b.

It then opens in this set the commitments that correspond to evaluation-
circuits. Namely, to the values kb

i,r, where r is an index of an evaluation
circuit (see Figure 3).

7. Correctness and consistency checks: P2 performs the following
checks; if any of them fails it aborts.

(a) Checking correctness of the check-circuits: P2 verifies that each check-
circuit GCi is a garbled version of C. This check is carried out by P2
first constructing the input tables that associate every garbled value
of an input wire to a binary value. The input tables for P2’s in-
puts are constructed by checking that the decommitments to the pairs
(com(k0

i,r), com(k1
i,r)) (where i is a wire index and r is a circuit in-

dex) are valid, and then interpreting the first value to be associated
with 0 and the second value to be associated with 1.

Next, P2 checks the decommitments to P1’s inputs. This check in-
volves first checking that the decommitment values are valid. Then,
P2 verifies that in each pair of check-sets, one of (Wi,j , W

′
i,j) begins

with a commitment to 0 (henceforth the 0-tuple), and the other begins
with a commitment to 1 (henceforth the 1-tuple). Then P2 checks that
for every wire, the values that are decommitted to in the 0-tuples in
all check-sets are all equal, and that a similar property holds for the
1-tuples. P2 then assigns the logical value of 0 to all of the opened



An Efficient Protocol for Secure Two-Party Computation 71

commitments in the 0-tuples, and the logical value of 1 to the opened
commitments in the 1-tuples.

Finally, given all the garbled values to the input wires and their
associated binary values, P2 decrypts the circuit and compares it with
the circuit C.

(b) Verifying P2’s input in the check-circuits: P2 verifies that P1’s de-
commitments to the wires corresponding to P2’s input values in the
check-circuits are correct, and agree with the logical values of these
wires (the indicator bits). P2 also checks that the inputs it learned
in the oblivious transfer stage for the check-circuits correspond to its
actual input. Specifically, it checks that the decommitment values that
it received in the oblivious transfer stage open the committed values
that correspond to the garbled values of its logical input (namely, that
it received the first value in the pair if the input bit is 0 and the second
value if it is 1).4

(c) Checking P1’s input to evaluation-circuits: Finally, P2 verifies that
for every input wire i of P1 the following two properties hold:
i. In every evaluation-set P1 chose one of the two sets and decommit-

ted to all the commitments in it which correspond to evaluation-
circuits.

ii. For every evaluation-circuit, all of the commitments that P1 opened
in evaluation-sets are for the same garbled value.

8. Circuit evaluation: If any of the above checks fails, P2 aborts and
outputs ⊥. Otherwise, P2 evaluates the evaluation circuits (in the same
way as for the semi-honest protocol of Yao). It might be that in certain
circuits the garbled values provided for P1’s inputs, or the garbled values
learned by P2 in the OT stage, do not match the tables and so decryption
of the circuit fails. In this case P2 also aborts and outputs ⊥. Otherwise,
P2 takes the output that appears in most circuits, and outputs it (the
proof shows that this value is well defined).

4 Proof of Security

The security of Protocol 2 is stated in the following theorem.

Theorem 2. Let f : {0, 1}∗× {0, 1}∗ → {0, 1}∗ be any probabilistic polynomial-
time two-party functionality and consider the instantiation of Protocol 2 for func-
tionality f . Assume that the oblivious transfer protocol is secure, that comb is
a perfectly-binding commitment scheme, that comh is a perfectly-hiding commit-
ment scheme, and that the garbled circuits are constructed as in [20]. Then,
Protocol 2 securely computes f .

4 This check is crucial and thus the order of first running the oblivious transfer and
then sending the circuits and commitments is not at all arbitrary.



72 Y. Lindell and B. Pinkas

The theorem is proved in two stages: first for the case that P1 is corrupted and
next for the case that P2 is corrupted. The proof is provided in the full version
of this paper. We highlight here the basic intuition behind the proof.

Security against a Malicious P1. The proof constructs an ideal-model adver-
sary/simulator which has access to P1 and to the trusted party, and can simulate
the view of an actual run of the protocol. It uses the fact that the strings ρ, ρ′,
which choose the circuits and commitment sets that are checked, are uniformly
distributed even if P1 is malicious. The simulator runs the protocol until P1
opens the commitments of the checked circuits and checked commitment sets,
and then rewinds the execution and runs it again with new random ρ, ρ′ val-
ues. We expect that about one quarter of the circuits are checked in the first
execution and evaluated in the second execution. For these circuits, in the first
execution the simulator learns the translation between the garbled values of P1’s
input wires and the actual values of these wires, and in the second execution it
learns the garbled values that are associated with P1’s input (this association
is learned from the garbled values that P1 sends to P2). Combining the two, it
learns P1’s input x, which can then be sent to the trusted party. The trusted
party answers with f(x, y), which we use to define P2’s output and complete the
simulation.

Security against a Malicious P2. Intuitively, the security in this case is derived
from the fact that: (a) the oblivious transfer protocol is secure, and so P2 only
learns a single set of keys (corresponding to a single input y) for decrypting
the garbled circuits, and (b) the commitment schemes are hiding and so P2
does not know what input corresponds to the garbled values that P1 sends it
for evaluating the circuit. Of course, in order to formally prove security we
construct an ideal-model simulator B2 working with an adversary A2 that has
corrupted P2. The simulator first extracts A2’s input bits from the oblivious
transfer protocol, and then sends the input y it obtained to the trusted party and
receives back z = f(x, y). Given the output, the simulator constructs the garbled
circuits. However, rather than constructing them all correctly, for each circuit
it tosses a coin and, based on the result, either constructs the circuit correctly,
or constructs it to compute the constant function outputting z (the output is
received from the trusted party). In order to make sure that the simulator is
not caught cheating, it biases the coin-tossing phase so that all of the correctly-
constructed garbled circuits are check-circuits, and all of the other circuits are
evaluation-circuits (this is why the protocol uses joint coin-tossing rather than
let P2 alone choose the circuits to be opened). A2 then checks the correctly-
constructed circuits, and is satisfied with the result as if it were interacting with
a legitimate P1. A2 therefore continues the execution with the circuits which
always output z.

5 Efficiency of the Protocol

We discuss below the efficient implementation of the different building blocks of
the protocol (namely, encryption, commitment schemes, and oblivious transfer).



An Efficient Protocol for Secure Two-Party Computation 73

The overhead of the protocol depends on a statistical security parameter s. The
security proof shows that the adversary’s cheating probability is exponentially
small in s. We note that in this paper we preferred to present a full and clear
proof, rather than overly optimize the construction at the cost of complicating
the proof. We have not not analyzed the exact constants affecting the dependence
of the error probability on the security parameter s.

The communication overhead of the protocol is dominated by sending s copies
of the garbled circuit, and 2s(s+1) commitments for each of the n inputs of P1. In
the protocol, the original circuit C0 is modified by replacing each of the n original
input bits of P2 with the exclusive-or of s of the new input bits, and therefore the
size of the evaluated circuit C is |C| = |C0| + O(ns) gates. The communication
overhead is therefore O(s(|C0| + ns) + s2n) = O(s|C0| + s2n) times the length
of the secret-keys (and ciphertexts) used to construct the garbled circuit. (Note
that the improved construction in Section 5.2 reduces the size of the new circuit
to |C| = |C0| + O(max(n, s)) and therefore only improves the communication
overhead by a constant; the significance of the improvement is with respect to
computation.)

The computation overhead is dominated by the oblivious transfers. In Proto-
col 2 each input bit of P2 is replaced by s new inputs and therefore O(ns) OTs
are required. In Section 5.2 we show how to use only O(max(n, s)) new input
bits, and consequently the number of OTs is reduced to O(max(n, s)) (namely
O(1) OTs per input bit, assuming n = Ω(s)).

5.1 Efficient Implementation of the Different Primitives

In this section, we describe efficient implementations of the different building
blocks of the protocol.

Encryption scheme. Following [20], the construction uses a symmetric key en-
cryption scheme that has indistinguishable encryptions for multiple messages
and an elusive efficiently verifiable range. Informally, this means (1) that for
any two (known) messages x and y, no polynomial-time adversary can distin-
guish between the encryptions of x and y, and (2) that there is a negligible
probability that an encryption under one key falls into the range of encryptions
under another key, and given a key k it is easy to verify whether a certain ci-
phertext is in the range of encryptions with k. See [20] for a detailed discussion
of these properties, and for examples of easy implementations satisfying them.
For example, the encryption scheme could be Ek(x) = 〈r, fk(r) ⊕ x0n〉, where k
is a pseudo-random function keyed by k, and r is a randomly chosen value.

Commitment schemes. The protocol uses both unconditionally hiding and un-
conditionally binding commitments. Our goal should be, of course, to use the
most efficient implementations of these primitives, and we therefore concentrate
on schemes with O(1) communication rounds (all commitment schemes we de-
scribe here have only two rounds). Efficient unconditionally hiding commitment
schemes can be based on number theoretic assumptions, and use O(1) exponen-
tiations (see, e.g., [13,26]). The most efficient implementation is probably the



74 Y. Lindell and B. Pinkas

one due to Halevi and Micali, which uses a collision-free hashing function and
no other cryptographic primitive [14]. Efficient unconditionally binding commit-
ments can be constructed using the scheme of Naor [24], which has two rounds
and is based on using a pseudo-random generator.

Oblivious transfer. The protocol needs to use an OT protocol which is secure
according to the real/ideal model simulation definition. Candidate protocols can
be the protocol of [7] compiled according to the GMW paradigm, or the two-
round protocols of [25,2,16] with additional proofs of knowledge.

5.2 Reducing the Number of Oblivious Transfers

Protocol 2 uses a construction which replaces each input bit of P2 with multiple
input bits, providing P2 with multiple options for encoding each of its inputs.
This limits the information that P1 can gain from corrupting OT inputs (and in
particular, P2 aborts with almost the same probability irrespective of its actual
input). The construction replaces each original input wire of P2 with s new
wires, thus increasing the number of input wires of P2 from n to ns. We show
here a probabilistic construction which reduces the number of input wires of
P2 to max(4n, 8s) (we also describe how to use codes to construct an explicit
construction with similar performace). The construction has a direct effect on
the overhead of the protocol, since the number of OTs is equal to the number of
input wires of P2.

We denote the original input bits as w1, . . . , wn and the new input bits as
w′1, . . . , w

′
m. Our goal is to minimize m. Each wi is defined as the exclusive-or

of a subset of the new input bits. We define the indicator vector zi as an m-
bit binary string whose jth bit is 1 iff w′j is in the subset of new input bits
whose exclusive-or is wi. The construction described in Protocol 2 corresponds
to indicator vectors zi = (0 . . . 0︸ ︷︷ ︸

(i−1)s

1 . . . 1︸ ︷︷ ︸
s

0 . . . 0︸ ︷︷ ︸
(n−i)s

).

Before analyzing the constructions, let us recall how P2 encodes its inputs: it
chooses random values for the bits w′1, . . . , w

′
m, subject to the constraint that

the exclusive-or of any set of new bits which corresponds to an original bit wi is
equal the original value of wi. P2 then runs an OT for each of its new input bits.
If one of the answers it receives in these OTs is corrupt, it aborts the protocol.
Our goal is to make sure that the decision to abort does not reveal information
about P2’s original input (this is the only place that it is used in the proof).
It is clear that if P1 corrupts the inputs of a single OT, then, since each input
bit of P2 is the exclusive-or of several new bits, the decision to abort does not
reveal information about any specific input bit of P2. This observation must be
generalized for the case of P1 corrupting more OT inputs, and hold with respect
to any subset of P2’s inputs.

Warmup – reusing bits. In order to use less “new” input bits, P2 must reuse these
bits. Assume that P2 has two input wires w1, w2 and that we replace them with
s+1 new wires, w′1, . . . , w

′
s+1. The input values are defined as w1 = w′1⊕· · ·⊕w′s,



An Efficient Protocol for Secure Two-Party Computation 75

and w2 = w′2 ⊕· · ·⊕w′s+1 (namely z1 = 11 · · · 10 and z2 = 01 · · · 11). In this case,
it is easy to see that any strategy used by a malicious P1 to corrupt OT values
gives it an advantage of at most 2−s+1 in identifying a single bit of P2’s original
input (e.g., if P1 corrupts the ‘1’ inputs of w′1, . . . , w

′
s, then if w1 = 1 P2 always

aborts, whereas if w1 = 0 there is a probability of 2−s+1 that P2 does not abort).
However, w1 ⊕ w2 = w′1 ⊕ w′s+1 (namely, z1 ⊕ z2 = 10 . . .01) and therefore if
P1 corrupts the OT values of both w′1 and w′s+1 it can obtain a non-negligible
advantage in learning w1 ⊕ w2. (For example, P1 can corrupt the ‘1’ inputs of
w′1 and w′s+1. If P2 does not abort P1 can conclude that w′1 = w′s+1 = 0 and
therefore w1 = w2.)

The attack presented above can be prevented if the exclusive-or of any subset
of P2’s original bits contains at least s new input bits. Namely, if, in the general
case, for every non-empty subset L ⊆ {1, . . . , n} it holds that the Hamming
weight of ⊕i∈Lzi is at least s. The two lemmata stated below (which are proved
in the full version of the paper) show that this requirement is sufficient to prove
that, up to a negligible probability, P2’s decision to abort is independent of its
input values.

Lemma 1. Suppose that for any set L = {i1, . . . , i|L|} (corresponding to a set
{wi1 , . . . , wi|L|} of original input wires), the Hamming weight of zi1 ⊕· · ·⊕zi|L| is
at least s. Fix the values of any subset of less than s new input wires arbitrarily,
and choose the values of all other new input wires uniformly at random. Then
for any set L = {i1, . . . , i|L|}, the value of the vector (wi1 , . . . , wi|L|) is uniformly
distributed.

Lemma 2. Suppose that for all sets L = {i1, . . . , i|L|} the Hamming weight of
zi1 ⊕ · · · ⊕ zi|L| is at least s. Then, for any two different inputs y and y′ of P2,
the difference between the probability that P2 aborts the protocol as a result of
corrupt OT values when its input is y and when its input is y′ is at most 2−s+1.

Given Lemma 2 it is possible to construct assignments of the new input values to
the original input values which ensure that OT corruptions by P1 do not reveal
information about P2’s input. The constructions are based on ensuring that for
any set S = {i1, . . . , i|L|} the Hamming weight of zi1 ⊕· · ·⊕zi|L| is at least s. We
describe below a randomized construction which achieves this property. As was
pointed to us by David Woodruff, an explicit construction can be achieved using
any explicit linear code from {0, 1}s to {0, 1}O(s), for which any two codewords
have a distance of at least Ω(s) (Justesen codes are an example of such a code).

The randomized construction. We define 4n new input bits for P2. Assume,
without loss of generality, that n > 2s. (Otherwise add dummy input bits.
Therefore the exact number of new input bits is max(4n, 8s).) The mapping
between the n old input bits and the 4n new input bits is chosen randomly
in the following way: each original input bit wi is defined to be equal to the
exclusive-or of a uniformly chosen subset of the new input bits (in other words,
zi is a uniformly distributed string of 4n bits).



76 Y. Lindell and B. Pinkas

We examine the probability that there is a subset L ⊆ {0, 1}n for which the
Hamming weight of ⊕i∈L zi is less than s: Consider any subset L, then ⊕i∈Lzi

is a uniformly distributed string with 4n > 8s bits, with an expected Hamming
weight of 2n. Let Xj be a random variable which is set to 1 if the jth bit in this
string is 1. Note that s/4n < 1/8 by our assumption that n > 2s. We have:

Pr

�
4n�

j=1

Xj < s

�
= Pr

��
Xj

4n
<

s

4n

�
< Pr

��
Xj

4n
<

1
8

�
≤ Pr

�����
�

Xj

4n
− 1

2

���� >
3
8

�

Applying the Chernoff bound, we have that Pr
[∑4n

j=1 Xj < s
]

=

< 2e−
(3/8)2

2(1/2)(1/2) 4n = 2e−9n/8. There are a total of 2n subsets of the original input
bits, and therefore the probability that any of them is equal to the exclusive-
or of less than s new input bits is bounded by 2n2e−9n/8 ≈ 2(1−9/8 log(e))n ≈
2−0.6n < 2−1.2s. Lemma 2 therefore implies that with probability 1 − 2−1.2s the
construction suffices for our proof of security.

Choosing the strings zi. In order to use the above construction, the parties
must construct a circuit that has 4n new input bits for P2. Furthermore, the
parties must define n random strings zi of length 4n and then have the circuit
map P2’s ith input bit according to the string zi (as described above). This can
be done in two ways. One possibility is to choose the mapping once and for
all and hardwire it into the protocol specification. This is problematic because
then there is a negligible probability that the protocol is not secure (in any
execution). Thus, the mapping should instead be chosen as part of the protocol
execution (because negligible failure in any execution is allowed). Fortunately, P2
can singlehandedly choose the strings z1, . . . , zn in the first step of the protocol
and send them to P1. The reason why this is fine is because this entire issue
only arises in the proof of the case that P1 is corrupted (indeed, for the case of
a corrupted P2 there is no need to split P2’s input bits at all).

Acknowledgments

We would like to thank Yuval Ishai, Moni Naor, Adam Smith and David Woodruff
for helpful discussions about this work.

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure Computation of the k-th Ranked
Element. In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), 40–55, 2004.

2. B. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Transfer: How to Sell Digital
Goods. In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), 119–135, 2001.

3. B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction.
SIAM Journal on Computing, 33(4):783–818, 2004.

4. D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91,
Springer-Verlag (LNCS 576), pages 377–391, 1991.



An Efficient Protocol for Secure Two-Party Computation 77

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In CRYPTO’94, Springer-Verlag
(LNCS 839), pages 174–187, 1994.

7. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Con-
tracts. In Communications of the ACM, 28(6):637–647, 1985.

8. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge
Univ. Press, 2001.

9. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge Univ. Press, 2004.

10. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

11. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In 19th STOC, pages
218–229, 1987. For details see [9].

12. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93,
1990.

13. S. Goldwasser, S. Micali and R.L. Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281-308, 1988.

14. S. Halevi and S. Micali, Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing, CRYPTO 1996, Springer-Verlag (LNCS 1109), pages 201-
215, 1996.

15. S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Com-
mitted Inputs. In these proceedings (Eurocrypt ’2007).

16. Y.T. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer. In
EUROCRYPT 2005, Springer-Verlag (LNCS 3494), pages 78–95, 2005.

17. J. Katz and Y. Lindell. Handling Expected Polynomial-Time Strategies in
Simulation-Based Security Proofs. In the 2nd Theory of Cryptography Conference
(TCC), Springer-Verlag (LNCS 3378), pp. 128–149, 2005.

18. J. Kilian. Founding Cryptography on Oblivious Transfer. In 20th STOC, pages
20–31, 1988.

19. M. Kiraz and B. Schoenmakers. A Protocol Issue for the Malicious Case of Yao’s
Garbled Circuit Construction. In Proceedings of 27th Symposium on Information
Theory in the Benelux, 283–290, 2006.

20. Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Com-
putation. To appear in the Journal of Cryptology. Also appeared as Cryptology
ePrint Archive, Report 2004/175, 2004.

21. D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay – A Secure Two-Party
Computation System. In the 13th USENIX Security Symposium, pages 287–302,
2004.

22. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992.
Preliminary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404,
1991.

23. P. Mohassel and M.K. Franklin. Efficiency Tradeoffs for Malicious Two-Party
Computation. In the 9th PKC conference, Springer-Verlag (LNCS 3958), pages
458–473, 2006.

24. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.



78 Y. Lindell and B. Pinkas

25. M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In the 12th SODA,
pages 448-457, 2001.

26. T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In CRYPTO’91, Springer-Verlag (LNCS 576), pages 129–140, 1992.

27. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,
Aiken Computation Laboratory, Harvard U., 1981.

28. D. Woodruff. Revisiting the Efficiency of Malicious Two-Party Computation. In
these proceedings (Eurocrypt ’2007).

29. A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167,
1986.



Revisiting the Efficiency of Malicious Two-Party
Computation

David P. Woodruff �

MIT Computer Science and Artificial Intelligence Laboratory
dpwood@mit.edu

Abstract. In a recent paper Mohassel and Franklin study the efficiency
of secure two-party computation in the presence of malicious behav-
ior. Their aim is to make classical solutions to this problem, such as
zero-knowledge compilation, more efficient. The authors provide several
schemes which are the most efficient to date. We propose a modification
to their main scheme using expanders. Our modification asymptotically
improves at least one measure of efficiency of all known schemes. We also
point out an error, and improve the analysis of one of their schemes.

Keywords: secure function evaluation, malicious model, efficiency,
expander graphs.

1 Introduction

Two parties, Alice with input x and Bob with input y, wish to evaluate a func-
tion f(x, y) in such a way that neither learns more information than what can
be deduced from the output f(x, y). This problem, known as general two-party
secure computation, generalizes many important cryptographic tasks. A cele-
brated result is Yao’s garbled circuit protocol [34, 21], which provides a solution
to this problem for any efficiently computable function f .

Yao’s protocol provides security in the semi-honest model, that is, a model in
which parties must follow the instructions of the protocol, though they may keep
message histories in an attempt to learn more than what is prescribed. A more
reaslistic security model is the malicious model in which parties may behave
arbitrarily. The textbook solution to achieve security in the malicious model
is to perform the zero-knowledge compilation of Goldreich et al [15, 16, 17] to
Yao’s protocol. This yields a protocol with communication and computation cost
bounded by a polynomial in the size of a circuit for computing f . This results
in optimal efficiency, up to polynomial factors, but the polynomial factors are
rather large and so this approach may not be useful in practice.

This motivates alternative methods for protecting Yao’s protocol against ma-
licious behavior, as suggested in [24, 26, 28]. These techniques provide a well-
defined tradeoff between security and efficiency, and are useful in practice.

� Supported by an N.D.S.E.G. fellowship.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 79–96, 2007.
c© International Association for Cryptology Research 2007



80 D.P. Woodruff

These protocols all use the following cut-and-choose technique. Alice creates m
independently garbled circuits C1, . . . , Cm, each computing the same function f .
These garbled circuits are transmitted to Bob, along with various commitments.
Bob chooses a subset S ⊂ [m] = {1, . . . , m}, and asks Alice to reveal the secrets
of all circuits Ci (along with their corresponding commitments) with i ∈ S. This
gives Bob confidence that Alice correctly formed most of the garbled circuits and
commitments. Alice then sends her garbled inputs for the circuts in [m] \S, and
Alice and Bob perform oblivious transfer for Bob to receive his garbled inputs
for these circuits. Finally, Bob evaluates the garbled circuits and outputs the
majority value.

There are a number of subtleties and complexities within this framework. As
pointed out by Mohassel and Franklin in [26], the Fairplay scheme [24] designed
in this framework has a subtle bug allowing one of the parties to cheat unde-
tectably. Moreover, Kiraz and Schoenmakers [20] found an error that occurs in
both Mohassel and Franklin’s work and Fairplay. Recently, Lindell and Pinkas
[22] have pointed out new flaws in many existing protocols. In this paper we also
present an error in [26], showing a flaw in their estimated concrete costs.

This framework poses the following problems. How do we ensure Alice provides
the same garbled input to most of the circuits in [m]\S? How do we ensure Bob
receives the same garbled input to most of the circuits in [m] \ S? If neither of
these conditions hold, Alice can fool Bob into outputting an incorrect value or
having to abort the protocol depending on his input.

Let f be a function computable by a Boolean circuit with g gates and I
inputs. We want a protocol which achieves both privacy and correctness. Intu-
itively, the privacy aspect is that nothing is learned from the output, and the
correctness aspect is that the output is distributed according to the described
functionality, see [17]. Following previous work [26, 22], we will have two secu-
rity parameters. The first is the input length, n, which is the security parameter
for our commitment schemes, encryption, and oblivious transfer protocols. The
second parameter, ε, is a statistical security parameter specifying the number
of garbled circuits used in the cut-and-choose framework. Here, n depends on
computational assumptions, whereas ε indicates the error probability incurred
in this framework, and is therefore a “statistical” security parameter (this term
was coined in [22]). Note that one can set ε independently of n, and this can be
used to “trade” security for efficiency, as discussed below.

We note that when both parties are honest, it suffices to only have Bob output
f(x, y). Indeed, as shown in Section 2.2 of [22], this is without much loss of
generality because given such a secure protocol, it can be efficiently transformed
so that Alice also obtains f(x, y), or even f ′(x, y) for some other function f ′. We
thus assume that only Bob has output in the remainder of the paper.

1.1 Our Contributions

We study the efficiency of protocols in this framework. We measure three quan-
tities: the number of symmetric encryptions, the number of exponentiations, and
the communication complexity.



Revisiting the Efficiency of Malicious Two-Party Computation 81

We are aware of four schemes in this framework - Fairplay [24], Committed-
input [26], Equality-checker [26], and the very recent protocol of Lindell and
Pinkas [22]. These schemes differ in the way the set S is chosen, together with
their methods of enforcing Alice and Bob to have consistent inputs.

The main result of this paper is a new scheme, Expander-checker, which as-
ymptotically improves at least one measure of efficiency of all known schemes. It
results in fewer symmetric encryptions and smaller communication complexity
than Fairplay, Equality-checker, and Lindell and Pinkas’ protocol, while achiev-
ing fewer exponentiations1 than Committed-input. See the section on other re-
lated work below for a more detailed account of Lindell and Pinkas’ new protocol.
Our results are summarized by the following table.

Scheme Symmetric Enc. Exponentiations Communication
Fairplay [24] O( 1

ε
g) O(I) O( 1

ε
g)

Committed-input [26] O(ln( 1
ε
)g) O(ln( 1

ε
)I) O(ln( 1

ε
)g)

Equality-checker [26] O(ln( 1
ε
)g + ln( 1

ε
)2I) O(I) O(ln( 1

ε
)g + ln( 1

ε
)2I)

Lindell-Pinkas [22] O(ln( 1
ε
)g + ln( 1

ε
)2I) O(I) O(ln( 1

ε
)g + ln( 1

ε
)2I)

Expander-checker (new) O(ln( 1
ε
)g) O(I) O(ln( 1

ε
)g)

Our scheme is built off of Equality-checker. In that scheme, S is a random
subset of size m/2. With a suitable commitment scheme, Mohassel and Franklin
ensure that Bob’s garbled inputs to the different circuits correspond to the same
ungarbled input in each of the oblivious transfer steps. The more interesting part
is how they ensure that Alice’s garbled inputs to the different circuits correspond
to the same ungarbled input. Their method only assumes a generic commitment
scheme and can be implemented without any exponentiations.

Alice commits to tuples (j, j′, Kj
i,b, K

j′

i,b) for all distinct j, j′ ∈ [m], where Kj
i,b

refers to the key in Yao’s garbled circuit protocol associated with the ith input
wire of Alice with value b in circuit j. When Bob is given purported keys Kj

i,b

and Kj′

i,b′ , which correspond to Alice’s garbled ith input for circuits j and j′

respectively, Bob can use the witness to verify that b = b′.
If Alice creates enough commitments (j, j′, Kj

i,b, K
j′

i,b′) with b �= b′, then the
set S likely contains a pair of circuits Cj , Cj′ with this property, and she will
be caught when forced to reveal the circuits in S and the commitments between
them. On the other hand, suppose most of the commitments (j, j′, Kj

i,b, K
j′

i,b′)
satisfy b = b′. Consider the complete graph G with vertex set [m]\S, each vertex
indexing a circuit not chosen by Bob to reveal. Since every pair of circuits Cj , C

′
j

with j, j′ ∈ [m]\S has a commitment (j, j′, Kj
i,b, K

j′

i,b′), there is a large connected
component C for which for each edge {j, j′} ∈ C, for each i and each b, in the

1 Some care needs to be taken when measuring the number of exponentiations since
under certain assumptions it is possible to obtain a large number of exponentiations
by only performing a small number of exponentiations and a few simpler operations,
see [5, 18]. In this work we follow previous work and make the simplifying, practical
assumption that there are O(I) exponentiations in the oblivious transfer stage.



82 D.P. Woodruff

commitment (j, j′, Kj
i,b, K

j′

i,b′), b = b′. By transitivity, Alice’s input is the same
to every circuit in C. If C is large enough, then the majority of circuits Bob
evaluates (those in [m] \ S) have the same input from Alice, and the protocol
will be simulatable.

The drawback of this scheme is the number of commitments computed and
transmitted. This is Θ(mg + m2I), where I is the number of input wires owned
by Alice. To achieve probability of undetected cheating at most ε, we need m =
Ω(ln(1

ε )), and thus Ω(g ln 1
ε + I ln2 1

ε ) commitments. Each commitment involves
at least one symmetric encryption and one transfer from Alice to Bob, resulting
in a total of Ω(g ln(1

ε ) + I ln2(1
ε )).

Our idea is instead of computing commitments to all tuples (j, j′, Kj
i,b, K

j′

i,b),
we only commit to tuples for which {j, j′} is an edge in an expander graph.
Suppose G is an expander with vertex set [m] and O(m) edges. We commit
only to pairs of circuits with a corresponding edge in G, and thus the number of
symmetric encryptions and communication drop to O(ln(1

ε )g). For many circuits
g is not much larger than I, and in this case we save a factor of ln(1

ε ) in both
efficiency measures.

Why is the new protocol secure? If Alice commits to enough (j, j′, Kj
i,b, K

j′

i,b′)
with b �= b′, then as in Equality-checker, she is likely to get caught when Bob
chooses a random subset of circuits and commitments to expose. On the other
hand, if many of the (j, j′, Kj

i,b, K
j′

i,b′) satisfy b = b′, then, since the corresponding
graph G is an expander, it contains a large connected component of such edges.
Thus, as before, the majority of circuits Bob evaluates will have the same Alice
input, and the protocol will be simulatable.

Mohassel and Franklin [26] evaluated concrete costs for some practical settings
of parameters. We point out an error in their analysis for Equality-checker, which
is not obvious to us how to fix within their framework. We present a new graph-
theoretic framework which fixes this and gives sharper bounds. We show the
probability Alice can cheat is at most 2 ·2−m

4 , whereas it was previously thought
this probability was at most 2 · 2−

m
6 . Since the communication and number of

symmetric encryptions of Equality-checker are proportional to mg + m2I, for
a given security level we achieve at least a (1/4)/(1/6) = 3/2 factor efficiency
improvement. This implies that Equality-checker is superior in practice to Fairplay
for a wider range of parameters than Tables 2 and 4 of [26] suggest. To provide a
good comparison with previous schemes, it is essential that we also lower bound
the probability that Alice can cheat. We give a lower bound that is within a
factor of 2 of our upper bound on this probability.

For Expander-checker we show the probability that Alice can cheat is at most

2−
m
4 +O

�
m log d√

d

�
. With the present analysis, for a practical setting of parameters

Equality-checker is still superior. We discuss barriers in derandomization and pro-
tocol design that need to be overcome in order to provably make Expander-checker
superior in practice. We leave it as an open question to improve the analysis or
provide an implementation to determine which protocol is more practical.



Revisiting the Efficiency of Malicious Two-Party Computation 83

1.2 Other Related Work

Expanders have been used in other contexts for enforcing equality constraints.
For example, see [19, 32, 10]. As far as we are aware though, this is the first time
they have been used in the cut-and-choose framework.

Very recently, Lindell and Pinkas [22] have given the first rigorous proof of
security of a protocol in the cut-and-choose framework that meets a simulation-
based definition. Our protocol has the same security as Equality-checker [26]
(with the fix pointed out by [20]), and it seems that a rigorous simulation-based
security proof for Equality-checker has not appeared anywhere.

We stress that the focus of this work is a new way of proving input consis-
tency using expander graphs, which we hope can be of use in other protocols in
the cut-and-choose framework. It seems likely, though we have yet to formally
verify, that one can combine our approach with Lindell and Pinkas’ protocol to
achieve the improved efficiency of Expander-checker while also achieving a full
simulation-based proof of security. We sketch how this might be done in the
proof of Theorem 3.

1.3 Organization

Section 2 reviews secure two-party computation, Yao’s garbled circuit proto-
col, the Equality-checker scheme, and expander graphs. In Section 3 we present
Expander-checker, and prove its security. In Section 4 we discuss efficiency, both
in theory and in practice. This work also appears as a technical report in [33].

2 Preliminaries

2.1 Two-Party Secure Computation

For an excellent treatment of secure two-party computation, the reader is referred
to [17]. Here we summarize the model. A two-party computation is a random
process mapping pairs of inputs to pairs of outputs. We refer to this process as
the desired functionality, denoted f : {0, 1}∗× {0, 1}∗ → {0, 1}∗× {0, 1}∗ where
f = (f1, f2). For any two inputs x, y ∈ {0, 1}n, the output (f1(x, y), f2(x, y)) is a
random variable ranging over pairs of strings. The interpretation here is that the
first party wants to learn f1(x, y) and the second party wants to learn f2(x, y).

In this paper we consider the malicious model of security. The formal def-
initions can be found in [17]. In this model one of the parties can behave in
an arbitrary way. We will, however, assume that both parties are computation-
ally bounded (i.e., randomized polynomial-time Turing machines). Security is
achieved by comparing the adversaries in the real model with those in an ideal-
model in which both parties have a trusted party to interact with. Informally, a
two-party protocol is secure if for any admissible pair of parties (A, B) in the
real-model, there is an admissible pair of parties (A′, B′) in the ideal model where
the outputs of the two executions are indistinguishable. A pair is admissible if
at least one of the parties in the pair is honest. Thus, intuitively, the protocol is



84 D.P. Woodruff

secure if it provides the correct output behavior, and provides privacy to honest
parties.

In our protocols we need a specific protocol called oblivious transfer, which
has been extensively studied [11, 27, 29]. We only need 1-out-of-2 oblivious
transfer. In this case, x = (z0, z1), y = σ, f1(x, y) = ∅, and f2(x, y) = zσ. Efficient
oblivious transfer protocols secure in the malicious model exist [27].

2.2 Yao’s Garbled Circuit Protocol

Here we review Yao’s garbled circuit protocol [34]. Let f be an efficiently-
computable function two parties wish to securely compute. Then f can be rep-
resented as a polynomial-size circuit. The first party computes a garbled form
of this circuit as follows.

For every wire j in the circuit, she chooses two random strings Kj,0 and Kj,1.
These random strings correspond to a value of 0 and a value of 1 on wire j,
respectively. Next, for every gate in the circuit, she computes a garbled truth
table as follows. Let E be a symmetric encryption scheme. Then she uses E
together with the keys corresponding to the values on the input wires to encrypt
the value of the corresponding output wire. For example, if the gate is an AND
gate on two input wires j, j′ with output wire �, then there are four entries

EKj,0(EKj′,0
(K�,0)), EKj,0(EKj′,1

(K�,0)), EKj,1(EKj′,0
(K�,0)), EKj,1(EKj′,1

(K�,1)).

These entries should be permuted so that the second party does not learn in-
termediate values of the computation. Also, she creates a table which translates
the garbled output values to their actual values (0 or 1). She sends the garbled
circuit and her garbled inputs to the second party.

The second party learns his garbled inputs through an oblivious transfer step.
This ensures that only his garbled inputs are learned, and nothing else, while
the first party learns nothing about the second party’s inputs. The second party
then computes the garbled circuit gate by gate, obtaining his garbled output.
Finally, using the translation table, he obtains the actual output of the circuit.
See [21] for detail, and a proof of security in the semi-honest model.

It is well-known that Yao’s garbled protocol is not secure in the malicious
model. The standard way of fixing this is to apply the zero-knowledge compiler
of [15, 16]. The first party needs to supply a zero-knowledge proof that her circuit
was constructed correctly and computes the desired functionality. The second
party needs to supply zero-knowledge proofs that show he correctly evaluated
the circuit. These zero-knowledge proofs, though theoretically feasible, are very
inefficient and motivate the search for practical solutions.

2.3 Equality-Checker Scheme

The following is the Equality-checker scheme of [26]. Here, zj,j′,i,b is Alice’s
commitment to the tuple (j, j′, i, Kj

i,b, K
j′

i,b) for every distinct pair of circuits
j, j′ ∈ [m], every input wire i of Alice, and every input value b ∈ {0, 1}. wj,j′,i,b

is the corresponding witness for decommittal. zj,i,b is the commitment of the



Revisiting the Efficiency of Malicious Two-Party Computation 85

tuple (j, i, b, Kj
i,b) for every circuit j ∈ [m], every input wire i of Bob, and every

input value b ∈ {0, 1}. wj,i,b is the corresponding witness for decommittal.
In the original paper [26], a generic oblivious transfer scheme was chosen in

step 6, and this was shown to be insecure [20]. One fix is to use a committed
oblivious transfer scheme (as stated below), or a committing scheme. See [20] for
the details. Yet another approach will be discussed in the proof of Theorem 3.

We note that this does not affect our asymptotic analysis, and only marginally
affects our concrete costs.

Equality-checker:

1. Alice creates m garbled circuits C1, . . . , Cm. She sends the Cj ,
(j, j′, i, zj,j′,i,b), and (j, i, b, zj,i,b) to Bob. The (j, j′, i, zj,j′,i,b) should
be sent in a random order so that Alice cannot distinguish zj,j′,i,0 from
zj,j′,i,1.

2. Bob chooses a random subset S ⊂ [m] with |S| = m/2 and sends S to
Alice.

3. Alice exposes the secrets of the Ci for every i ∈ S. She also sends
witnesses wj,j′,i,b and wj,i,b for all i, b and all j, j′ ∈ S. Bob verifies the
garbled circuits and commitments are correct.

4. Renumber the remaining garbled circuits C1, . . . , Cm/2. Alice sends the
keys Kj

i,bi
and the witnesses wj,j′,i,bi for every distinct j, j′ ∈ [m/2] and

each of her input wires i, where bi is her input for wire i.
5. Bob uses the witnesses wj,j′,i,bi to verify that Alice’s input to all the

circuits is the same.
6. Alice and Bob engage in committed oblivious transfers in or-

der for Bob to receive his garbled input bits. For every in-
put wire i of Bob, Alice uses a single oblivious transfer to give
Bob one of two tuples: (K1

i,0, w1,i,0, K
2
i,0, w2,i,0, . . . , K

m/2
i,0 , wm/2,i,0) or

(K1
i,1, w1,i,1, K

2
i,1, w2,i,1, . . . , K

m/2
i,1 , wm/2,i,1), depending on Bob’s value

for input i.
7. Bob evaluates the m/2 garbled circuits and prints the majority output.

We assume, as in [26], that computing the commitments zj,j′,i,b and zj,i,b does
not require exponentiation, but rather, just a symmetric encryption. We also
assume a single oblivious transfer requires O(1) exponentiations.

Theorem 1. ([26]) Equality-checker is secure in the malicious model with in-
verse exponential (in m) probability of undetected cheating. The number of sym-
metric encryptions and the communication complexity are O(mg + m2I), and
the number of exponentiations is O(I), where g and I are the number of gates
and inputs of the circuit to be computed, respectively.

2.4 Expander Properties

Let G = (V, E) be a d-regular graph on n vertices. Let A = (auv), u, v ∈ V, be its
adjacency-matrix, that is, auv = 1 if (u, v) ∈ E and auv = 0 otherwise. Since G is



86 D.P. Woodruff

d-regular, the largest eigenvalue of A is d, corresponding to the all 1s eigenvector.
Let λ = λ(G) denote the second largest absolute value of an eigenvalue of G. We
need the following discrepancy theorem, known as the expander-mixing lemma
(see, e.g, [1, 7], for the proof).

Theorem 2. For any subsets X, Y ⊆ V ,

|e(X, Y ) − d

n
|X ||Y || ≤ λ

n

√
|X |(n − |X |)|Y |(n − |Y |),

where e(X, Y ) is the number of edges with one endpoint in X and one endpoint
in Y .

In our asymptotic analysis, we use explicit expander graphs known as Ramanujan
graphs. The construction we use is essentially due to Lubotzky, Phillips, and
Sarnak [23], and independently discovered by Margulis [25]. However, the form
of these graphs [23, 25] is not so convenient to work with. We use a slight variant
of these graphs described in section II of [2].

Fact 1. [2] Let p, q be any distinct primes congruent to 1 modulo 4, with p a
quadratic residue modulo q, and q ≥ 2

√
p. Let d = p+1. Then for every positive

integer �, there is an explicit (p+1)-regular graph on 1
2 (q3� −q3�−2) vertices such

that λ ≤ 2
√

p.

For fixed p, q as we vary � we get an infinite family of graphs, and there is a
positive constant α such that for any integer m, there is a graph in the family
with m′ vertices, where m′ ≤ m ≤ αm′. For a description of how to efficiently
compute these graphs, see section II of [2].

We note that one can also obtain Ramanujan graphs by random sampling,
and testing with Gaussian elimination. See [13] for how to sample such graphs.

2.5 Combinatorial Identities

Fact 2. (see [12, 30]) For integers n > 0,
√

2πnn+ 1
2 e−n ≤ n! ≤

√
2πnn+ 1

2 e−n

e
1
12 .

3 Expander-Checker

Alice associates her m garbled circuits with the vertices of a d-regular Ramanu-
jan graph G = (V, E) on m vertices. The difference between our protocol and
Equality-checker is that instead of committing to every pair of circuits {j, j′},
Alice only commits to the edges of G. Equality-checker is a special case of our
protocol, which corresponds to setting d = m−1. Since G has dm/2 edges, Alice
performs dm/2 commitments.

We borrow some notation from Equality-checker, as described in Section 2.3.
Let zj,i,b, wj,i,b, zj,j′,i,b, and wj,j′,i,b be the commitments and witnesses as defined
in that section. Alice only computes zj,j′,i,b and wj,j′,i,b for those {j, j′} for which
{j, j′} is an edge of G.

For a subset S of the vertices V , let G(S) denote the induced subgraph of G
on vertex set S.



Revisiting the Efficiency of Malicious Two-Party Computation 87

Expander-checker:

1. Alice creates m garbled circuits C1, . . . , Cm. For edges {j, j′} in G, she
sends the Cj , (j, j′, i, zj,j′,i,b), and (j, i, b, zj,i,b) to Bob. The (j, j′, i, zj,j′,i,b)
should be sent in a random order so that Alice cannot distinguish zj,j′,i,0
from zj,j′,i,1.

2. Bob chooses a (uniformly) random subset S ⊆ [m] of size m/2. Bob sends
S to Alice.

3. Alice exposes the secrets of the Ci for every i ∈ S. She also sends witnesses
wj,j′,i,b and wj,i,b for all i, b, all j ∈ S, and all {j, j′} ∈ G(S). Bob verifies
the garbled circuits and commitments are correct.

4. Renumber the remaining garbled circuits C1, . . . , Cm/2. Alice sends the
keys Kj

i,bi
and the witnesses wj,j′,i,bi for every j ∈ V \ S, every edge

{j, j′} ∈ G(V \ S), and each of her input wires i, where bi is her input for
wire i.

5. Bob uses the witnesses wj,j′,i,bi to verify that Alice’s input to all the
circuits is the same.

6. Alice and Bob engage in committed oblivious transfers in or-
der for Bob to receive his garbled input bits. For every input
wire i of Bob, Alice uses a single oblivious transfer to give Bob
one of the two tuples (K1

i,0, w1,i,0, K
2
i,0, w2,i,0, . . . , K

m/2
i,0 , wm/2,i,0) or

(K1
i,1, w1,i,1, K

2
i,1, w2,i,1, . . . , K

m/2
i,1 , wm/2,i,1), depending on Bob’s value for

input i.
7. Bob evaluates the m/2 garbled circuits and prints the majority output.

If both parties are honest, the above protocol is correct, so we turn to security.
We first develop a framework for proving the security of Equality-checker that is
more powerful than that given in [26] (leading to better bounds, see Section 1),
and which generalizes to Expander-checker.

3.1 Security Analysis for Equality-checker

We will show that in order for a malicious Alice to cheat with non-negligible
probability, the following must be true: Alice does not provide the same input
for more than m

4 of the correctly-garbled circuits that Bob will evaluate. If this is
not true then Bob will respond with the output corresponding to the majority
input of Alice, in which case the protocol will be simulatable in the ideal model
by sending the majority input to the trusted third party.

Let F be a family of complete graphs where each G ∈ F has some of its edges
labeled bad, and some of its vertices labeled incorrect. We will use the observation
above to construct a family F containing all of the (labeled) complete graphs G
for which a malicious Alice can cheat with non-negligible probability.

If Alice can cheat by sending a graph G with exactly εm incorrect cicuits,
then there must be some subset S of m

2 vertices of G which Bob can sample, so
that if we remove S from G, Alice can assign her inputs to the remaining vertices



88 D.P. Woodruff

so that no more than m
4 of the remaining vertices are assigned the same input.

Partition the set of remaining vertices into groups B, C1, C2, . . . , Cr, where B
denotes the set of incorrect circuits (here, |B| = εm), and for each Ci, all vertices
in Ci are assigned the same input. Then, all of the edges connecting Ci to Cj ,
for any i �= j, must be bad edges, as otherwise Alice will get caught. Moreover,
by the observation above, |Ci| ≤ m

4 for all i. For a given G, there may be more
than one choice of S, each giving rise to different sets B, C1, C2, . . . , Cr with the
above properties. For our purposes, what matters is that there is at least one
such S, B, C1, C2, . . . , Cr for the graph G. Let F be the family of all such graphs
G.

Lemma 1. If Alice chooses any graph G ∈ F , she will get caught when Bob
samples m

2 vertices of G with probability at least 1 − 2
( 3m

4
m
2

)
/
(

m
m
2

)
.

Proof. Fix any G ∈ F , and let S, B, C1, C2, . . . , Cr be a partition of the vertices
of G with the properties described above. We compute the probability that Alice
does not get caught. Note that |S| = m

2 and |B| = εm. For all i, let ci = |Ci| ≤ m
4 .

As observed above, all of the edges between Ci and Cj for i �= j are bad, and
therefore in order for Alice not to get caught, Bob can sample vertices from at
most one Ci. Since B contains only incorrect circuits, Bob’s samples must all be
drawn from S and at most one Ci. Define an elusive set E to be a set of vertices
of G not containing any incorrect vertices and such that no two endpoints of a
bad edge lie in E. For Alice not to get caught, Bob must sample an elusive set.
The number of elusive sets is at most

∑ m
2

j=0

(m
2
j

)∑r
i=1

(
ci

m
2 −j

)
.

We claim this expression is maximized when r = 2, c1 = m
4 , and c2 = m

4 − εm
(recall that

∑r
i=1 ci =

( 1
2 − ε

)
m). First, if r = 0, the number of elusive sets is 1,

namely, the set S. Second, if r = 1, then since c1 ≤ m
4 , the expression evaluates

to at most
( 3m

4
m
2

)
. This follows from the identity:

∑�
j=0

(
n1
j

)(
n2
�−j

)
=

(
n1+n2

�

)
. For

the remainder of the proof, assume r ≥ 2.
We now use the identity for a ≥ b:

(
a
x

)
+

(
b
x

)
≤

(
a+1

x

)
+

(
b−1
x

)
. Since ci ≤ m

4
for all i, we may inductively apply the identity so that r = 2, c1 = m

4 , and
c2 = m

4 − εm. It follows that the number of elusive sets is at most
m
2∑

j=0

(m
2
j

) (( m
4

m
2 − j

)
+

(m
4 − εm
m
2 − j

))
=

(3m
4
m
2

)
+

(3m
4 − εm

m
2

)
≤ 2

(3m
4
m
2

)
.

It follows that the probability that Alice does not get caught is at most 2
( 3m

4
m
2

)
/
(

m
m
2

)
.

Corollary 1. With probability at least 1 − 2
( 3m

4
m
2

)
/
(

m
m
2

)
, there are more than m

4
correctly-garbled circuits that Bob evaluates for which Alice will provide the same
input, or Alice will get caught.

Proof. If Alice does not use the same input for more than m
4 of the correctly-

garbled circuits that Bob will evaluate, she will be caught unless she sends some
graph G ∈ F . But then, by the previous lemma, she will get caught with prob-
ability at least 1 − 2

( 3m
4
m
2

)
/
(

m
m
2

)
, as needed.



Revisiting the Efficiency of Malicious Two-Party Computation 89

Theorem 3. Equality-checker is secure when Alice is malicious with probability
of undetected cheating by Alice at most 2

( 3m
4
m
2

)
/
(

m
m
2

)
≤ 2 · 2−m

4 .

Proof. By the previous corollary, with probability at least 1 − 2
( 3m

4
m
2

)
/
(

m
m
2

)
≥

1 − 2 · 2−
m
4 , the majority of inputs to the correctly-garbled circuits that Bob

evaluates have the same input, or Alice will get caught, and thus Bob will output
the value outputted by the circuits on this input.

The security, at this point, reduces to the original argument for Equality-
checker given in Claim 3 of [26]. As the proof in [26] is incomplete, we refer the
reader to [22]. To make the protocol simulatable, one needs to change step 2
of the protocol so that Alice and Bob run a standard coin-tossing protocol to
generate the subset of circuits to evaluate. This ensures that if Bob is malicious,
the circuits evaluated are still uniformly chosen (this sub-protocol is very effi-
cient, and doesn’t affect the overall efficiency). Also, instead of using committed
oblivious transfer, another approach (analyzed in [22]) is for Bob to receive his
inputs before Alice sends the garbled circuits. This amounts to removing step 6,
and inserting it after step 1 in the protocol. Since the circuits to be evaluated
have not yet been chosen, Bob should simply receive his inputs for every circuit.

Theorem 4. Equality-checker is secure when Bob is malicious.

Proof. The security reduces to the original argument for Equality-checker given
in Claim 4 of [26]. For a formal proof, we refer the reader to [22].

Theorem 5. In Equality-checker, Alice can cheat with probability at least
( 3m

4
m
2

)
/

(
m
m
2

)
.

Proof. Alice will send the following labeled graph G ∈ F to Bob. She will not
create any incorrect circuits. She will partition the vertices into two groups V1, V2,
with |V1| = 3m

4 and |V2| = m
4 (assume m is a multiple of 4). An edge is labeled

bad if and only if it connects V1 to V2. Consider the following event E : Bob
samples all m

2 of his circuits from V1. This occurs with probability
( 3m

4
m
2

)
/
(

m
m
2

)
.

Assume the circuit being evaluated has only one bit of input from Alice.
Suppose E occurs. Alice may then assign all remaining vertices in V1 the input
0 and all vertices in V2 the input 1. If the function being evaluated differs on
its output (for a given Bob input) when Alice’s input is a 0 or a 1, then there
is no majority output of Bob’s evaluations (there are two outputs, and each one
occurs for exactly half of the circuits). Thus, Bob will have to abort (and this
behavior cannot be hidden from Alice), and this may reveal information to Alice
about Bob’s input. For instance, there may be another possible input of Bob
which is insensitive to the input of Alice, in which case all circuits will have the
same output, and Bob will not abort.

In Appendix 4.1, we present a counterexample to Lemma 3 in [26], from which
their Table 4, which analyzes the performance of Equality-checker for different
security levels, is constructed.



90 D.P. Woodruff

3.2 Security Analysis for Expander-checker

We generalize the analysis of the previous section. The difficulty is that now the
family F of graphs for which Alice can cheat with non-negligible probability is
more complex. The graphs are no longer labeled complete graphs, but rather
labeled expander graphs. We bound the new probability that Alice gets caught
if she chooses a graph G ∈ F to send to Bob.

As before, for Alice to cheat, she cannot provide the same input for more than
m
4 of the correctly-garbled cicuits that Bob will evaluate. Corollary 1, Theorem
3, and Theorem 4 are unchanged, except for the probability that Alice does
not get caught, which will increase. We prove the new version of Lemma 1 in
Theorem 6 below.

In Expander-checker, if Alice can cheat by sending a graph G, then as before,
we can find a vertex partition S, B, C1, C2, . . . , Cr with |S| = m

2 , |B| = εm for
some ε where B denotes the set of incorrect circuits, all edges in the expander
connecting Ci to Cj for i �= j are bad, and |Ci| ≤ m

4 for all i. Let F be the
family of all such labeled graphs G.

We assume the expander graph satisfies λ ≤ 2
√

d.

Theorem 6. Let G be a d-regular Ramanujan graph for a sufficiently large con-
stant d. If Alice chooses any graph G ∈ F , she will get caught when Bob samples
m
2 vertices of G with probability at least

1 − 3
(m

4
+ 1

)√
πme1/3

2
· 2−m

4 +2m
√

2
d log( e

4

√
d
2 ).

Remark 1. Recall that our bound on the probability of undetected cheating by
Alice for Equality-checker was 2·2−m

4 . Comparing this to our bound for Expander-
checker, we see that when the degree d = ω(1), our new bound has the form
2−

m
4 +o(m), close to that of Equality-checker.

Proof. Fix a graph G ∈ F with corresponding S, B, C1, C2, . . . , Cr, where |S| =
m
2 , |B| = εm, and ci

def= |Ci| ≤ m
4 for all i. The difference between this proof and

the previous is that now Bob can actually sample vertices from more than one
Ci without Alice getting caught. This is because the graph G is not complete,
so there may not be any edges connecting Bob’s samples in the different Ci.
However, using the expander-mixing lemma, we will show that if Bob samples
too many vertices from different Ci, there will be bad edges connecting some of
them, and Alice will get caught.

Define an elusive set as in the proof of Lemma 1. In order for Alice not to
get caught, Bob must sample an elusive set, i.e., his vertices must come from
S ∪ C1 ∪ C2 ∪ · · · ∪ Cr and there must be no edge between any of his samples
lying in different Ci. We seek an upper bound on the number of elusive sets in
G.

If r = 0, the number of elusive sets of G is 1. If r = 1, since c1 ≤ m
4 , as in the

proof of Lemma 1 for r = 1, the number of elusive sets is at most
( 3m

4
m
2

)
. For the

remainder of the proof, r ≥ 2.



Revisiting the Efficiency of Malicious Two-Party Computation 91

We consider a labeled graph G′ which has at least as many elusive sets as G.
It will be easier to upper bound the number of elusive sets of G′. We want G′ to
have the property that its vertices can be partitioned into sets S, B, D0, D1, D2
or sets S, B, D0, D1 such that |S| = m

2 , |B| = εm, all edges between Di and Dj

with i �= j are bad, and di = |Di| ≤ m
4 for all i.

If r = 2 or r = 3, then put G′ = G. Otherwise, r ≥ 4. By averaging, there
exist distinct Ci and Cj in G with ci + cj ≤ m

4 . Suppose we create G′ from G by
removing all bad edges between Ci and Cj , and by grouping vertices in Ci and
Cj into a single set D of size d = ci + cj ≤ m

4 . It follows that r has decreased
by 1. If r is still more than 3, repeat this process on G′. We eventually end up
with the desired labeled graph G′. We will assume that r = 3. If actually r = 2,
we may just set D2 = ∅. We introduce some notation.

Definition 1. We say that three integers i0, i1, i2, where i0 ≤ d0, i1 ≤ d1, and
i2 ≤ d2, are harmonious if there exist sets S0 ⊆ D0, S1 ⊆ D1, and S2 ⊆ D2,
where |Sj | = ij for j = 0, 1, 2, such that e(S0, S1) = e(S0, S2) = e(S1, S2) = 0.
That is, there are no edges in G′ between them.

The number of elusive sets in G′, and thus in G, is at most
m
2∑

j=0

( m
2

m
2 − j

) ∑

i0+i1+i2=j
harmonious i0,i1,i2

(
d0

i0

)(
d1

i1

)(
d2

i2

)
≤

m
2∑

j=0

(m
2
j

) 2∑

r=0

∑

i0+i1+i2=j
ir=max(i0,i1,i2)

harmonious i0,i1,i2

(
d0

i0

)(
d1

i1

)(
d2

i2

)

We will choose d0, d1, d2 to maximize this expression, subject to
∑

i di = m
4 −εm

and di ≤ m
4 for all i. As before, it is clear that the expression is maximized when

ε = 0. We start by bounding the following expression.
m
2∑

j=0

(m
2
j

) ∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(
d0

i0

)(
d1

i1

)(
d2

i2

)
. (1)

The following is the only place where we use the fact that G is an expander.

Claim. For fixed harmonious i0, i1, i2 with i0 + i1 + i2 = j and i0 ≥ i1, i2, we
have, (

d1

i1

)(
d2

i2

)
≤

( m
2

2m
√

2/d

)
.

Proof. Suppose first that i0 ≤ m
√

2/d. Then since i0 ≥ i1, i2, we have i1 + i2 ≤
2i0 ≤ 2m

√
2/d. We arrive at

(
d1

i1

)(
d2

i2

)
≤

(
d1 + d2

i1 + i2

)
≤

( m
2

2m
√

2/d

)
,



92 D.P. Woodruff

where we have used that i1 + i2 ≤ 2m
√

2/d ≤ m
4 since d is sufficiently large.

Now suppose that i0 ≥ m
√

2/d. This is where we use the fact that G is an
expander. Suppose T is a subset of D0 ∪ D1 ∪ D2, and set X = T ∩ D0 and
Y = T ∩ (D1 ∪ D2). Suppose |X | = i0 and |Y | = i1 + i2. We first note that the
edgeset in G′ connecting X to Y is identical to that in G. By the expander-mixing
lemma, there is at least one edge from X to Y provided2 that

d

m
|X ||Y | >

λ

m

√
|X |(m − |X |)|Y |(m − |Y |).

This is equivalent to the condition |X ||Y | >
(

λ
d

)2
(m−|X |)(m−|Y |). As we will

choose λ so that λ ≤ 2
√

d, this is in turn implied by the simpler |X ||Y | > 4m2

d .
This is just i0(i1+i2) > 4m2

d . Since i0 ≥ m
√

2/d, this holds if i1+i2 > 2m
√

2/d.
Thus, i0, i1, and i2 are not harmonious if i1 + i2 > 2m

√
2/d, and so we again

have
(
d1
i1

)(
d2
i2

)
≤

(
d1+d2
i1+i2

)
≤

( m
2

2m
√

2/d

)
.

By the previous claim, expression 1 simplifies to
m
2∑

j=0

(m
2
j

) ∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(
d0

i0

)( m
2

2m
√

2/d

)
=

( m
2

2m
√

2/d

) m
2∑

j=0

(m
2
j

) ∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(
d0

i0

)

In expression 1, we took i0 ≥ i1, i2, but we could’ve equally well taken i1 ≥ i0, i2
or i2 ≥ i0, i1. It follows that the number of elusive sets in G is at most

( m
2

2m
√

2/d

) m
2∑

j=0

(m
2
j

) 2∑

r=0

∑

i0+i1+i2=j
ir ≥ ir+1,ir+2

harmonious i0,i1,i2

(
dr

ir

)
, (2)

where the subscripts should be understood modulo 3. At this point, our task is
to maximize expression 2 subject to

∑
i di = m

2 and di ≤ m
4 for all i.

By switching the order of summations, we have shown that the number of
elusive sets is at most

( m
2

2m
√

2/d

) 2∑

r=0

m
2∑

j=0

∑

i0+i1+i2=j
ir ≥ ir+1,ir+2

harmonious i0,i1,i2

(m
2
j

)(
dr

ir

)
. (3)

2 One can do slightly better than the expander-mixing lemma by using Tanner’s in-
equality [31]. This does not affect our bound much, so we omit this improvement.



Revisiting the Efficiency of Malicious Two-Party Computation 93

Then, since there are at most j + 1 pairs (ir+1, ir+2) for a given ir for which
ir + ir+1 + ir+2 = j, we can bound the inner sum by

(m
2
j

)
(j + 1)2dr . We may

then pull out the 2dr term and, ignoring the terms that we have pulled out, we
are left with

∑m
2

j=0

(m
2
j

)
(j + 1). We recall the identity:

∑n
i=0 i

(
n
i

)
= n2n−1. This

implies
m
2∑

j=0

(j + 1)
(m

2
j

)
=

m

2
· 2

m
2 −1 + 2

m
2 =

(m

4
+ 1

)
2

m
2 .

We can now simplify expression 3 to the following,
( m

2

2m
√

2/d

) (m

4
+ 1

)
2

m
2

(
2d0 + 2d1 + 2d2

)
.

This expression is clearly maximized when dr = dr+1 = m
4 and dr+2 = 0 for

some value of r. Since 2
m
4 ≥ 1 for any m ≥ 0, this expression is at most

3
( m

2

2m
√

2/d

) (m

4
+ 1

)
2

3m
4 .

Using the identity
(
a
b

)
≤

(
ae
b

)b, we further upper bound this expression as

3
(m

4
+ 1

)
2

3m
4 +2m

√
2
d log( e

4

√
d
2 ),

which upper bounds the total number of elusive sets. Thus, the probability that
Alice does not get caught is at most this quantity divided by

(
m
m
2

)
. Using Fact

2, after some algebraic manipulation,
(

m
m/2

)
= m!

(m/2)!2 ≥ 2m
( 2

πme1/3

)1/2. We
conclude that the probability that Alice does not get caught is at most

3
(m

4
+ 1

)√
πme1/3

2
· 2−

m
4 +2m

√
2
d log( e

4

√
d
2 ).

and the proof of the theorem is complete.

4 Efficiency

To compare Expander-checker with Equality-checker, we would like to achieve
inverse exponential (in m) probability of undetected cheating, where m is an
input parameter we use to measure our protocol’s efficiency. m corresponds to
the number of garbled circuits in the above.

The probability Alice can cheat in Expander-checker is at most

3
(m

4
+ 1

)√
πme1/3

2
· 2−

m
4 +2m

√
2
d log( e

4

√
d
2 ).

One can write a short computer program to find a constant d = p + 1 with p a
prime congruent to 1 mod 4, for which we can instantiate the graphs G in the



94 D.P. Woodruff

previous section with those of Fact 1 on Θ(m) vertices, so that this probability
is at most 2−Ω(m). One can also find such a graph by random sampling [13].

To achieve error probability ε, we may set m = O(ln 1
ε ). Recall that g and I

denote the number of gates and inputs to the circuit to be computed, respectively.
Step 1 requires O(mg) = O(ln(1

ε )g) symmetric encryptions and communi-
cation for the garbled circuits. The commitments require O(dmI + 2mI) =
O(mI) = O(mg) symmetric encryptions and communication. Step 2 requires
communication O(m). Similar to step 1, step 3 requires O(mg) communication.
Step 4 requires O(mI) communication. Step 6 requires O(I) exponentiations.

Theorem 7. Expander-checker is secure in the malicious model with inverse ex-
ponential (in m) probability of undetected cheating. The number of symmetric
encryptions and communication complexity are O(mg), and the number of ex-
ponentiations is O(I).

Recall that Equality-checker achieves 2−Ω(m) probability of undetected cheating
with O(mg +m2I) communication and number of symmetric encryptions, while
the number of exponentiations is O(I) (see Theorem 1). Suppose we want error
probability ε. Let m be such that we achieve error probablity ε in Equality-
checker. Then in Expander-checker we achieve error probability ε for m′ = O(m).
Moreover, our communication and number of symmetric encryptions is O(m′g) =
O(mg), which improves the Ω(mg+m2I) of Equality-checker for sufficiently large
m and I.

4.1 Practical Issues and Open Questions

For a practical setting of parameters our bounds on the probability that Alice
can cheat in Expander-checker may not be good enough to make Expander-checker
favorable to Equality-checker. This is due in part to a certain suboptimality of our
Ramanujan graphs. In Claim 3.2 we argued that any two disjoint sets of vertices
in a Ramanujan graph on m vertices, one of size at least m

√
2/d and one of size

at least 2m
√

2/d, have an edge between them. However, a counting argument
shows there exist graphs on m vertices for which there is an edge between any
two disjoint sets of vertices of size at least 2m lnd/d. Such an explicit graph
would significantly reduce the 22m

√
2/d log( e

4

√
d
2 ) factor in our probability bound.

We cannot even rule out that there exist graphs on m vertices for which there
is an edge between any two disjoint subsets of Θ(m/d) vertices. As far as we
are aware, the best explicit construction of such graphs can be obtained from
[6], and show there exist graphs on m vertices for which any two disjoint sets of
vertices of size Ω(m · polylog(d)/d) have an edge between them. We leave it as
an open problem to see if the work of [6] can be of practical use in this context.

Besides directly trying to construct such graphs, it may be possible to slightly
change the protocol. The natural thing to do would be to have Bob sample a
d-regular graph on m vertices at random, and send it to Alice to use instead of
our explicit Ramanujan graph. Then with high probability it is such that any
two disjoint subsets of vertices of size 2m lnd/d have an edge between them. The



Revisiting the Efficiency of Malicious Two-Party Computation 95

problem with this approach is that the probability of sampling such a graph is
only 1 − 2−Θ(m/d), which is smaller than the 1 − 2−Θ(m) we are looking for. We
leave it as an open problem to see if a probabilistic approach can be effective here.

Acknowledgments. We thank Payman Mohassel, Benny Pinkas, and the anony-
mous referees for many helpful comments.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6, 1986, pp. 86–96.
[2] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptoti-

cally good, low-rate error-correcting codes through pseudo-random graphs, IEEE
Transactions on Information Theory 38 (192), pp. 509-516.

[3] N. Alon and V. D. Milman. Eigenvalues, expanders, and superconcentrators,
FOCS, 1984.

[4] N. Alon and J. Spencer. The Probabilistic Method, 2000.
[5] D. Beaver. Correlated pseudorandomness and the complexity of private computa-

tions, STOC, 1996.
[6] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors

and constant-degree lossless expanders, STOC, 2002.
[7] F. Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS Publications, 1997.
[8] F. Chung and L. Lu. Concentration inequalities and martingale inequalities - a

survey, Internet Mathematics, to appear.
[9] R. Diestel. Graph Theory, Springer-Verlag, 2005.

[10] I. Dinur. The PCP Theorem by Gap Amplification, STOC, 2006.
[11] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts,

Communications of the ACM, 1985.
[12] W. Feller, Stirling’s Formula, Section 2.9 in An Introduction to Probability Theory

and its Applications 1, 3rd edition, New York: Wiley, pp. 50 -53, 1968.
[13] J. Friedman, A Proof of Alon’s Second Eigenvalue Conjecture, STOC, 2003.
[14] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators,

JCSS, 22(3):407-420, 1981.
[15] O. Goldreich, S. Micali, and C. Rackoff. Proofs that yield nothing but their validity

or all languages in NP have zero-knowledge proofs, FOCS, 1986.
[16] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a

completeness theorem for protocols with honest majority, STOC, 1987.
[17] O. Goldreich. Foundations of cryptography - volume 2, ch. 7, 2004.
[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers effi-

ciently, Crypto, 2003.
[19] J. Kilian and E. Petrank. An efficient noniteractive zero-knowledge proof system

for NP with general assumptions, Journal of Cryptology, 11:1–27, 1998.
[20] M. Kiraz and B. Schoenmakers, A protocol issue for the malicious case of Yao’s

garbled circuit construction, in the 27th Symposium on information theory in the
BENELUX (WIC), 2006.

[21] Y. Lindell, and B. Pinkas. A proof of Yao’s protocol for secure two-party compu-
tation, Cryptology ePrint Archive, Report 2004/175, 2004.

[22] Y. Lindell, and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries, to appear in these proceedings, Eurocrypt,
2007.



96 D.P. Woodruff

[23] A. Lubotzky, R. Phillips, and P. Sarnak. Explicit expanders and the Ramanu-
jan conjectures, STOC, 1986. See also: A. Lubotzky, R. Phillips, and P. Sarnak,
Ramanujan graphs, Combinatorica 8, 1988, pp. 261-277.

[24] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure two-party com-
putation system, Usenix, 2004.

[25] G. A. Margulis. Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and superconcentrators, Problemy
Peredachi Informatsii 24: 51-60 (Russian). English translation in Problems of
Information Transmission 24, 1988, 39-46.

[26] P. Mohassel and M. Franklin. Efficiency Tradeoffs for Malicious Two-Party Com-
putation, PKC, 2006.

[27] M. Naor and B. Pinkas. Efficient oblivious transfer. SODA, 2001.
[28] B. Pinkas. Fair secure two-party computation, Eurocrypt, 2003.
[29] M. Rabin. How to exchange secrets by oblivious transfer, Technical Report Tech.,

Memo. TR-81, Aiken Computation Laboratory, Harvard University, 1981.
[30] H. Robbins. A remark of Stirling’s Formula., Amer. Math Monthly 62, pp. 26-29,

1955.
[31] R. M. Tanner. Explicit Construction of Concentrators from Generalized N-Gons,

SIAM J. Alg. Discr. Math 5, 1984, pp. 287-293.
[32] L. Trevisan. Inapproximability of Combinatorial Optimization Problems, Optimi-

sation Combinatiore 2.
[33] D. Woodruff Revisiting the efficiency of malicious two-party computation, Cryp-

tology ePrint Archive, Report 2006/397, 2006.
[34] A. C. Yao. How to generate and exchange secrets, FOCS, 1986.

Appendix: A Counterexample

We’ve restated the lemma of [26] in our language (in this paper we have swapped
the roles of Alice and Bob):

Lemma 3 of [26]: With probability ≥ 1 − 2−
m
6 , at least 5

6 of Alice’s m
2 inputs

are the same, or Alice will get caught.
Consider the following behavior of a malicious Alice. Label the garbled circuits

C1, ..., Cm. Suppose m is a multiple of 8. For the first 7m
8 circuits C1, ..., C7m/8,

Alice will use the input 0 (assume Alice has only one input to the circuits), and
for every other circuit, Alice will use the input 1. Thus, the bad edges are exactly
those between one of the first 7m

8 circuits and one of the last m
8 circuits.

Since all the circuits are correctly garbled, Alice only gets caught if a bad
commitments is exposed in step 3. Consider the following event E : Bob samples
all m

2 of his circuits from the first 7m
8 garbled circuits. Observe that if E occurs,

no bad commitment is exposed in step 3, and therefore Alice does not get caught.
Moreover, if E occurs, Bob will use 7m

8 − m
2 = 3m

8 0 inputs when he performs
verification, and m

8 1 inputs. Thus, at most 3
4 of Alice’s m

2 inputs are the same,
contrary to the 5

6 claimed by Lemma 3.
For the counterexample to go through, it remains to show Pr[E ] > 2−

m
6 . But

Pr[E ] is just
( 7m

8
m
2

)
/
(

m
m
2

)
. It is then straightforward to show

( 7m
8
m
2

)
/
(

m
m
2

)
> 2−

m
6 , as

needed.
The above presentation was done for simplicity. One can replace 7m

8 by any
value less than 11m

12 in the above to get a “stronger” counterexample.



Efficient Two-Party Secure Computation
on Committed Inputs

Stanisław Jarecki and Vitaly Shmatikov

University of California, Irvine
The University of Texas at Austin

Abstract. We present an efficient construction of Yao’s “garbled circuits” proto-
col for securely computing any two-party circuit on committed inputs. The pro-
tocol is secure in a universally composable way in the presence of malicious
adversaries under the decisional composite residuosity (DCR) and strong RSA
assumptions, in the common reference string model. The protocol requires a con-
stant number of rounds (four-five in the standard model, two-three in the ran-
dom oracle model, depending on whether both parties receive the output), O(|C|)
modular exponentiations per player, and a bandwidth of O(|C|) group elements,
where |C| is the size of the computed circuit.

Our technical tools are of independent interest. We propose a homomorphic,
semantically secure variant of the Camenisch-Shoup verifiable cryptosystem,
which uses shorter keys, is unambiguous (it is infeasible to generate two keys
which successfully decrypt the same ciphertext), and allows efficient proofs that
a committed plaintext is encrypted under a committed key.

Our second tool is a practical four-round (two-round in ROM) protocol for
committed oblivious transfer on strings (string-COT) secure against malicious
participants. The string-COT protocol takes a few exponentiations per player, and
is UC-secure under the DCR assumption in the common reference string model.
Previous protocols of comparable efficiency achieved either committed OT on
bits, or standard (non-committed) OT on strings.

1 Introduction

Informally, a two-party protocol for computing a circuit is secure if participants do not
learn anything from the protocol execution beyond what is revealed by the output of the
circuit. In a seminal paper, Andrew Yao showed a “garbled circuit” protocol [Yao86]
for secure two-party computation (2PC) of any circuit in the semi-honest model, i.e.,
assuming that participants faithfully follow the protocol specification. Yao’s protocol
requires O(|C|) symmetric-key operations, and its bandwidth is O(|C|) symmetric-key
ciphertexts, in addition to the cost of n instances of an oblivious transfer (OT) protocol,
where n is the size of the circuit’s inputs. Using a 2-round OT protocol, Yao’s protocol
takes only two communication rounds (assuming only one player receives the output).

The main contribution of this paper is a new variant of Yao’s protocol, which replaces
O(|C|) symmetric-key operations with O(|C|) public-key operations, and at this cost
achieves security against malicious participants in the common reference string (CRS)
model. Specifically, our protocol operates on a multiplicative group Z

∗
n2 where n is

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 97–114, 2007.
c© International Association for Cryptology Research 2007



98 S. Jarecki and V. Shmatikov

a safe RSA modulus which satisfies DCR and strong RSA assumptions. The protocol
requires O(|C|) modular exponentiations, its bandwidth is O(|C|) elements in Z

∗
n2 , and

it takes four rounds in the standard model and two in ROM. Moreover, our protocol is
universally composable, and securely computes any circuits on committed inputs.

A fundamental primitive in Yao’s protocol is oblivious transfer (OT). Informally,
OT is a two-party protocol in which the receiver (a.k.a. the “chooser”) receives a value
of his choice from among several values sent by the sender, while learning nothing
about the other values. The sender does not learn anything from the protocol, and in
particular he does not learn which of the values he sent was received by the chooser.
Committed oblivious transfer (COT) is a variant of oblivious transfer, introduced by
Crépeau [Cré89] as a “verifiable OT,” in which both the sender and the chooser are
committed to their inputs, and the oblivious transfer proceeds on the committed val-
ues. The second contribution of our paper is a new protocol for committed oblivious
transfer on strings (“string-COT”). The protocol requires O(1) exponentiations and has
the bandwidth of O(1) elements in Z

∗
n2 , which is comparable to the cost of previous

protocols for standard (non-committed) OT on strings or previous COT protocols that
operated only on bits. This new string-COT protocol is also universally composable in
the CRS model.

A committed OT protocol secure against malicious players is a much more useful
tool in a security protocol than a standard OT. For example, unless the OT protocol runs
on committed inputs, it is fundamentally non-robust against network failures because
re-running the protocol after a failure allows the cheating receiver to learn both of the
sender’s values. Similarly, secure committed 2PC protocol is a much more useful tool
than a standard 2PC protocol. In general, universally composable string-OT and general
2PC on committed data makes it easy to ensure that multiple instances of these protocols
are executed on consistent inputs, for example as prescribed by some larger protocol.

Technical roadmap. Both protocols we present in this paper, the protocol for secure
two-party computation on committed inputs (“committed 2PC”) and the string-COT
protocol, rely on a modification of the verifiable encryption given by Camenisch and
Shoup [CS03]. The efficiency of these two protocols is essentially due to the very strong
properties that this encryption offers. We will refer to the original scheme of [CS03]
as CS encryption, and we call our modification sCS encryption, where “s” stands for
both “short” and “simplified,” because the modification consists of (1) stripping off
the chosen-ciphertext security check in the CS encryption, and (2) using significantly
shorter private keys. Below we explain how several interesting properties of this en-
cryption enable the efficient string-COT and committed 2PC protocols.

The sCS encryption scheme is additively homomorphic, i.e., given ciphertexts of
two values, one can obtain a ciphertext of their sum without decrypting the ciphertexts,
and it is verifiable, i.e., there is a very efficient ZK proof system due to [CS03] for
showing that the encrypted message corresponds to a previously committed one. These
two features together enable an efficient string-COT protocol. First, we use additive
homomorphism of the sCS encryption to build an efficient protocol for OT on strings in
a way that is similar to how Aiello et al. [AIR01] build a standard (i.e., non-committed)
OT on strings from the multiplicatively homomorphic ElGamal encryption. Then, by
adapting the ZK proof systems given for the CS encryption in [CS03], we add efficient



Efficient Two-Party Secure Computation on Committed Inputs 99

ZK proofs for showing that the parties run this string-OT protocol on the previously
committed inputs.

The sCS encryption has further useful properties which allow us to extend the string-
COT protocol to an efficient committed 2PC protocol. First, it is unambiguous, in the
sense that it is committing not only to the plaintext, but also to the encryption key:
it is infeasible to produce a ciphertext that can be successfully decrypted, even to the
same plaintext, under two different decryption keys. This property is crucial in the mali-
ciously secure version of Yao’s protocol. Otherwise, the player who creates the garbled
circuit could embed all sorts of faults into the circuit. If the circuit evaluator encounters
a fault which causes him to stop, the malicious player will learn information about the
evaluator’s inputs that he is not supposed to learn.

Second, we extend the Camenisch-Shoup ZK proof system to an efficient ZK proof
that a ciphertext encrypts a committed plaintext under a committed key. (Technically,
this proof system is defined for a symmetric-key version of the sCS encryption, where
the key is both an encryption and a decryption key.) This proof system is a crucial com-
ponent of proving that Yao’s “garbled circuit” is formed correctly. Yao’s construction
of the garbled circuit involves encrypting, for every circuit gate, the keys corresponding
to the output wires under the keys corresponding to the input wires. In our version of
Yao’s protocol, the sender commits to the keys he created for every circuit wire. For
the wires corresponding to the receiver’s inputs, the sender sends to the receiver the
appropriate key values using our efficient string-COT protocol operating on these com-
mitments. Furthermore, the sender must prove, for each gate, that the ciphertexts that are
supposed to encrypt the appropriate output-wire keys under the appropriate input-wire
keys are formed correctly. This is accomplished precisely by the above proof system,
because the input-wire keys appear as keys in these ciphertexts, while the output-wires
keys appear as plaintexts.

Giving an efficient ZK proof system for this statement for some version of the CS
encryption scheme is an interesting technical challenge, because in the CS cryptosystem
plaintexts and keys “live” in different groups (and are acted upon by different moduli).
It is not immediately obvious how to encrypt one CS encryption key under another CS
encryption key and have an efficient proof of correctness for this encryption, because
the efficient proof systems given for the CS encryption require that the plaintext be
significantly smaller than the encryption key. One solution is to extend these proof
systems to handle larger plaintexts (namely, plaintexts of the same size as the key),
using proofs of equality of elements of two different groups represented as integers (e.g.,
[Bou00]). We propose a simpler solution based on the observation that, from the results
of Håstad, Schrift and Shamir [HSS93] on simultaneous bit security of exponentiation
in groups of unknown order, it follows that one can shorten the private keys used in
the CS encryption to |n|2 bits. This significantly speeds up the CS encryption, but, more
importantly, this modification allows for a very efficient ZK proof that a ciphertext
encrypts a committed plaintext under a committed key.

Organization of the paper. In Section 2 we discuss related work. In Section 3, we
describe our cryptographic toolkit. In Section 4, we present the string-COT protocol,
and in Section 5, the protocol for general two-party secure computation on committed
inputs. All proofs have been delegated to the full version of the paper.



100 S. Jarecki and V. Shmatikov

2 Related Work on Constant-Round 2PC and Committed OT

2PC protocols. The first constructions for secure two-party computation are Yao’s
“garbled circuits” protocol [Yao86] and the protocol of [GMW87]. Of the two, only
Yao’s protocol is constant-round, but secure only in the semi-honest model. Most sub-
sequent constant-round protocols for secure computation in the malicious model, such
as [Kil88, Lin03, KO04], employ generic zero knowledge proofs (i.e., proofs for any NP
statement). The overhead of this approach is likely to remain prohibitive for practical
applications.

There are secure 2PC protocols that avoid generic zero-knowledge proofs (e.g., see
[JJ00, GMY04] and references therein), but the round complexity of these protocols
is linear in the (boolean or arithmetic) circuit depth. On the other hand, Damgård
and Ishai [DI05] showed the first constant-round multi-party protocol with O(|C|n2k)
bandwidth and computation (here n is the number of parties, k is the security parame-
ter), assuming a trusted preprocessing stage, but this protocol is secure only with an
honest majority, and its techniques (e.g., verifiable secret sharing) do not seem applica-
ble to two-party computation.

2PC using verifiable encryption. Like our protocol, the constant-round 2PC protocol
of Cachin and Camenisch [CC00] uses a verifiable public-key encryption scheme, but
unlike in our scheme, their zero-knowledge proofs require s cut-and-choose repetitions
where s is the statistical security parameter. Hence their 2PC protocol requires O(s|C|)
group elements in bandwidth and the same number of exponentiations (vs. O(|C|) in
our construction). It is worth mentioning, however, that our ciphertexts are elements of
Z
∗
n2 , for n satisfying the DCR and strong RSA assumptions, while [CC00] can use any

group where the Diffie-Hellman assumption holds.

2PC using cut-and-choose approach. A recent series of works on efficient constant-
round 2PC protocols [Pin03, MF06, LP07, Woo07] shows that security in the malicious
model can be achieved by cut-and-choose verification of the entire garbled circuit, at the
cost of O(s|C| + s2n) [LP07] or O(s|C|) [Woo07] symmetric-key operations, where
s is the statistical security parameter of cut-and-choose and n is the input size. These
cut-and-choose constructions probably require less computation than our protocol to
achieve similar levels of security based on common assumptions, but our protocol may
require less bandwidth, especially for small circuits whose size is comparable to the
input size. Also, our protocol can be made non-interactive in the random oracle model
at no extra cost, while the security parameter s in the cut-and-choose solutions increases
if they are made non-interactive using the Fiat-Shamir heuristic.

COT. Committed OT (COT) was introduced by Crépeau [Cré89], where it was used to
construct a general 2PC protocol (but not constant-round one) following the approach of
[GMW87]. Crépeau constructed COT using black-box invocations of Ω(n3) OTs. This
was improved by [CvdGT95] to O(n) OT’s and O(n2) bit commitments. Both COT
protocols, however, operate on bits rather than strings. Based on the concrete assump-
tions of Computational or Decisional Diffie-Hellman, Cramer and Damgård [CD97]
and then Garay et al. [GMY04] give COT protocols which require O(1) exponen-
tiations but still operate only on bits, while Camenisch and Cachin [CC00] give a



Efficient Two-Party Secure Computation on Committed Inputs 101

string-COT protocol, but it requires O(k) modular exponentiations where k is the secu-
rity parameter.

Lipmaa [Lip03] proposed to extend the (non-committed) string-OT protocol of
Aiello et al. [AIR01] to a committed OT protocol on strings at the cost of O(1) ex-
ponentiations. While this protocol does ensure that the received string is consistent
with the sender’s commitment, the sender can successfully cheat on the string that has
not been transferred during the OT. This can be used to break chooser’s privacy in
any application (such as 2PC) where the sender can observe whether the chooser suc-
cesfully completed the protocol. Stronger verifiability can potentially be achieved by
extending this protocol with zero-knowledge proofs, but the resulting protocol would
not beat the O(k) modular exponentiations bound because the commitment schemes
(e.g., [CGHGN01]) suggested in [Lip03] seem to have only cut-and-choose ZK proofs.

3 Cryptographic Tools

3.1 Camenisch-Shoup (CS) Encryption Scheme [CS03]

Common reference string. A trusted third party generates a safe RSA modulus n = pq,
where p = 2p′+1, q = 2q′+1, |p| = |q|, p �= q, and p, q, p′, q′ are all primes, a random
element g′ in Z

∗
n2 and an element g = (g′)2n. The common reference string is (n, g),

which also implicitly defines element α = 1 + n. For standalone applications of CS
encryption, pair (n, g) can be thought of as part of the public key. However, placing
(n, g) in the CRS enables soundness of some very useful proof systems associated with
this encryption scheme, e.g., those used in our COT and 2PC protocols.

The group Z
∗
n2 defined by the safe RSA modulus n can be decomposed into a cross-

product of four subgroups: Z
∗
n2 = Gn × Gn′ ×G2 × T , where group Gn, generated by

α = n + 1, has order n, group Gn′ has order n′ = p′q′, and G2 and T are subgroups
of order 2. As one consequence of this structure of Z

∗
n2 , the above procedure of picking

g as a 2n-power of a random element implies that, with an overwhelming probability,
g is a generator of subgroup Gn′ . In the following we treat all multiplications and
exponentiations as operations in Z

∗
n2 , unless stated otherwise.

Key generation. The private key is a random triple x1, x2, x3 chosen in [0, n2

4 ]. The
public key is PK = (n, g, g, h, f, hk) where g = gx1 , h = gx2 , f = gx3 , and hk is a key
of a collision-resistant keyed hash function H.

Encryption. Consider plaintext m as an integer in [−n
2 , n

2 ]. (Note that one can encode
elements m′ in Zn in this range as m = m′ rem n, i.e., m = m′ if m′ ≤ n

2 and
m = m′ − n if m′ > n

2 . Observe that m = m′ mod n.) A CS encryption of m

under key PK with label L, denoted CSencL
PK(m), is a tuple (u, e, v) where u = gr,

e = αmgr, and v = abs((hfHhk(u,e,L))r), for a randomly chosen r ∈ [0, n
4 ]. Operation

abs(a) returns a for a < n
2 and n − a for a ≥ n

2 .

Decryption. Given a ciphertext (u, e, v), check abs(v) = v and u2(x2+Hhk(u,e,L)x3) =
v2. If this holds, compute m̂ = (e/ux1)2. Note that e/ux1 = αm for correctly formed
ciphertexts. If m̂ �∈ 〈α〉, i.e., if n does not divide m̂−1, reject. Otherwise, set m̂′ = m̂−1

n
(over the integers), m′ = m̂′/2 mod n, and m = m′ rem n.



102 S. Jarecki and V. Shmatikov

This encryption is CCA secure under the DCR assumption on safe RSA moduli [CS03]:

Assumption 1. (DCR) [Pai99]: Given RSA modulus n, random elements of Z
∗
n2 are

computationally indistinguishable from elements of a subgroup formed by n-th powers
of elements in Z

∗
n2 .1

3.2 Simplified Camenisch-Shoup (sCS) Encryption Scheme

The group setting (n, g) is the same. Denote k′′ = |n|
2 , and let k, k′ be parameters that

control the quality of soundness and zero-knowledge of proof systems associated with
the sCS encryption. We require that 2k + k′ < k′′ and k < p′, q′. For 80-bit security,
one can take k′′ = 512 and k = k′ = 80.

Key generation. The private key is x ∈ [0, 2k′′
]. The public key is y = gx.

Encryption. The sCS encryption under key y of m, an integer in [−n
2 , n

2 ], denoted
sCSency(m), is (u, e) s.t. e = αmyr mod n2 and u = gr for a random r in [0, n

4 ].

Decryption. Proceeds exactly like CS decryption, but omitting the CCA checks on v
(since there’s no v here), and using x instead of x1 in decrypting (u, e).

Apart from stripping the CCA check, the only difference between CS and sCS encryp-
tion is the shortened private key. The fact that the scheme remains semantically secure
with such modification follows from adapting the results of [HSS93] on simultaneous
bit security of exponentiation modulo a Blum integer (and a safe RSA modulus is Blum
integer) to exponentiation in Z

∗
n2 .2 It follows that under the factoring assumption, the

entire upper half of the bits of exponent x is simultaneously hidden under the expo-
nentiation function y = gx mod n2, and therefore key y = gx for x random in Zn′ is
indistinguishable from y = gx for x random in [0, |n|2 ]. 3

Theorem 1. sCS encryption is semantically secure under DCR assumption on safe RSA
moduli.

Symmetric-key version of sCS encryption scheme. The sCS cryptosystem can also
be used as a symmetric encryption scheme if the private key x ∈ [0, 2k′′

] is treated as a
symmetric key. Encryption of m under key x is a pair (e, u), where e = αmux mod n2,
u = gr for random r ∈ [0, n

4 ]. The decryption procedure does not change, nor does the
security of the encryption scheme.

Unambiguity of sCS encryption. We introduce a very strong notion of unambiguous
encryption, which applies to both public-key and symmetric schemes. It says that a ci-
phertext that passes a certain proof system, denoted ZKUnEnc, cannot decrypt to two
different plaintexts under two different private keys. Moreover, no two distinct decryp-
tion keys can decrypt a ciphertext even to the same plaintext. Therefore, in an unam-
biguous encryption scheme, the ciphertext is committing not only to the plaintext, but
also to the decryption key. This notion of encryption unambiguity is essential for our

1 For the safe RSA moduli n, the subgroup of n-th residues in Z
∗
n2 is the subgroup Gn′ ×G2×T .

2 Cf. similar observation in [CGHG01] for Paillier encryption, on which CS encryption is based.
3 Note that in this way one can also shorten keys x2, x3 in CS encryption and the randomness r.



Efficient Two-Party Secure Computation on Committed Inputs 103

version of Yao’s 2PC protocol, because otherwise a malicious creator of the garbled
circuit could introduce errors in this circuit, and then learn something extra about the
receiver’s inputs by observing whether the receiver successfully completes his compu-
tation on this circuit.

Definition 1. An encryption scheme is unambiguous if there exists a zero-knowledge
proof system ZKUnEnc s.t. for every efficient probabilistic algorithm A, the following
event has only negligible probability: (1) A outputs tuple (c, x1, x2) s.t. x1 �= x2, (2) A
passes the ZKUnEnc proof system on ciphertext c, (3) x1, x2 are valid private keys, i.e.,
they are accepted by the decryption procedure, and (4) both Decx1(c) and Decx2(c)
output a valid message (or messages). In the CRS model, the probability is also taken
over the randomness of the common reference string generation.

Theorem 2. sCS encryption is unambiguous under the factoring assumption on safe
RSA moduli, in the CRS model.

The ZK proof system ZKUnEnc for the sCS encryption is the proof that u2 belongs to
the group generated by g, i.e., ZKUnEnc(u, e) = ZKDL(g, u). (See section 3.4.)

3.3 CS Commitments and sCS Commitments

Our COT and 2PC protocols could be adapted to work with standard Pedersen-like com-
mitment schemes of [Ped91, FO97, DF02] at the cost of additional mappings, via range
proofs [CM99, Bou00, DF02], between commitments with different ranges of plain-
texts. Instead, we use the full (i.e., adaptive chosen-ciphertext secure) CS encryption
as a commitment scheme, because it operates on the same group as the encryption we
use, and hence is well-suited for both the COT and 2PC protocols of Sections 4 and 5.4

Moreover, using a CCA-secure encryption as a commitment helps in showing that the
COT and 2PC schemes are secure in the strong sense of universal composability.

An instance of a CS commitment scheme is a CS encryption public key PK =
(n, g, g, h, f, hk). The public key is chosen by a trusted third party, and security of this
commitment scheme requires the CRS model. The CS commitment on message m, an
integer in range [−n

2 , n
2 ] (with an obvious mapping to Zn), with label L, is the ciphertext

Com = CSencL
PK(m). For notational convenience of the COT and 2PC protocols, we

denote the tuple forming commitment Com as (u, C, v), i.e., u = gr, C = αmgr,
and v = abs((hfHhk(u,C,L))r). The decommitment is the (r, m, L) tuple. In the COT
and 2PC protocols, we often treat value C in the CS commitment as a commitment
to m by itself. This shortened commitment is used very heavily in the 2PC protocol,
thus we refer to value C = αmgr by itself as an sCS commitment. The corresponding
decommitment is (m, r).

3.4 Efficient Concurrently Secure ZK Proof Systems in the CRS Model

All proof systems used in our COT and Committed 2PC protocols are concurrently se-
cure ZK proofs in the CRS model. Specifically, each proof system is computationally

4 Note that instances of other commitment schemes can be mapped to this one using the verifi-
able encryption proof system that accompanies the Camenisch-Shoup encryption [CS03].



104 S. Jarecki and V. Shmatikov

sound and statistical zero-knowledge with a straight-line simulator. The latter is im-
portant for showing that the protocols are universally composable. Each of these proof
systems is built from efficient HVZK proof systems for the languages listed below by a
series of compilations which preserve the efficiency of the underlying HVZK protocols.

The compilations start from 3-round HVZK proof systems with the properties of
special honest-verifier zero-knowledge and (weak) special soundess (we discuss these
below). First, with the techniques of Cramer et al. [CDS94], HVZK systems of this
class can be combined, at no extra cost, into HVZK proof systems of the same class
for any (monotonic) disjunctive and/or conjuctive formula over statements proved in
the component proof systems. Then, using Damgård [Dam02], the resulting HVZK
proof system can be compiled into a three-round concurrently secure ZK proof systems
with statistical zero-knowledge, computational soundness, and a straight-line simulator
in the CRS model. This latter technique requires statistically hiding trapdoor commit-
ments, and using Pedersen’s commitment scheme it incurs a computational overhead of
just one extra exponentiation per player. The computational soundness of the resulting
ZK proof system is subject to the same assumption as the computational binding of the
commitment scheme, which can be Strong RSA if Pedersen’s trapdoor commitment is
adapted to the Z

∗
n2 setting, e.g., as in Damgård-Fujisaki commitments [DF02]. Note

that in ROM, using the Fiat-Shamir heuristic, the HVZK proof systems of this class
can be converted at no extra cost to non-interactive ZKs with the same properties of
computational soundness and statistical zero-knowledge with straight-line simulation.

We denote the statements being proved as X, Y, Z, and the corresponding “atomic”
HVZK proof systems as HVZKX, HVZKY, HVZKZ. We use a notation derived from
boolean formulas for the ZK proof systems resulting from this series of compilations.
For example, the resulting ZK proof system for language X ∧ (Y ∨ Z) will be denoted
ZKX∧(ZKY∨ZKZ). We catalog the proof systems used in the COT and 2PC protocols
by the statements they prove, namely, membership in the languages DL, DLEQ, NotEq,
Cot, Com, and PlainEq. Each of these is parameterized by tuple (n, g, g, h, f, hk),
which forms an instance of the CS commitment scheme. Triple (n, g, g) also defines
an instance of the sCS commitment. Parameters k, k′, k′′ are as in Section 3.2.

DL = {(g, X) | there exists x s.t. X2 = g2x}.

DLEQ = {(g, X, g̃, X̃) | there exists x s.t. X2 = g2x, X̃2 = g̃2x}.

NotEq = {(Ca, Cb) | there exist a, b, ra, rb s.t. a �= b mod n, Ca = αagra , and
Cb = αbgrb}. In other words, Ca and Cb are sCS commitments to two different values.

Cot = {(i, e′, u′, e, u, y, C) | there exist m, w, s, r s.t. C2 = α2mg2w,
e′2 = e2sα2m−i∗2sy2r, and u′2 = u2sg2r}. In other words, m rem n is committed in
sCS commitment C, and (u′, e′) is a correct “re-encryption” of m performed by the
sender in the COT protocol, given the (y, u, e) tuple sent by the receiver.

Com = {(Com, ids) | there exist m, r s.t. Com = (u, C, v) where u = gr, C =
αmgr, and v = abs((hfHhk(u,C,ids))r)}. In other words, Com is a properly formed CS
commitment to some message m with label ids.



Efficient Two-Party Secure Computation on Committed Inputs 105

PlainEq = {((e, u), Cx, Cm) | there exist x, m, rx, rm s.t. e = αmux, Cx = αxgrx ,
and Cm = αmgrm}. In other words, (e, u) is an sCS encryption of the plaintext m
committed in (sCS commitment) Cm under the key x committed in Cx.

All of the above languages have efficient 3-round HVZK proof systems HVZKDL,
HVZKDLEQ, etc., which unconditionally satisfy the two properties we need: (1) spe-
cial HVZK, and (2) weak special soundness. The only exception is HVZKPlainEq, for
which we show that weak special soundness holds under the strong RSA assumption.
All systems are efficient: the players make only a few exponentiations (between one
and four) modulo n2, and communication complexity ranges from 3|n| in HVZKDL
to at most 20|n| bits in HVZKPlainEq. We show the HVZKPlainEq proof system in
Appendix A, because it has the most novelty. We delegate the other proof systems to
the full version of the paper, but most of them are either standard, or simple modifica-
tions of the proofs that appear in [CS03]. The HVZKPlainEq proof system shown in
Appendix A gives a good idea of how all of these HVZKs work.

Special HVZK and (weak) special soundness. Let (P1, P2, V ) be a specification
of a 3-round public coin proof system for language L. The prover’s message in the
first round on instance x, witness w for x ∈ L, and randomness r is computed as
a = P1(x, w, r), its response in the third round is computed as z = P2(x, w, r, e) where
e is the verifier’s challenge, and the verifier accepts if and only if V (x, a, e, z) = 1.
We call this proof system special (statistical) HVZK if there exists a simulator S s.t.
for every challenge e and every witness (x, w) for x ∈ L, the tuple (a, z) output
by S(z, e) is distributed statistically close to tuple (a, z) where a = P1(x, w, r) and
z = P2(x, w, r, e). The probability is over the coins of S and over r. We say that
this proof system has (weak) special soundness if for every x �∈ L, and for every
PPT algorithm P̂ , the probability that P̂ (x) outputs (a, e, z, e′, z′) s.t. e �= e′ and
V (x, a, e, z) = V (x, a, e′, z′) = 1, is negligible. Since the HVZK proof systems we
use are parametrized by a reference string, the adversary P̂ takes the CRS as an input
and the probability is taken over the choice of the CRS and the adversary’s coins. This
notion of (weak) special soundness is weaker than the special soundness assumed by
the compilers of [CDS94, Dam02], but it’s easy to see that the same compilers still
apply to this weaker class of HVZKs.

4 UC-Secure Committed Oblivious Transfer on Strings

Our protocol Pcot for 1-out-of-2 committed oblivious transfer (COT) on strings is sim-
ilar to the 1-out-of-2 non-committed string-OT protocol of Aiello et al. [AIR01], but
instead of multiplicatively homomorphic ElGamal encryption, Pcot uses additively ho-
momorphic and verifiable sCS encryption, which enables succinct (constant number of
exponentiations) proofs that receiver’s and sender’s inputs into OT match their previous
commitments. Moreover, Pcot is universally composable in the CRS model.

We define the ideal functionality FCOT for a COT scheme, and show that Pcot
securely realizes it. In contrast to the ideal COT functionality proposed by Garay et
al. [GMY04], our functionality FCOT runs on strings rather than bits. However, FCOT
is more restricted than the functionality of [GMY04] in that (1) the obliviously



106 S. Jarecki and V. Shmatikov

Ideal functionality FCOT for committed oblivious transfer on strings (COT)

Commit: Upon receiving a 〈ComMsg, (Pi, cid), m〉 message from Pi, FCOT records
the ((Pi, cid), m) pair and broadcasts 〈Committed, (Pi, cid)〉. Here m can be ei-
ther a message in the prescribed message space or a special symbol ⊥.

StartCOT: Upon receiving msg = 〈StartCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PR, FCOT verifies that it has records ((PR, cidR), mR),
((PS, cidS,0), mS,0), and ((PS , cidS,1), mS,1), and that mR �=⊥. If this
fails, FCOT ignores this message; otherwise, FCOT records msg and forwards it
to PS .

CompleteCOT: Upon receiving 〈CompleteCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PS , FCOT verifies that it has a record 〈StartCOT, ids〉, where ids =
(PS, PR, sid, cidR, cidS,0, cidS,1). FCOT looks up records ((PS, cidS,0), mS,0)
and ((PS, cidS,1), mS,1), and checks if mS,0 �=⊥ and mS,1 �=⊥. If anything fails,
FCOT ignores this message.
Otherwise FCOT looks up the record ((PR, cidR), mR) (observe that
such a record must exist). If mR /∈ {0, 1}, FCOT sends a spe-
cial message 〈COTFailed, PS, PR, sid〉 to PR. Otherwise FCOT sends
〈CompleteCOT, ids, (mS,b, b)〉 to PR for b = mR.

Note: Additionally, FCOT screens outs duplicates in commitment identifiers cid for
every Pi, and in COT instance identifiers sid for every (PS , PR) pair.

Fig. 1. FCOT ideal functionality

transferred values are the plaintexts of commitments, not full decommitments; and (2)
FCOT does not support opening of the committed values. Nevertheless, FCOT can en-
sure that any combination of COT instances is executed on same committed inputs,
and thus it can ensure that whenever COT is used as part of any security protocol, the
parties’ inputs into COT are consistent across multiple COT instances.

The COT protocol Pcot is given in fig. 2. It assumes a common reference string
picked by the trusted third party, which defines an instance PK of the CS commitment
scheme. The message space for this COT scheme is [−n

2 , n
2 ], the message space of the

CS commitment scheme. The commitment, identified as cid, of player Pi on message
m is a CS commitment Com = CSencids

PK(m) with label ids = (Pi, cid). As we will
argue, Pcot is a secure realization of FCOT; in particular, the receiver either outputs
message mσ committed in ComS,σ, or rejects.

The two proof systems used in Pcot involve conjunctions of Com, DLEQ, and Cot
statements. As explained in Section 3.4, such proofs are computationally sound ZK
proofs which are concurrently secure in the CRS model. Each takes only a few expo-
nentiations and three communication rounds. Moreover, the messages in both proofs
(PR to PS and PS to PR) can be piggy-backed, with the statements proved by the two
players delayed to the last messages, which results in a 4-round protocol. In the random
oracle model these proofs are non-interactive and the protocol takes only 2 rounds.

Theorem 3. Under the DCR assumption, protocol Pcot is a UC-secure realization of
the Committed-OT functionality FCOT in the CRS model, if the proof systems involved



Efficient Two-Party Secure Computation on Committed Inputs 107

Protocol Pcot for committed oblivious transfer on strings

Common Reference String: CS commitment instance PK = (n, g, g, h, f, hk).

Commit: For player Pi, on commitment instance cid and message m: Player Pi sets
ids = (Pi, cid), Com = CSencids

PK(m), and broadcasts 〈ComMsg, ids, Com〉.

Receiver PR executes a COT instance sid with sender PS . PR’s bit σ is com-
mitted in ComR, PS’s messages m0, m1 are committed in ComS,0, ComS,1. Let
cidR, cidS,0, cidS,1 be the identifiers for these commitments.

COT Step 1: PR sets ids = (PS, PR, sid, cidR, cidS,0, cidS,1), retrieves ComR =
(ũ, C, ṽ) and its decommitment r ∈ [0, n

4 ]. Note that C = ασgr. PR picks x ∈ [0, n
4 ],

and computes
y = gx, u = gr, e = ασyr

PR sends 〈COTMsg1, ids, (u, e, y)〉 to PS , and performs as the prover in the proof
system ZKDLEQ(g, u, g/y, C/e) ∧ ZKCom(PK, ComR, (PR, cidR)) with PS .

COT Step 2: Upon receiving 〈COTMsg1, ids, (u, e, y)〉 from PR, PS retrieves mes-
sages m0, m1 committed in ComS0 = (ũ0, C0, ṽ0) and ComS1 = (ũ1, C1, ṽ1). Note
that Ci = αmigrmi for some rmi . PS creates two “COT-encryptions” for i = 0, 1:

ei = esiαmi−i∗siyri and ui = usigri

for random even values si ∈ [0, 2n] and ri ∈ [0, n
2 ]. If PR passed its proof in Step 1, PS

sends message 〈COTMsg2, ids, (u0, e0, u1, e1)〉 to PS , and performs with PR as the
verifier a proof system ZKCot(0, e0, u0, e, u, y,C0) ∧ ZKCot(1, e1, u1, e, u, y,C1) ∧
ZKCom(ComS,0, (PS, cidS0)) ∧ ZKCom(ComS,1, (PS , cidS1)).

COT Step 3: PR decrypts the sCS ciphertext (uσ, eσ) and obtains mσ. If PS passed its
proof in step 2, then PR outputs mσ; otherwise PR rejects.

Note: Either player rejects if the values he receives are visibly not in Z
∗
n2 , i.e., they are

outside the [1, n2] range or are divisible by n.

Fig. 2. Protocol Pcot for committed OT on strings

are computationally sound and statistically zero-knowledge with straight-line simula-
tors in the CRS model.

Due to lack of space, we present only the crucial aspects of the proof.

Verifiability of inputs. By computational soundness of the proof systems, the play-
ers cannot, except with negligible probability, enter different values σ, m0, m1 into the
OT protocol than those they previously committed. This is easy to see for the cheat-
ing receiver PR. For the cheating sender PS , by soundness of ZKCot, if PR accepts,
then, with overwhelming probability, for each i there exists a tuple (mi, rmi , si, ri) s.t.
(Ci)2 = α2mig2rmi , e2

i = e2siα2mi−i∗2siy2ri , and u2
i = u2sig2ri , where Comi =

(ũi, Ci, ṽi) is PS’s commitment whose id is cidS,i. In particular, mi is the message
committed in Comi. Since for honest PR, e = ασyr and u = gr, it follows that for



108 S. Jarecki and V. Shmatikov

i = σ we have e2
σ = α2mσy2r′′

and u2
σ = g2r′′

where r′′ = sσr + rσ . Therefore,
message mσ decrypted by PR from the ciphertext (uσ, eσ) is the message committed
in Comσ.

Receiver’s and sender’s privacy. Receiver’s privacy follows from semantic security
of CS encryption, while the sender’s privacy relies on the fact that if PR’s commit-
ment ComR = (ũ, C, ṽ) and the tuple (u, e, y) in PR’s COT message are correctly
formed (and they are, except for negligible probability, if PS accepts PR’s ZKCom
and ZKDLEQ proofs, and if the factoring assumption holds), and if σ is a value that
satisfies e2 = α2σg2r for some r (there exists such σ for every e ∈ Z

∗
n2 ), then the

pairs (e0, u0) and (e1, u1) sent by PS reveal mσ , but information-theoretically hide
mi for i �= σ. Observe first that if tuples (ũ, C, ṽ) and (u, e, y) are accepted by the
verifier (i.e., each element is in Zn2 , but is not a multiple of n), then under the fac-
toring assumption, which is implied by the DCR assumption, all these elements are
also in Z

∗
n2 , except for negligible probability. Second, if PR passes the ZKCom proof

on ComR and the ZKDLEQ proof on (u, e, y), then except for negligible probability
we have e = ω0α

σgr, u = ω1g
r, and y = ω2g

x for some (σ, r, x) and some ele-
ments ω0, ω1, ω2 of order 2 in Z

∗
n2 . Therefore, values (ui, ei) sent by PS are equal

to ei = αmi+si(σ−i)ysir+ri and ui = gsir+ri , because si is even. Note that for any
σ, gcd(σ − i, n) = 1 for either i = 0 or i = 1 (or for both). Since the order of α
is n, and (si mod n) is distributed uniformly in Zn, value αmi+si(σ−i) is distributed
uniformly in the subgroup generated by α in Z

∗
n2 . Because (1) the orders of g and y

are both divisors of 2n′, (2) sir + ri is even, and (3) (ri mod n′) is distributed statis-
tically close to uniform over Zn′ , it follows that pair (gsir+ri , ysir+ri) is distributed
statistically close to (g2r′

, y2r′
) for r′ uniform in Zn′ . Taken together, it follows that

pair (ei, ui), for i �= σ, is distributed statistically close to (αm′
y2r′

, g2r′
) for random

(m′, r′) ∈ (Zn × Zn′), and thus it is statistically independent of mi.

Construction of the straight-line simulator. The proof that protocol Pcot UC-realizes
the COT functionality FCOT involves construction of a straight-line simulator, which
pretends to follow the protocol on behalf of the uncorrupted parties by executing it
on some fixed values unrelated to the real inputs of these parties, and simulates their
proof systems using their straight-line simulators. Moreover, the simulator straight-
line extracts the effective inputs contributed by the corrupted players by choosing the
Camenisch-Shoup public key PK embedded in the CRS and decrypting these play-
ers’ inputs from their commitments. The simulator submits these extracted inputs to the
ideal functionality if the corrupted players pass the associated ZK proofs. CCA security
of Camenisch-Shoup encryption implies that the ciphertexts contained in the commit-
ments and COT messages created by the simulator remain indistinguishable from the
corresponding ciphertexts created in the real protocol, even if the simulator accesses
the decryption oracle (to extract the values committed by the corrupt players). Finally,
the proof systems performed by the corrupted players are sound even if the simulator
picks the CRS because as long as the adversary passes its proofs only on correct state-
ments, the simulation is distributed statistically close to the real execution. Hence, by
the standard soundness of the proof systems involved, the adversary has only negligible
probability of passing some proof on an incorrect statement in the simulation.



Efficient Two-Party Secure Computation on Committed Inputs 109

5 UC-Secure Two-Party Computation on Committed Inputs

We present an efficient version of Yao’s “garbled circuits” protocol for secure two-
party computation (2PC). The protocol operates on committed inputs and is universally
composable (in the CRS model). In addition to any two-party secure computation in
the malicious model, our protocol can be used, for example, to ensure that multiple
instances of secure computation are executed on consistent inputs.

The ideal functionality F2PC for secure two-party computation on committed inputs
in shown in fig. 3. Abstracting from the bookkeeping details, F2PC is a simple gen-
eralization of the standard secure computation functionality where two players send
their respective inputs x and y to the trusted third party F , who returns the result of
evaluating some circuit C(x, y) to one or both players.

The committed 2PC functionality F2PC accepts any number of commitments from
parties P1, . . . , Pn, which are intended to represent the commitments to the bits encod-
ing these parties’ inputs into some two-party computation protocols. For every commit-
ment, F2PC records the committed bit. If some party PR requests secure computation
of some circuit C with another party PS , the request specifies C and a vector of com-
mitments to PR’s and PS’s inputs into this circuit. If party PS accedes to this request,
F2PC sends to PR the output of circuit C computed on the inputs committed in the
specified commitments. Note that our F2PC sends the output only to PR, but since this
is a committed 2PC functionality, the players can simply reverse the roles and request
that the same C be computed on the same vector of commitments, in order to enable
PS to receive the output. (Our actual 2PC protocol allows PS to receive the output with
no computational overhead and one extra communication round.)

We assume that the circuit C consists of binary two-input gates G = {g1, . . . , gc}
with unbounded fan-out but no cycles, connected by wires W = {w1, . . . , wm}. Some
subset WS of ns input wires are designated as PS’s inputs, and nr input wires form the
set WR of PR’s inputs. Some subset WO of the output wires is designed as outputs for
PR. (Optionally, some output wires can also be designated as outputs for PS .)

The Committed 2PC protocol is in fig. 4. It is similar to the COT protocol of Sec-
tion 4, and uses the same commitments and same message pattern, requiring 4 rounds
in CRS and 2 rounds in ROM. In the first message, the receiver uses the proof sys-
tems of the Pcot protocol and an additional proof system ZKBit(C) = (ZKDL(g, C) ∨
ZKDL(g, C/α)) for proving that the CS commitment Com = (u, C, v) or the sCS
commitment C are commitments to a bit. In the second message, the sender creates the
garbled circuit and uses the CorrectYao proof system to prove that it has been formed
correctly. This step encompasses the entire Yao’s construction and is discussed below.
In the following, we denote sender PS as S and receiver PR as R.

Wire keys and commitments: S picks two random (symmetric) sCS private keys
xw

0 , xw
1 for every wire w ∈ W , and for each xw

i computes an sCS commitment Cw
i to

xw
i . Also, S makes a set of wire keys corresponding to his inputs, {xw

bw
}w∈WS , where

bw is S’s input bit on w ∈ WS .

COTs on receiver’s wire keys: S completes nr instances of the COT protocol on
the wire keys corresponding to receiver’s wires: for each i = 1, .., nr, S enters keys
(xwi

0 , xwi
1 ) as a sender in the COT protocol, where wi designates the receiver’s ith input



110 S. Jarecki and V. Shmatikov

Ideal functionality F2PC for two-party secure computation on committed inputs

Commit: Upon receiving a 〈ComMsg, (Pi, cid), m〉 message from Pi, F2PC verifies
that this cid has not been used by Pi before, records the ((Pi, cid), m) pair and broad-
casts a 〈Committed, (Pi, cid)〉 message. Message m is either a message in the pre-
scribed message space, or a special symbol ⊥.

Start2PC: Upon receiving

msg = 〈Start2PC, (PS, PR, sid, cidS1, . . . , cidSns , cidR1, . . . , cidRnr , C)〉

from PR, F2PC verifies that (i) this sid has not been used by PS and PR before; (ii) for
every index k such that 1 ≤ k ≤ ns, F2PC has a unique record ((PS , cidSk), mSk)
(these commitments correspond to PS’s inputs into the protocol); (iii) for every index l
such that 1 ≤ l ≤ nr , F2PC has a unique record ((PR, cidRl), mRl) and that mRl ∈
{0, 1} (these commitments correspond to PR’s inputs into the protocol), and (iv) C is a
description of a circuit that takes ns + nr bits as inputs. If this fails, F2PC ignores this
message; otherwise, it records msg and forwards it to PS .

Complete2PC: Upon receiving

msg = 〈Complete2PC, (PS, PR, sid, cidS1, . . . , cidSns , cidR1, . . . , cidRnr , C)〉

from PS , F2PC verifies that it has a record 〈Start2PC, ids〉, where ids =
(PS , PR, sid, cidS1, . . . , cidR1, . . . , C). If not, F2PC ignores this message.
F2PC looks up the records ((PS , cidS1), mS1), . . . , ((PS, cidSns), mSns) and
((PR, cidR1), mR1), . . . , ((PR, cidRnr ), mRnr ). If mSk /∈ {0, 1} for some index k,
F2PC ignores this instance of the 2PC protocol.
Otherwise, F2PC evaluates circuit C on inputs mS1, . . . , mSns , mR1, . . . , mrnr . F2PC

sends 〈Complete2PC, ids, b)〉 to PR, where b is the output of the circuit.

Note: This is a functionality for one-directional two-party computation, where only the
receiver PR learns the output. Because both parties are committed to their inputs, they
can run another instance of the same protocol with the roles of PS and PR reversed.

Fig. 3. F2PC ideal functionality

wire. This way, for every w ∈ Wr, the receiver obtains the wire key xw
bw

where bw is his
input bit on wire w. Technically, S computes tuple (u0

(wi), e0
(wi), u1

(wi), e1
(wi)) by

following the sender’s algorithm in Step 2 of Pcot on tuple (u(i), e(i), y(i)) and a pair
of messages (x0

wi , x1
wi), and their corresponding sCS commitments (C0

wi , C1
wi).

Receiver’s output wires: For every receiver’s output wire w ∈ W0, S creates a pair of
ciphertexts Ew

0 , Ew
1 that enables R to interpret the corresponding wire keys. Namely,

Ew
0 = sCSencxw

0
(0) and Ew

1 = sCSencxw
1
(1).

Forming the garbled truth tables: The following process is repeated for every gate
g ∈ G. Let A and B be the input wires of g, and C the output wire. Let CA

0,1, C
B
0,1, C

C
0,1

be the six sCS commitments to the respective wire keys (two per wire). These commit-
ments form the truth table for the gate g in which the input bits bA, bB and the output bit
bC = g(bA, bB) are replaced by commitments to the corresponding wire keys. As in the



Efficient Two-Party Secure Computation on Committed Inputs 111

Committed 2PC Protocol

Common Reference String: CS commitment instance PK = (n, g, g, h, f, hk).

Commit: As in Pcot of fig. 2, player Pi on commitment instance cid and message m
broadcasts 〈ComMsg, ids, Com〉 where Com = CSencids

PK(m) for ids = (Pi, cid).

2PC Step 1: To trigger instance sid of the protocol in order to compute circuit C on com-
mitment instances cidS1, . . . , cidSns made by PS and commitments cidR1, . . . , cidRnr

made by PR, the receiver PR prepares nr messages, each computed as in Step 1 of Pcot

(fig. 2): for each i = 1, .., nr , PS computes a tuple (y(i), u(i), e(i)) on bit σi committed
in ComcidRi = (ũ(i), C(i), ṽ(i)) and its decommitment r(i). PS sends to PR message

〈Start2PC, ids, C, {y(i), u(i), e(i)}i=1..nr 〉

where ids is the above vector of commitment ids. PR then performs the ZK proof system
ZKR2PC, which is a conjunction of nr instances of the ZKDLEQ(. . .) ∧ ZKCom(. . .)
proof system used in Step 1 of Pcot, one per each tuple (ri, C(i), y(i), u(i), e(i)), and nr

instances of the ZKBit(C(i)) proof.

2PC Step 2: On receiving the 〈Start2PC, ids, C, ...〉 message and verifying the ZK
proofs, PS retrieves its commitments ComcidS1 , ..., ComcidSns

specified in the ids
string, and sends to PR a garbled version of circuit C computed on these inputs:

Complete2PC〈 ids, {Cw
b }b∈{0,1}, w∈W , {Eg

αβ}αβ∈{00,01,10,11}, g∈G,

{xw
bw

}w∈WS , {Ew
0 , Ew

1 }w∈W0 , {u
(w)
0 , e

(w)
0 , u

(w)
1 , e

(w)
1 }w∈WR 〉

These values are defined in Section 5. PS also performs the ZK proof CorrectYao.

2PC Step 3: PR verifies the ZK proof CorrectYao, evaluates the garbled circuit and
outputs its result. (Optionally, PR can send back to PS the wire keys corresponding to
PS’s output wires.)

Fig. 4. Committed 2PC Protocol

original Yao’s protocol, S creates a ciphertext for each row of the truth table, encrypt-
ing the output-wire key corresponding to this row’s output bit under the two input-wire
keys corresponding to this row’s input bits. The ciphertexts must be randomly shuffled
to prevent R from learning which row (bA, bB, g(bA, bB)) of the truth table he succeeds
in decrypting. S picks two random bits, σA and σB , which determine, intuitively, if the
values corresponding to the A and B wires are “switched” or not. (If w is S’s input
wire, than σw is equal to S’s input bit on that wire.) If the rows are denoted in binary
as 00, 01, 10, 11, then the first ciphertext received by R corresponds to row σAσB , the
second to row σ̄AσB , the third to row σAσ̄B , and the fourth to row σ̄Aσ̄B .

S creates the ciphertext list (E00, E01, E10, and E11) using a two-key encryption
scheme Eαβ = 2KEncx1, x2(x), where for each α, β, x1 = xA

α⊕σA
, x2 = xB

β⊕σB
, and

x = xC
g(α⊕σA,β⊕σB). For example, if σA = σB = 0, then each Eαβ is a two-key en-

cryption under keys xA
α and xB

β of the output-wire key xC
g(α,β). If σA = 1, σB = 0, then

each Eαβ is a two-key encryption under keys xA
α and xB

β of key xC
g(α,β), and so on. Note



112 S. Jarecki and V. Shmatikov

that tuple (σA, σB, α, β) uniquely defines the commitments C1, C2, C that correspond
to the above keys x1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, and C = CC

g(α⊕σA ,β⊕σB).

The two-key encryption 2KEncx1, x2(x) is created as follows. The key x ∈ [0, 2k′′
] is

split in two parts, x′1 and x′2, by choosing x′1 at random in [−2k′′+k, 2k′′+k] (recall that
k′′, k are security parameters, where k′′ = |n|

2 and k can be 80), and setting x′2 = x−x′1
(over integers). S also computes an sCS commitment D to x′1. Observe that if C is an
sCS commitment to x, then C/D is an sCS commitment to x′2. The ciphertext E is a

triple 〈D, F (1), F (2)〉, where F (i) = sCSencxi(x′i). Let Eαβ denote 〈Dαβ , F
(1)
αβ , F

(2)
αβ 〉.

Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed by conjunction of the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where

GoodKeysw = ZKNotEq(Cw
0 , Cw

1 )
CorrectInputw = (ZKDL(g, Cw

0 /αxw
bw ) ∧ ZKDL(g, Cb)) ∨

(ZKDL(g, Cw
1 /αxw

bw ) ∧ ZKDL(g, Cb/α)), where Cb is the
sCS commitment inside ComcidSi if w is the ith input wire ofS

CorrectOutputw = ZKPlainEq2(Ew
0 , Cw

0 , 0) ∧ ZKPlainEq2(Ew
1 , Cw

1 , 1)

Here ZKSw refers to the proof performed by the sender in the instance of the COT pro-
tocol that corresponds to receiver’s wire w ∈ WR. ZKPlainEq2(E, Ck, m) is the proof
system for showing that E is an sCS encryption of plaintext m under key k committed
in Ck, and is a trivial simplification of the ZKPlainEq(E, Ck, Cm) proof system for
proving the same about commitment Cm to m. Finally, CorrectGarbleg proves that the
ciphertext table E00, E01, E10, E11 corresponding to garbled gate g is formed correctly,
where Eαβ = (Dαβ , F

(1)
αβ , F

(2)
αβ ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F (1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F (2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate, R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.

Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol of fig. 4 is
a UC-secure realization of the Committed 2PC functionality F2PC in the CRS model.



Efficient Two-Party Secure Computation on Committed Inputs 113

References

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In Proc. EUROCRYPT, pages 119–135, 2001.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In Proc.
EUROCRYPT, pages 431–444, 2000.

[CC00] J. Camenisch and C. Cachin. Optimistic fair secure computation. In Proc.
CRYPTO, pages 93–111, 2000.

[CD97] R. Cramer and I. Damgård. Linear zero-knowledge – a note on efficient zero-
knowledge proofs and arguments. In Proc. STOC, pages 436–445, 1997.

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Proc. CRYPTO, pages 174–187,
1994.

[CGHG01] D. Catalano, R. Gennaro, and N. Howgrave-Graham. The bit security of Paillier’s
encryption scheme and its applications. In Proc. EUROCRYPT, pages 229–243,
2001.

[CGHGN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Nguyen. Paillier’s cryp-
tosystem revisited. In Proc. CCS, pages 206–214, 2001.

[CM99] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is a
product of two safe primes. In Proc. EUROCRYPT, pages 107–122, 1999.

[Cré89] C. Crépeau. Verifiable disclosure of secrets and applications. In Proc. EURO-
CRYPT, pages 181–191, 1989.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proc. CRYPTO, pages 126–144, 2003.

[CvdGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and
private multiparty computation. In Proc. CRYPTO, pages 110–123, 1995.

[Dam02] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model.
In Proc. EUROCRYPT, pages 418–430, 2002.

[DF02] I. Damgård and E. Fujisaki. A statistically hiding integer commitment scheme
based on groups with hidden order. In Proc. ASIACRYPT, pages 125–142, 2002.

[DI05] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Proc. CRYPTO, pages 378–394, 2005.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In Proc. CRYPTO, pages 16–30, 1997.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proc. STOC, pages 218–229. ACM, 1987.

[GMY04] J. Garay, P. MacKenzie, and K. Yang. Efficient and universally composable obliv-
ious transfer and applications. In Proc. TCC, pages 297–316, 2004.

[HSS93] J. Håstad, A. Schrift, and A. Shamir. The discrete logarithm modulo a composite
hides o(n) bits. J. Comput. Syst. Sci., 47:850–864, 1993.

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ci-
phertexts. In Proc. ASIACRYPT, pages 162–177, 2000.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. STOC, pages
20–31, 1988.

[KO04] J. Katz and R. Ostrovsky. Rount-optimal secure two-party computation. In Proc.
CRYPTO, pages 335–354, 2004.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. J. Cryptology, 16(3):143–184, 2003.

[Lip03] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In Proc. ASIACRYPT, pages 416–433, 2003.



114 S. Jarecki and V. Shmatikov

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Proc. EUROCRYPT, 2007.

[MF06] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In Proc. PKC, pages 458–473, 2006.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. EUROCRYPT, pages 223–238, 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proc. CRYPTO, pages 129–140, 1991.

[Pin03] B. Pinkas. Fair secure two-party computation. In Proc. EUROCRYPT, pages
87–105, 2003.

[Woo07] D. Woodruff. Revisiting the efficiency of malicious two-party computation. In
Proc. EUROCRYPT, 2007.

[Yao86] A. Yao. How to generate and exchange secrets. In Proc. FOCS, pages 162–167,
1986.

A HVZK Proof System for Statement PlainEq

This is an HVZK proof system for language PlainEq = {((e, u), Cx, Cm) | there
exist x, m, rx, rm s.t. e = αmux, Cx = αxgrx , and Cm = αmgrm }, i.e., for the
language of tuples ((e, u), Cx, Cm) s.t. (e, u) is an sCS encryption of the plaintext m
committed in sCS commitment Cm under the key x committed in sCS commitment Cx.
It is special HVZK with weak special soundness under the strong RSA assumption. All
the parameters are as in section 3.4, except for two additional elements G, H which are
assumed to be random in Z

∗
n2 and can be included in the CRS.

1. The private inputs of the prover are

m ∈ [−2k′′+k, 2k′′+k], x ∈ [0, 2k′′
], rm, rx ∈ [0,

n

4
]

2. The prover picks tx ∈ [0, n
4 ] and sends Tx = GxHtx to the verifier. He also picks

m′, r′m, x′, r′x, t′x ∈ [0, 2k+k′+2k′′
]

and sends the following commitments to the verifier:

e′ = α2m′
u2x′

, C′x = α2x′
g2r′

x , C′m = α2m′
g2r′

m , T ′x = Gx′
Ht′

x

3. Verifier responds with a random challenge c ∈ {0, 1}k

4. Prover sends the following responses, all computed over integers:

m̃ = m′ − cm, r̃m = r′m − crm, x̃ = x′ − cx, r̃x = r′x − crx, t̃x = t′x − ctx

5. Verifies accepts if x̃ ∈ [−n
4 , n

4 ] and if the following equations hold:

e′ = e2cα2m̃u2x̃,

C′m = (Cm)2cα2m̃g2r̃m , C′x = (Cx)2cα2x̃g2r̃x ,

T ′x = (Tx)cGx̃H t̃x



Universally Composable Multi-party
Computation Using Tamper-Proof Hardware

Jonathan Katz�

Dept. of Computer Science, University of Maryland
jkatz@cs.umd.edu

Abstract. Protocols proven secure within the universal composability
(UC) framework satisfy strong and desirable security properties. Unfor-
tunately, it is known that within the “plain” model, secure computation
of general functionalities without an honest majority is impossible. This
has prompted researchers to propose various “setup assumptions” with
which to augment the bare UC framework in order to bypass this severe
negative result. Existing setup assumptions seem to inherently require
some trusted party (or parties) to initialize the setup in the real world.

We propose a new setup assumption — more along the lines of a
physical assumption regarding the existence of tamper-proof hardware
— which also suffices to circumvent the impossibility result mentioned
above. We suggest this assumption as potentially leading to an approach
that might alleviate the need for trusted parties, and compare our as-
sumption to those proposed previously.

1 Motivation

For many years, researchers considered the security of protocols in a stand-alone
setting where a single protocol execution was considered in isolation. Unfortu-
nately, a proof of stand-alone security for a protocol does not, in general, provide
any guarantees when the protocol is executed multiple times in a concurrent fash-
ion (possibly by different sets of parties), or in a network where other protocol
executions are taking place. This realization has motivated a significant amount
of work aimed at providing models and security definitions that explicitly address
such concerns.

The universal composability (UC) framework, introduced by Canetti [6], gives
strong security guarantees in exactly such a setting. (Other frameworks with
similar guarantees also exist [20], but we adopt the UC model in this work.)
We refer the reader to Canetti’s paper for a full discussion of the advantages of
working within this framework, and focus instead on the question of feasibility.
Canetti’s initial work already demonstrates broad feasibility results for realizing
any (polynomial-time computable) multi-party functionality in the presence of

� This research was supported by NSF Trusted Computing grant #0310751, NSF
CAREER award #0447075, and US-Israel Binational Science Foundation grant
#2004240. Portions of this work were done while visiting IPAM.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 115–128, 2007.
c© International Association for Cryptology Research 2007



116 J. Katz

a strict majority of honest players. Unfortunately, this was soon followed by
results of Canetti and Fischlin [8] showing that the setting without an honest
majority is substantially different: even for the case of two parties (one of whom
may be malicious) there exist natural functionalities that cannot be securely
computed within the UC framework. Subsequent work of Canetti, et al. [9],
further characterizing those two-party functionalities which cannot be securely
realized in the UC framework, rules out essentially all non-trivial functions.

The impossibility results mentioned above hold for the so-called “plain model”
where there is no additional infrastructure beyond the communication channels
available to the parties. (The term “plain model” is actually a bit misleading,
since even the plain model usually incorporates quite strong — though stan-
dard — assumptions about the communication channels, such as the existence
of authenticated channels between all pairs of parties as well as a broadcast
channel/“bulletin board” [6, Sect. 6.2]. We stress that the impossibility results
hold even in this case.) In contrast, the impossibility results can be bypassed if
one is willing to assume some stronger form of “setup” in the network. This idea
was first proposed in the UC framework by Canetti and Fischlin [8], who suggest
using a common reference string (CRS) in order to circumvent the impossibility
results shown in their paper. (The use of a CRS in other contexts has a long
history going back to [4].) In fact, a CRS turns out to suffice for universally
composable multi-party computation of any (well-formed) functionality, for any
number of corrupted parties [10].

If universally composable protocols are ever to be used in practice, one im-
portant research direction is to further explore setup assumptions that suffice to
obtain feasibility results in the UC framework similar to those of [10]. Having
multiple setup assumptions available would offer options to protocol designers;
furthermore, some assumptions may be more attractive than others depending on
the scenario in which protocols are to be run. Indeed, a variety of setup assump-
tions have been investigated recently including variations of trusted “public-key
registration” services [2,7] (see also [6, Sect. 6.6]), or the use of government-issued
“signature cards” [15]; these are discussed further in the following section.

From a high-level perspective, one very important research direction is to de-
termine whether (or to what extent) trusted parties are needed for obtaining
broad feasibility results in the UC framework. It appears in particular that all
existing solutions require some trusted party to initialize the setup in the real
world. (See the discussion in the following section.) It might be possible, how-
ever, to replace this trust with some physical assumption about the environment
in which the protocol is run. Using physical assumptions to circumvent impossi-
bility results is not without precedent in cryptography (though it has not been
considered previously in the context of the UC framework); examples analogous
to what we have in mind include the assumption of a physical broadcast chan-
nel (or even “multicast channels” [12]) to circumvent impossibility results [18]
regarding the fraction of malicious players that can be tolerated; or the assump-
tion of noisy channels [21,14,16] or the laws of quantum mechanics [3] to achieve
information-theoretically secure key agreement over public channels.



Universally Composable Multi-party Computation 117

We present in this paper what is intended to be a partial step toward this
goal. Specifically, we introduce an assumption that has the flavor of a physical
assumption regarding the possibility of tamper-proof hardware, and show that
UC multi-party computation is realizable with respect to this assumption. A
difficulty, of course, is that although there may be some intuitive idea of the
properties possessed by tamper-proof hardware in the real world, it is not at all
clear what is the most appropriate way to mathematically model tamper-proof
hardware in the UC framework. We do not claim to have found the “right”
formalization. Instead, we intend this work only to serve as an indication of
what might be possible, and as inspiration for subsequent work in this direction.

1.1 A Brief Review of Existing Solutions

As mentioned earlier, a variety of setup assumptions have been explored in an
attempt to circumvent the impossibility results of [8]. We briefly discuss these
now.

Common reference string (CRS). The use of a CRS was suggested by [8] (in
the UC setting) and has been used in much subsequent work. It is fair to say that
this is the setup assumption that has so far received the most attention. In the
CRS model, a string is generated according to some prescribed distribution by
a trusted party and given to the parties running an execution of a protocol. We
remark that only the parties running the protocol are supposed to have access to
the string, and so this is not quite a “common” reference string as in the original
work of [4] (see [7] for a discussion of this point).

If the party publishing the CRS is malicious, this party can potentially set
things up so that it can learn all private data in the network or cheat unde-
tectably in protocol executions in which it is involved. These problems can be
mitigated to some extent by having the CRS generated in a threshold manner
so that, say, security holds as long as a majority of the parties involved in gen-
eration of the CRS are honest. Nevertheless, this still requires all parties in the
network to jointly agree to place their trust in a small set of parties, and also
assumes the availability of some set of parties willing to take responsibility for
generating a CRS.

For some protocols, the CRS is simply a uniformly-random string (this is
often called the common random string model) and here one might hope that
the string could be generated based on naturally-occurring (random) events and
without relying on a trusted party. The main drawback of this approach is that
although certain natural events can be viewed as producing bit-sources with
high min-entropy, the resulting bit-sources may not be uniformly random (and,
furthermore, may not allow for deterministic extraction).

Public-key registration services. Existing proposals for public-key registra-
tion services [2,7] that can be used to circumvent the impossibility results in the
UC framework go beyond the “traditional” model in which parties simply publish
their public keys. (The latter corresponds to the “basic” registration functional-
ity described in [6, Sect. 6.2], for which the impossibility results regarding secure



118 J. Katz

computation still hold.) The functionality in [2], for example, essentially prevents
an adversary from registering any public key that is not “well-formed” and for
which the adversary does not know the corresponding secret key. It is unclear
how this would be implemented in practice without a significant assumption of
trust on the part of existing certification authorities.

Signature cards. An interesting idea pursued by [15] is to use government-
issued signature cards as a form of global setup. Roughly speaking, such cards
hold an honestly-generated public-/secret- key pair for a secure signature scheme;
sign any message given to them; and never reveal the secret key to anyone
(including the legitimate owner of the card) under any circumstances. Cards with
this functionality are apparently being issued by some European governments
[15] indicating that such cards may, in fact, represent a realistic assumption.
The main drawback of these signature cards is that the producer and/or issuer
of these cards must be completely trusted.

1.2 Relying on Tamper-Proof Hardware

As discussed above, all existing setup assumptions that imply general feasibility
results in the UC framework seem to inherently require a great deal of trust in
at least some parties in the system. It is natural to wonder whether such trust is
essential, or whether other setup assumptions — perhaps of a slightly different
character — might also suffice.

We suggest that it might be possible to eliminate the need for any trusted
parties if one is willing instead to rely on a physical assumption regarding the
existence (and practicality) of tamper-proof hardware. We hasten to add that
a complete elimination of all trusted parties using our approach may not be
practical, possible, or desirable in realistic scenarios; nevertheless, our proposals
indicates that at least in theory this might be achievable. Alternately, one can
view the approach explored here as allowing a reduced level of trust that we
might be comfortable with; after all, we generally trust that our packets will be
routed correctly over the Internet, but may not be willing to trust a corporation
to generate a CRS.

Our assumption is that tamper-proof hardware exists, in the sense that (1) an
honest user can construct a hardware token TF implementing any desired (poly-
time) functionality F but (2) an adversary given TF can do no more than observe
the input/output characteristics of this token. An honest player given a token
T ′F ′ by an adversary has no guarantee whatsoever regarding the function F ′ that
this token implements (other than what the honest user can deduce from the
input/output of this device). We show how this, seemingly-basic primitive can be
used along with standard cryptographic assumptions to realize the commitment
functionality (and hence general secure computation [10]) in the UC framework.

The above is a rather informal summary of the properties we assume; a more
formal discussion of how to model tamper-proof hardware (as well as a con-
crete ideal functionality meant to capture that requirements evidenced in that
discussion) is given in Section 2.



Universally Composable Multi-party Computation 119

The idea of using secure hardware to achieve stronger security properties is
not entirely new; it was directly inspired by work of Chaum, Pedersen, Brands,
and Cramer [11,5,13] who propose the use of observers in the context of e-cash.
Roughly speaking, it was suggested in that line of work that a bank could issue
each user an “observer” (i.e., a smartcard) TF implementing some functionality
F , and a user would interact with both the bank and TF whenever it executed
an instance of a blind signature protocol to withdraw an e-coin (the bank and
TF could not communicate directly). The observer, by monitoring the actions of
the user, could enforce some sort of honest behavior on the part of the user in the
protocol execution. On the other hand, the user was guaranteed that even if the
bank were malicious (and, e.g., sent a smartcard that was programmed in some
arbitrary manner), anonymity of the user could not be violated. In some sense
our work can be seen as formalizing this earlier work on observers, and extending
its applicability from the domain of e-cash to the case of secure computation of
arbitrary functionalities.

1.3 Have We Gained Anything?

Our assumption regarding tamper-proof hardware does not seem to trivially
imply any of the setup assumptions discussed in Section 1.1. For example, two
parties A and B cannot generate a CRS by simply having A send to B a token
implementing a coin-tossing protocol: if A is malicious, a simulator will indeed
be able to “rewind” the hardware token provided by A to B, and thus be able
to “force” the value of the CRS output in this case to any desired value. On
the other hand, if B is malicious then the simulator must (informally speaking)
send some token to A, but then cannot “rewind” A to force the value of the
CRS. We also do not see any way to trivially implement key-registration using
our approach: for example, if each party sends to the other a token that checks
public keys for validity (and then, say, outputs a signed receipt) then even the
honest party will have to produce a secret key corresponding to its public key,
which is not the case in the key-registration functionality of [2] (indeed, the
security proofs in that work break down if this is the case). Another problem,
unrelated to this, is that the signed receipt output by the device might be used
as a “covert channel” to leak information about honest users’ private keys.

As for whether we fundamentally gain anything by introducing our new as-
sumption, this is (of course) subject to debate though we hope to convince the
reader that the answer is “yes.” In what follows we will simply assume that
tamper-proof hardware is (or will someday be) available; clearly, if this assump-
tion is false (and it may well be) then the entire discussion is meaningless. Under
this assumption, we summarize our arguments in favor of relying on tamper-proof
hardware as follows:

Possible elimination of trust. An advantage of our approach is that it seems
to potentially allow for the elimination of trust in anyone but oneself. This
is because, in theory, each user could construct the hardware token itself (or,
more likely, buy a “blank” token and program it itself) without having to rely on



120 J. Katz

anyone else. This distinguishes our approach from the “signature card” approach
described earlier, where it is essential that a specific third party produce the cards
(and a user cannot produce cards by itself).

An objection here is that we still assume secure channels and also secure
distribution of tokens, and so trust has not been completely eliminated. We first
emphasize that existing impossibility results hold even if secure channels are
available, and so in that sense being able to eliminate the additional need for
a trusted CRS represents progress in the right direction. If secure channels do
not exist (and if secure distribution of tokens is not possible) we would seem to
degenerate to a security model like that of [1] which still guarantees a non-trivial
level of security. Finally, secure distribution of tokens is possible if a physical
meeting of parties can be arranged; given this, a key can be stored on the token
at the same time so as to bootstrap secure channels.

We do not mean to minimize the above concerns, only to suggest how they
might be overcome. Developing a complete solution eliminating all trust in a
practical manner remains an interesting direction for future work.

Possible reduction of trust. The above is a bit of an extreme scenario. But it is
indicative of the fact that our approach may allow for more relaxed requirements
on trust. In particular, under our approach each party could choose to buy pre-
programmed tokens from any vendor of their choice; other parties executing the
protocol do not need to approve of this choice, and can in turn buy from any
vendors of their choice. This is not the case for any of the other setup assumptions
mentioned in Section 1.1: parties must agree on which CRS to use; must approve
of the registration authorities used by other parties; or must be sure that other
parties use signature cards produced by a trusted entity.

Accountability. A final important point is the accountability present in our
approach, which does not seem to be present when parties use a CRS or a
key-registration authority. (It does seem to be available in the signature card
scenario.) In the case of a CRS, for example, it seems impossible to prove that
a CRS generated by some party is “bad” — in particular, the CRS might come
from the exactly correct distribution except that the party has “neglected” to
erase the trapdoor information associated with this CRS. Similarly in the case
of a registration authority: how would one prove that an adversary’s key is not
well-formed?

On the other hand, one could imagine independent labs demonstrating that
hardware sold by some vendor is not tamper-proof, or that supposedly blank to-
kens contained some (hidden) embedded code. This is in some sense reminiscent
of the distinction suggested by Naor [17] between “falsifiable” assumptions and
“unfalsifiable” ones.

2 Modeling Tamper-Proof Hardware

In this section, we suggest an ideal functionality that is intended to model
tamper-proof hardware. More accurately, we define a “wrapper” functionality



Universally Composable Multi-party Computation 121

Functionality Fwrap

Fwrap is parameterized by a polynomial p and an implicit security parameter k

“Creation” Upon receiving (create, sid, P, P ′, M) from P , where P ′ is another user
in the system and M is an interactive Turing machine, do:
1. Send (create, sid, P, P ′) to P ′.
2. If there is no tuple of the form (P, P ′, �, �, �) stored, then store (P, P ′, M, 0, ∅).

“Execution” Upon receiving (run, sid, P, msg) from P ′, find the unique stored tuple
(P, P ′, M, i, state) (if no such tuple exists, then do nothing). Then do:
Case 1 (i = 0): Choose random ω ← {0, 1}p(k). Run M(msg; ω) for at most p(k)

steps, and let out be the response (set out =⊥ if M does not respond in the
allotted time). Send (sid, P, out) to P ′. Store (P, P ′, M, 1, (msg, ω)) and erase
(P, P ′, M, i, state).

Case 2 (i = 1): Parse state as (msg1, ω). Run M(msg1‖msg; ω) for at most p(k)
steps, and let out be the response (set out =⊥ if M does not respond in
the allotted time). Send (sid, P, out) to P ′. Store (P, P ′, M, 0, ∅) and erase
(P, P ′, M, i, state).

Fig. 1. The Fwrap functionality, specialized for the case when M is a 2-round (i.e.,
4-message) protocol

which is intended to model the following sequence of events in the real world:
(1) a party takes some software and “seals” it inside a tamper-proof hardware
token; (2) this party gives the token to another party, who can then access the
embedded software in a black-box manner. We will sometimes refer to the first
party as the creator of the token, and the other party as the token’s user.

The wrapper functionality is presented in Figure 1. The formalism in the
description obscures to some extent what is going on, so we give a high-level
description here. The functionality accepts two types of messages: the first type
is used by a party P to create a hardware token (encapsulating an interactive
protocol M) and to “give” this token to another party P ′. The functionality
enforces that P can send at most one token to P ′ which is used for all their
protocol interactions throughout their lifetimes (and not just for the interaction
labeled by the sid used when the token is created); since this suffices for honest
parties we write the functionality this way in an effort to simplify things.

Once the token is “created” and “given” to P ′, this party can interact with
the token in an arbitrary black-box manner. This is formalized by allowing P ′ to
send messages of its choice to M via the wrapper functionality Fwrap. Note that
each time a new copy of M is invoked, a fresh random tape is chosen for M .

To simplify the description of the functionality, we have assumed that M
represents a 2-round (4-message) protocol since our eventual construction of
commitment will use an M of this form. It should be clear how the functionality
can be extended for the more general case.



122 J. Katz

A real-world action that is not modeled here is the possible (physical) trans-
ference of a token from one party to another. An honest party is never supposed
to transfer a token; furthermore, in our eventual construction, tokens created
by honest parties allow easy identification of their creator. Thus, transference
does not represent a viable adversarial action, and so for simplicity we have not
modeled such an action within Fwrap.

The following real-world assumptions underly the existence of Fwrap:

– We assume that the party creating a hardware token “knows” the code
corresponding to the actions the token will take. This is evidenced by the
fact that the creator P must explicitly provide Fwrap with a description of M .
Looking ahead, this property will allow the simulator to “extract” the code
within any adversarially-created token.

– The hardware token must be completely tamper-proof, so that the user P ′

cannot learn anything about M that it could not learn given black-box ac-
cess. Furthermore, P ′ cannot cause M to use a “bad” (i.e., non-uniform)
random tape, or to use the same random tape more than once. We are thus
also assuming that the token has access to a built-in source of randomness.
This latter requirement is not needed if we are willing to assume that the
token can maintain state — in that case, we can use a hard-coded key for
a pseudorandom function to generate the random tape as needed. Unfor-
tunately we do not know how to prove security of this approach (for our
particular protocol) without relying on complexity leveraging.

– We also assume that the creator of a token cannot send messages to the
token once it is given to another party. (On the other hand, the token can
send messages to its creator, either directly or via a covert channel.)

Our results are meaningful only to the extent that one is prepared to accept
these assumptions as reasonable, or at least more reasonable than the existence
of a common reference string or the other setup assumptions discussed earlier.

3 Using Tamper-Proof Hardware for Secure Computation

We now show how to securely realize the multiple commitment functionality
Fmcom (see [8]) in the Fwrap-hybrid model, for static adversaries. By the results
of [8,10], this implies the feasibility of computing any (well-formed) two-party
functionality, again fir static adversaries. It is also not hard to see that the tech-
niques used in [10] can be used to show that our results imply the feasibility of
computing any (well-formed) multi-party functionality as well. We omit further
details from the present abstract.

For convenience, the multiple commitment functionality is given in Figure 2.
Although we could optimize our construction to allow commitment to strings,
for simplicity we focus on commitment to a single bit.

Before describing our protocol we introduce some notation. A tuple (p, g, h, ĝ,
ĥ) is called a Diffie-Hellman tuple if (1) p and q

def= p−1
2 are prime; (2) g, h, ĝ, ĥ



Universally Composable Multi-party Computation 123

Functionality Fmcom

Commit phase Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1},
record (cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the adversary. Ig-
nore subsequent values (commit, sid, cid, P, P ′, �) from P .

Decommitment phase Upon receiving (open, sid, cid, P, P ′) from P , if the tuple
(cid, P, P ′, b) is recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adver-
sary. Otherwise do nothing.

Fig. 2. The Fmcom functionality

are in the order-q subgroup G ⊂ Z
∗
p, with g, h generators; and (3) logg ĝ =

logh ĥ. If the first two conditions hold but logg ĝ �= logh ĥ, then we refer to the
tuple as a random tuple. Given tuple = (p, g, h, ĝ, ĥ) with q as defined above,
we let Comtuple(b) denote the commitment defined by the two group elements
gr1hr2 , ĝr1 ĥr2gb, for randomly-chosen r1, r2 ∈ Zq. It is well-known (and easy to
check) that if tuple is a random tuple then this commitment scheme is perfectly
hiding; on the other hand if tuple is a Diffie-Hellman tuple and r = logg ĝ = logh ĥ
is known, then b can be efficiently recovered from the commitment.

We now describe a complete protocol for realizing Fmcom for a sender P and
a receiver P ′. The security parameter is denoted by k.

Commitment phase. The parties perform the following steps:

1. P generates a public-key/secret-key pair (PK, SK) for a secure digital sig-
nature scheme, and constructs and sends a token to P ′ encapsulating the
following functionality M :
(a) Wait for a message (p, g, h). Check that p and p−1

2 = q are prime, that
p has length k, and that g, h are generators of the order-q subgroup
G ⊂ Z

∗
p, and aborts if these do not hold.

(b) Choose random elements g1, h1 ∈ G. Using the Pedersen (perfectly-
hiding) commitment scheme [19] and the generators received in the pre-
vious step, commit to g1, h1.

(c) Wait for a message (g2, h2) where g2, h2 ∈ G. (Abort if an invalid message
is received.)

(d) Set ĝ = g1g2 and ĥ = h1h2. Define tupleP→P ′
def= (p, g, h, ĝ, ĥ), and

compute σP→P ′ = SignSK(P, P ′, tupleP→P ′). As the final message, send
σP→P ′ as well as decommitment information for the commitments sent
in the previous round.

P ′ symmetrically constructs and sends a token to P .

2. P interacts with the token sent to it by P ′ and in this way obtains tupleP ′→P

and σP ′→P . (If cheating on the part of the token is detected, then P aborts



124 J. Katz

the entire protocol.) Party P ′ acts symmetrically. From now on, the parties
communicate directly with each other and no longer need to access their
tokens.

3. P sends tupleP ′→P and σP ′→P to P ′, and P ′ acts symmetrically. Then P
checks that VrfyPK(tupleP→P ′ , σP→P ′ ) = 1 and, if not, it aborts the proto-
col. Party P ′ acts symmetrically.
At the end of this step each party holds tupleP ′→P and tupleP→P ′ .

4. This step is the first that depends on the input bit b to be committed.
P first commits to b using any statistically-binding commitment scheme;
let C denote the resulting commitment. P also chooses random r1, r2 and
computes com = ComtupleP →P ′ (b). It sends C and com to P ′, and then gives
an (interactive) witness indistinguishable proof that either (1) both C and
com are commitments to the same bit b, or (2) tupleP ′→P is a Diffie-Hellman
tuple.

5. Upon successful completion of the previous step, party P ′ outputs (receipt,
sid, cid, P , P ′).

We remark that steps 1–3 need only be carried out once by parties P and P ′,
after which the values tupleP→P ′ and tupleP ′→P can be used by these same par-
ties to commit to each other (with either party acting as the sender) arbitrarily-
many times.

Decommitment phase. P sends b to P ′ and gives a witness indistinguishable
proof that (1) C is a commitment to b, or (2) tupleP ′→P is a Diffie-Hellman tuple.
Upon successful completion of this step, P ′ outputs (open, sid, cid, P, P ′, b).

3.1 Proof Intuition

The intuition underlying the security of the scheme is as follows. We need to
argue that for any real-world adversary A (interacting with parties running the
above protocol in the Fwrap-hybrid model), there exists an ideal-model simulator
S (running in the Fmcom-hybrid model), such that no ppt Z can distinguish
whether it is interacting with A or with S. When party P is honest and party
P ′ is malicious, the simulator S will be unable to “rewind” P ′ (specifically, in
the interaction of P ′ with the token that S must provides on behalf of P ), and
so the simulator cannot “force” the value of tupleP→P ′ to some desired value.
On the other hand, an information-theoretic argument shows that, with all but
negligible probability, a value tupleP→P ′ obtained by an interaction of P ′ with
P ’s token is always a random tuple regardless of the behavior of P ′ (note that
P ′ might interact with the token provided by P polynomially-many times, even
though it is supposed to interact with it only once). Security of the signature
scheme used (within the token) on behalf of the honest party P implies that P ′

can only send a value tupleP→P ′ that was output by the token. The upshot is
that, with all but negligible probability, a value tupleP→P ′ used by P in step 4
of the protocol will be a random tuple.



Universally Composable Multi-party Computation 125

On the other hand, continuing to assume that P is honest and P ′ is malicious,
S can force the value of tupleP ′→P to any desired value in the following way. By
simulating A’s access to the Fwrap functionality, S obtains from A the code MP ′

that is “placed” in the token that A provides (on behalf of the malicious party
P ′) to the honest party P . By rewinding MP ′ , it is possible for S to “force”
the output tupleP ′→P to, in particular, a (random) Diffie-Hellman tuple (for
which it knows the necessary discrete logarithms evidencing this fact). Under the
assumption that Diffie-Hellman tuples and random tuples are indistinguishable,
this difference will not be detectable to A or Z. The upshot is that S can set
tupleP ′→P to be a Diffie-Hellman tuple in an undetectable manner.

Given the above, simulation follows in a fairly straightforward manner. Say
the honest party P is committing to some value. The simulator, who does not
yet know the value being committed to, will simply set C to be a commitment to
“garbage” while choosing the elements of com uniformly at random. Note that
Com here is perfectly hiding since tupleP→P ′ is a random tuple, so this aspect
of the simulation is fine. Furthermore, S can give a successful witness indistin-
guishable proof that it prepared the commitments correctly since tupleP ′→P is
a Diffie-Hellman tuple (and S knows an appropriate witness to this fact).

In the decommitment phase, when S learns the committed value, it can simply
send this value and again give a successful witness indistinguishable proof that
it acted correctly (using again the fact that tupleP ′→P is a Diffie-Hellman tuple
with discrete logarithm known to S).

The second case to consider is when the honest party P is the receiver. Say
the malicious sender P ′ sends values C and com in step 4, and also gives a
successful witness indistinguishable proof in that round. Since tupleP→P ′ is a
random tuple, this means that (with all but negligible probability) C and com
are indeed commitments to the same value. Furthermore, since tupleP ′→P is a
Diffie-Hellman tuple (with the appropriate discrete logarithm known to S), it is
possible for S to extract the committed value b from com. Arguing similarly
shows that in the decommitment phase P ′ will only be able to successfully
decommit to the value b thus extracted.

Further details are provided in the following section.

3.2 Proof of Security

In this section, we sketch the proof that the protocol given earlier securely realizes
the Fmcom functionality. Let A be a static adversary interacting with parties run-
ning the above protocol in the Fwrap-hybrid model. We describe an ideal-model
simulator S running in the Fmcom-hybrid model, such that no ppt environment
Z can distinguish whether it is interacting with A or with S.

S runs an internal copy of A, forwarding all messages from Z to A and vice
versa. We now specify the actions of S in response to messages received from
Fmcom:

Initialization. When a commitment is about to be carried out between parties
P, P ′ for the first time, the simulator S does the following: say P is honest and



126 J. Katz

P ′ is corrupted (situations when both parties are corrupted or both parties are
honest are easy to simulate).

1. Adversary A submits a message of the form (create, sid, P ′, P, M) to the
(simulated copy of the) Fwrap functionality on behalf of P ′, and this mes-
sage is intercepted by S. Simulator S chooses coins for M at random and
runs an honest execution (on behalf of P ) with M . If this leads to an abort
on the part of P , then no further action is needed. Otherwise, in the stan-
dard way, S “rewinds” M and tries to generate an execution in which the
output tupleP ′→P is a (randomly-chosen) Diffie-Hellman tuple, with discrete
logarithm known to S. Using standard techniques and assuming the hard-
ness of the decisional Diffie-Hellman problem, this can be done with all but
negligible probability in expected polynomial time.

2. S, simulating the Fwrap functionality, sends the message (create, sid, P ) to P ′.
It then runs an honest execution of the token functionality with A (who is
acting on behalf of P ′). We stress that S does no rewinding here — indeed,
it cannot since it is not given the ability to rewind A (or, equivalently, Z).
S continues to simulate the actions of an honestly-generated token as many
times as A chooses (note that A may even request further interactions at
some later point in time).

Commitment when the sender is corrupted. Say S receives a message
(receipt, sid, cid, P ′, P ), the initialization as described above has already been
carried out, and the sender P ′ is corrupted but the receiver P is honest. S begins
by sending the value tupleP ′→P and the corresponding signature (generated as
discussed above) to P ′. Then S receives values tupleP→P ′ and σP→P ′ from P ′

(this corresponds to step 3 of the commitment phase). If the signature does
not verify, then P can abort and no further action is needed. If the signature
verifies but tupleP→P ′ was not generated in one of the executions of P ′ in the
initialization phase described above, then S aborts. (This does not correspond
to a legal action in the real world, but occurs with only negligible probability
by security of the signature scheme.) Otherwise, in the following round S will
receive values C and com from P ′. It then acts as an honest receiver in the witness
indistinguishable proof given by P ′. If the proof fails, P will again abort as in the
real world. Otherwise, S extracts the committed bit b from com (this is possible
since tupleP ′→P is a Diffie-Hellman tuple) and sends (commit, sid, cid, P ′, P, b) to
Fmcom (on behalf of corrupted party P ′).

In the decommitment phase, S again acts an an honest verifier. If the proof
fails, then no further action is required. Otherwise, assuming the bit b sent by
P ′ in this phase matches the bit extracted by S in the commitment phase, S
simply sends (open, sid, cid, P, P ′) to Fmcom. The other possibility is that the
proof succeeds but the bit b is different ; however, as argued informally in the
previous section, this will occur with only negligible probability.

Commitment when the receiver is corrupted. Say S receives a notification
(commit, sid, cid, P, P ′) from Fmcom that the honest party P has committed to



Universally Composable Multi-party Computation 127

a bit, and the initialization described earlier has already been carried out. S
begins by sending the value tupleP ′→P and the corresponding signature to P ′.
Then S receives values tupleP→P ′ and σP→P ′ from P ′ (this corresponds to step 3
of the commitment phase). If the signature does not verify, then P can abort
and no further action is needed. If the signature verifies but tupleP→P ′ was not
generated in one of the executions of P ′ in the initialization phase described
above, then S aborts. (This does not correspond to a legal action in the real
world, but occurs with only negligible probability by security of the signature
scheme.) Otherwise, S proceeds as follows: it computes C as a commitment to
the all-0 string, and sets the two components of commitment com to random
elements of the appropriate group. It sends these values to P ′ and then acts as
the honest prover in the witness indistinguishable proof, but using the witness
(that it knows) for the fact that tupleP ′→P is a Diffie-Hellman tuple.

When S later receives notification (open, sid, cid, P, P ′, b) that P has opened
to the bit b, the simulator simply sends this value b and then, again, acts as the
honest prover in the witness indistinguishable proof, but using the witness (that
it knows) for the fact that tupleP ′→P is a Diffie-Hellman tuple.

We defer to the full version of this paper the details of the proof that S as
described above provides a good simulation of A.

4 Conclusions and Future Directions

UC multi-party computation is impossible without some extension to the so-
called “plain model.” We now know of a variety of extensions, or “setup assump-
tions,” that enable this impossibility result to be circumvented. An important
direction of research is to find realistic setup assumptions that could feasibly be
implemented and used. The suggestion made in this paper is to consider physical
assumptions instead of (or possibly in addition to) trust-based assumptions. A
particular example based on tamper-proof hardware was proposed, and shown
to be sufficient for realizing UC multi-party computation.

Some intriguing questions are left open by this work. Of course, alternate
(weaker?) models of tamper-proof hardware could be explored in an effort to
obtain easier-to-realize conditions under which UC multi-party computation ex-
ists. One interesting possibility here is to use tamper-evident tokens (that could
be returned to their creator at some intermediate point of the protocol) in place
of tamper-resistant ones. (This idea was suggested by an anonymous referee.)
Coming back to the model proposed here, it would be nice to show a protocol
secure against adaptive adversaries, and it would be especially gratifying to con-
struct a protocol based on general assumptions. (It is not hard to see that the
protocol can be based on a variety of standard number-theoretic assumptions
other than the DDH assumption.)

Acknowledgments

I am very grateful to the anonymous referees for their supportive comments and
helpful suggestions.



128 J. Katz

References

1. B. Barak, R. Canetti, Y. Lindell, R. Pass, and Tal Rabin. Secure Computation
Without Authentication. Crypto 2005.

2. B. Barak, R. Canetti, J.B. Nielsen, and R. Pass. Universally Composable Protocols
with Relaxed Set-Up Assumptions. FOCS 2004.

3. C. Bennett and G. Brassard. Quantum Cryptography: Public Key Distribution and
Coin Tossing. Intl. Conf. on Computers, Systems, and Signal Processing, 1984.

4. M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and its Ap-
plications. STOC ’88.

5. S. Brands. Untraceable Off-line Cash in Wallets with Observers. Crypto ’93.
6. R. Canetti. Universally Composable Security: A New Paradigm

for Cryptographic Protocols. FOCS 2001. Full version available at
http://eprint.iacr.org/2000/067.

7. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security
with Global Setup. TCC 2007.

8. R. Canetti and M. Fischlin. Universally Composable Commitments. Crypto 2001.
9. R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally

Composable Two-Party Computation Without Set-Up Assumptions. J. Cryptol-
ogy 19(2): 135–167, 2006.

10. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. STOC 2002. Full version available at
http://eprint.iacr.org/2002/140.

11. D. Chaum and T. Pedersen. Wallet Databases with Observers. Crypto ’92.
12. J. Considine, M. Fitzi, M. Franklin, L.A. Levin, U. Maurer, and D. Metcalf. Byzan-

tine Agreement Given Partial Broadcast. J. Cryptology 18(3): 191–217, 2005.
13. R. Cramer and T. Pedersen. Improved Privacy in Wallets with Observers. Euro-

crypt ’93.
14. I. Csiszár and J. Körner. Broadcast Channels with Confidential Messages. IEEE

Trans. Info. Theory 24(3): 339–348, 1978.
15. D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally Composable Zero-

Knowledge Arguments and Commitments from Signature Cards. 5th Cen-
tral European Conference on Cryptology, 2005. A version is available at
http://homepages.cwi.nl/~hofheinz/card.pdf.

16. U. Maurer Secret Key Agreement by Public Discussion from Common Information.
IEEE Trans. Info. Theory 39(3): 733–742, 1993.

17. M. Naor. On Cryptographic Assumptions and Challenges. Crypto 2003.
18. M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of

Faults. J. ACM 27(2): 228–234, 1980.
19. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing. Crypto ’91.
20. B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure

Reactive Systems. ACM CCCS 2000.
21. A.D. Wyner. The Wire-Tap Channel. Bell System Technical Journal 54(8): 1355–

1387, 1975.



Generic and Practical Resettable
Zero-Knowledge in the Bare Public-Key Model�

Moti Yung1 and Yunlei Zhao2,��

1 RSA Laboratories and Department of Computer Science, Columbia University,
New York, NY, USA

moti@cs.columbia.edu
2 Software School, Fudan University, Shanghai 200433, China

ylzhao@fudan.edu.cn

Abstract. We present a generic construction for constant-round concur-
rently sound resettable zero-knowledge (rZK-CS) arguments for NP in
the bare public-key (BPK) model under any (sub-exponentially strong)
one-way function (OWF), which is a traditional assumption in this area.
The generic construction in turn allows round-optimal implementation
for NP still under general assumptions, and can be converted into a
highly practical instantiation (under specific number-theoretic assump-
tions) for any language admitting Σ-protocols. Further, the rZK-CS ar-
guments developed in this work also satisfy a weak (black-box) concur-
rent knowledge-extractability property as proofs of knowledge, in which
case some super-polynomial-time assumption is intrinsic.

1 Introduction

Resettable zero-knowledge (rZK) is the strongest version of the remarkable no-
tion of zero-knowledge (ZK) [13] to date. It was put forth by Canetti, Goldreich,
Goldwasser and Micali [5], motivated by implementing zero-knowledge provers
using smart-cards or other devices that may be (maliciously) reset to their ini-
tial conditions and/or cannot afford to generate fresh randomness for each new
invocation. rZK also preserves the prover’s security when the protocol is exe-
cuted concurrently in an asynchronous network like the Internet. In fact, rZK is
a generalization and strengthening of the notion of concurrent zero-knowledge
(cZK) introduced by Dwork, Naor and Sahai [10].

A major measure of efficiency for interactive protocols is the round-complexity.
Unfortunately, there are no constant-round rZK in the standard model, at least
for the black-box case, as implied by the works of Canetti, Kilian, Petrank and
Rosen [6]. To get constant-round rZK protocols, [5] introduced a simple model
with very appealing trust requirement, the bare public-key (BPK) model.

A protocol in the BPK model simply assumes that all verifiers have deposited
a public key in a public file before any interaction takes place among the users.

� The second author is supported by 973 project No. 2007CB807900.
�� Corresponding author.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 129–147, 2007.
c© International Association for Cryptology Research 2007



130 M. Yung and Y. Zhao

(Actually, the BPK model also allows dynamic key registration with a reason-
able amount time between key registration and key usage [5].) But, no assump-
tion is made on whether the public-keys deposited are unique or valid. That
is: no trusted third party is assumed, preprocessing is reduced to users non-
interactively posting public-keys in a public file, and the underlying communica-
tion network is assumed to be adversarially asynchronous. In many cryptographic
settings, availability of a public key infrastructure (PKI) is assumed or required,
in which case the BPK model that is weaker than PKI is natural.

Soundness in public-key models, when verifiers register public-keys, turns out
to be more complicated and subtle than in other models as was shown by Micali
and Reyzin. They showed that under standard intractability assumptions there
are four distinct meaningful notions of soundness, i.e., from weaker to stronger:
one-time, sequential, concurrent and resettable soundness [16]. In this work, we
focus on concurrent soundness, which roughly means that a malicious prover
P ∗ cannot convince the honest verifier V of a false statement even when P ∗

is allowed multiple interleaving interactions with V . They also showed that any
(resettable or not) black-box ZK protocols with concurrent soundness in the BPK
model (for non-trivial languages outside BPP) must run at least four rounds
[16]. The recent work of [21] formulates a new concurrent verifier security in the
public-key model, named concurrent knowledge-extraction (CKE), and shows
that CKE is strictly stronger than concurrent soundness in the public-key model
when proofs of knowledge are considered.

A direct application of rZK is to achieve (smartcard based) identification
schemes secure against resetting attacks [5,2]. Despite its significant importance
to practice, especially to smartcard based e-commerce over the Internet, most
existing rZK systems are only theoretical feasible solutions which cannot be di-
rectly employed in practice and are not implementable by smartcards. That is,
there is a gap between the significant importance and motivation for rZK as
a mode suitable for practice and the present theoretical constructions of rZK
systems. (Note that it is natural to investigate general feasibility prior to prac-
tical solutions.) Given the state of protocols, it is an important issue to develop
highly practical rZK systems (say, with only a very small constant number of
exponentiations, which are within reach for coming smartcard environments) for
languages widely used in cryptography.

1.1 Our Contributions

The main result of this work is a generic construction for constant-round con-
currently sound rZK (rZK-CS) arguments for NP in the BPK model under any
generic sub-exponentially strong OWF (sub-exponential assumptions in order to
enable ZK protocols in this highly constrained resettable setting have been em-
ployed from the introduction of the model). The structure and techniques of the
generic rZK-CS construction, in turn, allow round-optimal (still under general
assumptions) and highly practical instantiation (under specific number-theoretic
assumptions) implementations. Further, the rZK-CS arguments developed in
this work also satisfy a weak (black-box) concurrent knowledge-extractability



Generic and Practical Resettable Zero-Knowledge in the BPK Model 131

(CKE) property in the public-key model. (Roughly, a malicious prover not only
cannot convince of a false statement by concurrent interactions as required by
concurrent soundness, but also cannot convince of a true statement in its con-
current interactions without knowing a witness if the underlying language is
sub-exponentially hard.) This answers several open problems left over in the
field of round-efficient rZK in the BPK model [16,22,9].

Specifically, the generic construction allows the following round-optimal or
highly practical implementations, which involve novel uses of a number of cryp-
tographic tools:

– Round-optimal (i.e., 4-round) rZK-CS arguments for NP in the BPK model
under any sub-exponentially strong one-way permutation (OWP) and any
(standard polynomially secure) preimage-verifiable OWF. Note that
preimage-verifiable OWF is a generic and actually quite weak hardness as-
sumption that includes, in particular, any certified one-way permutation and
any 1-1 length-preserving one-way function. This implies, in particular, that
round-optimal rZK-CKE arguments for NP in the BPK model can be based
on any certified one-way permutation.

– A generic practical transformation achieving 5-round rZK-CS arguments in
the BPK model. By “generic” we mean applicability to any language that
admits Σ-protocols. By “practical”, we mean that the transformation does
not go through general NP-reductions, and if the starting Σ-protocol and
the underlying pseudorandom function (PRF) are practical then the trans-
formed rZK-CS arguments are also practical. For example, when instantiated
with DL or RSA functions, together with the Naor-Reingold practical PRFs
[18], the transformed rZK-CS arguments (for the languages of DL or RSA
respectively) employ a very small constant number of exponentiations.

Discussions on related works are deferred to the full version.

2 Preliminaries

We briefly recall some basic definitions and tools, with detailed presentations
deferred to the full version.

Preimage-verifiable one-way functions. A OWF f is called preimage-
verifiable if there exists a polynomial-time computable predicate Df : {0, 1}∗ −→
{0, 1} such that for any string y, Df (y) = 1 if and only if there exists an x such
that y = f(x).

Statistically-binding commitment schemes. We employ both the OWP
based one-round perfectly-binding commitment scheme [12], and Naor’s OWF-
based 2-round scheme [17]. Note that the first-round message of Naor’s com-
mitment scheme can be fixed once and for all and, in particular, can be posted
as part of a public-key in the public-key setting. We remark that if the under-
lying OWP or OWF are secure against 2nc

-time adversaries for some constant



132 M. Yung and Y. Zhao

c, 0 < c < 1, on a security parameter n, then the hiding property of the corre-
sponding commitment schemes above also holds against 2nc

-time adversaries.

Public-coin witness indistinguishability (WI) proof of knowledge
(POK) systems for NP. One is Blum’s protocol for directed Hamiltonian
cycle DHC [3], and another is the Lapidot-Shamir protocol for DHC [15]. The
salient feature of the Lapidot-Shamir protocol is that the prover sends the first-
round message without knowing the statement to be proved other than its size.
We remark that the WI property of Blum’s protocol or the Lapidot-Shamir
protocol for HC relies on the hiding property of the underlying statistically-
binding commitment scheme (used in its first-round). If the hiding property of
the underlying statistically-binding commitment scheme is secure against 2nc

-
time adversaries for some constant c, 0 < c < 1, on a security parameter n, then
the WI property also holds against 2nc

-time adversaries.

Trapdoor commitment schemes. Normal trapdoor commitment schemes run
in two rounds, in which the commitment receiver generates and sends the trap-
door commitment public key (TCPK) in the first-round (while keeping the
trapdoor secret key TCSK in private). For the Feige-Shamir trapdoor commit-
ment scheme (FSTC) [11], TCPK consists of (y = f(x), G) (for OWF-based
solution, the TCPK also includes a random string R serving as the first-round
message of Naor’s OWF-based statistically-binding commitment scheme), where
f is a OWF and G is a graph that is reduced from y by the Cook-Levin NP-
reduction. The corresponding trapdoor is x (or equivalently, a Hamiltonian cy-
cle in G). Note that the first-round message, i.e., TCPK, can be fixed once
and for all. The commitment sender forms the second-round message by using
(either OWP-based one-round or Naor’s OWF-based two-round) statistically-
binding commitment scheme. Again, if the hiding property of the underlying
statistically-binding commitment scheme is secure against sub-exponential-time
adversaries, then both the hiding property and the trapdoorness property of the
FSTC scheme hold also against sub-exponential-time adversaries.

Σ-protocols and ΣOR-protocols. Informally, a Σ-protocol is itself a 3-round
public-coin special honest verifier zero-knowledge (SHVZK) protocol with special
soundness in the knowledge-extraction sense. A very large number of Σ-protocols
have been developed in the literature. One basic construction with Σ-protocols
is the OR of a real and simulated transcript, called ΣOR, that allows a prover
to show that given two inputs x0, x1, it knows a w such that either (x0, w) ∈
R0 or (x1, w) ∈ R1, but without revealing which is the case [7] (i.e., witness
indistinguishable WI). For a good survey of Σ-protocols and their applications,
the reader is referred to [8].

The malicious resetting verifier and rZK in the BPK model. A mali-
cious s-resetting malicious verifier V ∗ in the BPK model, where s is a positive
polynomial, is a PPT Turing machine working in two stages so that on input 1n,



Generic and Practical Resettable Zero-Knowledge in the BPK Model 133

Stage-1. V ∗ receives s(n) distinct strings x̄ = {x1, · · · , xs(n)} of equal length
poly(n) each, and outputs an arbitrary public-file F and a list of (without
loss of generality) s(n) identities id1, · · · , ids(n).

Stage-2. Starting from the final configuration of Stage-1, s(n) random tapes,
γ1, · · · , γs(n), are randomly selected and then fixed for P , resulting in s(n)3

deterministic prover strategies P (xi, idj, γk), 1 ≤ i, j, k ≤ s(n). V ∗ is given
oracle access to these s(n)3 provers, and finally outputs its “view” of the
interactions (i.e., its random tapes and messages received from all its oracles).

Definition 1 (black-box resettable zero-knowledge [5]). A protocol 〈P, V 〉
is black-box resettable zero-knowledge for a language L ∈ NP if there exists
a PPT black-box simulator S such that for every s-resetting verifier V ∗, the
following two probability distributions are indistinguishable. Let each distribu-
tion be indexed by a sequence of distinct common inputs x̄ = {x1, · · · , xs(n)},
xi ∈ L ∩ {0, 1}poly(n) for 1 ≤ i ≤ s(n), and their corresponding NP -witnesses
aux(x̄) = {w1, · · · , ws(n)}:

Distribution 1. The output of V ∗ obtained from the experiment of choosing
γ1, · · · , γs(n) uniformly at random, running the first stage of V ∗ to obtain
F , and then letting V ∗ interact in its second stage with the following s(n)3

instances of P : P (xi, wi, F, idj , γk) for 1 ≤ i, j, k ≤ s(n). Note that V ∗ can
oracle access to these s(n)3 instances of P .

Distribution 2. The output of S(x̄).

Remark. In Distribution 1 above, since V ∗ oracle accesses to s(n)3 instances
of P : P (xi, wi, F, idj , γk), 1 ≤ i, j, k ≤ s(n), it means that V ∗ may invoke and
interact with the same P (xi, wi, F, idj , γk) in multiple protocols (sessions). We
remark that, as clarified in [5], in the resettable setting interleaving interactions
do not help the malicious resetting verifier get more advantages on learning
“knowledge” from its oracles than it can do by sequential interactions. Without
loss of generality, in the rest of this paper we assume the resetting malicious
verifier V ∗ works in the sequential version.

3 The Generic rZK-CS Construction

The high-level overview of the protocol. We first convey basic ideas and
a high-level overview of the protocol. Let fV be any (sub-exponentially strong)
OWF, each (honest) verifier V randomly selects an element xV from the domain
of fV , and publishes yV = fV (xV ) as its public-key with xV as its secret-key. Let
L be an NP-language and x ∈ L be the common input, the main-body of the
protocol goes as follows: The honest prover P first generates and sends a hard-
instance using a standard polynomially-secure OWF fP . The hard-instance is
then fixed once and for all. Then, P proves to V the existence of the preimage of
the hard-instance, by executing a OWF-based resettable witness-hiding (rWH)
protocol. After that, V proves to P that it knows either the preimage of yV



134 M. Yung and Y. Zhao

(i.e., its secret-key xV ) or the preimage of the hard-instance generated by P , by
executing a OWF-based constant-round WIPOK protocol for NP . Finally, P
proves to V that it knows either a witness for x ∈ L or the preimage of yV (i.e.,
V ’s secret-key), by executing another OWF-based constant-round rWI argument
for NP . The detailed protocol description is depicted in Figure 1 (page 135).

The underlying complexity-leveraging. For provable security and for the
weak CKE security, we employ the complexity-leveraging technique (originally
introduced in [5]). Specifically, the verifier V uses a security parameter N (in
generating messages from it) that is also the system security parameter. But, the
prover P uses a relatively smaller security parameter n (still polynomially related
to N). The justification and discussions of the complexity-leveraging technique
are given in [5]. Here, we additionally remark that, pragmatically speaking, letting
the verifier and the prover use different security parameters is quite reasonable
in the resettable setting, in which the prover is implemented by smart-cards or
clients that have relatively limited computational resources and power and the
verifier is normally implemented by servers that have much more computational
resources and power.

Specifically, the security parameters are set as follows. On the system parame-
ter N , suppose fV is secure against 2NcV -time adversaries for some constant cV ,
0 < cV < 1. This implies that the hiding property of the underlying statistically-
binding commitment scheme used by the verifier holds also against any 2NcV -
time adversary, which in turn guarantees that the WI property of the underlying
WI protocol for NP executed in Stage-2 of Phase-1 and Phase-3, and the hiding
and trapdoorness properties of the underlying trapdoor commitment scheme all
hold against any 2NcV -time adversary. The prover uses a relatively smaller secu-
rity parameter n and uses a standard polynomially-secure OWF fP that can be
broken (brute-force wise) in time 2ncP for some constant cP , cP ≥ 1. Specifically,
cP is the constant that: for all sufficiently large n’s, the size of GP (reduced from
(y(0)

P , y
(1)
P ) at Stage-1 of Phase-1) is bounded by ncP , which in turn implies that

the statistically-binding commitment scheme used by the prover (that is run on
the security parameter n) can be brute-force decommitted in time poly(n) ·2ncP .
Let cL, 0 < cL ≤ 1, be a constant specific to the underlying language L (the
use of cL is specified in Section 3.1 for the weak CKE property). Let c be any
constant such that 0 < c < min{cV , cL}, in other words, min{cV , cL} = c+c′ for
another constant c′, 0 < c′ < 1. Let ε be any constant such that ε > cP

c , then we
set N = nε. Note that N and n are polynomially related. That is, any quantity
that is a polynomial of N is also another polynomial of n. This complexity lever-
aging guarantees that although any poly(n) · 2ncP -time adversary can break fP

on a security parameter n, it is still infeasible to break the one-wayness of fV ,
because poly(n) · 2ncP 	 2Nc 	 2NcV (also note that poly(n) · 2ncP 	 2NcL ).

The OWF-based protocol depicted in Figure 1 (page 135) runs in 7 rounds
after some round combinations. In particular, the first two rounds of Phase-4
can be combined into previous phases. Actually, the round-complexity can be
further reduced to 6 but under any (sub-exponentially strong) OWP.



Generic and Practical Resettable Zero-Knowledge in the BPK Model 135

Key generation. On the system security parameter N , each honest verifier V randomly
selects an element xV of length N , computes yV = fV (xV ), publishes yV as its public-key
PK while keeping xV as its secret-key SK. If P uses Naor’s OWF-based statistically-
binding commitment scheme in Phase-2 or Phase-4 (that is run on security parameter
n), V also deposits a random string RV of length 3n.
Common input. An element x ∈ L ∩ {0, 1}poly(N), the public-file F and an index j

that specifies the j-th entry of F , i.e., PKj = (y(j)
V , R

(j)
V ).

P private input. An NP-witness w for x ∈ L, a pair of random strings (γ1, γ2), where
γ1 is a poly(n)-bit string and γ2 is the n-bit randomness seed of a PRF.

V private input. SKj . For presentation simplicity, we denote PKj = fV (SKj).
Phase-1. Phase-1 consists of two stages:

Stage-1. Let fP be any polynomially-secure OWF. On security parameter n, P
randomly selects two elements x

(0)
P and x

(1)
P of length n each in the domain of

fP , computes y
(b)
P = fP (x(b)

P ) for b ∈ {0, 1}, reduces (y(0)
P , y

(1)
P ) to a directed

graph GP by Cook-Levin NP-reduction such that finding a Hamiltonian cycle
in GP is equivalent to finding the preimage of either y

(0)
P or y

(1)
P . For OWF-

based solution, P also randomly selects a string RP of length 3N serving as
the first-round message of Naor’s OWF-based statistically-binding commitment
scheme. Finally, P sends (y(0)

P , y
(1)
P , GP , RP ) to V . The randomness used by P

in this process is γ1, which means (y(0)
P , y

(1)
P , GP , RP ) is fixed once and for all.

Stage-2. V first checks whether or not GP is reduced from (y(0)
P , y

(1)
P ) and RP

is of length 3N . If the checking is successful, V randomly chooses two ran-
dom strings e

(0)
V and e

(1)
V from {0, 1}n, computes c

(0)
V = Com(1N , RP , e

(0)
V )

by using the underlying statistically-binding commitment scheme Com, and
c
(1)
V = TCCom(1N , (GP , RP ), e(1)

V ) by using the underlying FSTC trapdoor
commitment scheme. Then, on common input ((y(0)

P , y
(1)
P , GP , RP ), PKj) V

computes the first-round message, denoted aV , of (n-parallel repetitions of)
Blum’s WIPOK for NP for showing the knowledge of either SKj or a Hamil-
tonian cycle in GP (equivalently, the preimage of either y

(0)
P or y

(1)
P ). Finally,

V sends (c(0)
V , c

(1)
V , aV ) to P . From then on, all randomness used by P in the

remaining computation is got by applying PRF (γ2, ·) on the “determining”
message D = (x,F, (j, PKj), (y

(0)
P , y

(1)
P , GP , RP ), (c(0)

V , c
(1)
V , aV )).

Phase-2. P proves to V the existence of a Hamiltonian cycle in GP by executing the
(n-parallel repetitions of) Blum’s WI protocol for NP on (y(0)

P , y
(1)
P , GP , R

(j)
V ), in

which V sends the assumed random challenge by just revealing e
(0)
V committed to

c
(0)
V . Note that the first-round message of Phase-2 (from P to V ) consists of n

committed adjacency matrices committed by running the underlying statistically-
binding commitment scheme on security parameter n. If P successfully finishes this
phase and V accepts, then goto Phase-3. Otherwise, V aborts.

Phase-3. V and P continue the WIPOK protocol for NP suspended at Stage-2 of
Phase-1. If V successfully convinces P of the knowledge of either SKj or a Hamil-
tonian cycle in GP , then goto Phase-4. Otherwise, P aborts. We denote by eV , zV ,
the first-round message and the second-round message of Phase-3 respectively.

Phase-4. P proves that it “knows” either the witness w for x ∈ L or the secret-key
SKj , by executing Blum’s WI protocol for NP on common input (x, PKj), in which
V sends the assumed random challenge by just revealing e

(1)
V committed to c

(1)
V .

Fig. 1. The generic rZK-CS argument 〈P, V 〉 for NP



136 M. Yung and Y. Zhao

Theorem 1. Assuming the OWF fP (used by the prover) is secure against stan-
dard polynomial-time adversaries, and the OWF fV (used by the verifier) is se-
cure against sub-exponential-time adversaries, the protocol depicted in Figure 1
is a constant-round rZK-CS argument for NP in the BPK model.

Proof (sketch)
Black-box resettable zero-knowledge
For any s-resetting adversary V ∗ who receives s(N) distinct strings x̄ = {x1, · · · ,
xs(N)}, xi ∈ L ∩ {0, 1}poly(N) for each i (1 ≤ i ≤ s(N)), and outputs an arbi-
trary public-file F containing s(N) entries PK1, · · · , PKs(N) in its first stage,
we say a public-key PKj in F , 1 ≤ j ≤ s(N), is “covered” if the rZK sim-
ulator S has already learned (extracted) the corresponding secret-key SKj (if
such exists). In its second stage, V ∗ is given oracle access to (s(N))3 prover in-
stances P (xi, PKj, γk), 1 ≤ i, j, k ≤ s(N). We denote by Dt = (xi, F, (j, PKj),
(y(0)

P , y
(1)
P , GP , RP )k, (c(0)

V ∗ , c
(1)
V ∗ , aV ∗)t) the “determining” message of the t-th ses-

sion with respect to common input xi and public-key PKj and the honest prover
instance P (·, ·, γk), 1 ≤ i, j, k ≤ s(N) and 1 ≤ t ≤ (s(N))3. As discussed in [5],
w.l.o.g., we use the convention that V ∗ works in the sequential version in its sec-
ond stage, and the rZK simulator utilizes a truly random function rather than
a pseudorandom one.

The rZK simulation procedure is similar to, but more complicated than, that
of [5]. Specifically, the rZK simulator S runs V ∗ as a subroutine, and works in
at most s(N) + 1 phases such that in each phase it either successfully finishes
its simulation or “covers” a new public-key in F . In each phase, S makes a
simulation attempt from scratch with a new truly random function that is to be
defined adaptively, and works session by session sequentially in at most (s(N))3

sessions. The difficulties lie in that for such rZK simulation to be successful, the
rZK simulator S needs to have the ability to cover new uncovered public-keys
within time inversely proportional to the probability that it encounters a success
of Phase-3 relative to a yet uncovered public-key in its simulation. Pending on S’s
such ability, the rZK property follows from the pseudorandomness of PRF and
the rWI property of Phase-4 combined with Phase-1 (according to the CGGM
general paradigm for achieving rWI [5]).

Specifically, we want to argue that the underlying Blum’s WIPOK protocol
on ((y(0)

P , y
(1)
P , GP , RP )k, PKj) (executed in Stage-2 of Phase-1 and Phase-3) is

actually an argument of knowledge of the preimage of PKj (i.e., the secret-key
SKj). But, the subtle and complicated situation here is that before V ∗ fin-
ishes Phase-3, S has already proved the knowledge of the Hamiltonian cycle of
(y(0)

P , y
(1)
P , GP , RP )k in Phase-2. Note that the (y(0)

P , y
(1)
P , GP , RP )k is fixed once

and for all (that can be viewed as the public-key of the honest prover instance
P (·, ·, γk)), and furthermore V ∗ is resettingly (more than concurrently) interact-
ing with the honest prover instances. As demonstrated in [21], normal argument
of knowledge and even concurrent soundness do not guarantee correct knowledge-
extractability in such setting. In particular, one may argue that, by rewind-
ing the honest prover instances arbitrarily, V ∗ may potentially malleate the



Generic and Practical Resettable Zero-Knowledge in the BPK Model 137

interactions on (y(0)
P , y

(1)
P , GP , RP )k provided by the honest prover in Phase-2 of

one session into successful but “false” interactions on ((y(0)
P , y

(1)
P , GP , RP )k, PKj)

in Stage-2 of Phase-1 and Phase-3 of another session with respect to public-key
PKj, in the sense that although the interactions are valid but V ∗ actually does
not know the corresponding secret-key SKj. This means that, in such a case the
interactions on ((y(0)

P , y
(1)
P , GP , RP )k, PKj) executed in Phase-3 together with

Stage-2 of Phase-1 are no longer arguments of knowledge of the preimage of
PKj, although it is always a system for proof of knowledge of either SKj or a
Hamiltonian cycle of (y(0)

P , y
(1)
P , GP , RP )k. What save us here is the (concurrent)

WI property of the Blum’s protocol for HC.
Below, we construct an algorithm Ŝ that emulates the real rZK simulator

while concurrently (not resettingly) running the Blum’s protocol for HC. That
is, on common inputs {(y(0)

P , y
(1)
P , GP , RP )1, · · · , (y(0)

P , y
(1)
P , GP , RP )s(N)} Ŝ con-

currently interacts with s(N) instances of the knowledge prover, denoted P̂ , of
Blum’s protocol for HC by playing the role of knowledge verifier. We denote
each of the s(N) instances of P̂ by P̂ ((y(0)

P , y
(1)
P , GP , RP )k), 1 ≤ k ≤ s(N); At

the same time, Ŝ runs the s-resetting malicious V ∗ as a subroutine by playing
the role of the honest prover, and sends (y(0)

P , y
(1)
P , GP , RP )k as the Stage-1 mes-

sage of Phase-1 whenever V ∗ initiates a session with the honest prover instance
P (·, ·, γk). Ŝ emulates the rZK simulator S but with the following modification:
whenever Ŝ needs to send a “fresh” first-round message of Blum’s protocol for
HC on (y(0)

P , y
(1)
P , GP , RP )k in Phase-2 with respect to a “determining” mes-

sage, it initiates a new session with P̂ ((y(0)
P , y

(1)
P , GP , RP )k), and forwards the

first-round message received from P̂ ((y(0)
P , y

(1)
P , GP , RP )k) to V ∗. This “fresh”

message happens due to either V ∗ sends a distinct “determining” message in one
session or Ŝ needs rewinding V ∗ and redefining the underlying random function
f to extract knowledge used by V ∗ in a successful execution of Stage-2 of Phase-1
and Phase-3 with respect to an uncovered public-key. Then, Ŝ runs V ∗ further,
and in case V ∗ successfully reveals the assumed challenge (that is statistically-
bindingly committed to the underlying “determining” message in question) then
Ŝ returns back the revealed challenge to P̂ as its own challenge in the corre-
sponding simultaneous session of Blum’s protocol for HC, and returns back the
third-round message received from P̂ ((y(0)

P , y
(1)
P , GP , RP )k) to V ∗. For a session

with a “determining” message that is identical to that of some previous ses-
sions, Ŝ just copies what was sent in the previous sessions. Note that in this
case, Ŝ may still possibly need to interact with P̂ in some existing concurrent
session to get some third-round message (in case V ∗ did not reveal or invalidly
revealed the random challenge statistically-bindingly committed to the under-
lying “determining” message in all previous sessions, but correctly reveals it in
the current session). However, the key point here is that in this case S does not
need to initiate a new concurrent session with P̂ .

Note that from the viewpoint of V ∗, the behavior of Ŝ is identical to the
behavior of the real rZK simulator, where the real rZK simulator S generates



138 M. Yung and Y. Zhao

(y(0)
P , y

(1)
P , GP , RP )k’s and provides the corresponding Phase-2 messages by itself

(rather than get them by externally interacting with the knowledge prover in-
stances P̂ ((y(0)

P , y
(1)
P , GP , RP )k)’s). The key observation here is that although

V ∗ is actually resettingly interacting with Ŝ, Ŝ only concurrently interacts
with the instances of P̂ and never rewinds P̂ . The underlying reason is just
that in any session, Phase-2 interactions take place only after V ∗ sent the
“determining” message at Stage-2 of Phase-1 that determines the subsequent
behaviors of V ∗ in that session. Note that in this case, the (concurrent) WI
property of the Blum’s protocol for HC on common input (y(0)

P , y
(1)
P , GP , RP )k

actually implies witness hiding (WH), which means that no PPT algorithm
can output a Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP )k even by concurrently

interacting with P̂ ((y(0)
P , y

(1)
P , GP , RP )k)’s. Also note that on common input

((y(0)
P , y

(1)
P , GP , RP )k, PKj), Phase-3 together with Stage-2 of Phase-1 is always a

system for proving the knowledge of either a Hamiltonian cycle in (y(0)
P , y

(1)
P , GP ,

RP )k or the preimage of PKj (i.e., SKj), which means that with overwhelm-
ing probability Ŝ (or the real rZK simulator S) can always extract either a
Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP )k or the corresponding secret-key SKj

within time inversely proportional to the probability that V ∗ successfully fin-
ishes Phase-3 (by rewinding V ∗ and redefining the underlying random function
as is done in [5]). But, the WH property of Blum’s protocol for HC shows that
with overwhelming probability, Ŝ (or the real rZK simulator S) never outputs
a Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP )k in its simulation that is done in

expected polynomial-time. Here, a subtle point needs to be further addressed.
Specifically, the normal WH property is defined with respect to probabilistic
(strict) polynomial-time algorithms, but here Ŝ works in expected polynomial-
time. But, by Markov inequality, it is easy to see that if the WH property of
a protocol holds with respect to any strict polynomial-time algorithms, then it
also holds with respect to any expected polynomial-time algorithms.

Concurrent soundness
We show that for any (whether true or not) common input x ∈ {0, 1}poly(N), if
a PPT s-concurrent malicious P ∗, on a public-key PK, can convince an honest
verifier V (with public-key PK and secret-key SK) of the statement “x ∈ L”
with non-negligible probability px in one of the s(N) concurrent interactions,
then there exists an algorithm E that, on the same public-key PK with oracle
accessing P ∗, works in poly(n) ·2ncP -time and outputs either a witness for x ∈ L
or the preimage of yV also with non-negligible probability. Note that according
to the underlying complexity leveraging on the security parameters N and n,
no poly(n) · 2ncP -time algorithm can break the one-wayness of fV used by V in
forming its public-key on security parameter N (because poly(n)·2ncP 	 2NcV ).
This implies that x ∈ L.

On the same public-key PK, E runs P ∗ as a subroutine by playing the role of
the honest verifier with public-key PK. Note that E does not know the cor-
responding secret-key SK. In each session t, 1 ≤ t ≤ s(N), after receiving



Generic and Practical Resettable Zero-Knowledge in the BPK Model 139

the Stage-1 message of Phase-1, denoted ((y(0)
P ∗ , y

(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗), E first checks

whether or not Gt
P ∗ is NP-reduced from (y(0)

P ∗ , y
(1)
P ∗ )t and Rt

P ∗ is of length 3N .
If the checking is successful, then E tries to find a Hamiltonian cycle in Gt

P ∗ by
brute-force searching in 2ncP -time.

– If E finds a Hamiltonian cycle in Gt
P ∗ , then E sets the Stage-2 message of

Phase-1 of the t-th session, denoted ((c(0)
V )t, (c(1)

V )t, at
V ), as follows: it ran-

domly chooses one random string (e(0)
V )t from {0, 1}n, computes (c(0)

V )t =
Com(1N , Rt

P ∗ , (e(0)
V )t) by using the underlying Naor’s statistically-binding

commitment scheme Com, and computes (c(1)
V )t = TCCom(1N , (Gt

P ∗ , Rt
P ∗),

0n) by using the underlying Feige-Shamir trapdoor commitment scheme
(note that, (c(1)

V )t commits to 0n rather than a random string in {0, 1}n as the
honest verifier does). Then, on common input (((y(0)

P ∗ , y
(1)
P ∗)t, Gt

P ∗ , Rt
P ∗), PK)

E computes the first-round message, denoted at
V , of (n-parallel repetitions

of) Blum’s WIPOK for NP for showing the knowledge of either SK or
a Hamiltonian cycle in Gt

P ∗ . Note that the first-round message of Blum’s
WIPOK for NP is computed without using any witness knowledge (i.e., ei-
ther SK or a Hamiltonian cycle in Gt

P ∗); In case P ∗ successfully finishes
Phase-2 of the t-th session, E moves into Phase-3. After receiving the first-
round message of Phase-3 of the t-th session, denoted et

V , E computes the
second-round message of Phase-3, denoted zt

V (i.e., the third-round message
of Blum’s WIPOK for showing the knowledge of either SK or a Hamiltonian
cycle in Gt

P ∗), by using the extracted Hamiltonian cycle in Gt
P ∗ as its wit-

ness ; Finally, in Phase-4 of the t-th session, E decommits (c(1)
V )t to a random

string (e(1)
V )t of length n, by using the extracted Hamiltonian cycle in Gt

P ∗

as the trapdoor.
– If there exists no Hamiltonian cycle in Gt

P ∗ , then E sets and sends the
Stage-2 message of Phase-1 of the t-th session, i.e., ((c(0)

V )t, (c(1)
V )t, at

V ), just
as above. But, whenever P ∗ successfully finishes Phase-2 of the t-th session
and sends to E the first-round message of Phase-3 of the t-th session (i.e.,
et

V ), E aborts with an error message (as it has no witness for generating the
next message).

Whenever P ∗ stops, E also stops and outputs the simulated transcript str (i.e.,
the view of P ∗ interacting with E). Denote by view

E(PK)
P ∗ (1n, PK) the view

of P ∗ (i.e., str) in the above run of E(1n, PK). We first establish that the
simulated transcript is indistinguishable from the view of P ∗ in real execution
with honest verifier instances. The purpose of E is to extract witnesses to all
accepting sessions in str, which will be demonstrated later.

Lemma 1. For any sufficiently large n, and for all (except for a negligible frac-
tion of) (PK, SK) outputted by the key-generation stage of the honest verifier,
the view of P ∗ in the run of E(1n, PK) (i.e., view

E(PK)
P ∗ (1n, PK)) is indistin-

guishable from the view of P ∗ in real execution with honest verifier instances.



140 M. Yung and Y. Zhao

Proof (of Lemma 1). This is done by establishing a series of hybrid experi-
ments.

We first consider a mental experiment in which P ∗ concurrently interacts
with an imaginary verifier V̂ with the same public-key PK and secret-key SK.
V̂ mimics the real honest verifier V with public-key PK and secret-key SK but
with the following modifications: For any session t, 1 ≤ t ≤ s(N), in case P ∗

successfully finishes Phase-2 and sends to V̂ the first-round message of Phase-3,
V̂ enumerates all possible Hamiltonian cycles of Gt

P ∗ by brute-force searching in
2ncP -time, where ((y(0)

P ∗ , y
(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗) is the Stage-1 message of Phase-1 of

the t-th session. If there exists no Hamiltonian cycle in Gt
P ∗ , V̂ aborts with an

error message, although it can continue the execution with SK as its witness!
Note that the only difference between the interactions between P ∗ and V̂ and

the interactions between P ∗ and the real honest verifier V is that: for any session
t, 1 ≤ t ≤ s(N), the real honest verifier always continues the execution of Phase-
3 by using SK as its witness in forming the second-round message of Phase-3, in
case P ∗ successfully finished Phase-2 and sent the first-round message of Phase-
3; but V̂ may abort in this case if it finds that Gt

P ∗ is “false” (i.e. there exists
no Hamiltonian cycle in Gt

P ∗) by brute-force searching in 2ncP -time. That the
view of P ∗ interacting with V̂ is indistinguishable from its view in real execution
with honest verifier instances is from the following lemma.

Lemma 2. For all positive polynomials s(·) and all s-concurrent malicious P ∗,
the probability that there exists a t, 1 ≤ t ≤ s(N), such that P ∗ can successfully
finish Phase-2 with respect to a false Gt

P ∗ (i.e., Gt
P ∗ contains no Hamiltonian

cycle) in the t-th session of the s(N) concurrent sessions (against the real honest
verifier V with public-key PK) is negligible in n.

Proof (of Lemma 2). We show that if a PPT s-concurrent adversary P ∗ can
convince V (with public-key PK) of a false Gt

P ∗ with non-negligible probability
p′(n) in Phase-2 of one of the s(N) concurrent sessions, then this will violate
the hiding property of the underlying statistically-binding commitment scheme,
denoted Com, used by V in Phase-1 that is run on security parameter N . Note
that according to the hiding property of the underlying statistically-binding
commitment scheme Com, given two strings ê0 and ê1 that are taken uniformly
at random from {0, 1}n and C = Com(1N , Rt

P ∗ , êb) for a randomly chosen bit
b ∈ {0, 1}, no 2NcV -time (non-uniform) algorithm can distinguish whether C
commits to ê0 or to ê1 (i.e., guess the bit b correctly) with non-negligible ad-
vantage over 1/2, even with ê0, ê1 and the secret-key of V (i.e., SK) as its
non-uniform inputs.

We construct a (non-uniform) algorithm A that takes (1n, (ê0, ê1, SK), C) as
input and attempts to guess b with a non-negligible advantage over 1/2, where ê0
and ê1 are taken uniformly at random from {0, 1}n and C = Com(1N , RP ∗ , êb)
for a randomly chosen bit b ∈ {0, 1}. E randomly selects j from {1, · · · , s(N)},
runs P ∗ as a subroutine by playing the role of the honest verifier V with secret-
key SK in any session other than the j-th session. In the j-th session, after
receiving Gj

P ∗ from P ∗ at Stage-1 of Phase-1, E first checks whether there exists



Generic and Practical Resettable Zero-Knowledge in the BPK Model 141

a Hamiltonian cycle in Gj
P ∗ or not by brute-force searching in time 2ncP . If E

finds a Hamiltonian cycle in Gj
P ∗ , then E randomly guesses the bit b and stops.

Otherwise (i.e., there exists no Hamiltonian cycle in Gj
P ∗), E runs P ∗ further and

continues the interactions of the j-th session as follows: E gives C to P ∗ as the
assumed commitment to (e(0)

V )j at Stage-2 of Phase-1. After receiving the first-
round message of Phase-2 (i.e., the first-round of Blum’s protocol for proving the
existence of a Hamiltonian cycle in Gj

P ∗) that contains n committed adjacency
matrices, E first opens all the committed adjacency matrices by brute-force in
poly(n) · 2ncP -time (note that E can do this since the underlying statistically-
binding commitment scheme used by the prover in forming these n committed
adjacency matrices is run on security parameter n). For each revealed graph Gj

k

(1 ≤ k ≤ n) (described by the corresponding opened adjacency matrix entries)
we say that Gj

k is a 0-valid graph if it is isomorphic to Gj
P ∗ , or a 1-valid graph if

it contains a Hamiltonian cycle of the same size of Gj
P ∗ . We say that the set of

revealed graphs {Gj
1, · · · , Gj

n} is êb-valid (b ∈ {0, 1}) if for all k, 1 ≤ k ≤ n, Gj
k is

a ê
(k)
b -valid graph, where ê

(k)
b denotes the k-th bit of êb. Note that for the set of

revealed graphs {Gj
1, · · · , Gj

n}, E can determine whether it is ê0-valid or ê1-valid
in time poly(n) · 2ncP . Then, E outputs 0 if the set {Gj

1, · · · , Gj
n} is ê0-valid but

not ê1-valid. Similarly, E outputs 1 if the set {Gj
1, · · · , Gj

n} is ê1-valid but not
ê0-valid. In other cases, E just randomly guesses the bit b.

The key observation here is that if Gj
P ∗ is false (i.e., containing no Hamiltonian

cycle), then for each revealed graph it cannot be both a 0-valid graph and a 1-
valid graph. Similarly, for false Gj

P ∗ , the set of revealed graphs {Gj
1, · · · , Gj

n}
cannot be both ê0-valid and ê1-valid for different ê0 
= ê1. Furthermore, suppose
C commits to êb (b ∈ {0, 1}), then for false Gj

P ∗ with probability 1−2−n the set of
revealed graphs {Gj

1, · · · , Gj
n} is not ê1−b-valid (since ê1−b is taken uniformly at

random from {0, 1}n). Since the value j is randomly chosen from {1, · · · , s(N)},
we conclude that E can successfully guess the bit b with probability at least
(1 − 2−n) · p′(n)

s(N) + 1
2 (1 − p′(n)

s(N) ) = 1
2 + 1

2 · p′(n)
s(N) − 2−n · p′(n)

s(N) in time poly(n) · 2ncP .
That is, E successfully guesses the bit b with non-negligible advantage over
1/2 in time poly(n) · 2ncP 	 2NcV , which violates the hiding property of the
underlying statistically-binding commitment scheme Com used by V that is run
on the security parameter N . This finishes the proof of Lemma 2.

Now, we want to show that the view of P ∗ with V̂ is indistinguishable the
view of P ∗ with E. This is established by conducting another hybrid experiment.

Specifically, we consider the following hybrid experiment. An algorithm Ê
takes (PK, SK) as its input (that is, Ê takes both the verifier’s public-key
and the corresponding secret-key as its input), and runs P ∗ as a subroutine
by mimicking the knowledge-extractor E (who only takes PK as input) but
with the following modification: For any session t, 1 ≤ t ≤ s(N), in case P ∗

successfully finishes Phase-2 and sends to Ê the first-round message of Phase-3,
Ê enumerates all possible Hamiltonian cycles of Gt

P ∗ by brute-force searching in
2ncP -time, where ((y(0)

P ∗ , y
(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗) is the Stage-1 message of Phase-1 of

the t-th session. If there exists a Hamiltonian cycle in Gt
P ∗ , then Ê continues the



142 M. Yung and Y. Zhao

execution by forming the second-round message of Phase-3 of the t-th session
(for showing the knowledge of either SK or a Hamiltonian cycle of Gt

P ∗) but
using SK as its witness just as the real honest verifier does (note that in this
case E continues the execution with the extracted Hamiltonian cycle of Gt

P ∗ as
the corresponding witness). If there exists no Hamiltonian cycle in Gt

P ∗ , then Ê

aborts with an error message just as E (or V̂ ) does (although in this case Ê can
continue the execution with SK as its witness).

Note that the difference between the interactions between P ∗ and the imag-
inary verifier V̂ in the first hybrid experiment and the interactions between P ∗

and Ê is that: in any session t, 1 ≤ t ≤ s(N), of the interactions between P ∗

and V̂ , V̂ always commits (and accordingly decommits to) a random string of
length n (i.e., (e(1)

V )t) by using the underlying FSTC scheme (just as the honest
verifier V does), but in the interactions between P ∗ and Ê, Ê always commits
0n and then decommits to a random string of length n by using the brute-force
extracted Hamiltonian cycle of Gt

P ∗ as the trapdoor (just as E does). We show
the view of P ∗ with Ê is indistinguishable from the view of P ∗ with V̂ . Oth-
erwise, by hybrid arguments, we can construct a poly(n) · 2ncP 	 2NcV -time
algorithm that breaks the hiding and trapdoorness properties of FSTC.

The difference between the interactions between P ∗ and Ê and the interac-
tions between P ∗ and E is that: E always uses the brute-force extracted Hamil-
tonian cycle of Gt

P ∗ as its witness in Phase-3 of any session t, 1 ≤ t ≤ s(N),
but Ê always uses the verifier’s secret-key SK as its witness (just as the honest
verifier does). Similarly, the view of P ∗ with Ê is indistinguishable from the view
of P ∗ with E is indistinguishable. Otherwise, by hybrid arguments, we can break
the WI property of Blum’s protocol for NP in time poly(n) ·2ncP 	 2NcV . This
finishes the proof of Lemma 1.

Now, E wants to extract the corresponding witness to each accepting ses-
sion in the simulated transcript str. For any t, 1 ≤ t ≤ s(N), suppose the
t-session is accepting in str, we define an experiment Et that emulates E with
the fixed random coins of E, but with the following exception: the random n-bit
string (e(1)

V )t (i.e., the decommitted value to (c(1)
V )t) is no longer emulated in-

ternally, but received externally. Note that the experiment Et actually amounts
to the stand-alone execution of the Blums’s WIPOK of Phase-4 on common
input xt between a (stand-alone) sub-exponential-time prover (combining all in-
ternal emulation of E with running P ∗ as the subroutine, except for (e(1)

V )t to
be received externally) and a public-coin honest verifier that sends (e(1)

V )t. By
applying the stand-alone knowledge-extractor on Et, except for the probability
2−n we can get one of the following within time poly(n) · 2n 	 2ncP (actually,
within expected polynomial-time): a witness wt for xt ∈ L or the correspond-
ing secret-key SK such that PK = fV (SK). As Et runs in poly(n) · 2ncP -time,
we conclude that E can extract either wt or SK within time poly(n) · 2ncP in
total. As poly(n) · 2ncP 	 2NcV and fV is secure against any 2NcV -time adver-
sary, we know with overwhelming probability (except for a negligible fraction of
(PK, SK)’s output by the key-generation stage of V ) the extracted witness must



Generic and Practical Resettable Zero-Knowledge in the BPK Model 143

be wt. This means within time poly(n) ·2ncP 	 2NcV E will output all witnesses
to common inputs of accepting sessions in str with overwhelming probability.

As the simulated transcript str is indistinguishable from the view of P ∗ in real
execution with honest verifier instances, this implies that for any x and for all
(except for a negligible fraction of) (PK, SK) outputted by the key-generation
stage of V , if P ∗ can convince the honest verifier V (SK) of “x ∈ L” in one of
the s(N) sessions with non-negligible probability px, then P ∗ will also convince
E(PK) of this statement with probability negligibly close to px. According to
the knowledge-extraction ability of E, E will output a witness to x ∈ L with
probability negligibly close to px. Then, the concurrent soundness of the protocol
depicted in Figure 1 follows. This finishes the proof of Theorem 1.

3.1 Discussion: On the Weak Concurrent Knowledge-Extractability

We remark that the above proof for concurrent soundness actually establishes a
(black-box ) weak CKE property, roughly as follows: there exists a sub-
exponential-time (specifically, poly(n) ·2ncP -time) black-box simulator/extractor
E such that for any concurrent malicious PPT prover P ∗ against verifier in-
stances with public-key PK, on the same public-key PK E outputs a simulated
indistinguishable transcript, together with all witnesses to common inputs of
accepting sessions in str. Note that, according to the parameter specifications
in Section 3, poly(n) · 2ncP 	 2Nc 	 2NcL . Suppose the underlying language L
is 2NcL -hard for some constant cL, 0 < cL < 1, such weak CKE property essen-
tially says that P ∗ “knows” witnesses to common inputs whose validations are
successfully conveyed by concurrent interactions, rather than only convincing
the verity (i.e., membership) of common inputs. Formal formulation of the weak
CKE property and detailed discussions are deferred to the full version (in par-
ticular, the weak CKE property is strictly stronger than concurrent soundness
in the public-key model under any sub-exponentially strong OWF).

We remark that super-polynomial-time is intrinsic to black-box knowledge-
extraction for rZK arguments, as rZK (black-box) arguments of knowledge exist
only for BPP languages [1]. Also, we believe that the weak CKE property is still
very useful in practice. In particular, it allows highly practical rZK implementa-
tions for specific languages, e.g., DLP and RSA, that are widely assumed to be
sub-exponentially hard.

4 Simplified, Practical, Round-Optimal Implementations

4.1 Simplified Implementation

We further investigate the interactions combining Phase-1 and Phase-2 of the
OWF-based rZK-CS protocol (depicted in Figure 1) when the messages c

(1)
V and

aV are removed from Stage-2 of Phase-1 (i.e., V only sends c
(0)
V at Stage-2 of

Phase-1). The key observation here is that if the OWF fP used by the prover
is preimage-verifiable, then such interactions can be replaced by only letting P



144 M. Yung and Y. Zhao

send, at the start, the initialization messages (yP , GP , RP ): a unique value yP =
fP (xP ) (rather than a pair of values (y(0)

P , y
(1)
P )), the graph GP (reduced from

yP by NP-reduction) and the random string RP . Note that the initialization
messages (yP , GP , RP ) is fixed once and for all. Thereby, we obtain a much
more simplified 5-round implementation. In this case, the proof of Theorem 1
remains essentially unchanged (other than being simplified). We remark that
the preimage-verifiability property plays a critical role in the proof of concurrent
soundness, as otherwise the malicious P ∗ can distinguish whether it is interacting
with honest verifier instances (who always continue the interactions w.r.t. a false
GP ∗ in which no Hamiltonian cycle exists) or with the knowledge extractor (who
always stops by brute-force checking the validity of GP ∗).

4.2 Generic Yet Practical Transformation

We first recall some key tools used in the generic practical transformation: We
assume the OWF fV used in key-generation admits Σ-protocols. Note that the
set of OWFs admitting Σ-protocols is large, which in particular includes the
popular DLP and RSA functions [20,14]. The PRF used by the prover is the
Naor-Reingold PRFs that can be based on the factoring (Blum integers) or the
decisional Diffie-Hellman hardness assumptions [18]. The computational com-
plexity of computing the value of the Naor-Reingold functions at a given point
is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural
preprocessing, which is great for practices involving PRFs.

Verifiable and Σ-provable trapdoor commitments (VPTC). For our pur-
pose, we need TC schemes satisfying the following additional requirements:

– Public-key verifiability. The validity of TCPK (even generated by a mali-
cious commitment receiver) can be efficiently verified. In particular, given
any TCPK, one can efficiently verify whether or not TCSK exists. Actu-
ally, in the generic practical transformation the public-key verifiability prop-
erty just serves the role of preimage-verifiable OWF in the above preimage-
verifiable OWF-based simplified implementation.

– Public-key Σ-provability. On common input TCPK and private input
TCSK, one can prove, by Σ-protocols, the knowledge of TCSK.

The first round of a VPTC scheme is denoted by V PTCPK and the correspond-
ing trapdoor is denoted by V PTCSK. We note both the DLP-based [4] and the
RSA-based [19] perfectly-hiding trapdoor commitment schemes are VPTC.

The generic practical transformation from any Σ-protocol. We highlight
the modifications, in comparison with the preimage-verifiable OWF-based sim-
plified implementation. The generic practical implementation is for any language
L that admits Σ-protocols. The RRF is replaced by Naor-Reingold PRF; The
OWF fV used in key-generation stage is replaced by any OWF admitting Σ-
protocols; The trapdoor commitment scheme is replaced by the VPTC scheme,



Generic and Practical Resettable Zero-Knowledge in the BPK Model 145

and the sending of the yP using the preimage-verifiable OWF fP is just replaced
by the sending of V PTCPK on the top (note that we no longer need to reduce
V PTCPK to a Hamiltonian Graph by NP-reductions); All WI protocols are
replaced by ΣOR-protocols (without NP-reductions).

4.3 Round-Optimal Implementation

For the above 5-round preimage-verifiable OWF simplified implementation, to
further reduce the round-complexity, we want to fold the prover’s initialization
message, i.e., (yP , GP , RP ), into the third-round of the 5-round protocols (that
is from the prover to the verifier). This would render us 4-round (that is optimal)
rZK-CS arguments for NP in the BPK model. To this end, we let the verifier
use OWP-based one-round perfectly-binding commitment scheme at Stage-2 of
Phase-1 (thus waiving the value RP ), and replace the Blum’s WIPOK proto-
col (executed on common input (yP , GP , yV ) with the verifier playing the role
of knowledge prover) by the Lapidot-Shamir WIPOK protocol (as in this case
the verifier sends the first-round message without knowing the statement, i.e,
(yP , GP , yV ), to be proved). But, the challenge here is that, for our purpose, we
need the following cryptographic tool (to replace the two-round FSTC scheme):
A one-round OWP-based trapdoor commitment scheme based on DHC, in which
the committer sends the one-round commitments without knowing the graph GP

(serving as TCPK) other than the lower and upper bounds of its size (guaran-
teed by the underlying NP-reduction from yP to GP ), and GP is only sent in
the decommitment stage after the commitment stage is finished. We develop a
trapdoor commitment scheme of this type in this work, described below:

One-round commitment stage. To commit a bit 0, the committer sends a
q-by-q adjacency matrix of commitments with each entry of the adjacency
matrix committing to 0. To commit a bit 1, the committer sends a q-by-
q adjacency matrix of commitments such that the entries committing to 1
constitute a randomly-labeled cycle C. We remark that the underlying com-
mitment scheme used in this stage is the one-round OWP-based perfectly-
binding commitment scheme.

Two-round decommitment stage. The commitment receiver sends a Hamil-
tonian graph G = (V, E) with size q = |V | to the committer. Then, to de-
commit to 0, the committer sends a random permutation π, and for each
non-edge of G (i, j) 
∈ E, the committer reveals the value (that is 0) that
is committed to the (π(i), π(j)) entry of the adjacency matrix sent in the
commitment stage (and the receiver checks all revealed values are 0 and the
unrevealed positions in the adjacency matrix constitute a graph that is iso-
morphic to G via the permutation π). To decommit to 1, the committer only
reveals the committed cycle (and the receiver checks that all revealed values
are 1 and the revealed entries constitute a q-cycle).

Acknowledgments. We thank Di Crescenzo, Persiano and Visconti for helpful
discussions.



146 M. Yung and Y. Zhao

References

1. B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-
Knowledge and Its Applications. In IEEE Symposium on Foundations of Computer
Science, pages 116-125, 2001.

2. M. Bellare, M. Fischlin, S. Goldwasser and S. Micali. Identification protocols secure
against reset attacks. In B. Pfitzmann (Ed.): Advances in Cryptology-Proceedings
of EUROCRYPT 2001, LNCS 2045, pages 495–511. Springer-Verlag, 2001.

3. M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings
of the International Congress of Mathematicians, pages 1444-1451, 1986.

4. Brassard, D. Chaum and C. Crepeau. Minimum Disclosure Proofs of Knowledge.
Journal of Computer Systems and Science, 37(2): 156-189, 1988.

5. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge.
In ACM Symposium on Theory of Computing, pages 235-244, 2000.

6. R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-
Knowledge Requires (Almost) Logarithmically Many Rounds. In SIAM Journal
on Computing, 32(1): 1-47, 2002.

7. R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 1994, LNCS 839, pages 174-187, 1994.

8. I. Damgard. Lecture Notes on Cryptographic Protocol Theory, Aarhus University.
9. G. Di Crescenzo, G. Persiano and I. Visconti. Constant-Round Resettable Zero-

Knowledge with Concurrent Soundness in the Bare Public-Key Model. In M.
Franklin (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2004, LNCS
3152, pages 237-253, Springer-Verlag, 2004.

10. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium
on Theory of Computing, pages 409-418, 1998.

11. U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
G. Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS
435, pages 526-544, Springer-Verlag, 1989.

12. O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

13. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems In ACM Symposium on Theory of Computing, pages 291-304, 1985.

14. L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Gnther (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 1988, LNCS
330 , pages 123-128, Springer-Verlag, 1988.

15. D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge
Proofs. In A.J. Menezes and S. A. Vanstone (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1990, LNCS 537, pages 353-365. Springer-Verlag, 1990.

16. S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565,
Springer-Verlag, 2001.

17. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2):
151-158, 1991.

18. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. Journal of the ACM, 1(2): 231-262 (2004).

19. T. Okamoto. Provable Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes In E. F. Brickell (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1992, LNCS 740, pages 31-53, Springer-Verlag, 1992.



Generic and Practical Resettable Zero-Knowledge in the BPK Model 147

20. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3): 24, 1991.

21. A. C. C. Yao, M. Yung and Y. Zhao. Concurrent Knowledge-Extraction in the
Public-Key Model. Manuscript, 2007.

22. Y. Zhao, X. Deng, C. H. Lee and H. Zhu. Resettable Zero-Knowledge in the Weak
Public-Key Model. In E. Biham (Ed.): Advances in Cryptology-Proceedings of
EUROCRYPT 2003, LNCS 2656 , pages 123-140, Springer-Verlag, 2003.



Instance-Dependent Verifiable Random
Functions and Their Application to

Simultaneous Resettability�

Yi Deng and Dongdai Lin

The state key laboratory of information security,Institute of software,
Chinese Academy of sciences, Beijing, 100080, China

{ydeng,ddlin}@is.iscas.ac.cn

Abstract. We introduce a notion of instance-dependent verifiable ran-
dom functions (InstD-VRFs for short). Informally, an InstD-VRF is, in
some sense, a verifiable random function [23] with a special public key,
which is generated via a (possibly)interactive protocol and contains an
instance y ∈ L ∩ {0, 1}∗ for a specific NP language L, but the secu-
rity requirements on such a function are relaxed: we only require the
pseudorandomness property when y ∈ L and only require the unique-
ness property when y /∈ L, instead of requiring both pseudorandomness
and uniqueness to hold simultaneously. We show that this notion can be
realized under standard assumption.

Our motivation is the conjecture posed by Barak et al.[2], which states
there exist resettably-sound resettable zero knowledge arguments for NP.
The instance-dependent verifiable random functions is a powerful tool to
tackle this problem. We first use them to obtain two interesting instance-
dependent argument systems from the Barak’s public-coin bounded con-
current zero knowledge argument [1], and then, we
1. Construct the first (constant round) zero knowledge arguments for

NP enjoying a certain simultaneous resettability under standard
hardness assumptions in the plain model, which we call bounded-
class resettable ZK arguments with weak resettable-soundness
Though the malicious party (prover or verifier) in such system is
limited to a kind of bounded resetting attack, We put NO restric-
tions on the number of the total resets made by malicious party.

2. show that, under standard assumptions, if there exist public-coin
concurrent zero knowledge arguments for NP, there exist the
resettably-sound resetable zero knowledge arguments for NP.

Keywords: instance-dependent verifiable random functions, simultane-
ous resettability, zero knowledge.

1 Introduction

Pseudorandom functions, introduced by Goldreich, Goldwasser and Micali [14],
are basic cryptographic primitives and have been used in a wide range of
� This work is supported by the National Natural Science Foundation of China under

Grant No. 60673069.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 148–168, 2007.
c© International Association for Cryptology Research 2007



Instance-Dependent Verifiable Random Functions 149

cryptographic applications. Loosely speaking, pseudorandom functions are ef-
ficient functions that cannot be tell apart from truly random functions by any
polynomial-time observer that given a black-box access to those functions.

In some applications, the seed (the description of a specific pseudorandom
function) owner needs to convince the observer (querier) that his reply to the the
observer’s query is correctly computed in order to protect the observer. To serve
this need, Micali et al. put forward the concept of verifiable random functions
[23]. Informally, a verifiable random function is described by a public/secret key
pair, and its output consists of two part, a pseudorandom value and a proof that
proving this value is correct. The security requirements for such a function are:
1)uniqueness. Except with a exponentially small probability, there is only one
value for a fixed query can be proved correct with respect to the public key;
2)pseudorandomness. After several queries, a polynomial-time observer can not
distinguish between a value that is computed by evaluating the function on his
new query and a value picked at random without the help of proof of correctness.
These distinguishing features make it useful in protocol design, as demonstrated
in [21, 22].

Zero knowledge (ZK for short) proof [16, 15], a proof that reveals nothing
but the validity of the assertion, is another fundamental tool in design of cryp-
tographic protocols. In recent years, several notable notions have emerged to
capture some new security concerns that arise in modern maliciously asynchro-
nous communication environment, such as concurrent ZK[11]and universal com-
posable ZK[7]. An other notable concept is resettable ZK (rZK) introduced by
Canetti et al.[8]. The rZK formalizes security in a scenario in which the verifier
is allowed to reset the prover in the middle of proof to any previous stage. From
the randomness point of view, this notion is a strongest security measure. Obvi-
ously the notion of rZK is stronger than that of concurrent ZK and therefore we
can not construct a constant round black-box rZK protocol in the plain model
for non-trivial languages[9].

Following the above work, Barak et al. [2] initiated the study of soundness
in a setting where the prover can reset the honest verifier, and showed that
the public-coin constant round ZK argument of knowledge [1, 3] can be easily
transformed into constant-round resettably-sound ZK argument of knowledge.
Barak et al. also made a fascinating conjecture in [2]: there exist resettably-sound
resettable ZK arguments for NP. Unfortunately, no progress on this conjecture
has been made so far. The known results either achieved only resettable zero
knowledge, such as the (non-constant round) resettable ZK proof system of [8]
and the constant round public-coin bounded-resettable ZK argument system
(we call it BLV’s protocol) of [5], or achieved only resettable-soundness, such as
resettably-sound ZK argument system of [2].

It is shown that psedurandom functions are crucial ingredients in the construc-
tions of all known rZK or resettably-sound ZK protocols. However, the pseudo-
random functions, even the stronger primitive of verifiable random functions,
seem not powerful enough to tackle the simultaneous resettability problem, and



150 Y. Deng and D. Lin

this lead us to develop the new primitive—instance-dependent verifiable random
functions (InstD-VRFs for short).

Motivation behind InstD-VRFs. Let’s return to the resettably-sound ZK ar-
gument in [2]. We first note that if we modify this protocol in such a way that
the verifier’s messages (except for the first one) satisfy some kind of binding
property, for example, the verifier’s responses are determined by the first veri-
fier’s message and the history messages so far, then the resetting attack from the
malicious verifier can be trivialized if the verifier do not reset the prover past
its first message, therefore it seems the resulting protocol achieves some certain
simultaneous resettability. Apparently, This can be done by plugging a verifi-
able random function in Barak’s public-coin bounded concurrent ZK protocol:
the first verifier’s message includes a public key of verifiable random function
along with the description of a hash, and all subsequent verifier’s messages are
computed by applying the verifiable random function to the history messages in
a session.

At a first look, the above resulting protocol enjoys certain desirable simul-
taneous resettability: besides achieving a stronger ZK property than bounded
resettable ZK that is achieved in the BLV protocol [5], it seems to be resettably-
sound due to the pseudorandomness of the verifiable random function. Indeed,
we can prove this protocol is ZK against somewhat restricted resetting verifier.
However, we do not know how to prove the soundness in standard way (i.e., prov-
ing by reduction), let alone the resettably-soundness, because for the analysis of
soundness to go through we typically need some freedom in verifier’s responses to
the same history of messages (i.e., verifier can choose different messages to reply
the same history of messages)in the WI universal argument of Barak’s protocol,
and unfortunately, the uniqueness of the verifiable random functions precludes
this possibility.

Inspired by the previous interesting instance-dependent commitment scheme
[19, 20], We introduce the notion of instance-dependent verifiable random func-
tions (InstD-VRFs), to achieve a certain simultaneous resettability. Informally, an
InstD-VRF is, in some sense, a verifiable random function [23] with a special pub-
lic key, which is generated via a (possibly)interactive protocol and contains an
instance y ∈ L ∩ {0, 1}∗ for a specific NP language L, but the security require-
ments on such a function are relaxed: we only require the pseudorandomness
property when y ∈ L and only require the uniqueness property when y /∈ L,
instead of requiring both pseudorandomness and uniqueness to hold simultane-
ously. The reason why such functions are useful is that we use only the uniqueness
to justify resettable ZK property and use only the pseudorandomness to justify
resettable-soundness.

Our contributions. In this paper We introduce a notion of instance-dependent
verifiable random functions and realize them under standard assumption. These
functions yields two interesting instance-dependent argument systems, which we
call key instance-dependent resettably-sound bounded-class resettable ZK argu-
ment and resettable witness indistinguishable argument with instance-dependent



Instance-Dependent Verifiable Random Functions 151

weak resettably-soundness. These results extend the study of instance-dependent
primitives (protocols).

The instance-dependent verifiable random functions, together with the above
instance-dependent protocols, are powerful tools to tackle the simultaneous re-
settability conjecture. By using them, we construct the first (constant round)
zero knowledge arguments for NP enjoying certain simultaneous resettability in
the plain model. In our argument system, both the prover and the verifier are
protected from some kinds of restricted resetting attacks: For the malicious re-
setting prover, we put a priori bound on the number of the first messages sent by
it to each incarnation of the honest verifier, and for the malicious resetting veri-
fier, in addition to putting the aforementioned restriction on it, We further put a
priori bound on the number of incarnations of prover with which it is allowed to
interact. We call this protocol the bounded-class resettable ZK argument with
weak resettable-soundness. We stress our arguments assume standard (polyno-
mial time) hardness assumptions and their resettable security for the prover (the
verifier) does not rely on any restriction on the number of the total resets made
by malicious verifiers (provers). This is in contrast to the BLV protocol [5] (that
achieves only standard soundness), which relies on a priori bound of the total
resets made by malicious verifiers and exponential hardness assumptions.

We also show that, if there exist public-coin concurrent ZK arguments for
NP, the idea behind the above construction can be applied to the unbounded
simultaneously resettable setting, and this leads to resettably-sound resetable
ZK arguments for NP.

The resettable witness indistinguishable argument with instance-dependent
weak resettably-soundness is a crucial and delicate component in our main con-
structions (in section 5), in which both the prover and the verifier use a instance-
dependent verifiable random function. For the prover, the instance to be proven
serves as the key instance for its InstD-VRF directly. The most interesting but
difficult task is to produce a key instance for the verifier’s InstD-VRF. Our so-
lution to this problem is to have the prover generate a NO key instance with
respect to a hard-to-decide language for the verifier and prove to the verifier that
the statement to be proven is true or this key instance is an YES instance via
a resettable witness indistinguishable argument with instance-dependent weak
resettably-soundness. A glaring property of this argument is that it is argument
of knowledge when the statement to be proven (in the global system) is false, and
this is the crux in the analysis of the soundness of our main argument systems
presented in section 5.

Subsequent work. The instance-dependent verifiable random functions seem
to have potential beyond what we demonstrate in this paper. Very recently, by
using these functions in a novel way, we construct resettable witness indistin-
guishable argument with instance-dependent unbounded (in contrast to ”weak”)
resettably-soundness, and this immediately yields a (unbounded) resettably-
sound bounded-class resettable ZK argument, which gets close to the simul-
taneous resettability conjecture.



152 Y. Deng and D. Lin

Outline. The definition of bounded-class resettable ZK and weak resettable-
soundness are presented in section 2. In section 3, we introduce the notion
of instance-dependent verifiable random functions and show a construction of
this primitive under standard assumption. The application of the new primitive
are described in section 4, 5. In section 4 we present two interesting instance-
dependent protocols that are crucial building block for our construction of
bounded-class resettable ZK argument with weak resettable-soundness, and the
latter argument, along with a sufficient condition for the simultaneous resetta-
bility conjecture, are presented in section 5.

2 Definitions

In this section we mainly define bounded-class resettable ZK and weak resettable-
soundness, which can be viewed as intermediate notions between their full re-
settable analogues and bounded resettable analogues. Due to lack of space, we
refer readers to [13] for some basic concepts, such as computational indistin-
guishability, (statistically-biding) commitment scheme, hybrid argument, and so
on.

In the following We denote by δ ←R Δ the process of picking a random
element δ from Δ, and abbreviate probabilistic polynomial time as PPT. A
function f(n) is said to be negligible if for every polynomial q(n) there exists an
N such that for all n ≥ N , f(n) ≤ 1/q(n).

We follows the standard definition of zero knowledge argument in [13]. Note
that for such a protocol the soundness is required to hold only against PPT
adversaries.

Resettable prover and bounded-class resettable ZK. Resettable ZK was
introduced in [8]. In essence, it guarantees the security of a prover with fixed
random tape in a scenario the verifier is allowed to run polynomial number
sessions with this fixed prover.

We introduce the notion of bounded-class resettable ZK. We call a fixed prover
strategy P (i,j) = Pxi,wi,rj an incarnation. We categorize all sessions between a
verifier and a fixed incarnation of prover into a class if they share the same veri-
fier’s first message msg. We denote a class associated with the incarnation P (i,j)

and the verifier’s first message msg with ClassP (i,j) ,msg. Note that it is possible
that a class contains (unbounded) any polynomial number sessions because the
verifier is allowed to reset the prover.

Definition 1. (Bounded-class resettable ZK argument) Let t be a polynomial.
An interactive argument (P, V ) for a language L is said to be t3-bounded-class
resettable ZK if for every every PPT adversary V ∗ there exists a PPT M so
that the following two distributions are computational indistinguishable, where
each distribution is indexed by a sequence of distinct common inputs x = x1, · ·
·, xt ∈ L ∩ {0, 1}n and a corresponding sequence of prover’s auxiliary inputs
w = w1, · · ·, wt,



Instance-Dependent Verifiable Random Functions 153

Distribution 1. is defined by the following random process depending on P and
V .
1. Randomly pick and fix t random tapes, r1, ···, rt, resulting in t2 determin-

istic incarnations P (i,j) = Pxi,wi,rj defined by Pxi,wi,rj (α) = P (xi, wi,
rj , α), for (i, j) ∈ {1, · · ·, t} × {1, · · ·, t}.

2. The adversary V ∗ is allowed to run polynomial many sessions with the
P (i,j)’s, but for each P (i,j), the verifier can not reset P (i,j) past its first
message more than t−1 times, that is, the number of different V ∗’s first
message to each incarnation P (i,j) is a priori bounded by t. Under this
restriction, the verifier is allowed to schedule all sessions in interleaving
way: V ∗ can send arbitrary messages to each of the P i,j, and obtain the
responses of P (i,j) to such messages immediately.
This results in at most t3 classes in the whole interaction.

3. Once V ∗ decides it is done interacting with the P (i,j)’s, it produces an
output based on its view of the whole interaction. We denote this output
by (P (w), V ∗)(x).

Distribution 2. is the output of M(x).

The resetting attack performed by the restricted malicious verifier in the above
definition is called bounded-class resetting attack. We stress there is essential dif-
ference between bounded-resettable ZK [5] and bounded-class resettable ZK: We
impose no restriction on the number of the total resets (sessions) that malicious
verifiers can make.

Resettable verifier and weak resettable-soundness. Following the defini-
tions of resettablly-sound arguments in [2], we consider a weak resetting attack,
in which a malicious prover is not allowed to reset an incarnation of the verifier
past its first message more than t − 1 times, but still can interact with arbitrary
polynomial number of verifier’s incarnations. This kind of attack corresponds to
the following notion of soundness.

Definition 2. (Weak resettably-sound argument of knowledge.) for some a-
priori fixed polynomial t, a weak resetting attack of a malicious prover P ∗ on
a resettable verifier V is defined by the following random process, indexed by a
security parameter n.

1. Uniformly picks and fix poly(n) random-tapes, denoted r1, · · ·, rpoly(n), for
V , resulting in deterministic strategies V (j)(x) = Vx,rj , x ∈ {0, 1}n and
j ∈ {1, · · ·, poly(n)}, defined by Vx,rj (α) = V (x, rj , α). We call each V (j)(x)
an incarnation of V .

2. Taking as input 1n, P ∗ is allowed to initiate any polynomial number sessions
with the V (j)(x)’s, but the number of different P ∗’s first message to each
incarnation V (j)(x) is a priori bounded by t. Under this restriction, the
prover P ∗ is allowed to schedule all sessions in interleaving way as usual: P ∗

can send arbitrary messages to each of the V (j)(x), and obtain the responses
of V (j)(x) to such messages immediately.



154 Y. Deng and D. Lin

We say an argument system (P, V ) is a weak resettably-sound argument of knowl-
edge system if it satisfies:

1. Resttable-completeness: Considering an arbitrary resetting attack of a PPT
P ∗. If P ∗ follows the strategy of P in some sessions after selecting an incar-
nation V (j)(x) and x ∈ L, then V (j)(x) rejects with negligible probability.

2. weak Resettably-soundness: For every weak resetting attack of a PPT P ∗,
the probability that in some sessions the corresponding V (j)(x) has accepted
an false statement (x /∈ L) is negligible.

3. Argument of knowledge: For every PPT P ∗, there exists a PPT machine E
such that for every weak resetting attack of P ∗, the probability that E, upon
input the description of P ∗, outputs a witness for the statement in a session
is negligibly close to the probability that P ∗ convinces V in a session.

We remark that in a weak resetting attack the malicious prover is entitled to
interacts with unbounded number of incarnations of the verifier. So we have four
types of resetting attack, full resetting attack, weak resetting attack, bounded-
class resetting attack and bounded resetting attack [5], each of which is more
powerful than the previous one.

Resettably-sound resettable WI. Roughly speaking, witness indistinguisha-
bility arguments [12] are arguments with property that nobody can tell which
witness was used to prove a statement in an interaction. Analogously, we define
Resettably-sound resettable WI (cf. [2]), and its variants according to our re-
strictions on the number of class and/or the number of a malicious party’s first
messages to each incarnation of the honest party. Due to space limitations, we
omit it here.

A note on terminology. Let A be a security property or a type of attack. In
the rest of the paper, the notion ”unbounded A” means an unrestricted version
of A.

3 Instance-Dependent Verifiable Random Functions

In this section we will present the formal definition of instance-dependent veri-
fiable random functions and show how to implement it.

3.1 InstD-VRFs: Definition

As is hinted by its name, the public key for a instance-dependent verifiable
function contains a instance y ∈ L ∩ {0, 1}∗ for a NP language L, and unlike
the verifiable random functions, whose pseudorandomness and uniqueness are
required to hold at the same time, we require an instance-dependent verifiable
random function satisfies only the pseudorandomness when y ∈ L, and satisfies
only the uniqueness when y /∈ L.

Let d, l : N → N be two polynomial. Formally, an instance-dependent ver-
ifiable random function with respect to an NP language L associates with the
following (interactive) algorithms:



Instance-Dependent Verifiable Random Functions 155

– KGProt, the key generation protocol between two parties, the querier A and
the owner of the function B, each party taking security parameter n and an
random string as input, produces a public/secret key pair (PK, SK), and
PK is of form (y, ·), where y ∈ L ∩ {0, 1}n is called key instance.

– F = (f, prov), the function evaluator, the first component is a determinis-
tic algorithm while the second component prov is a probabilistic algorithm.
Given a (PK, SK), on input an element a ∈ {0, 1}d(n) (the domain of fSK),
it outputs a function value b ∈ {0, 1}l(n) (the range of fSK) and a proof π.
That is, F(PK,SK)(a) = (fSK(a), prov(a, fSK(a), PK, SK)) = (b, π), where
F(PK,SK)(·) = F(PK, SK, ·).

– Ver, the verification (deterministic) algorithm, on input a, b, PK and a proof
π, Ver outputs 1 or 0.

– FakeF, the fake function evaluator. Assume y is in L. Given PK and a
witness wy for y ∈ L, for every a ∈ {0, 1}d(n), FakeF(PK,wy) can validate an
arbitrary false function value, i.e., for an arbitrary b ∈ {0, 1}l(n), taking a
as input, FakeF(PK,wy) can output (b, prov(a, b, PK, wy)) = (b, π) such that
Ver(a, b, PK, π) = 1.

The property of the fake function evaluator guarantees for a function h : {0, 1}d(n)

→ {0, 1}l(n) that deviates arbitrarily from the function fSK specified by the se-
cret key, We can run the algorithm prov using wy to produce a valid proof of
correctness for the function value h(a). We define the following two useful fake
functions:

– FakeF(PK,wy,s)(a) � (fs(a), prov(a, fs(a), PK, wy)), where fs : {0, 1}d(n) →
{0, 1}l(n) is an arbitrarily (independent of fSK) pseudorandom function.

– FakeF(PK,wy,h)(a) � (h(a), prov(a, h(a), PK, wy)), where h : {0, 1}d(n) →
{0, 1}l(n) is an arbitrarily (truly) random function.

Note that the algorithm prov in FakeF(PK,wy) produces a valid proof without
knowledge of the secret key SK, or the seed s (the description) of the function
fs (h) plugged in.

We say F(PK,SK)(·) is a instance-dependent verifiable function if it satisfies
the following conditions:

1. Provability. If (b, π) = F(PK,SK)(a), then Ver(a, b, PK, π) = 1
2. Uniqueness on NO key instance. If y /∈ L, then except with a negligible prob-

ability, there exist no values (a, b1, b2, PK, π1, π2) such that Ver(a, b1, PK, π1)
= Ver(a, b2, PK, π2) = 1

3. Pseudorandomness on YES key instance. If y ∈ L and wy is a witness for
y ∈ L, then for every PPT oracle machine M , every polynomial p, and all
sufficient large n′s,

|[Pr[MF(P K,SK)(1n) = 1]−Pr[MFakeF(P K,wy,h)(1n) = 1 : h ←R Hn]| < 1/p(n)

where Hn is the ensemble of all functions mapping d(n)-bit-long strings to
l(n)-bit-long strings.



156 Y. Deng and D. Lin

Remarks
On key generation protocol. In contrast to the verifiable random functions [23]
whose keys are generated by the function owner alone, our instance-dependent
verifiable random functions allows interaction between the querier and the owner
of the function in the key generation process. Note also that in above definition
we do not make any requirement on the key generation protocol. This will allow
us to design different key generation protocols for different purposes, see details
in section 4.2 and section 5.

On pseudorandomness when y ∈ L. We remark that in the testing experiment,
M obtains the function value along with its proof of correctness for every string
that the oracle machine M queried. This is different from the testing experiment
used to demonstrate the pseudorandomness of verifiable random functions, in
which providing the proof of correctness along with the function value of the
last query for judgement to the testing machine will trivialize this test because
of the uniqueness of the verifiable random functions.

3.2 InstD-VRFs: Constructions

We begin with an informal description of our construction. The querier A and
the function owner B execute a protocol and produce an key instance y, then B
selects a pseudorandom function f at random and commits to the description of
this function. On input a string a in the domain of f , B returns f(a) and a witness
indistinguishable proof in which he proves that the function value is computed
correctly or y ∈ L using the knowledge of description of f he committed to. The
public key of this instance-dependent verifiable random function consists of the
instance y, the commitment and the setup information for the WI proof, the
secret key is the decommitment.

For our applications, we require that the proof in use satisfies both resettable-
soundness and resettable WI. To this end, the 2-round ZAPs introduced in [10]
and the non-interactive ZAPs suggested in [17] are good candidates. Here we
adopt 2-round ZAPs just for the purpose of basing our results on more general
assumptions.

In the key generation protocol KGProt, the way to produce an key instance for
the owner of the function is a subtle problem and may vary depending on specific
applications. In our applications there are two approaches to do this: for the
function owned by the prover, the key instance in its public key is the instance
to be proven (therefore the honest prover supposedly knows the corresponding
witness wy); for the function owned by the verifier, the key instance will be
generated by the prover and the prover gives a special WI argument in which
it proves the statement to be proven is true or the key instance generated by
itself is an YES instance(therefore the instance generated by an honest prover
is a NO instance, and this guarantees the uniqueness property of this function).
See details in section 5.

Bearing the above in mind, we omit the formal description of KGProt here
for greater flexibility. Now, we simply assume that the key instance y has been
generated already. The rest components of the key pair are created in following



Instance-Dependent Verifiable Random Functions 157

way: the function owner B picks a pseudorandom functions fs0 from the ensem-
ble {fs : {0, 1}d(n) → {0, 1}l(n)}s∈{0,1}n , and commits to the seed s0 using a
statistically binding commitment scheme Com, let c = Com(s0, r) (r is the ran-
domness required by the commitment scheme). The querier A selects a random
string ρ as the first round message of ZAP and send it to B. On received ρ, the
function owner B publish the public key PK = (y, c, ρ) and keep SK = (s0, r)
as the secret key.

Given (PK, SK), on input a ∈ {0, 1}d(n), F(PK,SK) returns a function value
b and the second round message of ZAP π (the proof) in which it proves that
there exist (s0, r) such that fs0(a) = b and c = Com(s0, r) or y ∈ L. i.e.,
F(PK,SK)(a) = (fs0(a), prov(a, fs0 (a), PK, SK)) = (b, π). Here we can view the
probabilistic algorithm prov as the prover in a ZAP system.

In the fake function evaluator FakeF(PK,wy), by using the witness wy to the
YES instance y, the algorithm prov can always generate the valid proof of cor-
rectness regardless of whether the function value is correct or not.

Theorem 1. If there exist trapdoor permutations, there exist instance-
dependent verifiable random functions.

Proof. We prove that The function evaluator F(PK,SK) described above is an
instance-dependent verifiable random function. Note that the statistically-
binding commitment scheme and pseudorandom functions can be constructed
based on one-way fucntions [24, 18], and ZAPs assumes only trapdoor
permutations.

The Provability is straightforward. Uniqueness on NO key instance follows
immediately from the statistically-binding property of Com and the soundness
of ZAPs.

We prove the Pseudorandomness on YES key instance using hybrid argu-
ments. For every PPT oracle machine M , we consider the following sequences
of hybrids, in each hybrid M makes a polynomial number of queries to a func-
tion that is slightly different from the one in previous hybrid. We complete the
proof by showing M distinguishes each hybrid from its neighbor with at most a
negligible probability.

Hybrid 0 M queries F(PK,SK).
Hybrid 1 M queries F′(PK,SK), where F′(PK,SK)(·) = (fs0(·), prov(·, fs0 (·), PK,

wy)). That is, F′(PK,SK) behaviors as the same as F(PK,SK) except it pro-
duces the proof of correctness using the witness wy to y ∈ L. The fact that
F(PK,SK) and F′(PK,SK) are indistinguishable follows immediately from the
witness indistinguishability of ZAPs.

Hybrid 2 M queries FakeF(PK,wy ,s), where the pseudorandom function seed s

is selected at random. We claim that M cannot distinguish F′(PK,SK) from
FakeF(PK,wy,s) with non-negligible probability. Assume otherwise, we con-
struct a non-uniform algorithm D to break the hiding property of the sta-
tistically binding commitment Com. We give the detailed proof later.

Hybrid 3 M queries FakeF(PK,wy,h), where h is a truly random function. Note
that the proof of correctness has nothing to do with the seed s or the



158 Y. Deng and D. Lin

description of h, so if M distinguishes FakeF(PK,wy ,s) from FakeF(PK,wy,h),
it distinguishes a pseudorandom function form a truly random function.

Now we give the description of algorithm D to prove the claim in Hybrid 2. D
runs as follows. It takes s0,s1 and wy

1 as input. On received the target commit-
ment c′ that is the commitment to s0 or s1, D uses PK = (y, c′, ρ) as public key,
and for any query a made by M , it returns fs0(a) and prov(a, fs0 (a), PK, wy))
(Note that D always uses fs0 to compute the function value, then when c′ =
Com(s0), D performs as F′(PK,SK); when c′ = Com(s1), D performs as
FakeF(PK,wy,s0)). At end, if M outputs b ∈ {0, 1}, D output 1 − b. We show
D breaks the hiding property of Com. We assume for some polynomial p,

|[Pr[MF′
(P K,SK)(1n) = 1] − Pr[MFakeF(P K,wy,s)(1n) = 1 : s ←R {0, 1}n]| > 1/p(n)

Then we have

|[Pr[D outputs 1|c′ = Com(s1)] − Pr[D outputs 1|c′ = Com(s0)]

=|[Pr[MFakeF(P K,wy,s0)(1n) = 0] − Pr[MF′
(P K,SK)(1n) = 0]|

=|[Pr[MF′
(P K,SK)(1n) = 1] − Pr[MFakeF(P K,wy,s0)(1n) = 1]|

>1/p(n)

A note on input length. We remark that an InstD-VRF F(PK,SK) with domain
{0, 1}d(n) can also be applied to inputs of length shorter than d(n) by simply
encoding the shorter inputs into the ones of desired length (cf. [13]) and using
a prefix of ρ with suitable length as the first round message of a ZAP for the
proof of correctness.

4 Two Instance-Dependent Protocols

With the instance-dependent verifiable random functions we developed, We
are ready to construct two interesting instance-dependent protocols, which we
call key instance-dependent resettabley-sound bounded-class resettable ZK ar-
gument (KInstD rs-rZK argument) and resettable WI argument with instance-
dependent weak resettable-soundness (InstD rs-rWI argument). Though these
protocols do not even satisfy ZK (WI) and (knowledge) soundness at the same
time, they are crucial tools for our main constructions presented in next sections.

1 In case y is generated by the querier in the key generation protocol, it seems that
y must be generated before the commitment c is seen by the querier, otherwise,
our non-uniform algorithm D does not work because it needs to take a fixed advice
(i.e.,the witness to y) in advance (before seeing the target commitment) in breaking
the hiding property of the commitment. However, in our applications, we do not
need comply with this order. To enable the above analysis, we require the querier
give a special argument of knowledge of the witness to y which is generated by itself.



Instance-Dependent Verifiable Random Functions 159

4.1 Key Instance-Dependent Resettabley-Sound Bounded-Class
Resettable ZK Arguments for NP

We first show how to transform a public-coin bounded concurrent ZK argument
into a key instance-dependent resettabley-sound bounded-class resettable ZK ar-
gument by equipping the verifier in the former system with an instance-dependent
verifiable random function. Similar to any other instance-dependent primitive, the
key instance-dependent resettabley-sound bounded-class resettable ZK argument
satisfies only the resettable-soundness when the key instance is a YES instance,
and satisfies only the bounded-class resettable ZK when the key instance is a NO
instance.

As showed in [2], we can transform a constant-round public-coin bounded con-
current ZK argument (PB, VB) into a constant round resettably-sound bounded
concurrent ZK argument (PR, VR) by simply equipping VR with a pseudoran-
dom function and letting VR emulate VB except that it generate the current
round message by applying a pseudorandom function to the transcript so far.
With the argument (PR, VR), We construct a key instance-dependent resettably-
sound bounded-class resettable ZK argument (KInstD rs-rZK argument, for
short) (P, V ) as follows. The prover P and the verifier V first execute a key
generation protocol KGProt aimed at setting up a key pair (PK, SK) of an
instance-dependent verifiable random function F(PK,SK) = (fs0 , prov) with re-
spect to a hard language L′ (the choice of language L′ see section 5) for V , and
then they execute the protocol (PR, VR) in following way: 1) In each P ’s step,
P checks whether the message sent by V is computed correctly, if so, it replies
according to the instruction of PR; 2) V feeds VR with the randomness s0, and
in each V ’s step, V generates its message by running VR and using the algorithm
prov in F(PK,SK) = (fs0 , prov) to give a proof of correctness for the output by
VR. Note that VR always generates its message by applying fs0 to the history
produced by PR and VR, so each V ’s message can be viewed as the output by
F(PK,SK) = (fs0 , prov) on the the transcript of the underlying protocol (PR, VR)
so far. See Fig.1 for the formal description.

We assume the transcript size of an execution of the resettably-sound t3-
bounded concurrent ZK argument (PR, VR) is bounded by a polynomial d, and
assume the longest message sent by VR is t3n3. Without of loss generality, We
assume all verifier’s messages are of equal length.

Theorem 2. The KInstD rs-rZK argument (P, V ) depicted in Fig.1 satisfies
following conditions:

1. Unbounded resettable-soundness when y ∈ L′: for any x /∈ L, if all key
instance y’s generated by an incarnation V (j)(x) = Vx,rvj

are in L, then for
any PPT P ∗ mounting unbounded resetting attack, the probability that V (j)

(x) accept in some session is negligible.
2. t3-Bounded-class resettable ZK when y /∈ L′: For all PPT V ∗ mounting

bounded-class resetting attack, if y /∈ L′ holds for all sessions, then there
exists a PPT M satisfying the requirement of Definition 1.



160 Y. Deng and D. Lin

KInstD rs-rZK Argument (P, V )

Common input: x ∈ L (|x| = n)
The Prover’s private input: a witness w for x ∈ L.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

Phase 1: the key generation protocol KGProt
V → P V sets (r1

v, r2
v) = frv (x), selects fs0 ←R {fs : {0, 1}≤d(n) →

{0, 1}t3n3}s∈{0,1}n and r0 ←R∈ {0, 1}n using randomness r1
v, computes

c0 = Com(s0, r0) using the statistically-binding commitment scheme
Com and generates an instance y ∈ L′ ∩ {0, 1}n, stores SK = (s0, r0).
Sends c0, y;

P → V P sets (r1
p, r2

p) = frp(x, c0, y), selects the first message ρ for a ZAP using
randomness r1

p. at random. At the end of this step, the InstD-VRF’s key
pair (PK, SK) = ((y, c0, ρ), (s0, r0)) is set up for V .
Sends ρ;

Phase 2: the Modified resettably-sound t3-bounded concurrent ZK argument
V ⇔ P Let (PR, VR) be the resettably-sound t3-bounded concurrent ZK argu-

ment. P writes r2
p on PR’s random tape. V writes s0 on VR’s random

tape (the description of fs0). P and V perform the following strategy.

V ’s Strategy In each V ’s step, V runs VR(s0, ·) on input hist, where
hist is the history (including the common input) produced by PR

and VR (not the history produced by P and V ) so far. V obtains
mv = VR(s0, hist), and computes π = prov(hist, mv, PK, SK) us-
ing randomness fr2

v
(hist), then V sends (mv, π) to P .

Note that (mv, π) = (fs0(hist), prov(hist, mv, PK, SK)) =
F(PK,SK)(hist) (VR always generates mv by applying fs0 to the
history so far).

P ’s Strategy In each P ’s step, P checks whether the message (mv, π)
sent by V is correct by using the algorithm Ver associated with
F(PK,SK), if not, aborts; if so, runs PR(r2

p, ·) on input (hist, mv),
here hist is the history produced by PR and VR before the message
mv was sent by V . P sends mp = PR(r2

p, hist, mv) to V .
V ’s Decision V accepts if only if VR accepts the transcript that gen-

erated by PR and VR.

Fig. 1. The key instance-dependent resettably-sound bounded-class resettable ZK ar-
gument for a NP language L

Intuitively, the property of resettable-soundness when y ∈ L′ follows from the
fact that once the verifier has the witness, it can send arbitrary messages to a
same history of a session without being detected by the prover, so we can reduce
the soundness of the KInstD rs-rZK argument (P, V ) to the underlying protocol
(PR, VR). On the other hand, if all y’s are NO instance, then the first verifier’s



Instance-Dependent Verifiable Random Functions 161

message essentially determines the verifier’s behavior, this will make our protocol
enjoy bounded-class resettable ZK. The actual proof is omitted here, and will
be found in the full version of this paper.

4.2 The Resettable WI Arguments with Instance-Dependent Weak
Resettable-Soundness

In this subsection, we construct resettable WI arguments with instance-
dependent weak resettable-soundness (InstD rs-rWI argument, for short), in
which the prover proves that one of the two instances x0 and x1 is in the language
L. Though there are resetably-sound resettable WI arguments for NP such as
ZAPs, which achieves more stronger security than our InstD rs-rWI arguments,
however, the InstD rs-rWI arguments have a distinguishing property that ZAPs
do not enjoy: they are arguments of knowledge on some special instances. This
property is crucial for the analysis of soundness of our main construction pre-
sented in next section.

We assume that there are 3 round public-coin WI arguments of knowledge
for all NP languages. Let (a, e, z) is the three messages exchanged in a session.
Furthermore, we assume these arguments have the following property: it is easy
to extract the witness for the statement from two different transcripts (a, e, z)
and (a, e′, z′) when e �= e′. To this end, the parallelized version of Blum’s proof
of knowledge for Hamiltonian Cycle is a good candidate, which assumes one-way
permutations exist.

Our construction is inspired by the protocol 6.2 in [2], in which the verifier
first commits to a seed of a pseudorandom function and generates the query e
by applying this function to the first round message a. The important deviation
is that the verifier in our system uses a KInstD rs-rZK argument to prove the
query e is computed correctly. In the KInstD rs-rZK argument, one instance, say
x0, serves as the key instance for a InstD-VRF used by the verifier (the prover in
the global system). The formal description appears in Fig.2.

Theorem 3. The InstD rs-rWI argument (PW, VW) depicted in Fig.2 satisfies
following properties:

1. Unbounded Resettable witness indistinguishability: For any PPT V ∗W mount-
ing unbounded resetting attack, the distribution (PW(w0), V ∗W )(x) is compu-
tationally indistinguishable from (PW(w1), V ∗W )(x), where x = x1, · · ·, xpoly(n),
xi = (xi

0, x
i
1), wb = w1

b , ···, wpoly(n)
b such that (xi

b, w
i
b) ∈ RL, i = 1, ···, poly(n),

b = 0, 1.
2. Weak resettably-sound argument of knowledge property when x0 /∈ L: For

every PPT P ∗W mounting weak resetting attack, if P ∗W convinces VW on state-
ment (x0, x1) such that x0 /∈ L with probability p in a session, then there
exists a PPT machine E, upon input the description of P ∗W , outputs a witness
for the instance x1 with probability negligibly close to p.

The Unbounded Resettable witness indistinguishability follows from the fact that
the underlying KInstD rs-rZK argument satisfies resettably-soundness when x0 ∈



162 Y. Deng and D. Lin

L. For the Weak resettably-sound argument of knowledge property when x0 /∈ L,
We can construct a extractor E to justify it. Assume P ∗W convinces an incarnation
V j
W (x) on statement (x0, x1) such as x0 /∈ L with high probability in a session.

The extractor E first plays the role of V j
W (x) and get an accepting transcript

InstD rs-rWI Argument (PW, VW)

Common input: two instance x0, x1 ∈ L, a security parameter n.
The Prover’s private input: the witness w such that (x0, w) ∈ RL or (x1, w) ∈ RL.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

VW → PW VW sets (r1
v, r2

v) = frv (x0, x1). Using the randomness r1
v, VW selects a

pseudorandom function fs : {0, 1}≤poly(n) → {0, 1}|e| and r, computes
c = Com(s, r) using a statistically-binding commitment scheme Com.
Sends c;

PW → VW PW sets (r1
p, r2

p) = frp(x0, x1, c).
Using the randomness r1

p , PW invokes the 3 round WI argument in
which it proves x0 ∈ L or x1 ∈ L, produces the first message a of this
protocol .
using the randomness r2

p, PW invokes a KInstD rs-rZK argument (in
which PW plays the role of verifier), produces the first message c0 (i.e.,
the commitment to the description of pseudorandom function) and uses
x0 as the key instance.
Send a,c0;

VW → PW VW computes e = fs(x0, x1, c, a, c0). Using the randomness r2
v, VW and

selects the first message ρ for a ZAP according to the KInstD rs-rZK
argument.
Sends e, ρ;

PW ⇔ VW PW and VW continue to run the KInstD rs-rZK argument in which
VW proves there exist s, r such that e = fs(x0, x1, c, a, c0) and c =
Com(s, r). The public key for PW’s InstD-VRF is PK = (x0, c0, ρ) and
the corresponding secret key is the decommitment to c0.

PW → VW Sends the answer z to the query e according to the 3 round WI argument
if the above transcript is accepting.

VW’s Decision VW accepts if only if the transcript (a, e, z) is accepting.

Fig. 2. The resettable WI arguments with instance-dependent weak resettable-
soundness

(a, e, z) of the underlying 3-round WI argument, and then rewinds P ∗W to the
point that the message that contains a was first sent by P ∗W , and then sends
another challenge e′ and runs the simulator associated with the KInstD rs-rZK
argument to prove that e′ is correctly computed. At the end E will receive
another accepting transcript (a, e′, z′) with probability close to the probability
that P ∗W convinces V j

W (x), and this allows E to compute a witness for x1 (x0 is



Instance-Dependent Verifiable Random Functions 163

assumed to be NO instance). Due to space limitations, the formal analysis of
this extractor are omitted here and will appear the full version of this paper.

We stress that the InstD rs-rWI argument achieves weak resettably-sound
argument of knowledge property when x0 /∈ L, rather than bounded-class
resettably-sound argument of knowledge property when x0 /∈ L. There are two
reasons for this: 1) it is sufficient to consider only one incarnation of the veri-
fier in the analysis of soundness; 2) the simulation performed by E will be run
successful (due to the bounded resettable zero knowledge property when x0 /∈ L
of the underlying KInstD rs-rZK argument, note x0 is the key instance for P ∗W ’s
InstD-VRF).

However, we failed to achieve unbounded resettable-soundness. This is be-
cause, for justifying the extraction, we need to simulate all proofs given by V j

W (x),
not just those proofs given by V j

W (x) with the first P ∗W ’s (P ∗W plays the role of the
verifier in the underlying KInstD rs-rZK argument) first message (a, c0) (there-
fore, we need to put a priori bound on the number of the P ∗W ’s first messages).
Recently, we overcome this obstacle by using the the instance-dependent verifi-
able random functions in a novel way.

5 Transforming Public-Coin (Bounded) Concurrent
ZK Arguments to (Bounded-Class) Resettable ZK
Arguments with (Weak) Resettable-Soundness

We now show how to transform a public-coin bounded concurrent ZK argument
into a bounded-class resettable ZK argument with weak resettable-soundness, us-
ing the two instance-dependent protocols developed in last section. Furthermore,
if public-coin (unbounded) concurrent ZK argument exists, the same transforma-
tion yields a (unbounded) resettably-sound resettable ZK argument immediately.

We obtain a bounded-class resettable ZK argument with weak resettable-
soundness from a public-coin bounded concurrent ZK argument in the following
way: we first transform the public–coin bounded concurrent ZK argument into a
key instance-dependent resettably-sound bounded-class resettable ZK argument,
then we modify the resulting protocol in such a way taht, in the key generation
protocol, instead of having the verifier generates a key instance itself, we have the
prover generates a NO instance with respect to some hard-to-decide language
L′ as the key instance for the verifier’s InstD-VRF and gives a proof that the
statement x ∈ L to be proven is true or this key instance is a YES instance via a
resettable WI argument with instance-dependent weak resettable-soundness in
which the prover uses x as the key instance for its own InstD-VRF, The second
phase of the key instance-dependent resettably-sound bounded-class resettable
ZK argument remains unchanged. For the language L′, we choose the one defined
by a pseudorandom generator [6, 25]: L′ = {y|∃δ, y = G(δ), |y| = 2n, |δ| = n},
where G : {0, 1}n → {0, 1}2n is a pseudorandom generator. This protocol is
formally depicted in Fig.3.

The key idea behind this protocol is that for an honest prover, it always
generates NO instance as key instance of the verifier’s InstD-VRF, and for a



164 Y. Deng and D. Lin

false statement x /∈ L, the cheating prover must generate YES instance due
to the weak resettably-sound argument of knowledge property when x /∈ L of
the InstD rs-rWI argument used in the key generation protocol. Note that the
common input x itself serves as the key instance for the prover’s InstD-VRF in
the InstD rs-rWI argument.

Theorem 4. If there exist trapdoor permutations and collision-resistant hash
functions, there exist bounded-class resettable ZK arguments with weak
resettable-soundness for all NP languages.

We prove this theorem by showing the wrs-brZK argument described in Fig.3 is
a bounded-class resettable ZK argument with weak resettable-soundness for any
NP language L. For the complexity assumption, we note that one-way functions
are sufficient for the pseudorandom generator, so, our protocol assumes trapdoor
permutations and collision-resistant hash functions (for Barak’s protocol).
Proof. Completeness is straightforward.

Weak resettable-soundness. Assume a PPT P∗ mounting a weak resetting
attack, convinces an incarnation Vj(x) on a false statement x /∈ L with non-
negligible probability p. By the weak resettably-sound argument of knowledge
property when x /∈ L (note that x serves as the key instance of P∗’s InstD-
VRF) of the InstD rs-rWI argument in the key generation protocol, we have
with probability essentially close to p there exists ∃δ, |δ| = n such that y = G(δ)
(assume y is the instance generated by P∗), and use the extractor associated with
the InstD rs-rWI argument, we will extract the witness δ. Furthermore, note that
y serves as the key instance of the verifier’s InstD-VRF in phase 2, then using
this witness and the strategy P∗ , we can break the resettable-soundness of the
underlying resettably-sound bounded-concurrent ZK argument in phase 2 in a
way similar to the analysis of soundness for the KInstD rs-rZK argument, which
leads to a contradiction.

Bounded-class resettable ZK. This property follows from the next lemma.

Lemma 1. Let (PR, VR) be a resettably-sound t3-bounded concurrent ZK argu-
ment system, and (P,V) be the wrs-brZK argument transformed from (PR, VR).
Then for every PPT V∗ bounded-class resettable model, there exists a PPT V ∗R
in the bounded concurrent model such that (PR(w), V ∗R)(x) is computationally
indistinguishable from (P(w),V∗)(x), where x = x1, · · ·, xt ∈ L, w = w1, · · ·, wt

such that (xi, wi) ∈ RL, i = 1, · · ·, t.
Proof. We construct V ∗R in bounded concurrent model using the following strat-
egy to handle V∗’s message.

1. V∗ sends a new first message msg to P(i,j) : Assume this is the kth new
first message to P(i,j) (1 ≤ i, j, k ≤ t). V ∗R chooses δ randomly, generates
y = G(δ) itself, and stores (y, δ). It acts as honest prover but uses δ as the
witness to execute the InstD rs-rWI argument, and forwards a message to
V∗. Furthermore, V ∗R maintains a table, in which the row with index (i, j, k)
contains those messages belonging to the class ClassP(i,j),msgk

.



Instance-Dependent Verifiable Random Functions 165

2. V∗ repeats a first message msg to P(i,j). Assume msg equals msgk that V ∗R
received before. V ∗R retrieves its response to this message from row(i,j,k) in
its table and forwards it to V∗.

wrs-brZK Argument (P,V)

Common input: x ∈ L (|x| = n).
The Prover’s private input: the witness w such that (x,w) ∈ RL.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

Phase 1: the key generation protocol KGProt
V → P V sets (r1

v, r2
v, r3

v) = frv (x), selects fs0 and r0 ∈ {0, 1}n using ran-
domness r1

v, computes c0 = Com(s0, r0) using the statistically-binding
commitment scheme Com, and stores SK = (s0, r0).
Sends c0;

P ⇔ V P sets (r1
p, r2

p, r3
p, r4

p) = frp(x, c0) and generates a random string y (|y| =
2n) using randomness r1

p.
P and V run a InstD rs-rWI argument in which P proves that x ∈ L
or ∃δ, |δ| = n such that y = G(δ). In the underlying the KInstD rs-
rZK argument used in this InstD rs-rWI argument, x serves as the
InstD-VRF’s (owned by the prover in global system) key instance, the
randomness used by P is r2

p and the randomness used by V is r2
v.

P → V P selects the first message ρ for a ZAP using randomness r3
p. At the end

of this step, the InstD-VRF’s key pair (PK, SK) = ((y, c0, ρ), (s0, r0))
is set up for V.
Sends ρ;

Phase 2: the Modified resettably-sound bounded concurrent ZK argument
V ⇔ P P and V follows the same strategy as described in the phase 2 in the

KInstD rs-rZK argument (see Fig.1), in which the verifier uses an InstD-
VRF described by (PK, SK) = ((y, c0, ρ), (s0, r0)). In this phase, P uses
randomness r4

p and V uses randomness r3
v.

Fig. 3. The bounded-class resettable ZK argument with weak resettable-soundness for
a NP language L

3. V∗ sends a valid non-first message belonging to the key generation protocol
KGProt to P(i,j). V ∗R produces the response to this message2 according to the
key generation protocol KGProt as the honest prover but in the execution of
InstD rs-rWI argument it uses the δ as the witness. V ∗R stores this response,
and forwards it to V∗.

Note that V∗ is free in the key generation protocol, Thus a class recorded
by V ∗R may contain many different sessions due to V∗’s resetting in phase 1.

2 Without loss of generality, we assume each message sent by V ∗ is prepended with a
session ID.



166 Y. Deng and D. Lin

4. V∗ sends a invalid message belonging to the the key generation protocol
KGProt to P(i,j). V ∗R sends an abort message to V∗ to end this session.

5. V∗ sends a valid message belonging to the Modified resettably-sound bounded
concurrent zero knowledge argument (i.e., a message sent in phase 2) to
P(i,j). Assume that this message is the lth round message belonging to
ClassP(i,j),msgk

. Parse this message into (ml, πl). We distinguish three cases:

Case 1. The lth round message was sent by V∗ before in some previous
session in this class and the current message ml does not equal the
lth round message m′l recorded in the row row(i,j,k). In this case, V ∗R
terminates.

Case 2. The lth round message was never sent by V∗ before in this class. In
this case, V ∗R forwards ml to the incarnation P i,jk

R , stores ml and P i,jk

R ’s
response in row(i,j,k) and forwards it to V∗.

Case 3. The lth round message was sent by V∗ before in some previous
session in this class and the current message ml equals the lth round
message m′l recorded in the row row(i,j,k). In this case, V ∗R retrieves the
P i,jk

R ’s response to this message in the row(i,j,k) and forwards it to V∗.
We stress that in this case V ∗R does not interact with any incarnation of
PR.

Observe that for two different first verifier V∗’s messages msgm �= msgn to
the same incarnation P(i,j), V ∗R initiates two independent incarnations P i,jm

R
and P i,jn

R to generate the V∗’s view, and this strategy makes V ∗R look like
the real incarnation P(i,j).

6. V∗ sends a invalid message belonging to the Modified resettably-sound
bounded concurrent zero knowledge argument to P(i,j). V ∗R sends an abort
message to V∗ to end this session.

7. V∗ terminates. Without loss of generality, V∗ outputs its view in the whole
interaction. V ∗R outputs what V∗ outputs.

It is easy to see that the strategy V ∗R works in bounded concurrent models if
V∗ works in bounded-class resettable model. Since V ∗R runs only one session with
each P i,jk

R ’s, we can identify each class ClassP (i,j),msgk
with the single session of

V ∗R with P i,jk

R (though a class contains many different sessions, but all those
sessions have the same tail, i.e., the transcript produced by P i,jk

R and V ∗R in
phase 2).

Note that in sessions having different first verifier’s message or sessions be-
tween V∗ and different honest incarnations of P, P will generate (almost) inde-
pendent random tapes to emulate the action of PR in the second phase of the
wrs-brZK argument in different sessions, and V ∗R , incorporating with P i,jk

R ’s, uses
the same strategy as P in the second phase of this argument. So, if the case 1 in
item 5 does not occur, the only difference between V∗’s view during the interac-
tion with V ∗R and its view during the real interaction with many incarnations of
P is that in the former interaction V ∗R uses pseudorandom generator to produce
YES instances y and uses the corresponding witness to execute the InstD rs-rWI



Instance-Dependent Verifiable Random Functions 167

argument. We can use a standard hybrid algorithm3 to show V∗’s view in these
two scenario are indistinguishable, furthermore, note that V ∗R ’s view is just the
copy of V∗’s view, so (PR(w), V ∗R )(x) is computationally indistinguishable from
(P(w),V∗)(x).

Note that the case 1 in item 5 occurs with only negligible probability when
y is NO instance due to the uniqueness property of the InstD-VRF on NO
key instance. Therefore, if the case 1 occurs with non-negligible property in
our setting that all y’s are YES instances, then we construct an algorithm to
break the pseudorandomness of the generator. This algorithm takes all witness
for these statements x as inputs and uses them to execute the underlying InstD
rs-rWI argument, if case 1 occurs, outputs ”yes”. It is not hard to see that this
algorithm works.

Public-Coin Concurrent ZK Implies Simultaneously Resettable
Secure ZK. If public-coin concurrent ZK argument exists, then we can con-
struct key instance-dependent resettably-sound unbounded resettable ZK argu-
ment and resettable WI argument with instance-dependent unbounded resettable
soundness, therefore, using the above transformation, we get a resettably-sound
resettable ZK argument. So, we have

Theorem 5. If there exist public-coin concurrent zero knowledge argument for
a NP language L, and if trapdoor permutations exist, there exist resettably-
sound resettable ZK argument for L.

We don’t know if the public-coin concurrent ZK argument for non-trivial lan-
guage exists, and if Barak’s technique can be extended to (unbounded) con-
current setting. Theorem 5 shows this question deserves our attention: if such
protocols (regardless of the number of rounds) for NP exist, the simultaneous
resettability conjecture is true.

Acknowledgements. Yi Deng is grateful to Boaz Barak and Yehuda Lindell
for helpful conversations on concurrent and resettable zero knowledge. We thank
anonymous reviewers for their encouragement and valuable comments.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. of IEEE
FOCS 2001, pp.106-115.

[2] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably sound Zero Knowl-
edge and its Applications. In Proc. of IEEE FOCS 2001, pp. 116-125.

3 Consider an algorithm H takes the witnesses for all statement x as input, generates
YES instances using a pseudorandom generator, and interacts with V∗ using the
witnesses for x as witnesses to execute the underlying InstD rs-rWI argument. Ob-
serve that V∗’s view in the interaction with H is distinguishable form both its view
in the interaction with V ∗

R (due to resettable WI property of the underlying InstD
rs-rWI argument) and its view in the interaction with P (due to pseudorandomness
of the generator), thus we conclude the latter two are indistinguishable.



168 Y. Deng and D. Lin

[3] B. Barak, O. Goldreich. Universal Arguments and Their Applications. In Proc. of
IEEE CCC 2002, pp. 194-203.

[4] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proc. of
ICM’86, pp. 1444-1451, 1986.

[5] B. Barak, Y. Lindell, S. Vadhan. Lower Bounds for Non-Black-Box Zero Knowl-
edge. In Proc. of IEEE FOCS 2003, pp.384-393

[6] M. Blum, S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits. In Proc. of IEEE FOCS 1982, pp. 112-117

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proc. of IEEE FOCS 2001, pp.136-145

[8] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowledge.
In Proc. of ACM STOC 2000, pp.235-244

[9] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge re-
quires Ω(logn) rounds. In Proc. of ACM STOC 2001, pp.570-579.

[10] C. Dwork, M. Naor. Zaps and Their Applications. In Proc. of IEEE FOCS 2000,
pp.283-293

[11] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In Proc. of ACM
STOC 1998, pp.409-418.

[12] U.Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Proto-
cols. In Proc. of ACM STOC 1990, pp.416-426.

[13] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

[14] O. Goldreich, S. Goldwasser, S. Micali. How to construct random functions. J.
ACM 33(4), pp.792-807

[15] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their
validity or All languages in NP have zero-knowledge proof systems. J. ACM,
38(3), pp.691-729, 1991.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM. J. Computing, 18(1):186-208, February 1989.

[17] J. Groth, R. Ostrovsky and A. Sahai. Non-interactive Zaps and New Techniques
for NIZK. In Advances in Cryptology-Crypto’o6, LNCS 4117, pp.97-111.

[18] J. Hastad, R. Impagliazzo, L. A. Levin, M. Luby. A Pseudorandom Generator from
Any One-Way Functions. SIAM Journal on Computing 28(4):1364-1396, 1999.

[19] T. Itoh, Y. Ohta. A language-dependent cryptographic primitive. Journal of Cryp-
tology 10(1) pp.37-49, 1997

[20] Daniele Micciancio, Shien Jin Ong, Amit Sahai, Salil P. Vadhan. Concurrent Zero
Knowledge Without Complexity Assumptions. TCC 2006, LNCS3876, pp.1-20

[21] S. Micali, L. Reyzin. Soundness in the public-key model. In Advances in
Cryptology-Crypto’o2, LNCS2139, pp.542C565, 2001.

[22] S. Micali, R. Rivest. Micropayments revisited. In CT-RSA, pp.149C163, 2002.
[23] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proc. of IEEE

FOCS, pp. 120C130, 1999.
[24] M. Naor. Bit Commitment using Pseudorandomness. Journal of Cryptology 4(2):

151-158, 1991.
[25] A. Yao. Theory and Applications of Trapdoor Functions. In Proc. of IEEE FOCS

1982, pp.80-91



Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility

Chun-Yuan Hsiao1, Chi-Jen Lu2, and Leonid Reyzin1

1 Boston University, Boston, MA 02215, USA
{cyhsiao,reyzin}@cs.bu.edu

Work performed in part while visiting the
Institute for Pure and Applied Mathematics at UCLA

2 Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
cjlu@iis.sinica.edu.tw

Abstract. We study conditional computational entropy: the amount of
randomness a distribution appears to have to a computationally bounded
observer who is given some correlated information. By considering condi-
tional versions of HILL entropy (based on indistinguishability from truly
random distributions) and Yao entropy (based on incompressibility), we
obtain:

– a separation between conditional HILL and Yao entropies (which can
be viewed as a separation between the traditional HILL and Yao
entropies in the shared random string model, improving on Wee’s
2004 separation in the random oracle model);

– the first demonstration of a distribution from which extraction tech-
niques based on Yao entropy produce more pseudorandom bits than
appears possible by the traditional HILL-entropy-based techniques;

– a new, natural notion of unpredictability entropy, which implies con-
ditional Yao entropy and thus allows for known extraction and hard-
core bit results to be stated and used more generally.

1 Introduction

The various information-theoretic definitions of entropy measure the amount of
randomness a probability distribution has. As cryptography is able to produce
distributions that appear, for computationally bounded observers, to have more
randomness than they really do, various notions of computational entropy at-
tempt to quantify this appearance of entropy. The commonly used HILL entropy
(so named after [HILL99]) says that a distribution has computational entropy
k if it is indistinguishable (in polynomial time) from a distribution that has
information-theoretic entropy k.1 The so-called Yao entropy [Yao82, BSW03],
says that a distribution has computational entropy k if it cannot be efficiently
compressed to below k bits and then efficiently decompressed. Other computa-
tional notions of entropy have been considered as well [BSW03, HILL99].
1 The specific notion of information-theoretic entropy depends on the desired applica-

tion; for the purposes of this paper, we will use min-entropy, defined in Section 2.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 169–186, 2007.
c© International Association for Cryptology Research 2007



170 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

Computational notions of entropy are useful, in particular, for extracting
strings that are pseudorandom (i.e., look uniform to computationally bounded
observers) from distributions that appear to have entropy. Indeed, generation
of pseudorandom bits is the very purpose of computational entropy defined in
[HILL99], and its variant considered in [GKR04]. Pseudorandom bits have many
uses, for example, as keys in cryptographic applications.

The adversary in cryptographic applications (or, more generally, an observer)
often possesses information related to the distribution whose entropy is being
measured. For example, in the case of Diffie-Hellman key agreement [DH76] the
adversary has gx and gy, and the interesting question is the amount of com-
putational entropy of gxy. Thus, the entropy of a distribution for a particular
observer (and thus the pseudorandomness of the extracted strings) depends on
what other information the observer possesses. Because notions of computa-
tional entropy necessarily refer to computationally-bounded machines (e.g., the
distinguisher for the HILL entropy or the compressor and decompressor for the
Yao entropy), they must also consider the information available to these ma-
chines. This has sometimes been done implicitly (e.g., in [GKR04]); however,
most commonly used definitions do not do so explicitly.

In this work, we explicitly put forward notions of conditional computational
entropy. This allows us to:

1. Separate conditional Yao entropy from conditional HILL entropy by demon-
strating a joint distribution (X, Z) such that X has high Yao entropy but
low HILL entropy when conditioned on Z.

2. Demonstrate (to the best of our knowledge, first) application of Yao en-
tropy by extracting more pseudorandom bits from a distribution using
Yao-entropy-based techniques than seems possible from HILL-entropy-based
techniques.

3. Define a new, natural notion of unpredictability entropy, which can be used,
in particular, to talk about the entropy of a value that is unique, such as
gxy where gx and gy are known to the observer, and possibly even verifiable,
such as the preimage x of a one-way permutation f , where y = f(x) is known
to the observer.

HILL-Yao Separation. The first contribution (Section 3) can be seen as mak-
ing progress toward the open question of whether Yao entropy implies HILL
entropy, attributed in [TVZ05] to Impagliazzo [Imp99] (the converse is known
to be true: HILL entropy implies Yao entropy, because compressibility implies
distinguishability). Wee [Wee04] showed that Yao entropy does not imply HILL
entropy in the presence of a random oracle and a membership testing oracle.
Our separation of conditional Yao entropy from conditional HILL entropy can
be seen as an improvement of the result of [Wee04]: it shows that Yao entropy
does not imply HILL entropy in the presence of a (short) random string, because
the distribution Z on which X is conditioned is simply the uniform distribution
on strings of polynomial length. The separation holds under the quadratic resid-
uosity assumption.



Conditional Computational Entropy 171

Randomness Extraction. Usually, pseudorandomness extraction is analyzed via
HILL entropy, because distributions with HILL entropy are indistinguishable
from distributions with the same statistical entropy, and we have tools (namely,
randomness extractors [NZ96]) to obtain uniform strings from the latter. Tools
are also available to extract from Yao entropy: namely, extractors with a spe-
cial reconstruction property [BSW03]. Our second contribution (Section 4) is to
show that considering the Yao entropy and applying a reconstructive extractor
can yield many more pseudorandom bits than the traditional analysis, because,
according to our first result, Yao entropy can be much higher than HILL entropy.
This appears to be the first application of Yao entropy, and also demonstrates
the special power of reconstructive extractors.

It is worth mentioning that while our separation of entropies is conditional,
the extraction result holds even for the traditional (unconditional) notion of
pseudorandomness. The analysis of pseudorandomness of the resulting string,
however, relies on the notion of conditional entropy, thus demonstrating that it
can be a useful tool even in the analysis of pseudorandomness of unconditional
distributions.

Unpredictability Entropy. Unpredictability entropy is a natural formalization of
a previously nameless notion that was implicitly used in multiple works.. Our
definition essentially says that if some value cannot be predicted from other
information with probability higher than 2−k, then it has entropy k when condi-
tioned on that information. For example, when a one-way permutation f is hard
to invert with probability higher than 2−k, then conditioned on f(x), the value
x has entropy k. The use of conditional entropy is what makes this definition
meaningful for cryptographic applications.

We demonstrate that almost k pseudorandom bits can be extracted from
distributions with unpredictability entropy k, by showing that unpredictability
entropy implies conditional Yao entropy, to which reconstruction extractors can
be applied. Thus, unpredictability entropy provides a simple language that al-
lows, in particular, known results on hardcore bits of one-way functions to be
stated more generally.

We also prove other (fairly straightforward) relations between unpredictability
entropy and HILL and Yao conditional entropies.

2 Definitions and Notation

In this section we recall the HILL and Yao definitions of computational entropy
(or pseudoentropy) and provide the new, conditional definitions.

Notation. We will use n for the length parameter; our distributions will be on
strings of length polynomial in n. We will use s as the circuit size parameter (or
running time bound when dealing with Turing machines instead of circuits). To
denote a value x sampled from a distribution X , we write x ← X . We denote
by M(X) the probability distribution on the outputs of a Turing machine M ,



172 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

taken over the coin tosses (if any) of M and the random choice of the input x
according to the distribution X . We use Un to denote the uniform distribution
on {0, 1}n. For a joint distribution (X, Z), we write Xz to denote the conditional
distribution of X when Z = z; conversely, given a collection of distributions Xz

and a distribution Z, we use (X, Z) to denote the joint distribution given by
Pr[(X, Z) = (x, z)] = Pr[Z = z]Pr[Xz = x].

We may describe more complicated distributions by describing the sampling
process and then the sampled outcome. For example, {a ← X ; b ← X : (a, b)}
denotes two independent samples from X , while {a ← X : (a, M(a, Y ))} denotes
the distribution obtained by sampling X to get a, sampling Y to get b, running
M(a, b) to get c, and outputting (a, c).

The statistical distance between two distributions X and Y , denoted by
dist(X, Y ), is defined as maxT |Pr[T (X) = 1] − Pr[T (Y ) = 1]| where T is
any test (function). (This is equivalent to the commonly seen dist(X, Y ) =
1
2

∑
a |Pr[X = a] − Pr[Y = a]|.) The computational distance with respect to

size s circuits, denoted by cdists(X, Y ), limits T to be any circuit of size s.

Unconditional Computational Entropy. The min-entropy of a distribution X ,
denoted by H∞(X), is defined as − log(maxx Pr[X = x]). Although min-entropy
provides a rather pessimistic view of a distribution (looking only at its worst-case
element), this notion is useful in cryptography, because even a computationally
unbounded predictor can guess the value of a sample from X with probability at
most 2−H∞(X). Most results on randomness extractors are formulated in terms
of min-entropy of the source distribution.

The first definition says that a distribution has high computational min-
entropy if it is indistinguishable from some distribution with high statistical
min-entropy. It can thus be seen as generalization of the notion of pseudoran-
domness of [Yao82], which is defined as indistinguishability from uniform.

Definition 1 ([HILL99, BSW03]). A distribution X has HILL entropy at
least k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y such that
H∞(Y ) ≥ k and cdists(X, Y ) ≤ ε.

(In [HILL99] Y needs to be efficiently samplable; however, for our application,
as well as for [BSW03], samplability is not required.)

Another definition of computational entropy considers compression length.
Shannon’s theorem [Sha48] says that the minimum compression length of a dis-
tribution, by all possible compression and decompression functions, is equal to its
average entropy (up to small additive terms). Yao [Yao82] proposed to measure
computational entropy by imposing computational constraints on the compres-
sion and decompression algorithms.2 In order to convert this into a worst-case
(rather than average-case) metric similar to min-entropy, Barak et al. [BSW03]
require that any subset in the support of X (instead of only the entire X) be
hard to compress.

2 Yao called it “effective” entropy.



Conditional Computational Entropy 173

Definition 2 ([Yao82, BSW03]). A distribution X has Yao entropy at least
k, denoted by HYao

ε,s (X) ≥ k, if for every pair of circuits c, d (called “compressor”
and “decompressor”) of total size s with the outputs of c having length �,

Pr
x←X

[d(c(x)) = x] ≤ 2�−k + ε.

Note that just like HILL entropy, for ε = 0 this becomes equivalent to min-entropy
(this can be seen by considering the singleton set of the most likely element).

Conditional Computational Entropy. Before we provide the new conditional def-
initions of computational entropy, we need to consider the information-theoretic
notion of conditional min-entropy.

Let (Y, Z) be a distribution. If we take the straightforward average of the
min-entropies Ez←Z [H∞(Yz)] to be the conditional min-entropy, we will lose the
relation between min-entropy and prediction probability, which is important for
many applications (see e.g. Lemma 4 and Lemma 7). For instance, if for half of
Z, H∞(Yz) = 0 and the other half H∞(Yz) = 100, then, given a random z, Y
can be predicted with probability over 1/2, much more than 2−50 the average
would suggest. A conservative approach, taken in [RW05], would be to take
the minimum (over z) of H∞(Yz). However, this definition may kill “good”
distributions like Yz = Un for all z �= 0n and Yz = 0n for z = 0n; although
this problem can be overcome by defining a so-called “smooth” version [RW05,
RW04], we follow a different approach.

For the purposes of randomness extraction, Dodis et al. [DORS06] observed
that because Z is not under adversarial control, it suffices that the average,
over Z, of the maximum probability is low. They define average min-entropy:

H̃∞(Y |Z) def= − log(Ez←Z [2−H∞(Y |Z=z)] = − log(Ez←Z [maxy Pr[Yz = y]]). This
definition averages prediction probabilities before taking the logarithm and en-
sures that for any predictor P , Pr(y,z)←(Y,Z)[P (z) = y] ≤ 2−H̃∞(Y |Z). It also
ensures that randomness extraction works almost as well as it does for uncondi-
tional distributions; see Section 4.

Using this definition of conditional min-entropy, defining conditional HILL-
entropy is straightforward.

Definition 3 (Conditional HILL entropy). For a distribution (X, Z), we
say X has HILL entropy at least k conditioned on Z, denoted by HHILL

ε,s (X |Z) ≥ k,
if there exists a collection of distributions Yz (giving rise to a joint distribution
(Y, Z)) such that H̃∞(Y |Z) ≥ k and cdists((X, Z), (Y, Z)) ≤ ε.

For conditional Yao entropy, we simply let the compressor and decompressor
have z as input.

Definition 4 (Conditional Yao entropy). For a distribution (X, Z), we say
X has Yao entropy at least k conditioned on Z, denoted by HYao

ε,s (X |Z) ≥ k, if
for every pair of circuits c, d of total size s with the outputs of c having length �,

Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] ≤ 2�−k + ε.

We postpone the discussion of unpredictability entropy until Section 5.



174 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

Asymptotic Definitions. All above definitions are with respect to a single distrib-
ution and fixed-size circuits. We are also interested in their asymptotic behaviors,
so we consider distribution ensembles. In this case, everything is parameterized
by n: X(n), s(n), and ε(n). In such a case, whether circuits in our definitions are
determined after n is chosen (the nonuniform setting), or whether an algorithm
of running time s(n) is chosen independent of n (the uniform setting) makes a
difference. We consider the nonuniform setting.

We omit the subscripts s(n) and ε(n) when they “denote” any polynomial
and negligible functions, respectively (ε(n) is negligible if ε(n) ∈ n−ω(1)). More
precisely, we write HHILL(X(n)) ≥ k(n), if there is a distribution ensemble Y (n)

such that H∞(Y (n)) ≥ k(n) for all n, and for every polynomial s(n), there
exists a negligible εs(n) such that cdists(n)(X(n), Y (n)) ≤ εs(n). Similarly for
the other definitions.

3 Separating HILL Entropy from Yao Entropy

In this section we construct a joint distribution (X, Z),3 such that given Z,
the distribution X has high Yao but low HILL entropy; namely, HYao(X |Z) �
HHILL(X |Z). This is a separation of conditional HILL and Yao entropies. Since Z
will be simply a polynomially long random string, this result can also be viewed
as a separation of Yao entropy and HILL entropy in the Common Reference
String (CRS) model. (In this model one assumes that a uniformly-distributed
string of length q(n), for some fixed polynomial q, is accessible to everyone.)

Our construction uses a non-interactive zero knowledge proof system, so we
describe it briefly in the following subsection.

3.1 Non-interactive Zero Knowledge (NIZK)

NIZK was introduced by Blum et al. [BFM88, BDMP91]. For our purposes, a
single-theorem variant suffices. Let λ be a positive polynomial and L ∈ NP be a
language that has witnesses of length n for theorems of lengths (λ(n − 1), λ(n)].
(It is easier for us to measure everything in terms of witness length rather than
the more traditional theorem length, but they are anyway polynomially related
for the languages we are interested in.) NIZK works in the CRS model. Let q
be a positive polynomial, and let the CRS be r ← Uq(n) when witnesses are
of length n. A NIZK proof system for L is a pair of polynomial-time Turing
machines (P, V), called the prover and the verifier (as well as the polynomial q)
such that the following three conditions hold.

1. Completeness: ∀φ ∈ L with NP witness w, if π = P(φ, w, r) is the proof
generated by P, then Prr←Uq(n) [V(φ, π, r) = 1] = 1.4

3 Actually, (X, Z) should be defined as a distribution ensemble (X(n), Z(n)), but we’ll
omit the superscript for ease of notation.

4 If P is probabilistic, the probability is taken over the choice r and random choices
made by P.



Conditional Computational Entropy 175

2. Soundness: Call r bad if ∃φ /∈ L, ∃π′, such that V(φ, π′, r) = 1 (and good
otherwise). Then Prr←Uq(n) [r is bad] is negligible in n.

3. Zero-knowledgeness: There is a probabilistic polynomial time Turing ma-
chine SIM called the simulator, such that ∀φ ∈ L and every witness w
for φ, SIM(φ) = (φ, ΠSIM, RSIM) is computationally indistinguishable from
(φ, Π, R) = {r ← Uq(n) ; π ← P(φ, w, r) : (φ, π, r)}.

For our analysis, we need two additional properties. First, we need the proofs
π not to add too much entropy. For this, we use ideas on unique NIZK by
Lepinski, Micali and shelat [LMS05]. We do not need the full-fledged uniZK
system; rather, the single-theorem system described as the first part of the proof
of [LMS05, Theorem 1] suffices (it is based on taking away most of the prover
freedom for the single-theorem system of [BDMP91]). The protocol of [LMS05]
is presented in the public-key model, in which the prover generates the public
key (x, y) consisting of an n-bit modulus x and n-bit value y ∈ Z

∗
x. To make it

work for our setting, we simply have the prover generate the public key during
the proof and put it into π. Once the public key is fixed, the prover has no
further choices in generating π, except choosing a witness w for φ ∈ L (note
that this actually requires a slight modification to the proof of [LMS05], which
we describe in Appendix A).

The second property we need is that the simulated shared randomness RSIM is
independent of the simulator input φ. It is satisfied by the [LMS05] proof system
(as well as by the [BDMP91] system on which it is based).

The zero-knowledge property of the [LMS05] proof system is based on the
following assumption (the other properties are unconditional).

Assumption 1 (Quadratic Residuousity [GM84] for Blum Integers).
For all probabilistic polynomial time algorithms P , if p1 and p2 are random n/2-
bit primes congruent to 3 modulo 4, y is a random integer between 1 and p1p2

with Jacobi symbol
(

y
p1p2

)
= 1, and b = 1 if y is a quadratic residue modulo

p1p2 and 0 otherwise, then |1/2 − Pr[P (y, p1p2) = b]| is negligible in n.

The formal statement of the properties we need from [LMS05] follows.

Lemma 1 ([LMS05]+Appendix A). If the above assumption holds, then
there exists an NIZK proof system for any language L ∈ NP with the following
additional properties: (1) if r is good and φ has t distinct witnesses w, then the
number of proofs π for φ that are accepted by V is at most t22n, and (2) the
string RSIM output by the simulator is independent of the simulator input φ.

3.2 The Construction

Our intuition is based on the separation by Wee [Wee04], who demonstrated an
oracle relative to which there is a random variable that has high Yao and low
HILL entropy. His oracle consists of a random length-increasing function and an
oracle for testing membership in the sparse range of this function. The random
variable is simply the range of the function. The ability to test membership in



176 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

the range helps distinguish it from uniform, hence HILL entropy is low. On the
other hand, knowing that a random variable is in the range of a random function
does not help to compress it, hence Yao entropy is high.

We follow this intuition, but replace the length-increasing random function
and the membership oracle with a pseudorandom generator and an NIZK proof
of membership, respectively. Our distribution X consists of two parts: 1) output
of a pseudorandom generator and, 2) an NIZK proof that the first part is as
alleged. However, an NIZK proof requires a polynomially long random string
(shared, but not controlled, by the prover and the verifier). So we consider the
computational entropy of X , conditioned on a polynomially long random string
r chosen from the uniform distribution Z = Uq(n).

Let G : {0, 1}n → {0, 1}λ(n), for some polynomial λ, be a pseudorandom gen-
erator (in order to avoid adding assumptions, we can build based on Assump-
tion 1), and let ((P, V), q) be the NIZK proof system guaranteed by Lemma 1
for the NP language L = {φ | ∃α such that φ = G(α)}. Let Z = R = Uq(n).
Our random variable X consists of two parts (G(Un), π), where π is the proof,
generated by P, that the first part is an output of G. More precisely, the joint
distribution (X, Z) is defined as {α ← Un ; r ← Uq(n) ; π ← P(G(α), α, r) :
((G(α), π), r)}. Note that because X contains a proof relative to the random
string r, it is defined only after the value r of Z is fixed.

Lemma 2 (Low HILL entropy). HHILL(X |Z) < 3n + 1.

Proof. Suppose there is some collection {Yr}r∈Z for which H̃∞(Y |Z) ≥ 3n + 1.
We will show that there is a distinguisher that distinguishes (X, Z) from (Y, Z).
In fact, we will use the verifier V of the NIZK proof system as a universal
distinguisher, which works for every such Y .

Let p(r) def= maxy Pr[Yr = y] be the probability of most likely value of the
random variable Yr.

When r is good, the number of (φ, π) pairs for which V(φ, π, r) = 1 is at
most 23n: the total number 2n of witnesses times the number of proofs 22n for
each witness. Now, parse y as a theorem-proof pair. The number of y such that
V(y, r) = 1 is at most 23n, and each of these y happens with probability at most
p(r). Therefore, when r is good, Pry←Yr [V(y, r) = 1] ≤ 23np(r), by the union
bound. Hence, for any r, Pry←Yr [V(y, r) = 1 ∧ r is good] ≤ 23np(r) (for good
r this is the same as above, and for bad r this probability is trivially 0, because
of the conjunction).

Now consider running V on a sample from (Y, Z).

Pr
(y,r)←(Y,Z)

[V(y, r) = 1] ≤ Pr
r←Z

[r is bad] + Pr
(y,r)←(Y,Z)

[V(y, r) = 1 ∧ r is good]

≤ negl(n) + E
r←Z

[ Pr
y←Yr

[V(y, r) = 1 ∧ r is good]]

≤ negl(n) + E
r←Z

[23np(r)]

≤ negl(n) +
1
2



Conditional Computational Entropy 177

(the last inequality follows from the definition of H̃∞: 2−H̃∞(Y |Z) = Er←Z [p(r)]
≤ 2−(3n+1)).

Since Pr(x,r)←(X,Z)[V(x, r) = 1] = 1, V distinguishes (X, Z) from (Y, Z) with
advantage close to 1/2. �

Lemma 3 (High Yao entropy). If Assumption 1 holds, then HYao(X |Z) ≥
λ(n).

Proof. Let s(n) be a polynomial. The following two statements imply that un-
der Assumption 1, εs(n) def= cdists(n)((X, Z), SIM(Uλ(n))) is negligible, by the
triangle inequality.

1. cdists(n)((X, Z), SIM(G(Un))) is negligible. Indeed, fix a seed α ∈ {0, 1}n

for G, and let (Xα, Z) = {r ← Uq(n); π ← P(G(α), α, r) : ((G(α), π), r)}. By
the zero-knowledge property, we know that cdists(n)((Xα, Z), SIM(G(α)))
is negligible. Since it holds for every α ∈ {0, 1}n, it also holds for a random
α; we conclude that cdists(n)((X, Z), SIM(G(Un))) is negligible.

2. cdists(n)(SIM(Uλ(n)), SIM(G(Un))) is negligible, because G is a pseudoran-
dom generator.

By definition of εs(n), if the compressor and decompressor c and d have total
size t, then

∣∣∣∣ Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] − Pr
(x,z)←SIM(Uλ(n))

[d(c(x, z), z) = x]
∣∣∣∣ ≤ εs(n) ,

where s = t + (size of circuit to check equality of strings of length |x|), because
we can use d(c(·, ·), ·) together with the equality operator as a distinguisher.

Let the output length of c be �. Then Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) = x] ≤
2�−λ(n), because for every fixed z, x contains φ ∈ Uλ(n) (because by Lemma 1, z is
independent of φ in the NIZK system we use). Hence Pr(x,z)←(X,Z)[d(c(x, z), z)
= x] ≤ 2�−λ(n) + εs(n), and HYao

εs(n),t(n)(X |Z) ≥ λ(n). For every polynomial
t(n), the value s(n) is polynomially bounded, and therefore εs(n) is negligible,
so HYao(X |Z) ≥ λ(n). �

Remark 1. In the previous paragraph, we could consider also the simulated
proof π (recall x = (φ, π)) when calculating Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) =
x] for even higher Yao entropy. A simulated proof π contains many random
choices made by the simulator. Although the simulator algorithm for [LMS05]
is not precisely specified, but rather inferred from the simulator in [BDMP91],
it is quite clear that the simulator will get to flip at least three random coins
per clause in the 3-CNF formula produced out of φ in the reduction to 3-SAT
(these three coins are needed in order to simulate the location of the (0, 0, 0)
triple [LMS05, proof of Theorem 1, step 9] among the eight triples). This more
careful calculation of Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) = x] will yield the slightly
stronger statement HYao(X |Z) ≥ λ(n) + 3γ(n), where γ(n) is the number of
clauses in the 3-CNF formula. This more careful analysis is not needed here, but
will be used in Section 4.3.



178 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

Since for any polynomial λ(n), we have pseudorandom generators of stretch λ,
Lemma 2 and Lemma 3 yield the following theorem.

Theorem 1 (Separation). Under the Quadratic Residuosity Assumption, for
every polynomial λ, there exists a joint distribution ensemble (X(n), Z(n)) such
that HYao(X(n) | Z(n)) ≥ λ(n) and HHILL(X(n) | Z(n)) ≤ 3n+1. Moreover, Z(n) =
Uq(n) for some polynomial q(n).

4 Randomness Extraction

As mentioned in the introduction, one of the main applications of computa-
tional entropy is the extraction of pseudorandom bits. Based on Theorem 1, in
this section we show that the analysis based on Yao entropy can yield many
more pseudorandom bits than the traditional analysis based on HILL entropy.
Although Theorem 1 is for the conditional setting, we will see an example of
extraction that benefits from the conditional-Yao-entropy analysis for the un-
conditional setting as well.

Before talking about extracting pseudorandom bits from computational en-
tropy, let us look at a tool for analogous task in the information-theoretic set-
ting: an extractor takes a distribution Y of min-entropy k, and with the help of
a uniform string called the seed, “extracts” the randomness contained in Y and
outputs a string of length m that is almost uniform even given the seed.

Definition 5 ([NZ96]). A polynomial-time computable function E : {0, 1}n ×
{0, 1}d → {0, 1}m × {0, 1}d is a strong (k, ε)-extractor if the last d outputs of
bits of E are equal to the last d input bits (these bits are called seed), and
dist((E(X, Ud), Um × Ud) ≤ ε for every distribution X on {0, 1}n with H∞(X)
≥ k. The number of extracted bits is m, and the entropy loss is k − m.

There is a long line of research on optimizing the parameters of extractors: mini-
mizing seed length, minimizing ε, and maximizing m. For applications of primary
interest here—using extracted randomness for cryptography—seed length is less
important, because strong extractors can use non-secret random seeds, which
are usually much easier to create than the secret from which the pseudorandom
bits are being extracted. It is more important to maximize m (as close to k as
possible), while keeping ε negligible.5

4.1 Extracting from Conditional HILL Entropy

It is not hard to see that applying an extractor on distributions with HILL
entropy yields pseudorandom bits; because otherwise the extractor together with
the distinguisher violate the definition of HILL entropy. We show the same for
the case of conditional HILL entropy. We reiterate that in the conditional case,
5 This is in contrast to the derandomization literature, where a small constant ε suf-

fices, and one is more interested in (simultaneously) maximizing m and minimizing
d.



Conditional Computational Entropy 179

the variable Z is given to the distinguisher who is trying to tell the output of
the extractor from random.

Lemma 4. If HHILL
ε1,s (X |Z) ≥ k, then for any (k− log 1

δ , ε2)-extractor E : {0, 1}n

× {0, 1}d → {0, 1}m,

cdist
s′

({(x, z) ← (X, Z) : (E(x, Ud), z)}, Um × Ud × Z) ≤ ε1 + ε2 + δ ,

where s′ = s − size(E).

Proof. HHILL
ε1,s (X |Z) ≥ k means that there exists a collection of {Yz}z∈Z such

that cdists((X, Z)(Y, Z)) ≤ ε1, and H̃∞(Y |Z) ≥ k. By Markov’s inequal-
ity, Prz∈Z [H∞(Yz) ≤ k − log 1

δ ] ≤ δ. Hence, the extractor works as expected
in all but δ fraction of the cases; that is, for all but δ fraction of z values,
dist(E(Yz , Ud), Um × Ud) ≤ ε2. Taking expectation over z ∈ Z, we get

dist ({(y, z) ← (Y, Z) : (E(y, Ud), z)}, Um × Ud × Z) ≤ ε2 + δ ,

because dist is bounded by 1. The desired result follows by triangle inequality.
�

Remark 2. The entropy loss of E is at least 2 log 1
ε2

− O(1), by a fundamen-
tal constraint on extractors [RT00], giving us a total entropy loss of at least
log 1

δ +2 log 1
ε2

−O(1). The loss of log 1
δ can be avoided for some specific E, such

as pairwise-independent (a.k.a. strongly universal) hashing [CW79], as shown
in [DORS06, Lemma 4.2]; because pairwise-independent hashing has optimal
entropy loss of 2 log 1

ε2
− 2, this gives us the maximum possible number of ex-

tracted bits. The loss of log 1
δ can be also avoided when minz∈Z H∞(Yz) ≥ k (as

is the case in, e.g., [GKR04]).

Using an extractor on distributions with HILL entropy (the method that we just
showed extends to conditional HILL entropy) is a common method for extracting
pseudorandom bits. HILL entropy is used, in particular, because it is easier to
analyze than Yao entropy. In fact, in the unconditional setting, the only way we
know how to show that a distribution has high Yao entropy (incompressibility)
is by arguing that it has high HILL entropy (indistinguishability). Nevertheless,
Barak et al. [BSW03] showed that some extractors can also extract from Yao
entropy.

4.2 Extracting from Conditional Yao Entropy

Barak et al. [BSW03] observed that extractors with the so-called reconstruc-
tion procedure can be used to extract from Yao Entropy. Thus, Theorem 1
(HYao(X |Z) � HHILL(X |Z)) suggests that such a reconstructive extractor with
a Yao-entropy-based analysis may yield more pseudorandom bits than a generic
extractor with a traditional HILL-entropy-based analysis. We begin with a def-
inition from [BSW03].



180 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

Definition 6 (Reconstruction procedure). An (�, ε)-reconstruction for a
function E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}d (where the last d outputs
are equal to the last d inputs bits) is a pair of machines C and D, where C :
{0, 1}n → {0, 1}� is a randomized Turing machine, and D(·) : {0, 1}� → {0, 1}n

is a randomized oracle Turing machine which runs in time polynomial in n. Fur-
thermore, for every x and T , if |Pr[T (E(x, Ud)) = 1]−Pr[T (Um×Ud) = 1]| > ε,
then Pr[DT (CT (x)) = x] > 1/2 (the probability is over the random choices of C
and D).

Trevisan [Tre99] showed, implicitly, that any E with an (�, ε)-reconstruction is an
(� + log 1

ε , 3ε)-extractor, and Barak et al. [BSW03] showed that such extractors
can be used to extract pseudorandom bits from distributions with Yao entropy.
We extend the proof of Barak et al. so that their result holds for the conditional
version of Yao entropy.
Lemma 5. Let X be a distribution with HYao

ε,s (X |Z) ≥ k, and let E be an extrac-
tor with a (k−log 1

ε , ε)-reconstruction (C, D). Then cdists′((E(X, Ud), Z), Um×
Ud × Z) ≤ 5ε, where s′ = s/(size(C)+size(D)).

Proof. Assume, for the purpose of contradiction, that there is a distinguisher T
of size s′ such that Pr[T (E(X, Ud), Z) = 1] − Pr[T (Um × Ud × Z) = 1] > 5ε.
By the Markov inequality, there is a subset S in the support of (X, Z) such that
Pr[(X, Z) ∈ S] ≥ 4ε, and ∀(x, z) ∈ S, Pr[T (E(x, Ud), z) = 1] − Pr[T (Um ×
Ud, z) = 1] > ε. For every pair (x, z) ∈ S, Pr[DT (·,z)(C(x)) = x] > 1/2,
where the probability is over the random choices of C and D. Thus, there is
a fixing of the random choices of C and D, denoted by circuits C̄, D̄, such
that Pr(x,z)←(X,Z)[D̄T (·,z)(C̄(x)) = x] > 2ε. Let c(x, z) = C̄(x) and d(y, z) =
D̄T (·,z)(y) be the compression and decompression circuits, respectively. Then
Pr(x,z)←(X,Z)[d(c(x, z), z) = x] > 2ε = 2�−k + ε, a contradiction. �
The above lemma does not yield more pseudorandom bits when given a distrib-
ution that has high Yao but low HILL entropy, unless we have a reconstructive
extractor with long output length (compared to generic extractors, which work
for HILL entropy). Fortunately, there is a simple way to increase the output
length of a reconstructive extractor, at the expense of increasing the seed length;
namely, by applying the extractor multiple times on the same input distribution
but each time with an independent fresh seed. Furthermore, there do exist recon-
structive extractors; e.g., the Goldreich-Levin extractor: GL(x, y) def= (x · y) ◦ y,
where ◦ denotes concatenation and · denotes inner product. Below, we describe
more precisely how to increase the output length. For a proof, we refer the read-
ers to Section 3.5 in the survey by Shaltiel [Sha02].

Proposition 1. Let GL : {0, 1}n×{0, 1}n → {0, 1}×{0, 1}n be an extractor with
(�, ε)-reconstruction. Then E : {0, 1}n × {0, 1}mn → {0, 1}m × {0, 1}mn defined
below is an extractor with (m + �, mε)-reconstruction. Let ◦ denote component-
wise concatenation (i.e., to agree syntactically with the definition of extractor,
we concatenate the 1-bit outputs and the n-bit seeds separately)

E(x, y1, . . . , ym) def= GL(x, y1) ◦ · · · ◦ GL(x, ym) .



Conditional Computational Entropy 181

For the Goldreich-Levin extractor, � = O(log 1
ε ). Then Lemma 5 implies that

E extracts m pseudorandom bits out of any distribution that has Yao entropy
m + � + log 1

ε = m + O(log 1
ε ). This shows that it is possible to extract almost

all of Yao entropy (e.g., if the negligible ε = 2−polylog(n) suffices, then all but a
polylogarithmic amount of entropy can be extracted).

Using the distribution of Theorem 1, we can set ε = 2−n to extract λ(n)−O(n)
bits from X that are pseudorandom even given Z. This is more than the linear
number of bits extractable from X using the analysis based on conditional HILL
entropy.

4.3 Unconditional Extraction

In this subsection, let (X, Z) = ((G(Un), Π), R) = {α ← Un ; r ← Uq(n) ; π ←
P(G(α), α, r) : ((G(α), π), r)} as defined in Section 3.2. The question is: how
many pseudorandom bits can we extract from the unconditional distribution
(X, Z)? Surprisingly, analysis based on conditional entropy yields more bits than
unconditional analysis, demonstrating that the notion of conditional entropy
may be a useful tool even in the analysis of pseudorandomness of unconditional
distributions.

Analysis based on unconditional entropy. The straightforward way is to apply
an extractor on (X, Z). This gives us almost k pseudorandom bits provided
that HHILL(X, Z) ≥ k, or HYao(X, Z) ≥ k for reconstructive extractors (see
previous subsections). However, the best we can show is that HHILL(X, Z) =
λ(n) + q(n) + O(n) (the analysis appears in Appendix B), and hence we cannot
prove, using HILL entropy, that more than λ(n) + q(n) + O(n) bits can be
extracted. On the other hand, we do not know if HYao(X, Z) is higher; this is
closely related to the open problem of whether HILL entropy is equivalent to
Yao entropy, and appears to be difficult.6 Thus, analysis based on unconditional
entropy does not seem to yield more than λ(n) + q(n) + O(n) bits.

More bits from conditional Yao entropy. Analysis based on conditional HILL
entropy seems to yield even fewer bits (see Lemma 2). But using conditional
Yao entropy, we get the following result.

Lemma 6. It is possible to extract 4λ(n) + q(n) − O(n) pseudorandom bits out
of (X, Z).

Proof (Sketch). According to Remark 1 following Lemma 3, we can show that the
conditional Yao entropy HYao(X |Z) ≥ λ(n) + 3γ(n), where γ(n) is the number

6 To show that HYao(X, Z) is high, one would have to show that the pair (X, Z)
cannot be compressed; the same indistinguishability argument as in Lemma 3 does
not work for the pair (X, Z), because in the simulated distribution, Z is simulated
and thus has less entropy. It is thus possible that both the real distribution (where
Z is random and φ in X is pseudorandom) and the simulated distribution (where φ
is random and Z is pseudorandom), although indistinguishable, can be compressed
with the help of the proof π.



182 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

of clauses in the 3-CNF formula produced from φ in the reduction from L to
3-SAT. Since γ(n) ≥ λ(n), we can extract 4λ(n) − O(n) bits from X that are
pseudorandom even given Z, by the last paragraph of Section 4.2. Noting that Z
is simply a uniform string7, we can append it to the pseudorandom bits extracted
from X and obtain an even longer pseudorandom string. Thus, we get 4λ(n) +
q(n) − O(n) pseudorandom bits using the analysis based on conditional Yao
entropy. �

5 Unpredictability Entropy

In this section, we introduce a new computational entropy, which we call un-
predictability entropy. Analogous to min-entropy, which is the logarithm of the
maximum predicting probability, unpredictability entropy is the logarithm of
the maximum predicting probability where the predictor is restricted to be a
circuit of polynomial size. Note that in the unconditional setting, unpredictabil-
ity entropy is just min-entropy; a small circuit can have the most likely value
hardwired. In the conditional setting, however, this new definition can be very
different from min-entropy, and in particular, allows us to talk about the entropy
of a value that is unique, such as gxy where gx and gy are known to the observer,
and possibly even verifiable, such as the preimage x of a one-way permutation
f , where y = f(x) is known to the observer.

Definition 7 (Unpredictability entropy). For a distribution (X, Z), we say
that X has unpredictability entropy at least k conditioned on Z, denoted
by Hunp

ε,s (X |Z) ≥ k, if there exists a collection of distributions Yz (giving rise
to a joint distribution (Y, Z)) such that cdists((X, Z), (Y, Z)) ≤ ε, and for all
circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

Remark 3. The parameter ε and the variable Y do not seem to be necessary in
the definition; we can simply require Pr[C(Z) = X ] ≤ 2−k. However, they make
this definition smooth [RW04] and easier to compare with existing definitions of
HILL and Yao entropy.

Remark 4. Note that our entropy depends primarily on the predicting prob-
ability, as opposed to on the size of the predicting circuit or the combination
of both (see e.g., [TSZ01, HILL99]). We choose to have s fixed, in order to ac-
commodate distributions with nonzero information-theoretic entropy; otherwise
the computational entropy of such distribution would be infinite because the
predicting probability doesn’t increase no matter how big the predicting circuit
grows. For the case of one-way function, unpredictability entropy is what is often
called “hardness.” This notion is more general, and provides a simple language
for pseudorandomness extraction: namely, a distribution with computational en-
tropy k contains k pseudorandom bits that can be extracted (see below).
7 In case Z is not uniform but contains some amount of entropy, we can apply another

extractor on it.



Conditional Computational Entropy 183

5.1 Relation to Other Notions and Bit Extraction

In this subsection we show that high conditional HILL entropy implies high
unpredictability entropy, which in turn implies high conditional Yao entropy.
Note that, assuming exponentially strong one-way permutations f exist, unpre-
dictability entropy does not imply conditional HILL entropy: simply let (X, Z) =
(x, f(x)).

Lemma 7. HHILL
ε,s (X |Z) ≥ k ⇒ Hunp

ε,s (X |Z) ≥ k.

Proof. HHILL
ε,s (X |Z) ≥ k means that there is a Y such that H̃∞(Y |Z) ≥ k and

cdists((X, Z), (Y, Z)) ≤ ε. And H̃∞(Y |Z) ≥ k means that Ez←Z [maxy Pr[Y =
y|Z = z]] ≤ 2−k, which implies that for all circuits C of size s, Pr[C(Z) = Y ] ≤
2−k. �

Lemma 8. Hunp
ε,s (X |Z) ≥ k ⇒ HYao

ε,s (X |Z) ≥ k.

Proof. Hunp
ε,s (X |Z) ≥ k means that there is a collection of {Yz}z∈Z such that

cdists((X, Z), (Y, Z)) ≤ ε, and for all circuits C of size s, Pr[C(Z) = Y ] ≤ 2−k.
We will show that HYao

0,s (Y |Z) ≥ k, which in turn implies HYao
ε,s (X |Z) ≥ k.

Suppose for contradiction that HYao
0,s (Y |Z) < k. Then there exists a pair of

circuits c, d of total size s with the outputs of c having length �, such that
Pr(y,z)←(Y,Z)[d(c(y, z), z) = y] > 2�−k. Because |c(y, z)| = �, guessing the correct
value is at least 2−�, so Pr(a,y,z)←(U�,Y,Z)[d(a, z) = y] > 2�−k · 2−� = 2−k, a
contradiction since d(a, ·) (with some fixing of a) is a circuit of size at most s.
So HYao

0,s (Y |Z) ≥ k.
Next, suppose for contradiction that HYao

ε,s (X |Z) < k. Then there exists a pair
of circuits c, d of total size s with the outputs of c having length �, such that
Pr(x,z)←(X,Z)[d(c(x, z), z) = x] > 2�−k +ε. But Pr(y,z)←(Y,Z)[d(c(y, z), z) = y] ≤
2�−k, which means that d(c(·, ·), ·) can be used to distinguish (X, Z) from (Y, Z)
with advantage more than ε, a contradiction to cdists((X, Z), (Y, Z)) ≤ ε. Hence
HYao

ε,s (X |Z) ≥ k. �

From Section 4, we know how to extract almost k bits from distributions with
Yao entropy k, by using reconstructive extractors. Lemma 8 implies that the
same method works for unpredictability entropy. Thus, the notion of unpre-
dictability entropy allows for more general statements of results on hardcore
bits (such as, for example, [GL89, TSZ01]), which are usually formulated in
terms of one-way functions. Most often these results generalize easily to other
conditionally unpredictable distributions, for instance, the Diffie-Hellman distri-
bution (gxy | g, gx, gy). However, such generalization is not automatic, because a
prediction of a one-way function inverse is verifiable (namely, knowing y, one can
check if the guess for f−1(y) is correct), while a guess of a value of a conditionally
unpredictable distribution in general is not (indeed, the Diffie-Hellman distribu-
tion does not have it unless the decisional Diffie-Hellman problem is easy). Thus,
it would be beneficial if results were stated for the more general case of unpre-
dictable distributions whenever such verifiability is not crucial. Unpredictability
entropy provides a simple language for doing so.



184 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

Acknowledgments

We thank anonymous referees for their helpful comments, and Moni Naor for
pointing out related work. This work supported was in part by the US National
Science Foundation grants CCR-0311485, CCF-0515100 and CNS-0546614, the
Taiwan National Science Council grants NSC95-2218-E-001-001, NSC95-2218-E-
011-015 and NSC95-3114-P-001-002-Y02, and the Institute for Pure and Applied
Mathematics at UCLA.

References

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM Journal on Computing, 20(6):1084–
1118, December 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 103–
112, Chicago, Illinois, 2–4 May 1988.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational ana-
logues of entropy. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and
Amit Sahai, editors, RANDOM-APPROX 2003, volume 2764 of LNCS,
pages 200–215. Springer, 2003.

[CW79] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Jour-
nal of Computer and System Sciences, 18:143–154, 1979.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[DORS06] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. Technical Report 2003/235, Cryptology ePrint archive,
http://eprint.iacr.org, 2006. Previous version appeared at EURO-
CRYPT 2004.

[GKR04] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure hashed Diffie-
Hellman over non-DDH groups. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology—EUROCRYPT 2004, volume 3027 of
LNCS, pages 361–381. Springer-Verlag, 2004.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, pages 25–32, Seattle, Washington, 15–17 May 1989.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, April 1984.

[HILL99] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of
pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

[Imp99] Russell Impagliazzo. Remarks in open problem session at the dimacs
workshop on pseudorandomness and explicit combinatorial constructions,
1999.

[LMS05] Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair-zero knowledge. In
Joe Kilian, editor, TCC, volume 3378 of LNCS, pages 245–263. Springer-
Verlag, 2005.



Conditional Computational Entropy 185

[Nao96] Moni Naor. Evaluation may be easier than generation. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
pages 74–83, Philadelphia, Pennsylvania, 22–24 May 1996.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Jour-
nal of Computer and System Sciences, 52(1):43–53, 1996.

[RT00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM Journal on Com-
puting, 13(1):2–24, 2000.

[RW04] Renato Renner and Stefan Wolf. Smooth rényi entropy and applications.
In Proceedings of IEEE International Symposium on Information Theory,
page 233, June 2004.

[RW05] Renato Renner and Stefan Wolf. Simple and tight bounds for information
reconciliation and privacy amplification. In Bimal Roy, editor, Advances
in Cryptology—ASIACRYPT 2005, LNCS, Chennai, India, 4–8 December
2005. Springer-Verlag.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell Sys-
tem Technical Journal, 27:379–423 and 623–656, July and October 1948.
Reprinted in D. Slepian, editor, Key Papers in the Development of Infor-
mation Theory, IEEE Press, NY, 1974.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extrac-
tors. Bulletin of the EATCS, 77:67–95, 2002.

[Tre99] Luca Trevisan. Construction of extractors using pseudo-random genera-
tors (extended abstract). In STOC, pages 141–148, 1999.

[TSZ01] Amnon Ta-Shma and David Zuckerman. Extractor codes. In STOC, pages
193–199, 2001.

[TVZ05] Luca Trevisan, Salil P. Vadhan, and David Zuckerman. Compression of
samplable sources. Technical Report TR05-012, Electronic Colloquium on
Computational Complexity (ECCC), 2005.

[Wee04] Hoeteck Wee. On pseudoentropy versus compressibility. In IEEE Confer-
ence on Computational Complexity, pages 29–41. IEEE Computer Society,
2004.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science, pages 80–91, Chicago,
Illinois, 3–5 November 1982. IEEE.

A Modifications to the Proof of [LMS05]

The proof of Theorem 1 in [LMS05] requires the n-bit modulus x chosen by the
prover (and, in our case, included as part of the proof) to be a Blum integer,
i.e., a product of two primes that are each congruent to 3 modulo 4. However,
the proof π (using the techniques from [BDMP91]) guarantees only that x is
“Regular(2),” i.e., is square-free and has exactly two distinct odd prime divisors.
In other words, we are assured only that x is of the form piqj for some odd primes
p, q and some i, j not simultaneously even. Soundness does not suffer if a prover
maliciously chooses such an x that is not a Blum integer, but the uniqueness
property does: there may be more than one valid proof π, because π consists of
square roots s of values in Z

∗
x such that the Jacobi symbol

(
s
x

)
= 1 and s < x/2,

and there may be more than one such square root if x is not a Blum integer.



186 C.-Y. Hsiao, C.-J. Lu, and L. Reyzin

One approach to remedy this problem is to use the technique proposed in
countable zero-knowledge of Naor [Nao96, Theorem 4.1]: to include into π the
proof that x is a Blum integer. Another, simpler, approach (which does not seem
to work for the problem in [Nao96], because the length of the primes is important
there) is to require the verifier to check that x ≡ 1 (mod 4). This guarantees
that either p ≡ q ≡ 3 mod 4 and i, j are odd, in which case uniqueness of a
square root r < x/2 with

(
r
x

)
= 1 is guaranteed, or pi ≡ qj ≡ 1 mod 4, in which

case simple number theory (case analysis by the parity of i, j) shows that half
the quadratic residues in Z

∗
x have no square root r with

(
r
x

)
= 1. Thus, such an

x that allows for non-unique proofs is very unlikely to work for a shared random
string r, and we can simply add strings r for which such an x exists to the set
of bad strings (which will remain of negligible size).

B Unconditional HILL Entropy of (X, Z)

Recall that (X, Z) = ((G(Un), Π), R) = {α ← Un ; r ← Uq(n) ; π ←
P(G(α), α, r) : ((G(α), π), r)}. Below, we show that HHILL(X, Z) ≥ λ(n)+q(n)+
O(n); it is unclear if higher HILL entropy can be shown. The discussion assumes
some familiarity with the NIZK system for 3-SAT, by Lepinski, Micali, and she-
lat [LMS05].

By the zero-knowledgeness, the output distribution (XSIM, ZSIM) of the simu-
lator is indistinguishable from (X, Z). So HHILL(X, Z) is no less than the min-
entropy of (XSIM, ZSIM). We count how many choices the simulator SIM has:
there are,

– 2λ(n) theorems to prove,
– fewer than 22n proving pairs to choose from (a proving pair is an n-bit Blum

integer x and an n-bit quadratic residue y ∈ Z
∗
x),

– 2q(n)−κ(n) choices for shared “random” string r, where κ(n) is the number
of Jacobi symbol 1 elements of Z

∗
x included in r (because in the simulated

r, these elements must be quadratic residues in Z
∗
x),

– 2κ(n) choices for claiming, in the simulated proof, whether each of the Jacobi
symbol 1 elements in r is a quadratic residue or a quadratic nonresidue (the
simulator gets to make false claims about that, because in the simulated r,
they are all residues).

Taking the logarithm of the number of choices, we have HHILL(X, Z) ≥ λ(n) +
q(n) + O(n). This seems to be the best we can do, as we do not know whether
there are other distribution that is indistinguishable from (X, Z).



Zero Knowledge and Soundness Are Symmetric�

Shien Jin Ong and Salil Vadhan

School of Engineering and Applied Sciences
Harvard University

Cambridge, Massachusetts, USA
{shienjin,salil}@eecs.harvard.edu

Abstract. We give a complexity-theoretic characterization of the class
of problems in NP having zero-knowledge argument systems. This char-
acterization is symmetric in its treatment of the zero knowledge and
the soundness conditions, and thus we deduce that the class of prob-
lems in NP ∩ coNP having zero-knowledge arguments is closed under
complement. Furthermore, we show that a problem in NP has a sta-
tistical zero-knowledge argument system if and only if its complement
has a computational zero-knowledge proof system. What is novel about
these results is that they are unconditional, i.e., do not rely on unproven
complexity assumptions such as the existence of one-way functions.

Our characterization of zero-knowledge arguments also enables us to
prove a variety of other unconditional results about the class of problems
in NP having zero-knowledge arguments, such as equivalences between
honest-verifier and malicious-verifier zero knowledge, private coins and
public coins, inefficient provers and efficient provers, and non-black-box
simulation and black-box simulation. Previously, such results were only
known unconditionally for zero-knowledge proof systems, or under the
assumption that one-way functions exist for zero-knowledge argument
systems.

1 Introduction

Zero-knowledge protocols are interactive protocols whereby one party, the prover,
convinces another party, the verifier, that some assertion is true with the re-
markable property that the verifier “learns nothing” other than the fact that
the assertion being proven is true. Since their introduction by Goldwasser, Mi-
cali, and Rackoff [GMR], zero-knowledge protocols have played a central role in
the design and study of cryptographic protocols.

Zero-knowledge protocols come in several flavors, depending on how one for-
mulates the two security conditions: (1) the zero-knowledge condition, which
says that the verifier “learns nothing” other than the fact the assertion being
proven is true, and (2) the soundness conditions, which says that the prover

� A preliminary version of this paper appeared in the Electronic Colloquium on Com-
putational Complexity [OV]. Both the authors were supported by NSF grant CNS-
0430336 and ONR grant N00014-04-1-0478.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 187–209, 2007.
c© International Association for Cryptology Research 2007



188 S.J. Ong and S. Vadhan

cannot convince the verifier of a false assertion. In statistical zero knowledge,
the zero-knowledge condition holds regardless of the computational resources
the verifier invests into trying to learn something from the interaction. In com-
putational zero knowledge, we only require that a probabilistic polynomial-time
verifier learn nothing from the interaction.1 Similarly, for soundness, we have
statistical soundness, giving rise to proof systems, where even a computationally
unbounded prover cannot convince the verifier of a false statement (except with
negligible probability), and computational soundness, giving rise to argument
systems [BCC], where we only require that a polynomial-time prover cannot
convince the verifier of a false statement. Using a prefix of S or C to indicate
whether the zero knowledge is statistical or computational and a suffix of P or
A to indicate whether we have a proof system or argument system, we obtain
four complexity classes corresponding to the different types of zero-knowledge
protocols: SZKP, CZKP, SZKA, CZKA. More precisely, these are the classes
of decision problems Π having the correponding type of zero-knowledge protocol.
In such a protocol, the prover and verifier are given as common input an instance
x of Π, and the prover is trying convince the verifier that x is a yes instance of
Π.

These two security conditions seem to be of very different flavors; zero knowl-
edge is a ‘secrecy’ condition, whereas soundness is more like an ‘unforgeability’
condition. However, in a remarkable paper, Okamoto [Oka] showed that they are
actually symmetric in the case of statistical security.

Theorem 1 ([Oka, GSV]2). The class SZKP of problems having statistical
zero-knowledge proofs is closed under complement. That is, Π ∈ SZKP if and
only if Π ∈ SZKP.

In a zero-knowledge protocol for proving that a string x is a yes instance of a
problem Π, zero knowledge is required only when x is a yes instance (that is,
when the statement being proven is true) and soundness is required only when
x is a no instance (that is, when the statement is false). Thus, by showing that
SZKP is closed under complement, Okamoto established a symmetry between
zero knowledge and soundness, in the case when both security conditions are
statistical.

We ask whether an analogous theorem holds when the security conditions
are computational, namely when considering computational zero-knowledge ar-
guments. If we make complexity assumptions, then the answer is yes. Indeed,
the classical results of Goldreich, Micali, and Wigderson [GMW], and Brassard,
Chaum, and Crépeau [BCC] show that every problem in NP has computational

1 More precisely, in statistical zero knowledge, we require that the verifier’s view of the
interaction can be efficiently simulated up to negligible statistical distance, whereas
in computational zero knowledge, we only require that the simulation be computa-
tionally indistinguishable from the verifier’s view.

2 Okamoto’s result was actually for the class of languages having honest-verifier sta-
tistical zero-knowledge proofs, but in [GSV] it was shown this is the same as the
class of languages having general statistical zero-knowledge proofs.



Zero Knowledge and Soundness Are Symmetric 189

zero-knowledge argument systems under widely believed complexity assump-
tions, and in fact either one of the security conditions can be made statistical.
Moreover, it is known that the existence of one-way functions (OWF) suffices for
the construction of computational zero-knowledge proof systems and statistical
zero-knowledge argument systems for every problem in NP [Nao, HILL, NOV].
Thus, the existence of one-way functions implies that computational zero knowl-
edge and computational soundness are symmetric for problems in NP ∩ coNP,
by implying that all problems in NP∩coNP and their complements have com-
putational zero-knowledge arguments. We note that here, and throughout the
paper, we usually restrict attention to problems in NP, because argument sys-
tems are mainly of interest when the prover can be implemented in polynomial
time given a witness of membership, which only makes sense for problems in
NP.3

In this paper, we establish an unconditional symmetry between computational
zero knowledge and computational soundness.

Theorem 2 (Symmetry Theorem)

1. (CZKA versus co-CZKA) A problem Π ∈ NP∩coNP has a computational
zero-knowledge argument system if and only if Π has a computational zero-
knowledge argument system.

2. (SZKA versus CZKP) A problem Π ∈ NP has a statistical zero-knowledge
argument system if and only if Π has a computational zero-knowledge proof
system.

Observe how the quality of the zero-knowledge condition for Π translates to the
quality of the soundness condition for Π and vice-versa.

1.1 The SZKP–OWF Characterization

The Symmetry Theorem is obtained by new characterizations of the classes of
problems having zero-knowledge protocols, and moreover these characterizations
treat zero knowledge and soundness symmetrically. These characterizations are
a generalization of the “SZK/OWF Characterization Theorem” of [Vad], which
says that any problem having a computational zero-knowledge proof system can
be described as a problem having a statistical zero-knowledge proof plus a set
of yes instances from which we can construct a one-way function. To charac-
terize zero-knowledge argument systems, we will also allow some additional no

instances from which we can construct a one-way function.
To formalize this, we will need the notion of a promise problem, which is

simply a decision problem with some inputs excluded. More precisely, a promise
problem Π consists of two disjoint sets of strings (ΠY, ΠN), corresponding to yes

and no instances respectively. All of the complexity classes that we consider—for
3 Actually polynomial-time provers also make sense for problems in MA, which is a

variant of NP where the verification of witnesses is probabilistic. All of our results
easily extend to MA, but we state them for NP for simplicity.



190 S.J. Ong and S. Vadhan

instance, SZKP, CZKP, SZKA, and CZKA—generalize to promise problems
in a natural way; completeness and zero knowledge are required for yes instances,
and soundness is required for no instances.

Definition 1 (SZKP–OWF Condition). We say that promise problem Π =
(ΠY, ΠN) satisfies the SZKP–OWF Condition if there exists a set of instances
I ⊆ ΠY ∪ ΠN such that the following two conditions hold:

– The promise problem (ΠY \ I, ΠN \ I) is in SZKP.
– There exists a polynomial-time computable function fx : {0, 1}n(|x|) →

{0, 1}m(|x|), with n(·) and m(·) being polynomials and instance x given as
an auxiliary input, such that for every nonuniform probabilistic polynomial-
time adversary A, and for every constant c > 0, we have

Pr
y←{0,1}n(|x|)

[
A(fx(y)) ∈ f−1

x (fx(y))
]

≤ |x|−c ,

for every sufficiently long x ∈ I.

We call I the set of owf instances, I ∩ ΠY the set of owf yes instances, and
I ∩ ΠN the set of owf no instances.

We use the SZKP–OWF Condition to characterize the classes of problems
having zero-knowledge protocols.

Theorem 3 (SZKP–OWF Characterization of Zero Knowledge)

1. (SZKP [trivial]) A problem Π ∈ IP has a statistical zero-knowledge proof
system if and only if Π satisfies the SZKP–OWF Condition without owf

instances, namely I = ∅.
2. (CZKP [Vad]) A problem Π ∈ IP has a computational zero-knowledge proof

system if and only if Π satisfies the SZKP–OWF Condition without owf

no instances, namely I ∩ ΠN = ∅.
3. (SZKA [new]) A problem Π ∈ NP has a statistical zero-knowledge argument

system if and only if Π satisfies the SZKP–OWF Condition without owf

yes instances, namely I ∩ ΠY = ∅.
4. (CZKA [new]) A problem Π ∈ NP has a computational zero-knowledge

argument system if and only if Π satisfies the SZKP–OWF Condition.

Theorem 2, our Symmetry Theorem between computational zero knowledge
and computational soundness, follows directly from: (i) Theorem 3 above, (ii)
Okamoto’s Theorem that SZKP is closed under complement (Theorem 1), and
(iii) the symmetric role played by the set of owf instances I in the SZKP–OWF

Condition.
The advantage of the SZKP–OWF Characterization Theorem is that it re-

duces the study of the various forms of zero-knowledge protocols to the study of
SZKP together with the study of the consequences of one-way functions, both
of which are by now quite well-developed. Indeed, we also use these characteri-
zations to prove many other unconditional theorems about the classes of prob-
lems in NP possessing zero-knowledge arguments, such as equivalences between



Zero Knowledge and Soundness Are Symmetric 191

honest-verifier and malicious-verifier zero knowledge, private coins and public
coins, inefficient provers and efficient provers, and non-black-box simulation and
black-box simulation. Previously, such results were only known unconditionally
for the case of zero-knowledge proof systems [Oka, GSV, Vad, NV], or were known
under the complexity assumptions like the existence of one-way functions for the
case of zero-knowledge argument systems [GMW, Nao, HILL, NOV].

While our characterizations of SZKA and CZKA (Items 3 and 4) are similar
in spirit to the CZKP characterization of [Vad] (Item 2), both directions of the
implications require new ingredients that were not present in [Vad].

In the forward direction, going from CZKA or SZKA to an SZKP–OWF

Condition, we combine the work of [Vad] with an idea of Ostrovsky [Ost] to
construct a one-way function on no instances in I ∩ ΠN. Ostrovsky showed
that if a hard-on-average problem has a statistical zero-knowledge argument
system, then (standard) one-way functions exist.4 (This was later generalized
to computational zero knowledge in [OW].) We use the same construction, but
with a slightly different analysis. In Ostrovsky’s work, the hardness of inverting
the one-way function is derived from the assumed (average-case) hardness of
the problem having the zero-knowledge protocol, and it is shown to be hard
to invert on yes instances. In our proof, the hardness of inverting the one-way
function is instead derived from a gap between between statistical soundness
and computational soundness, and it is analyzed on no instances.

In the reverse direction, going from an SZKP–OWF Condition to CZKA
or SZKA, there were more fundamental obstacles in extending the work of [Vad].
First, the construction of [Vad] made use of a computationally unbounded prover
in an essential way (as did the previous work on SZKP, such as [Oka]), whereas
argument systems are rather unnatural with unbounded provers and hence are
typically defined with respect to efficient provers. Second, at the time we did
not know of a construction of statistical zero-knowledge arguments for NP from
any one-way function, which is necessary to make use of the one-way functions
constructed from instances in I ∩ ΠN—this is clear when trying to characterize
SZKA, but it also turns out to be important for characterizing CZKA. Fortu-
nately, both of these obstacles have been recently overcome in [NV] and [NOV],
respectively.

In more detail, the way the reverse direction is proved is to show that for
any problem Π satisfying the SZKP–OWF Condition, we can construct an
instance-dependent commitment scheme,5 and then we use the instance-
dependent commitment scheme to construct a zero-knowledge protocol for Π.
In the original version of this paper [OV], our instance-dependent commit-
ment scheme inherited a certain “1-out-of-2” binding property from [NV] and
[NOV]. This property is weaker and more complicated than the standard binding

4 Ostrovky’s theorem is only stated in terms of statistical zero-knowledge proofs, but
it immediately extends to arguments.

5 Informally, instance-dependent commitment schemes for a problem Π are commit-
ment schemes where the hiding and binding properties are required to hold only on
the yes and no instances of Π, respectively. A formal definition is given in Sect. 2.1.



192 S.J. Ong and S. Vadhan

property of commitments, but sufficed for establishing our main theorems (Theo-
rems 2 and 3). Subsequently, the results of [NV] and [NOV] have been
improved to yield standard-binding commitments, the latter by Haitner and
Reingold [HR] and the former by [HORV]. Thus in this version, we use standard-
binding instance-dependent commitments, as it simplifies our presentation.

2 Preliminaries

If X is a random variable taking values in a finite set U , then we write x ← X
to indicate that x is selected according to X . If S is a subset of U , then x ← S
means that x is selected according to the uniform distribution on S. We adopt
the convention that when the same random variable occurs several times in an
expression, they refer to a single sample. For example, Pr[f(X) = X ] is defined
to be the probability that when x ← X , we have f(x) = x. We write Un to
denote the random variable distributed uniformly over {0, 1}n.

A function ε : N → [0, 1] is called negligible if ε(n) = n−ω(1). We let neg(n)
denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we
mean that there exists a negligible function ε(n) such that for every n, f(n) <
ε(n)). Likewise, poly(n) denotes an arbitrary function f(n) = nO(1).

PPT refers to probabilistic algorithms (i.e., Turing machines) that run in
strict polynomial time. A nonuniform PPT algorithm is a pair (A, z̄), where
z̄ = z1, z2, . . . is an infinite sequence of strings where |zn| = poly(n), and A is
a PPT algorithm that receives pairs of inputs of the form (x, z|x|). (The string
zn is the called the advice string for A for inputs of length n.) Nonuniform PPT
algorithms are equivalent to (nonuniform) families of polynomial-sized Boolean
circuits.

Statistical Difference. The statistical difference (a.k.a. variation distance) be-
tween random variables X and Y taking values in U is defined to be Δ(X, Y ) =
maxS⊂U |Pr [X ∈ S] − Pr [Y ∈ S]|. We say that X and Y are ε-close if Δ(X, Y ) ≤
ε. Conversely, we say that X and Y are ε-far if Δ(X, Y ) > ε. For basic facts
about this metric, see [SV, Sec 2.3].

Promise problems. Roughly speaking, a promise problem [ESY] is a decision
problem where some inputs are excluded. Formally, a promise problem is speci-
fied by two disjoint sets of strings Π = (ΠY, ΠN), where we call ΠY the set of yes

instances and ΠN the set of no instances. Such a promise problem is associated
with the following computational problem: given an input that is “promised”
to lie in ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN. Note that languages
are a special case of promise problems (namely, a language L over alphabet Σ
corresponds to the promise problem (L, Σ∗ \ L)). Thus working with promise
problems makes our results more general. Moreover, even to prove our results
just for languages, it turns out to be extremely useful to work with promise prob-
lems along the way. We refer the reader to the recent survey of Goldreich [Gol2]
for more on the utility and subtleties of promise problems.



Zero Knowledge and Soundness Are Symmetric 193

2.1 Instance-Dependent Cryptographic Primitives

It will be very useful for us to work with cryptographic primitives that may
depend on an instance x of a problem Π = (ΠY, ΠN), and where the security
condition will hold only if x is in some particular set I ⊆ {0, 1}∗. Indeed, recall
that the SZKP–OWF Condition (Definition 1) refers to such a variant of of
one-way functions, as captured by Definition 3 below.

Instance-Dependent One-Way Functions. To define instance-dependent one-way
functions, we will need to define what it means for a function to be instance
dependent.

Definition 2. An instance-dependent function is a family F = {fx : {0, 1}n(|x|)

→ {0, 1}m(|x|)}x∈{0,1}∗, where n(·) and m(·) are polynomials. We call F
polynomial-time computable if there is a deterministic polynomial-time algo-
rithm F such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}n(|x|), we have F (x, y) =
fx(y).

To simplify notation, we often write fx : {0, 1}n(|x|) → {0, 1}m(|x|) to mean the
family {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗.

Definition 3 (Instance-Dependent One-Way Function). For any set I ⊆
{0, 1}∗, a polynomial-time computable instance-dependent function fx : {0, 1}n(|x|)

→ {0, 1}m(|x|) is an instance-dependent one-way function on I if for every
nonuniform PPT adversary A, there exists a negligible function ε such that for
every x ∈ I,

Pr
y←{0,1}n(|x|)

[
A(x, fx(y)) ∈ f−1

x (fx(y))
]

≤ ε(|x|) .

Next we consider an instance-dependent variant of distributionally one-way
functions, which are functions that are hard for PPT adversaries to invert in
a distributional manner—that is, given y it is hard for PPT adversaries to
output a random preimage f−1(y). The standard definition of distribution-
ally one-way function is given by Impagliazzo and Luby [IL]; here we give the
instance-dependent analogue.

Definition 4 (Instance-Dependent Distributionally One-Way Fun-
ction). For any set I ⊆ {0, 1}∗, a polynomial-time computable instance-
dependent function fx : {0, 1}n(|x|) → {0, 1}m(|x|) is an instance-dependent dis-
tributionally one-way function on I if there exists a polynomial p(·) such that for
every nonuniform PPT adversary A, the random variables (Un(|x|), fx(Un(|x|)))
and (A(fx(Un(|x|))), fx(Un(|x|))) are 1/p(|x|)-far for all sufficiently long x ∈ I.

Asking to invert in a distributional manner is a stronger requirement that just
finding a preimage, therefore distributionally one-way functions might seem
weaker than one-way functions. However, Impagliazzo and Luby [IL] proved that
they are in fact equivalent. Like almost all reductions between cryptographic
primitives, this result immediately extends to the instance-dependent analogue
(using the same proof).



194 S.J. Ong and S. Vadhan

Proposition 1 (based on [IL, Lemma 1]). For every set I ⊆ {0, 1}∗, there
exists an instance-dependent one-way function on I if and only if there exists an
instance-dependent distributionally one-way function on I.

Indistinguishability of Instance-Dependent Ensembles. The notions of statistical
and computational indistinguishability have instance-dependent analogues. But
first, we define an instance-dependent analogue of probability ensembles.

Definition 5. An instance-dependent probability ensemble is a collection of
random variables {Ax}x∈{0,1}∗, where Ax takes values in {0, 1}p(|x|) for some
polynomial p. We call such an ensemble samplable if there is a probabilistic
polynomial-time algorithm M such that for every x, the output M(x) is distrib-
uted according to Ax.

Definition 6. Two instance-dependent probability ensembles {Ax}x∈{0,1}∗ and
{Bx}x∈{0,1}∗ are computationally indistinguishable on I ⊆ {0, 1}∗ if for every
nonuniform PPT D, there exists a negligible function ε such that for all x ∈ I,

|Pr [D(x, Ax) = 1] − Pr [D(x, Bx) = 1]| ≤ ε(|x|) .

Similarly, we say that {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistin-
guishable on I ⊆ {0, 1}∗ if the above is required for all functions D, instead
of only nonuniform PPT ones. Equivalently, {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are
statistically indistinguishable on I iff Ax and Bx are ε(|x|)-close for some neg-
ligible function ε and all x ∈ I. We write ≈c and ≈s to denote computational
and statistical indistinguishability, respectively.

Often, we will informally say “Ax and Bx are computationally indistinguish-
able when x ∈ I” to mean the ensembles {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are
computationally indistinguishable on I.

Instance-Dependent Commitment Schemes. Recall that a (standard) commit-
ment scheme is a two-stage protocol between a sender and a receiver. In the first
stage, called the commit stage, the sender “commits” to a private message m. In
the second stage, called the reveal stage, the sender reveals m and “proves” that
it was the message to which she committed in the first stage. We require two
properties of commitment schemes. The hiding property says that the receiver
learns nothing about m in the commit stage. The binding property says that
after the commit stage, the sender is bound to a particular value of m; that is,
she cannot successfully open the commitment to two different bits in the reveal
stage. A commitment scheme is said to be public coin if the all messages from
the receiver to the sender are random coin tosses.

Instance dependent analogues of commitments schemes are commitments
schemes that are tailored specifically to a specific problem Π. More precisely,
instance-dependent commitment schemes receive an instance x of the problem Π
as auxiliary input, and are required to be hiding when x ∈ ΠY and be binding
when x ∈ ΠN. Thus, they are a relaxation of standard commitment schemes,



Zero Knowledge and Soundness Are Symmetric 195

since we do not require that the hiding and binding properties hold at the same
time. Nevertheless, this relaxation is still useful in constructing zero-knowledge
protocols. The reason is that zero-knowledge protocols based on commitments
(for example, the protocol of [GMW]) typically use only the hiding property in
proving zero knowledge (which is required only when x is a yes instance) and
use only the binding property in proving soundness (which is required only when
x is a no instance).

2.2 Interactive Protocols and Zero Knowledge

In general, we follow the standard definitions of interactive protocols, interactive
proofs and arguments, and zero-knowledge proofs and arguments, as in [Gol1]. We
provide informal definitions of completeness, soundness, and public coin proper-
ties of an interactive protocol (P, V ) for a promise problem Π = (ΠY, ΠN); the
reader is referred to [Gol1] for the formal definitions.

– The completeness error of (P, V ) is the maximum probability of V rejecting
when interacting with an honest prover P on an input x ∈ ΠY; we usually
insist that the completeness error of an interactive protocol be bounded by
1/3. We say that (P, V ) has perfect completeness if it has zero completeness
error; in other word, V always accepts with probability 1 when interacting
with the honest prover P on every input x ∈ ΠY.

– The statistical [resp., computational] soundness error of (P, V ) is the prob-
ability of V accepting when interacting with any [resp., nonuniform PPT]
adversarial prover P ∗ on input x ∈ ΠN. Protocol (P, V ) is said to be a proof
[resp., argument] system if it has statistical [resp., computational] soundness
error bounded by 1/3.

– We say (P, V ) is public coin if all the messages sent by verifier V to prover
P are random coin tosses.

Informally, an interactive protocol is zero knowledge if the verifier “learns
nothing” from interacting with the prover other than the fact that the asser-
tion being proven is true. This guarantee of “learning nothing” is formalized
by exhibiting a PPT algorithm, called a simulator, whose output is indistin-
guishable from the verifier’s view of the interaction with the prover. (Unlike the
verifier, the simulator does not have access to the prover.) Intuitively, the verifier
learns nothing because it could run the simulator instead of interacting with the
prover. There are various notions of zero knowledge, referring to how rich a class
of verifier strategies are considered. We informally describe them as follows:

– Honest-verifier zero knowledge refers to interactive protocols where there
exists a PPT simulator for the verifier that follows the prescribed (honest)
strategy.6 This is the weakest formulation of zero knowledge, but it is already
a nontrivial and interesting notion.

6 This is an instantiation of what is called an “honest-but-curious adversary” or “pas-
sive adversary” in the literature on cryptographic protocols.



196 S.J. Ong and S. Vadhan

– Auxiliary-input zero knowledge or just zero knowledge refers to interactive
protocols where for every (nonuniform PPT) verifier V ∗, even one that devi-
ates from the prescribed strategy, there exists a PPT simulator that simulates
the view of V ∗ in the interaction with the prover.

– Black-box zero knowledge refers to zero knowledge protocols where the zero
knowledge property is established by exhibiting a single, universal simulator
that simulates an arbitrary verifier strategy V ∗ by using V ∗ as a subroutine.
In other words, the simulator does not depend on or use the code of V ∗ (or
its auxiliary input), and instead only requires black-box access to V ∗.

The complexity classes that we use are defined as follows:

– IP denotes the class of promise problems possessing interactive proof
systems.

– HV-SZKP and HV-CZKP denote the classes of promise problems
having honest-verifier statistical and computational zero-knowledge proofs,
respectively. Analogously, HV-SZKA and HV-CZKA denote the classes of
promise problems having honest-verifier statistical and computational zero-
knowledge arguments, respectively.

– SZKP and CZKP are the classes of promise problems possessing statisti-
cal and computational (auxiliary-input) zero-knowledge proofs, respectively.
Analogously, SZKA and CZKA are the classes of promise problems pos-
sessing statistical and computational (auxiliary-input) zero-knowledge argu-
ments, respectively.

We highlight the following points:

1. (Proof vs. argument systems) Interactive argument systems refer to protocols
whose soundness condition is computational. That is, only nonuniform PPT
cheating provers are guaranteed not to be able to convince the verifier of false
statements except with probability 1/3; this is a weaker condition than proof
systems, where the soundness condition is required of all cheating provers
instead of just nonuniform PPT ones. Hence, we say that proof systems have
statistical soundness.

2. (Prover complexity) In interactive proofs and interactive arguments, and
in their zero-knowledge analogues, we allow the honest prover to be com-
putationally unbounded, unless we specify efficient prover, which means a
polynomial-time honest prover strategy given a witness for membership. It
was shown in [NV] that for problems in NP, any zero-knowledge proof sys-
tem with an unbounded prover can be transformed into one with an efficient
prover; we will show the same for argument systems.

3 Unconditional Characterizations of Zero Knowledge

In this section, we provide unconditional characterizations of zero knowledge that
would among other things allow us to establish our Symmetry Theorem between
computational zero knowledge and computational soundness (Theorem 2). We



Zero Knowledge and Soundness Are Symmetric 197

first present our main characterization theorems in Sect. 3.1, which expands
upon Theorem 3. The steps involved in proving these characterization theorems
are outlined in Sect. 3.2, and lemmas needed to establish these theorems are
given in Sects. 3.3, 3.4, and 3.5.

3.1 Our Main Characterization Theorems

In this subsection, we elaborate upon the SZKP–OWF Characterization of Zero
Knowledge Theorem (Theorem 3). Specifically, we state four theorems giving a va-
riety of equivalent characterizations of the classes SZKP, CZKP, CZKA, and
SZKA. The ones for zero-knowledge arguments, namely CZKA and SZKA, are
new; the other for zero-knowledge proofs, namely CZKP and SZKP, contain re-
sults from previous work, but are given for comparison. In addition to establishing
Theorem 3 (and hence Theorem 2), these theorems show an equivalence between
problems having only honest-verifier zero-knowledge protocols, problems satisfy-
ing the SZKP–OWF Condition, and problems with (malicious-verifier) zero-
knowledge protocols having desirable properties like an efficient prover, perfect
completeness, public coins, and black-box simulation. We note that these charac-
terizations refer only to the classes of problems, and do not necessarily preserve
other efficiency measures like round complexity, unless explicitly mentioned.

The following two previously known theorems give unconditional characteri-
zations of zero-knowledge proofs.

Theorem 4 (SZKP Characterization Theorem [Oka, GSV, NV, HORV]).
For every problem Π ∈ IP, the following conditions are equivalent.

1. Π ∈ HV-SZKP.
2. Π satisfies the SZKP–OWF Condition without owf instances.
3. Π has an instance-dependent commitment scheme that is statistically hiding

on the yes instances and statistically binding on the no instances. Moreover,
the scheme is public coin.

4. Π ∈ SZKP, and the statistical zero-knowledge proof system for Π has a
black-box simulator, is public coin, and has perfect completeness. Further-
more, if Π ∈ NP, the proof system has an efficient prover.

Theorem 5 (CZKP Characterization Theorem [Vad, NV, HORV]).
For every problem Π ∈ IP, the following conditions are equivalent.

1. Π ∈ HV-CZKP.
2. Π satisfies the SZKP–OWF Condition without owf no instances.
3. Π has an instance-dependent commitment scheme that is computationally

hiding on the yes instances and statistically binding on the no instances.
Moreover, the scheme is public coin.

4. Π ∈ CZKP, and the computational zero-knowledge proof system for Π has
a black-box simulator, is public coin, and has perfect completeness. Further-
more, if Π ∈ NP, the proof system has an efficient prover.

We give analogous characterizations for zero-knowledge arguments.



198 S.J. Ong and S. Vadhan

Theorem 6 (SZKA Characterization Theorem). For every problem Π ∈
NP, the following conditions are equivalent.

1. Π ∈ HV-SZKA.
2. Π satisfies the SZKP–OWF Condition without owf yes instances.
3. Π has an instance-dependent commitment scheme that is statistically hid-

ing on the yes instances and computationally binding on the no instances.
Moreover, the scheme is public coin.

4. Π ∈ SZKA, and the statistical zero-knowledge argument system for Π has a
black-box simulator, is public coin, has perfect completeness, and an efficient
prover.

Theorem 7 (CZKA Characterization Theorem). For every problem Π ∈
NP, the following conditions are equivalent.

1. Π ∈ HV-CZKA.
2. Π satisfies the SZKP–OWF Condition.
3. Π has an instance-dependent commitment scheme that is computationally

hiding on the yes instances and computationally binding on the no instances.
Moreover, the scheme is public coin.

4. Π ∈ CZKA, and the computational zero-knowledge proof system for Π has a
black-box simulator, is public coin, has perfect completeness, and an efficient
prover.

We prove Theorems 6 and 7 using lemmas established in Sections 3.3, 3.4, and
3.5. Notice that in these theorems involving zero knowledge arguments, we have
restricted Π to be in NP in contrast to the theorems involving zero-knowledge
proofs (Theorems 4 and 5), which are naturally restricted to IP. The reason
for this is that argument systems are mainly interesting when the honest prover
runs in polynomial time given a witness for membership (otherwise the protocol
would not even be sound against prover strategies with the same resources as the
honest prover), and such efficient provers only make sense for problems in NP (or
actually, MA, to which our results generalize easily). In fact our theorems above
show that for problems in NP, a zero-knowledge protocol without an efficient
prover can be converted into one with an efficient prover (by the equivalence of
Items 1 and 4 in Theorems 4 to 6 above).

3.2 Steps of Our Proof

Having stated our main characterization theorems in the previous subsection, we
now provide an outline of the steps involved in establishing these characterization
theorems:

1. We show that every problem Π possessing a (honest-verifier) zero-knowledge
protocol satisfies the SZKP–OWF Condition. Depending on the zero
knowledge and soundness guarantee, the types of SZKP–OWF Condition

that Π satisfies will differ (in whether the sets of owf yes instances and
owf no instances are empty or nonempty). This extends the unconditional
characterization work of [Vad] for zero-knowledge proof systems to the more
general zero-knowledge argument systems, and is in Section 3.3.



Zero Knowledge and Soundness Are Symmetric 199

2. Next, we show that every problem Π satisfying the SZKP–OWF Condi-

tion yields an instance-dependent commitment scheme for Π. This is based
on the techniques of [NOV, NV, HR, HORV], and is in Section 3.4.

3. Finally, we show that every problem Π ∈ NP having instance-dependent
commitments allow us to construct zero-knowledge argument systems for Π
with desirable properties like perfect completeness, black-box zero knowl-
edge, public coins, and an efficient prover. This is done by substituting
instance-dependent commitments for standard (non-instance-dependent)
commitments used in existing zero-knowledge protocols like the Goldreich–
Micali–Wigderson [GMW] zero-knowledge protocol for NP, and is in
Section 3.5.

3.3 From Zero-Knowledge Protocols to SZKP–OWF
Characterizations

In this subsection, we show that problems possessing (honest verifier) zero-
knowledge arguments satisfy the SZKP–OWF Condition. Specifically, we
prove that for every problem Π having a zero-knowledge argument also satis-
fies the SZKP–OWF Condition. This involving establishing a set of instances
I ⊆ ΠY ∪ ΠN such that (ΠY \ I, ΠN \ I) ∈ SZKP, and from which instance-
dependent one-way functions can be constructed. The main difference from [Vad]
is that [Vad] characterizes only zero-knowledge proofs and has no owf no in-
stances, namely I∩ΠN = ∅. In other words, the characterizations of [Vad] satisfy
the SZKP–OWF Condition without owf no instances.

Lemma 1. If problem Π ∈ HV-CZKA, then Π satisfies the SZKP–OWF

Condition. In addition, if Π ∈ HV-SZKA, then Π satisfies the SZKP–OWF

Condition without owf yes instances, namely I ∩ ΠY = ∅.

Proof Idea. To show that Π ∈ HV-CZKA satisfies the SZKP–OWF Condi-

tion, we will need to establish a set I with (ΠY \ I, ΠN \ I) ∈ SZKP, and
construct an instance-dependent one-way on I. We will do a separate analysis
for the yes and no instances, and therefore we first show how to define sets
IY ⊆ ΠY and IN ⊆ ΠN such that instance-dependent one-way functions can be
constructed on these sets, and that (ΠY \ IY , ΠN \ IN ) ∈ SZKP. Having two
(different) instance-dependent one-way functions fx and gx on IY and IN , respec-
tively, we construct a single instance-dependent one-way function on I

def= IY ∪IN

by concatenating the functions fx and gx.
Next, we describe, on an intuitive level, how to define the sets IY ⊆ ΠY and

IN ⊆ ΠN. Fix an instance x of the problem Π ∈ HV-CZKA. From the simulator
S on input x, we consider a simulation-based prover PS and a simulation-based
verifier VS . On a high level, PS replies with the same conditional probability
as the prover in the output of S, and VS sends its messages with the same
conditional probability as the verifier in the output of S. We make the following
observations:



200 S.J. Ong and S. Vadhan

1. The interaction between PS and VS is identical to the output of the simulator
S, on every x.

2. By the zero-knowledge condition, we have that 〈PS , VS〉 is computationally
indistinguishable from 〈P, V 〉, when x ∈ ΠY.

3. By assuming, without loss of generality, that the simulator always outputs
accepting transcripts, it holds that PS makes VS accepts with probability 1,
on every x.

We consider a statistical measure of how “similar” VS is to V (on instance x,
when interacting with simulation-based prover PS). Using this statistical mea-
sure (given in the full proof below), we define sets IY and IN as follows:

– IY contains instances x ∈ ΠY for which VS is statistically different from V .
– IN contains instances x ∈ ΠN for which VS is statistically similar to V .

Now the proof that this gives a SZKP–OWF Condition proceed as follows:

1. On IY , we have that VS is statistically different from V . Nevertheless, by the
zero-knowledge condition (as noted above), VS is computationally similar to
V . This enables us to construct one-way functions for instances in IY , as
shown in [Vad].

2. On IN , we have that VS is statistically similar to V . Combining this with
the fact that PS will always convince VS to accept (as noted above), we
conclude that PS convinces V to accept with high probability. By computa-
tional soundness of (P, V ), it must be the case that PS is not PPT. Using
techniques from Ostrovsky [Ost], this allows us to convert the simulator S
into an instance-dependent distributional one-way function gx.7 Then by
Proposition 1, due to Impagliazzo and Luby [IL], we can obtain an instance-
dependent one-way function from gx.

3. To see that (ΠY \ IY , ΠN \ IN ) ∈ SZKP, we observe the following: For
those yes instances not in IY —that is, instances in ΠY \ IY —the simulated
verifier VS is statistically similar to V . And for those no instances not in
IN—that is, instances in ΠN \ IN—the simulated verifier VS is statistically
different from V . This gap in the statistical properties allows us to reduce
promise problem (ΠY \ IY , ΠN \ IN ) to one of the complete problems for
SZKP [SV, GV, Vad].

Proof of Lemma 1. Let (P, V ) be a zero-knowledge argument system for Π, with
simulator S. We now proceed as in the proof of [Vad] and modify our interactive
protocol (P, V ) to satisfy the following (standard) additional properties.

– The completeness error c(|x|) and soundness error s(|x|) are both negligible.
This can be achieved by standard error reduction via (sequential) repetition.

7 If gx is not distributionally one-way, then PS can be made to be efficient, hence
contradicting the computational soundness of (P, V ). Interestingly, Ostrovsky [Ost]
uses the assumption that gx is not distributionally one-way to invert the simulator
S on the yes instances, and conclude that Π is not “hard-on-average”. Although we
use similar techniques as [Ost], we instead invert S on the no instances to contradict
the computational soundness of (P, V ).



Zero Knowledge and Soundness Are Symmetric 201

– On every input x, the two parties exchange 2�(|x|) messages for some poly-
nomial �, with the verifier sending even-numbered messages and sending all
of its r(|x|) random coin tosses in the last message. (Without loss of gen-
erality, we may assume that r(|x|) ≥ |x|.) Having the verifier send its coin
tosses at the end does not affect soundness because it is after the prover’s
last message, and does not affect honest-verifier zero knowledge because the
simulator is anyhow required to simulate the verifier’s coin tosses.

– On every input x, the simulator always outputs accepting transcripts, where
we call a sequence τ of 2� messages an accepting transcript on x if all of the
verifier’s messages are consistent with its coin tosses (as specified in the last
message), and the verifier would accept in such an interaction.

For a transcript τ , we denote by τi the prefix of τ consisting of the first
i messages. For readability, we often drop the input x from the notation, for
instance using � = �(|x|), 〈P, V 〉 = 〈P, V 〉(x), r = r(|x|), and so forth. Thus,
in what follows, 〈P, V 〉i and Si are random variables representing prefixes of
transcripts generated by the real interaction and simulator, respectively, on a
specified input x.

We define the simulation-based prover, denoted as PS(x), as follows: Given an
execution prefix τ2i, for i = 1, 2, . . . , � − 1, prover PS responses as follows.

1. If simulator S(x) outputs a transcript that begins with τ2i with probability
0, then PS replies with a dummy message.

2. Otherwise, PS replies according with the same conditional probability as the
prover in the output of the simulator. That is, it replies with a string β with
probability pβ = Pr [S(x)2i+1 = τ2i ◦ β|S(x)2i = τ2i] .

Following [AH, PT, GV, Vad], we consider the following quantity:

h(x) =
�∑

i=1

[H(S(x)2i) − H(S(x)2i−1)] , (1)

where H(·) denotes the (Shannon) entropy measure, which is given by H(X) =
Ex←X [log(1/ Pr[X = x])].

Now, we define the sets IY and IN as follows:

IY = {x ∈ ΠY : h(x) < r(|x|) − 1/q(|x|)} ;
IN = {x ∈ ΠN : h(x) > r(|x|) − 2/q(|x|)} ,

where the polynomial q(|x|) = 256 · �(|x|).
Having defined sets IY and IN , Lemma 1 is established by the following claims,

where the first three are established using techniques in [Vad].

Claim 1. Problem (ΠY \ IY , ΠN \ IN ) ∈ SZKP.

Claim 2. There exists an instance-dependent one-way function on IY .

Claim 3. For Π ∈ HV-SZKA, we can take IY = ∅.



202 S.J. Ong and S. Vadhan

The main novelty in our analysis is the following claim.

Claim 4. There exists an instance-dependent one-way function on IN .

Proof of Claim. To get an instance-dependent one-way function on IN , we
use the following idea of Ostrovsky [Ost]: If we can invert the simulator,
then PS ’s replies can be approximated efficiently. By the computational
soundness of (P, V ), this is impossible, so the simulator must be a one-
way function. More precisely, we define the function gx, whose purpose
is to output messages of the simulator, as follows:

gx(i, ω) = (x, i, S(x; ω)2i) . (2)

Note that gx is polynomial-time computable because the simula-
tor S runs in polynomial time. If gx is not distributionally one-way
(in the sense of Definition 4), then we can devise an efficient cheating
prover strategy, call it P̃ , that efficiently “simulates” our simulation-
based prover PS upto negligible statistical error. The way to do this is
to feed a given transcript prefix τ2i after the verifier has responded in
round 2i, into the inversion algorithm of gx to obtain the simulation-
based prover response for round 2i + 1. In doing so, we contradict the
computational soundness property of (P, V ). This argument is captured
by following proposition.

Proposition 2 (based on [Ost, Lemma 1]). 8 Let gx be as in (2).
For every set K ⊆ {0, 1}∗, if gx is not an instance-dependent distribu-
tionally one-way function on K, then for every polynomial p, there exists
a nonuniform PPT prover P̃ such that

Δ(〈P̃ , V 〉(x), S(x)) ≤ �(|x|) ·
(

1
p(|x|) + 2 · Δ(〈PS , V 〉(x), S(x))

)
,

for infinitely many x ∈ K.

This leaves us to upper bound Δ(〈PS , V 〉, S) in order to obtain an upper
bound on Δ(〈P̃ , V 〉, S), and hence contradict the computational sound-
ness of V (because S always outputs accepting transcripts). Recall that
for every x ∈ IN , we have h > r−2/q. From [AH, PT, GV], we know that
h = r − KL(〈PS , V 〉, S), where KL is the Kullback-Leibler distance de-
fined as KL(X, Y ) = Eα←X

[
log(Pr[X = α])−log(Pr[Y = α])

]
. (See [GV,

Lemma 2.2].) Hence, we get KL(〈PS , V 〉, S) < 2/q. Using the fact that
for any random variables X and Y , KL(X, Y ) ≥ (1/2) · (Δ(X, Y ))2 [CT,
Lemma 12.6.1], we get that for all x ∈ IN ,

Δ(〈PS , V 〉, S) < 2/
√

q = 1/(8 · �) , (3)

since q = 256 · �.
8 As pointed out to us by Lilach Bien, the statement and application of this proposition

in the original version of our paper [OV] erroneously neglected the dependence on
Δ(〈PS, V 〉(x), S(x)).



Zero Knowledge and Soundness Are Symmetric 203

Now by Proposition 2, if gx is not distributionally one-way on IN ,
we can take IN = K and choose p(|x|) = 4 · �(|x|), to get a nonuniform
PPT P̃ such that

Δ(〈P̃ , V 〉, S) ≤ � · (1/p + 2 · Δ(〈PS , V 〉, S))
= 1/4 + 2 · � · Δ(〈PS , V 〉, S)
< 1/2 . (by (3))

And since the simulator S always produce accepting transcripts, we have

Pr[(P̃ , V )(x) = accept] ≥ 1/2 ,

for infinitely many x ∈ IN . This contradicts the computational soundness
of (P, V ). Therefore, gx must be a distributionally one-way function on
IN . By Proposition 1 (due to Impagliazzo and Luby [IL]), gx can be
converted into an instance-dependent (standard) one-way function on
IN , as desired. �

Let us see how the above five claims establish Lemma 1. Define set I = IY ∪ IN .
This means that the promise problem (ΠY \ I, ΠN \ I) = (ΠY \ IY , ΠN \ IN ),
and Claim 1 places this problem in SZKP. Claims 2 and 4 give us instance-
dependent one-way functions on IY and IN , respectively; to obtain a single
instance-dependent one-way function on I = IY ∪IN , we use the following claim.

Claim 5. For any sets J, K ⊆ {0, 1}∗, if there exist instance-dependent one-way
functions on J and there exist instance-dependent one-way functions on K, then
there exist instance-dependent one-way functions on J ∪ K.

Therefore, by Claim 5 above, we know that Π ∈ HV-CZKA satisfies the SZKP–

OWF Condition. Furthermore, if Π ∈ HV-SZKA, Claim 3 tells us that IY =
∅, and hence I ∩ ΠY = IY = ∅, giving us that Π satisfies the SZKP–OWF

Condition without owf yes instances. �

3.4 From SZKP–OWF Characterization to Instance-Dependent
Commitment Schemes

In this subsection, we show that every problem Π satisfying the SZKP–OWF

Condition yields an instance-dependent commitment scheme for Π. This is
obtained by combining statistically-binding commitments from one-way func-
tions [Nao, HILL], statistically-hiding commitments from one-way functions
[NOV, HR], and instance-dependent commitments for SZKP [NV, HORV]. In
the original version of this paper [OV], our instance-dependent commitment
scheme inherited a certain “1-out-of-2” binding property from [NV, NOV]. This
property is weaker and more complicated than the standard binding property
of commitments, but sufficed for establishing our main theorems (Theorems 2
and 3). Due to improvements by [HR, HORV], it is now possible to construct
instance-dependent commitments with the standard binding property, and hence
we use standard-binding commitments to simplify our presentation.



204 S.J. Ong and S. Vadhan

Lemma 2. The following conditions hold for problems Π satisfying the SZKP–

OWF Condition.

– If Π satisfies the SZKP–OWF Condition without owf no instances [resp.,
without owf instances], then it has an instance-dependent commitment
scheme that is computationally [resp., statistically] hiding on the yes in-
stances and statistically binding on the no instances.

– If Π satisfies the SZKP–OWF Condition [resp., without owf yes in-
stances], then it has an instance-dependent commitment scheme that is com-
putationally [resp., statistically] hiding on the yes instances and computa-
tionally binding on the no instances.

Furthermore, all the above instance-dependent commitment schemes are public
coin.

The proof of Lemma 2, tying together all the following propositions and claims,
is given at the end of this subsection. Before stating our propositions and claims,
we provide an outline of what we intend to construct in the next paragraph.

Given that problem Π satisfies the SZKP–OWF Condition, we let the set
of owf yes instances be denoted as IY = I ∩ ΠY, and the set of owf no

instances be denoted as IN = I ∩ ΠN. Our task of constructing an instance-
dependent commitment scheme for Π is broken into following four steps: (1)
construct an instance-dependent commitment scheme for the problem (ΠY \
I, ΠN\I) ∈ SZKP, (2) construct an instance-dependent commitment scheme for
the problem (IY , IY ), (3) construct an instance-dependent commitment scheme
for the problem (IN , IN ), and (4) combine all these three instance-dependent
commitment schemes into a single instance-dependent commitment scheme for
Π. We will explain why these four steps yield an instance-dependent commitment
scheme for Π in the proof of Lemma 2, given at the end of this subsection.

Step 1: The instance-dependent commitment for the problem (ΠY\IY , ΠN\IN ) ∈
SZKP follows from [HORV] (which builds on [NV]).

Proposition 3 ([HORV]). For any problem Γ ∈ SZKP, problem Γ has an
instance-dependent commitment scheme that is statistically hiding on the yes

instances and statistically binding on the no instances. Moreover, the instance-
dependent commitment scheme obtained is public coin.

Step 2: Notice that the instance-dependent commitments given by the above
proposition do not guarantee hiding or binding properties on the owf instances
sets IY and IN . Nevertheless, we noted in [Vad], we can use the instance-
dependent one-way functions on IY to construct instance-dependent commit-
ment schemes that are computationally hiding on IY and statistically binding
elsewhere, based on Naor’s [Nao] commitment scheme. This is because Naor’s
scheme can be based on any one-way function [HILL], and the statistical binding
property of the scheme does not depend on the one-way security of the function.



Zero Knowledge and Soundness Are Symmetric 205

Proposition 4 (based on [Nao, HILL]). For every set K ⊆ {0, 1}∗, if there
is an instance-dependent one-way function on K, then problem (K, K) has an
instance-dependent commitment scheme that is computationally hiding on the
yes instances (namely, instances in K), and statistically binding on the no in-
stances (namely, instances in K). Moreover, the instance-dependent commitment
scheme obtained is public coin.

Step 3: We construct instance-dependent commitment schemes that are com-
putationally binding on IN and statistically hiding elsewhere, based on the fact
that statistically hiding and computationally binding commitments can be con-
structed from any one-way function [NOV, HR].

Proposition 5 (based on [NOV, HR]). For every set K ⊆ {0, 1}∗, if there
is an instance-dependent one-way function on K, then problem (K, K) has an
instance-dependent commitment that is statistically hiding on the yes instances
(namely, instances in K), and computationally binding on the no instances
(namely, instances in K). Moreover, the instance-dependent commitment scheme
obtained is public coin.

Step 4: Finally, we use standard methods to combine the three instance-
dependent commitment schemes that we have constructed into a single instance-
dependent commitment scheme for Π. The first method gives a combined scheme
for the intersection of two problems.

Claim 6. Suppose problems Γ = (ΓY, ΓN) and Γ′ = (Γ′Y, Γ′N) have instance-
dependent commitment schemes Comx and Com′x, respectively. Then problem
Γ ∩ Γ′ = (ΓY ∩ Γ′Y, ΓN ∪ Γ′N) has an instance-dependent commitment scheme
Com′′x with the following properties:

– Com′′x is statistically [resp., computationally] hiding if both Comx and Com′x
are statistically [resp., computationally] hiding.

– Com′′x is statistically [resp., computationally] binding if either of Comx or
Com′x is statistically [resp., computationally] binding.

– Com′′x is public coin if both Comx and Com′x are public coin.

Proof. In commitment scheme Com′′x, the sender commits to b by committing to
b in both schemes Comx and Com′x, with the execution of both schemes done in
parallel. The claimed properties of Com′′x follow by inspection. �

The second method provides a combined scheme for the union of two problems.

Claim 7. Suppose problems Γ = (ΓY, ΓN) and Γ′ = (Γ′Y, Γ′N) have instance-
dependent commitment schemes Comx and Com′x, respectively. Then problem
Γ ∪ Γ′ = (ΓY ∪ Γ′Y, ΓN ∩ Γ′N) has an instance-dependent commitment scheme
Com′′x with the following properties:



206 S.J. Ong and S. Vadhan

– Com′′x is statistically [resp., computationally] hiding if either of Comx or
Com′x is statistically [resp., computationally] hiding.

– Com′′x is statistically [resp., computationally] binding if both Comx and Com′x
are statistically [resp., computationally] binding.

– Com′′x is public coin if both Comx and Com′x are public coin.

Proof. In commitment scheme Com′′x, the sender on input bit b, first secret shares
b into two shares, b1 and b2, with the property that b1 ⊕ b2 = b and each bi is
uniform in {0, 1}. (This can be done by choosing a random b1 ← {0, 1}, and
setting b2 = b1 ⊕ b.) The sender then commits to b by committing to bits b1 and
b2 in schemes Comx and Com′x, respectively. The execution of schemes Comx and
Com′x is done in parallel.

The hiding property follows from the fact that bit b remains hidden as long
as one of the bits b1 or b2 remains hidden. Then binding property follows from
the fact that b = b1 ⊕ b2, and hence b is bounded to a fixed value if both b1 and
b2 are bounded to fixed values. The public coin property and round complexity
of Com′′x follow by inspection. �

Having established the propositions and claims that we need, we now prove
Lemma 2.

Proof of Lemma 2. Given that problem Π satisfies the SZKP–OWF Condition,
let I be the set of owf instances, and let the owf yes instances be IY = I ∩ΠY
and the owf no instances be IN = I ∩ ΠN. By Propositions 3, 4, and 5, we
have three instance-dependent commitment schemes, call them Com(1)

x , Com(2)
x ,

and Com(3)
x , for the problems (ΠY \ I, ΠN \ I) ∈ SZKP, (IY , IY ), and (IN , IN ),

respectively. Moreover, all three schemes are public coin.
If Π satisfies the SZKP–OWF Condition without owf instances, then set

I = ∅, and hence Com(1)
x suffices to be our instance-dependent commitment

scheme for Π. If Π satisfies the SZKP–OWF Condition without owf no

instances, then IN = I ∩ ΠN = ∅. Consequently, we do not need scheme Com(3)
x ,

and can just combine schemes Com(1)
x and Com(2)

x in a manner prescribed by
Claim 7 to get an instance-dependent commitment scheme for Π.

Analogously, if Π satisfies the SZKP–OWF Condition without owf yes

instances, then IY = I ∩ ΠY = ∅. Consequently, we do not need scheme Com(2)
x ,

and can just combine schemes Com(1)
x and Com(3)

x in a manner prescribed by
Claim 6 to get an instance-dependent commitment scheme for Π. Finally, if Π
satisfies the SZKP–OWF Condition, we first combine schemes Com(1)

x and
Com(2)

x in a manner prescribed by Claim 7 to get an instance-dependent com-
mitment scheme for (ΠY, ΠN \ IN ), and then combine this scheme with Com(3)

x

in a manner prescribed by Claim 6 to get an instance-dependent commitment
scheme for Π.

The hiding, binding, and public coin properties of the instance-dependent
commitment scheme for Π follow by inspection. �



Zero Knowledge and Soundness Are Symmetric 207

3.5 From Instance-Dependent Commitment Schemes to
Zero-Knowledge Protocols

Having obtained instance-dependent commitments in the previous subsection,
we now use these commitments to construct unconditional zero-knowledge pro-
tocols for problems Π ∈ NP having these instance-dependent commitments. We
observe that the existing zero-knowledge protocols for NP require complexity
assumptions because they use standard (non-instance dependent) commitments,
and standard commitments are not known to exist unconditionally. Therefore,
we can remove the complexity assumptions needed by substituting standard
commitments for instance-dependent commitments in these existing protocols.
Specifically, we do this substitution in the Goldreich–Micali–Wigderson [GMW]
zero-knowledge protocol for NP.

Lemma 3 (based on [GMW]). If problem Π ∈ NP has an instance-dependent
commitment scheme Comx, then it has a zero-knowledge protocol (P, V ) with the
following properties:

– (P, V ) is statistical [resp., computational] zero knowledge if Comx is statisti-
cally [resp., computationally] hiding on the yes instances. Moreover, (P, V )
has a black-box simulator.

– (P, V ) is a proof [resp., argument] system if Comx is statistically [resp., com-
putationally] binding on the no instances.

– (P, V ) has perfect completeness and has an efficient prover.
– (P, V ) is public coin if Comx is public coin.

3.6 Putting It All Together

We now show how our lemmas in Sects. 3.3, 3.4, and 3.5 imply our main char-
acterization theorems in Sect. 3.1.

Proof of Theorems 6 and 7. The implications for both theorems are captured by
the same lemmas, so we can conveniently state them together.

(1) ⇒ (2) is established by Lemma 1.
(2) ⇒ (3) is established by Lemma 2.
(3) ⇒ (4) is established by Lemma 3. This is the only step that requires the

problem Π ∈ NP.
(4) ⇒ (1) follows directly from definition. �

Acknowledgements

We are grateful to Lilach Bien for pointing out an error in the statement and
use of Proposition 2 in the original version of our paper [OV]. We thank Oded
Goldreich and the anonymous EUROCRYPT 2007 reviewers for their helpful
comments. We also thank Iftach Haitner and Omer Reingold for allowing us to
simplify the presentation of our results with their wonderful result [HR] and the
follow-up [HORV].



208 S.J. Ong and S. Vadhan

References

[AH] Aiello, W., and Håstad, J. Statistical zero-knowledge languages can be
recognized in two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991.

[BCC] Brassard, G., Chaum, D., and Crépeau, C. Minimum disclosure proofs
of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[CT] Cover, T. M., and Thomas, J. A. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 2 edition, 2006.

[ESY] Even, S., Selman, A., and Yacobi, Y. The complexity of promise
problems with applications to public-key cryptography. Inform. Control,
61(2):159–173, 1984.

[GMR] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complex-
ity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW] Goldreich, O., Micali, S., and Wigderson, A. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. J. ACM, 38(1):691–729, 1991.

[Gol1] Goldreich, O. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

[Gol2] Goldreich, O. On promise problems (a survey in memory of Shimon Even
[1935-2004]). Technical Report TR05–018, ECCC, 2005.

[GSV] Goldreich, O., Sahai, A., and Vadhan, S. Honest verifier statistical
zero-knowledge equals general statistical zero-knowledge. In Proc. 30th
STOC, pages 399–408, 1998.

[GV] Goldreich, O., and Vadhan, S. Comparing entropies in statistical zero-
knowledge with applications to the structure of SZK. In Proc. 14th Comput.
Complex., pages 54–73, 1999.

[HILL] Håstad, J., Impagliazzo, R., Levin, L., and Luby, M. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[HORV] Haitner, I., Ong, S., Reingold, O., and Vadhan, S. Instance-
dependent commitments for statistical zero-knowledge proofs. In prepa-
ration, March 2007.

[HR] Haitner, I., and Reingold, O. Statistically-hiding commitment from any
one-way function. Technical Report 2006/436, Cryptol. ePrint Arch., 2006.

[IL] Impagliazzo, R., and Luby, M. One-way functions are essential for com-
plexity based cryptography. In Proc. 30th FOCS, pages 230–235, 1989.

[Nao] Naor, M. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151–
158, 1991.

[NOV] Nguyen, M., Ong, S., and Vadhan, S. Statistical zero-knowledge argu-
ments for NP from any one-way function. In Proc. 47th FOCS, pages 3–14,
2006.

[NV] Nguyen, M., and Vadhan, S. Zero knowledge with efficient provers. In
Proc. 38th STOC, pages 287–295, 2006.

[Oka] Okamoto, T. On relationships between statistical zero-knowledge proofs.
J. Comput. Syst. Sci., 60(1):47–108, 2000.

[Ost] Ostrovsky, R. One-way functions, hard on average problems, and statis-
tical zero-knowledge proofs. In Proc. 6th Annual Structure in Complexity
Theory Conference, pages 133–138, 1991.

[OV] Ong, S., and Vadhan, S. Zero knowledge and soundness are symmetric.
Technical Report TR06-139, ECCC, 2006.



Zero Knowledge and Soundness Are Symmetric 209

[OW] Ostrovsky, R., and Wigderson, A. One-way functions are essential for
non-trivial zero-knowledge. In Proc. 2nd Israel Symposium on Theory of
Computing Systems, pages 3–17, 1993.

[PT] Petrank, E., and Tardos, G. On the knowledge complexity of NP.
Combinatorica, 22(1):83–121, 2002.

[SV] Sahai, A., and Vadhan, S. A complete problem for statistical zero knowl-
edge. J. ACM, 50(2):196–249, 2003.

[Vad] Vadhan, S. An unconditional study of computational zero knowledge.
SIAM J. Comput., 36(4):1160–1214, 2006.



Mesh Signatures
How to Leak a Secret with Unwitting and Unwilling

Participants

Xavier Boyen

Voltage Inc., Palo Alto
xb@boyen.org

Abstract. We define the mesh signature primitive as an anonymous
signature similar in spirit to ring signatures, but with a much richer
language for expressing signer ambiguity. The language can represent
complex access structures, and in particular allows individual signature
components to be replaced with complete certificate chains. Because
withholding one’s public key from view is no longer a shield against
being named as a possible cosignatory, mesh signatures may be used as
a ring signature with compulsory enrollment.

We give an efficient construction based on bilinear maps in the com-
mon random string model. Our signatures have linear size, achieve ever-
lasting perfect anonymity, and reduce to very efficient ring signatures
without random oracles as a special case. We prove non-repudiation from
a mild extension of the SDH assumption, which we introduce and justify
meticulously.

1 Introduction

We introduce mesh signatures, which are similar in spirit and purpose to the
ring signatures of Rivest, Shamir, and Tauman [27], but overcome some of their
crucial limitations.

Ring signatures are pseudonymous signatures that are issued in the name of
a “ring” of users, and created by one of them without the participation of the
others, in a way that preserves the instigator’s anonymity. The canonical applica-
tion is for an individual “to leak a secret” non-repudiably on behalf of a crowd.
Technically, ring signatures can thus be viewed as a witness-indistinguishable
disjunction of regular signatures, but because of this, only people who have pre-
viously published a verification key are eligible to be enrolled in such a crowd,
ring signatures can only ever implicate individuals who, by the very act of pub-
lishing their key, are proclaiming their consent.

Mesh signatures generalize this notion to mononote access structures repre-
sentable as a tree, whose interior nodea are And, Or, and Threshold gates, and
whose leaves are regular signatures. The access structure can be satisfied using
different subsets of the regular signatures; once created, the mesh signature will
not reveal what particular subset was used. The regular signatures at the leaves
can be “static”, and thus PKI certificates are eligible if the mesh signer does

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 210–227, 2007.
c© International Association for Cryptology Research 2007



Mesh Signatures 211

not have the CA’s signing key. Since furthermore the monotone tree structure
is powerful enough to express disjunctions of certificate chains, we are no longer
dependent on individual ring members publishing their keys. As a toy exam-
ple, suppose that Alice wants to implicate Bob, who may or may not have a
verification key on record. Alice can still produce the following mesh signature,

σ = [VKAlice : Msg1] or ([VKCertAuth : VKBob] and [VKBob : Msg2]) ,

All that Alice needs to create σ is her own private key and CertAuth’s certificate
verification key. Even if Bob has published no verification key, the mesh signature
σ implicates him via the certificate [VKCertAuth : VKBob] that binds his name to
the string VKBob; the certificate can be real or a fake. Conversely, Bob could have
created σ himself, using the real certificate and his own private key, to implicate
Alice; although in this case her public key would have to be available to the
verifier since her certificate is not part of σ. Another feature of mesh signatures
is that they provide threshold gates, which makes it easy to scale constructs like,

σ = 2-out-of-3 in {[ceo : skrt-memo] , [cfo : skrt-memo] , [coo : skrt-memo]} .

Threshold gates like this can feed or be fed from other gates as in the earlier
example. The unconditional anonymity of mesh signatures guarantees that, as
long as the signature σ is valid, there is no way to tell the true and false clauses
apart in the formula expressed by σ.

We can immediately see how much more practical mesh signatures are than
ring signatures: instead of requiring that each and everyone generate and publish
their public key in a ring scheme, here we just need one trustworthy certificate
authority (or preferably a few) to publish their keys in the mesh scheme—a
natural demand to place on certificate authorities, though not on individuals.

To make the use of certificate chains truly believable, it is important that mesh
signatures be constructible non-interactively from reusable constituent atomic
signatures (in our case, these are Boneh-Boyen short signatures [4]).

1.1 Related Work

The original ring signature primitive was defined in [27], to enable secret leaking
that is at once authenticated (by a crowd) and anonymous (within the crowd).
Whereas that construction [27] was based on trapdoor permutations, a number
of alternatives have subsequently been proposed, based on bilinear pairings [6],
discrete logarithms [21], factoring (Strong-RSA specifically) [16], or hybrids [1];
all these constructions are set in the random oracle model. Most have linear size
in the ring membership count, except [16] which squeezes it all in constant size
using accumulators in the random oracle model.

A number of general protocols bear similarities with our new primitive. Per-
haps the first such scheme is an anonymous authentication protocol of [15] that
supports access structures and can be turned into a signature using the Fiat-
Shamir heuristic. Another is an interactive anonymous authentication protocol,
called deniable ring authentication [26], that combines the anonymity of ring sig-
natures with the non-transferability of deniable authentication [18], and supports



212 X. Boyen

threshold and access structures. Among specific constructions in the random
oracle model, we note the distributed ring signatures of [22] which lets coali-
tions of users cooperate in an interactive signing protocol, and the hierarchical
identity-based ring signatures of [32], which adds signer ambiguity to the notion
of hierarchical identity-based signature. Additionally, we mention that mesh sig-
natures could in principle be realized using signatures of knowledge [11], which
allow the knowledge of a witness to an NP statement to serve as a signing key,
in the common random string model.

Another related notion that has received much attention is that of group sig-
natures, originally introduced in [12], and which also provides for the anonymous
creation of signatures on behalf of a crowd. The main difference is that group
signatures require the anonymity to be revocable by a group manager, who also
controls enrollment into the group. Group membership is often immutable al-
though this restriction has been relaxed in [9]. There exists efficient constant-size
group signature schemes, with random oracles [5], from interactive assumptions
[2], and in the standard model [8].

Efficient ring signatures constructions without random oracles have also been
proposed recently, such as [14], [3], and [28]. The construction of [14] uses bilinear
groups and is efficient but relies on a cumbersome assumption stated without jus-
tification. The results of [3] include an impractical scheme from non-interactive
Zaps [17], but also two efficient constructions (based on [10] or [31] signatures)
for rings of size two, and a discussion of security models for ring signatures.

Probably the most closely related to our work is the very recent ring scheme
of [28] which can efficiently creates linear-size ring signatures in the “trusted
parameters” model; unforgeability is based on computational Diffie-Hellman,
and anonymity on the decisional Subgroup [7] assumption. Because of the lat-
ter, the scheme requires a bilinear map in a group of composite order with a
hidden factorization; such a group is set up explicitly by a central authority,
which afterwards must erase the factorization to ensure anonymity. It may be
possible to use ideas from [20] and base anonymity on the decisional Linear [5]
assumption, which would no longer require secret-coin trusted parameters (TP)
but only a public-coin common random string (CRS), as in our scheme; however
anonymity would still remain computational. The main advantage of [28] over
our ring scheme is that unforgeability rests on a weaker assumption.

2 Definitions and Security Models

Intuitively, a mesh signature is a non-interactive witness-indistinguishable proof
that some monotone boolean expression Υ is true, where each input of Υ is
notionally labeled with a key & message pair and is true only if the mesh signer
is in possession of a valid atomic signature for the stated message and key.

A mesh signature scheme should satisfy two security properties. First, it
should be anonymous (ideally, unconditionally so), i.e., it should not reveal what
assignment to the inputs of Υ caused it to be satisfied. Second, it should be un-
forgeable, i.e., the creation of a valid mesh signature must be predicated on the
possession of a set of valid atomic signatures sufficient to satisfy Υ .



Mesh Signatures 213

2.1 Recursive Mesh Signature Specification

We use � to denote the number of atomic clauses in a mesh structure (in a
ring signature, this would be equal to the number of users in the ring). Let
Υ be the expression generated by the following grammar, with propositional-
logic semantics, under the restriction that, for each i = 1, ..., �, the production
expr ::= Li corresponding to the symbol Li be used at most once (in other
words, no Li may appear more than once in the written expression of Υ ):

expr ::= L1 | ... | L� single-use input symbols
| ≥t{expr1, ...,exprm} t-out-of-m threshold, with 1 < t < m
| ∧{expr1, ...,exprm} m-wise conjunction, with 1 < m
| ∨{expr1, ...,exprm} m-wise disjunction, with 1 < m

Equivalently, we call Υ an “arborescent monotone threshold circuit” with �
Boolean inputs L1, ..., L� and one Boolean output denoted Υ (L1, ..., L�). It is
apparent by induction that Υ is always a non-trivial monotone function of its
inputs, and in particular Υ (⊥, ...,⊥) = ⊥ and Υ (�, ...,�) = �.

We use expressions of this form to state the meaning of mesh signatures.
The signer specifies the circuit Υ , and assigns to each symbol Lj an atomic
proposition [VK : Msg] to convey the meaning: “This is Msg signed under VK.”
The mesh signature then simply expresses that Υ (L1, ..., L�) = � holds for the
stated interpretation of the Li (without revealing their individual truth values).
For the example in the introduction, Υ = L1 ∨ (L2 ∧ L3) where L1 denotes
[VKAlice : Msg1], etc.

We emphasize that two distinct symbols Li and Lj can express the same
sentence and yet have opposite truth values, since the signer is free to use a
valid atomic signature for one and not for the other. The current construction
does not support cloning truth values without losing the original, just as it
cannot express the negation of a truth value.

2.2 Anonymity Model

The strongest notion of anonymity defined in [3], “anonymity against full key
exposure”, in the context of ring signatures, requires that the signer remain
anonymous following full exposure of all the private keys, after their use. It is
however a constrained notion of anonymity because the keys are not chosen by
the adversary, and are only revealed a posteriori. We contend that, since the
motivating application of ring and mesh schemes is to leak secrets, it is crucial
that anonymity be unconditional and everlasting, subsequently to the exposure
of all secrets, for the long-term peace of mind of the signer. We thus insist on
perfect (i.e., information theoretic) anonymity, even upon prior disclosure of the
signer’s and every user’s secret keys.

Precisely, we require that the identity of the signer be statistically indepen-
dent, conditionally on all public keys and the mesh formula, of any long-term
secret held by any party in the system. We exclude ephemeral randomness from
the above requirement, for the reason that there is no way to prevent the signer



214 X. Boyen

to prove willingly that she herself created a particular signature: revealing the
ephemerals used to create a signature is but one way to do this. By contrast, the
signer must be protected againt coerced disclosure, which is why independence
from her long-term keys is crucial.

2.3 Unforgeability Model

The strongest notion of unforgeability defined in [3], “unforgeability with re-
spect to insider corruption”, for ring signatures, gives the adversary the ability
to corrupt users dynamically, and include its own public keys when making ring
signature queries. Since the point of mesh signatures is to implicate uncoopera-
tive users, it is judicious to allow them to choose their keys maliciously.

However, as a compromise for unconditional anonymity, we relax the fully
dynamic corruption model into an enhanced static one, in which the honest users
are static and created ahead of time by a challenger, and the corrupted users are
under the full control of an adversary who can bring them to life dynamically.
We also need to specify what constitutes a valid forgery. For ring signatures,
a forgery is any signature by a ring without adversarially controlled users. For
mesh signatures, this is overly restrictive, since it excludes forgeries such as,

Υ = ([U1 : m1] ∧ [U3 : m3]) ∨ ([U2 : m2] ∧ [U4 : m4]) ,

where U1 and U2 are honest users, and U3 and U4 are corrupted. Since Υ nom-
inally entails Υ ′ = [U1 : m1] ∨ [U2 : m2], a forger who signs Υ lacking the im-
primatur of both U1 and U2 should be deemed successful. We capture these
circumstances by deeming admissible any forgery on a statement Υ if there ex-
ists a well-formed Υ ′ that involves only honest users and such that Υ ⇒ Υ ′.

To see where this comes from, for all corrupted users let us set the corre-
sponding literal Li ← �, which is the most that they can supposedly do. If Υ
evaluates to �, the forgery is inadmissible; otherwise, Υ reduces to some well-
formed formula Υ ′ which involves honest users, exclusively. Hence, the condition
demands that Υ be unsatisfiable by the volition of the adversarial users alone.
We distill all of this into the following existential unforgeability game, and define
the adversary’s advantage as the probability of outputting an admissible valid
forgery.

Challenger setup: the challenger designates a number � of public keys,
corresponding to the honest target users under the challenger’s con-
trol.

Interaction: the following occurs interactively, in any order, driven by
the adversary.
Adversary setup: the adversary reveals polynomially many pub-

lic keys, one at a time, corresponding to the users under the
adversary’s control.

Signature queries: the adversary makes up to q mesh signature
queries, one at a time, on specifications Υj whose satisfiability
involves the challenger’s users.



Mesh Signatures 215

The adversary may also query q atomic signatures to each of
the users controlled by the challenger (since atomic signatures
should be usable instead of signing keys for mesh signing.)

The challenger processes each request before accepting the next one.
Signature forgery: the adversary produces a forged signature whose

specification Υ contains no clause [VKi : Msgi] from an atomic query,
and is such that ∀j, Υ 
= Υj and ∃Υ ′, Υ (L1, ..., L�, ...) ⇒ Υ ′(L1, ..., L�)
where Υ ′ is a well-formed formula with honest user clauses only.

3 Framework and Computational Assumption

We write Fp for the finite field of prime order p, and F
×
p = Fp \ {0} for its mul-

tiplicative group of order p − 1. Let a bilinear context G = (p, G, Ĝ, Gt, g, ĝ, e),
where e : G × Ĝ → Gt is a pairing [25]. We use the “hat-notation” (as in ĝ) to
indicate that an element belongs to Ĝ rather than G.

3.1 Review of the SDH Assumption

The complexity assumption we shall need is inspired from the Strong Diffie-
Hellman assumption proposed in [4], which we now review. The q-SDH problem
in a (bilinear) group G is stated:

(Original SDH) Given elements g, gα, gα2
, ..., gαq ∈ G, choose w ∈ Fp and

output (w, g1/(α+w)).

The SDH assumption then posits that the q-SDH problem above is intractable
for q = O(poly(κ)). What makes this assumption special is that the problem
admits not one but exponentially many “independent” solutions, which are all
equally hard to find. Hence the modified q-SDH problem:

(Modified SDH) Given g, gα ∈ G and q − 1 pairs (wj , g1/(α+wj)), output
another (w, g1/(α+w)).

It is known from [4] that if the original q-SDH problem is hard, then so is the
modified problem.

Although the SDH problem statement does not require a bilinear group, it is
because the bilinear map provides an efficient Decision Diffie-Hellman procedure
[23] that the correctness of an SDH solution can be decided openly. Specifically,
given g and gα, deciding whether (w, u) = (c, g1/(α+w)) amounts to checking the
equality e(u, ĝα ĝw) = e(g, ĝ), basically a DDH a test that anyone can perform
from public information. The short signature scheme of [4] relies on this.

3.2 Poly-SDH: For Better Use of the Pairing

The verifiability of SDH solutions with a simple DDH test suggests that more
general assumptions could be made, based on the observation that the pairing is



216 X. Boyen

a powerful tool that can be used to decide more complex relations that are not
efficiently reducible to DDH. For example, a natural generalization of the SDH
problem is that of finding � pairs (wi, ui = gri/(α+wi)) for i = 1, ..., �, such that∑�

i=1 ri = 1 (mod p). Purported solutions can then be verified by checking,

�∏

i=1

e(ui, ĝα ĝwi) = e(g, ĝ) . (1)

Clearly, when � = 1, this is identical to the SDH problem. For larger values of
�, the adversary is given to spread the exponent inversion task across multiple
pairs, by means of linear combination.

Unfortunately, for � > 1, the problem is in fact trivial, because Equation (1)
admits spurious solutions that do not require the solver to know the secret α
and invert the exponent: for example, for � = 2 the solution w1 = 1, u1 = g,
w2 = 0, u2 = g−1 satisfies the equality regardless of α.

To remedy the preceding problem, we change the solver’s task slightly, and
ask that the � pairs to be output involve � independent secrets α1, ..., α� that
appear once each, i.e., find,

(
wi, ui = g

ri
αi+wi

)
: i = 1, ..., � , s.t.

�∑

i=1

ri = 1 (mod p) .

To decide whether a solution ((w1, u1), ..., (w�, u�)) to the new problem is
correct, one also needs, besides the generators g and ĝ, the � group elements
(ĝ1, ..., ĝ�) = (ĝα1 , ..., ĝα�). The verification equation is then,

�∏

i=1

e(ui, ĝi ĝwi) = e(g, ĝ) . (2)

Notice that (1) is a special case of (2) where α1 = ... = α� = α; however, for
the security of the assumption it is important that the αi be independently and
uniformly distributed. Despite the added variables, we stress that Equation (2)
is no more expensive to verify.

Based on the previous observations, the (q, �)-Poly-SDH problem can be in-
formally stated as:

(Poly-SDH) Given g, gα1 , ..., gα� ∈ G and q � pairs (wi,j , g1/(αi+wi,j)) for
1 ≤ i ≤ � and 1 ≤ j ≤ q, choose fresh w1, ..., w� ∈ Fp and output � pairs
(wi, gri/(αi+wi)) such that

∑�
i=1 ri = 1.

The αi and wi,j in the instance are drawn from a uniform distribution. The wi

and ri are chosen by the respondent. We require that ∀i, ∀j, wi 
= wi,j , lest the
task be easy. The exponents ri need not be revealed, since Equation (2) can
establish that a solution is correct, and thus

∑
i ri = 1, without seeing the ri.

We have chosen to state the (q, �)-Poly-SDH problem in a form analogue to
Modified SDH, rather than Original SDH. There are a few justifications for this:



Mesh Signatures 217

– the modified form results in a weaker assumption (by analogy to the impli-
cation from Original SDH to Modified SDH);

– the input/output symmetry simplifies the security reductions;
– its instances are more concisely stated when more than one iterator is needed;
– the modified problem form is impervious to a (benign) generic analysis de-

scribed in [13], which relies on the availability of g, gα, and gαd

for certain
d, as in Original SDH instances.

The reason why there are no undesirably easy solutions to the (q, �)-Poly-SDH
problem will become apparent as we prove generic hardness in Section 3.3.

3.3 Generic Hardness of Poly-SDH

We now take some time to explain why the Poly-SDH assumption based on
Equation (2) is plausible, unlike our first attempt from Equation (1) that was so
easily broken. We give a heuristic argument based on the impossibility of efficient
generic attacks. Specifically, we show that finding a solution to the (q, �)-Poly-
SDH problem will require, on expectation, Ω(

√
p/q �) generic group operations.

The generic group model [29] assumes the lack of any structure beyond that
of an (Abelian) cyclic group, restricting all manipulations on group elements to
the group operation and its inverse (i.e., multiplication and division if the group
is written multiplicatively). In the bilinear version of the model [4], one can also
compute a pairing e : G × Ĝ → Gt, as well as an isomorphism ψ : Ĝ → G

(for “type-1” and “type-2” contexts) and its inverse ψ−1 : G → Ĝ (for “type-1”
only).

Let us assume that G = Ĝ, which only makes the attack easier. Recall that
the Poly-SDH instance furnishes g, gα1 , ..., gα� , and a large number of pairs
(wi,j , ui,j = g

1/(αi+wi,j)). Based on this information, the attacker must output �
pairs (wi, ui = gri/(αi+wi)) such that

∑
i ri = 1, and where wi is distinct from all

wi,j with the same index i.
First, notice that the pairing e is useful to verify a solution, but not really to

find one. This is because e ranges into Gt, and once we have landed in Gt we can
never leave it. Also, ψ and ψ−1 just model the identity function since we have
already assumed that G = Ĝ. We can thus focus on multiplication and division
in the multiplicative group G of prime order p.

Next, observe that all the group elements that can be created from g, {gαi},
and {g1/(αi+wi,j)} are of the form g

π(α1,...,α�)
Δ , where π ∈ Fp[α1, ..., α�]q�+1 is any

multivariate polynomial in α1, ..., α� of total degree at most q � + 1, and where
Δ is the common denominator Δ =

∏�
i=1

∏q
j=1 (αi + wi,j). We need to produce

� elements ui = g
ri/(αi+wi) and the corresponding wi. Our task is thus to find

� polynomials π1, ..., π� ∈ Fp[α1, ..., α�]q�+1 such that πi/Δ = ri/(αi + wi) for
some

∑
i ri = 1, i.e., such that,

�∑

i=1

(αi + wi)πi = Δ =
�∏

i=1

q∏

j=1

(αi + wi,j) .



218 X. Boyen

We show that there can be no such polynomials πi using a linear change of
variable. For all i = 1, ..., � and j = 1, ..., q, we define α′i = αi + wi and w′i,j =
wi,j − wi. Notice that all w′i,j 
= 0. Our new task becomes to find � polynomials
π′1, ..., π′� of degree ≤ q � + 1 in the variables α′1, ..., α

′
�, such that,

�∑

i=1

α′i π′i = Δ =
�∏

i=1

q∏

j=1

(α′i + w′i,j) .

Clearly, all the monomials in the left-hand side have degree in α′1, ..., α
′
� at least

1. On the other hand, all w′i,j are non-zero, so the right-hand side yields a non-
vanishing independent degree-0 term equal to

∏
i

∏
j w′i,j =

∏
i

∏
j (wi,j − wi) 
=

0, which is a contradiction.
The contradiction shows that the equations above cannot be satisfied identi-

cally in Fp[α′1, ..., α′�] or Fp[α1, ..., α�], which proves that the polynomials π′i and
thus πi cannot exist. A standard argument then shows that the equations can
only be satisfied in Fp for certain assignments of α1, ..., α� ∈ Fp: the polynomial
roots. Since the αi are chosen at random, we can bound the probability of hitting
those roots. We find that, if q � < O( 3

√
p), it takes qG = Ω(

√
ε p/q �) operations

to solve (q, �)-Poly-SDH with probability ε in generic groups of order p.

4 Special Case: Ring Signatures

We first describe a ring signature based on the Poly-SDH assumption as a spe-
cial case of our technique. It is more efficient than other provably secure ring
signature schemes without random oracles, and is set in the common random
string model without trusted parameters.

Initialization: Given a security parameter κ and a public random string K ∈
{0, 1}poly(κ), the parties generate from K a common bilinear instance G =
(p, G, Ĝ, Gt, g, ĝ, e) ← G(1κ; K) and a collision-resistant hash function
H : {0, 1}∗ → Fp shared by all. Since G has prime order and no hidden
structure, it can safely be generated from public coins.

The string K is also used to generate three random elements Â0, B̂0, and
Ĉ0 in Ĝ. These elements define a public verification key “in the sky” whose
matching signing key is undefined.

For notational convenience, we suppose for now that the isomorphism ψ :
Ĝ → G is efficiently computable in the instance G, and we let A0 = ψ(Â0),
B0 = ψ(B̂0), and C0 = ψ(Ĉ0) in G. This temporary restriction will be lifted
later in this section.

Key generation: User #i draws a signing key (ai, bi, ci) ∈ (F×p )3, and pub-
lishes (Ai, Bi, Ci, Âi, B̂i, Ĉi) = (gai , gbi , gci, ĝai , ĝbi , ĝci) ∈ G

3 × Ĝ
3.

In case ψ : Ĝ → G is easy to compute, users publish only (Âi, B̂i, Ĉi).
Ring signature: To create a ring signature on a message m ∈ Fp attributed to

a ring of � users, any member of the ring would proceed as follows. W.l.o.g.,
suppose that the signer is User #� in the ring R = (1, ..., �). The signer



Mesh Signatures 219

selects 2 � + 1 random integers s0, s1, ..., s�−1, t0, t1, ..., t� ∈ Fp, and outputs
the signature σ = (S0, ..., S�, t0, ..., t�) ∈ G

�+1 × F
�+1
p , given by,

σ =

⎛

⎝ gs0 , ..., gs�−1 ,

(
g ·

�−1∏

i=0

(Ai Bmi

i Cti

i )−si

) 1
a�+b� m�+c� t�

, t0, ..., t�

⎞

⎠ ,

with m1, ..., m� the messages to be signed, and m0 = H((1, m1), ..., (�, m�)),
a collision-resistant hash of the statement expressed by the signature.

Ring verification: To verify a signature σ = (S1, ..., S�, t1, ..., t�) with re-
spect to a message m and a ring R = (1, ..., �), it suffices to set m1 = ... =
m� = m and m0 = H((1, m1), ..., (�, m�)), and test the equality,

�∏

i=0

e(Si, Âi B̂mi

i Ĉti

i ) = e(g, ĝ) .

Consistency of the algorithms is readily verified. Note that the scheme is trivially
modified to force all messages m1, ..., m� to be the same, as in traditional ring
signatures.

The purpose of signing a hash of the message and ring composition under the
public key “in the sky” is to prevent outsiders from appending new components
to an existing signature, which would otherwise give an easy forgery. It also helps
in the security proof.

We emphasize that the public string K has no hidden structure, and can be
drawn publicly at random as long as it is not chosen to grant anyone undue ad-
vantage to compute discrete logarithms in G or sign under the key “in the sky”.
The absence of secret coins is the main difference between a common random
string (CRS) and the much more demanding trusted parameters (TP) model:
in the former the parameters can be drawn in the open; in the latter they must
be crafted in a special way from secret coins by some trusted setup authority,
who must then voluntarily give up the secret knowledge it has (and convince
everyone that it did not cheat). No trusted setup agent, either centralized or
distributed, is needed in our system.

Furthermore, we have irrevocable, or everlasting, unconditional anonymity
of the signatures (i.e., with forward security against coerced disclosure of the
long-term signing keys), as stated by the following theorem.

Theorem 1. The ring signature has everlasting perfect anonymity.

The second security theorem states that the scheme is existentially unforgeable
in the model of Section 2.3. The proofs will appear in the full version.

Theorem 2. The ring signature is existentially unforgeable under an adaptive
attack, against a static adversary that makes no more than q ring signature
queries, and q atomic signature queries to each one of the � honest users, adap-
tively, provided that the (q, � + 1)-Poly-SDH assumption holds in G, in the com-
mon random string model.



220 X. Boyen

Withholding the Isomorphism. Since the most general types of bilinear instance
G may fail to provide both an efficient isomorphism ψ : Ĝ → G and an efficient
sampling procedure in Ĝ, it is useful to modify the ring scheme in order to relax
both requirements [19]. This is done as follows.

– First, we redefine the random key “in the sky” to consist just of A0, B0, and
C0, to be sampled directly in G from the common random seed K (skipping
Ĝ altogether).

– Next, we modify the group element of index 0 in the signature, ĝs0 ∈ Ĝ

replacing gs0 ∈ G. The signature becomes, e.g., with User #� as the signer:
σ = (Ŝ0, ..., S�, t0, ..., t�) ∈ Ĝ × G

� × F
�+1
p , given by,

⎛

⎝ ĝs0 , gs1 , ..., gs�−1 ,

(
g ·

�−1∏

i=0

(Ai Bmi

i Cti

i )−si

) 1
a�+b� m�+c� t�

, t0, ..., t�

⎞

⎠ ,

– Last, we exchange the arguments under the pairing of index 0 and amend
the verification equation into,

e(A0 Bm0
0 Ct0

0 , Ŝ0) ·
�∏

i=1

e(Si, Âi B̂mi

i Ĉti

i ) = e(g, ĝ) .

It is easy to see that the security theorems continue to hold in the modified
ring signature scheme. On the one hand, anonymity is unconditional and thus
insensitive to the existence of some efficient algorithm for ψ or for sampling in
Ĝ. On the other hand, unforgeability relies no more on the presence of such
algorithms than on their absence, as an inspection of the proof would show.

5 General Case: Mesh Signatures

We now describe our mesh signature scheme, based on the Poly-SDH assumption.
We proceed in stages: we first define a few useful notions, which we then use to
describe the actual system.

5.1 Flattened Mesh Representation

Recall that a mesh signature is characterized by an expression Υ generated by
the grammar: Υ ::= N and,

N ::= L1 | ... | L� | ≥t{N1, ..., Nm} | ∧ {N1, ..., Nm} | ∨ {N1, ..., Nm} .

To harmonize the notation with the scheme description, we need to consider an
extra literal L0 whose meaning is unimportant for now, and let Υ̃ be as above
with � + 1 input literals L0, ..., L�.

We show how to convert the recursive expression of Υ̃ into a representation as
a list of �+1 polynomials in �+1 variables (or fewer, depending on the structure
of Υ̃ ), akin to Linear Secret Sharing Structures [24,30].



Mesh Signatures 221

The principle is as follows. To each input symbol Li we associate a degree-1
homogeneous polynomial πi =

∑�
j=0 yi,j Zj , where the variables Z0, ..., Z� are

common to all polynomials and the integer coefficients yi,j are constant. The
polynomials are such that, if the formula Υ̃ is satisfied by setting some subset of
symbols to �, then the span of the corresponding polynomials will contain the
pure monomial Z0; conversely, any set of polynomials whose span contains the
monomial Z0 indicates a satisfying assignment.

The following algorithm computes such a representation from Υ̃ . Proceeding
recursively, it assigns temporary polynomials to the interior nodes as it walks
down the tree from the root to the leaves (i.e., from the output gate to the input
symbols):

1. Initialize a counter kc ← 0.
The counter kc is used for allocating new variables, so that each Zk+kc is
always a “fresh” variable that is never used before or after in the algorithm.

2. Label the root node N0 with the polynomial πN0 ← Z0.
3. Select a non-leaf node N with non-empty label πN 
= ∅.

(a) Denote by N1, ..., Nm the m ≥ 2 children of N .
(b) If N is ∨{N1, ..., Nm}, then ∀i = 1, ..., m let πNi = πN .
(c) If N is ∧{N1, ..., Nm}, then ∀i = 1, ..., m let πNi = πN +

∑m−1
k=1 li,k Zk+kc

where li,k ∈ Z. The selection of li,k is explained below.
(d) If N is ≥t{N1, ..., Nm}, then ∀i = 1, ..., m let πNi = πN +

∑t−1
k=1 li,k Zk+kc

where li,k ∈ Z.
(e) Label each child Ni with the polynomial πNi .
(f) Unlabel node N , i.e., set πN ← ∅.
(g) Increment kc ← kc + t − 1 (using t = 1 and t = m for ∨- and ∧-gates).
(h) Continue at Step 3 if an eligible node remains, otherwise skip to Step 4.

4. Let ϑ ← kc and output the polynomials (π0, ..., π�) associated with the leaf
nodes L0, ..., L�. Each polynomial πi is represented as a vector of coefficients
(yi,0, ..., yi,ϑ) ∈ F

ϑ+1
p such that πi =

∑ϑ
k=0 yi,k Zk is the result of the sequence

of operations in Steps 3b, 3c and 3d.

We note that the only variables with non-zero coefficients in the output polyno-
mials are Z0, ..., Zϑ, where ϑ = kc is the final counter value and may be equal to
or lesser than �.

In Steps 3c and 3d, the coefficients li,k must ensure that no linear relation
exists in any set of πi of size < m or < t. (By construction, m or t of them
will always be linearly dependent.) To ensure this property, we let (li,k) form
a Vandermonde matrix in F

m×(m−1)
p or F

m×(t−1)
p , i.e., set li,k = ak

i for distinct
ai ∈ Fp; independence follows from the existence of polynomial interpolation.
We also require that (li,k) be constructed deterministically, so that anyone can
verify that the πi faithfully encode Υ̃ simply by reproducing the process.

The following lemma shows the equivalence between the recursive specification
of Υ̃ and its flattened representation. It is adapted from a classic result [24] for
Linear Secret Sharing Structures, and proven by induction on the structure of
Υ̃ . We refer to the literature [30] for further details.



222 X. Boyen

Lemma 1. [24] Let Υ̃ be an arborescent monotone threshold circuit as defined,
and (π0, ..., π�) a flattened representation of it per the above algorithm. A minimal
truth assignment χ : {L0, ..., L�} → {⊥, �} satisfies Υ̃ (χ(L0), ..., χ(L�)) = � if
and only if there exist integer coefficients (ν0, ..., ν�) such that,

�∑

i=0

νi πi = Z0 , and ∀i : νi = 0 ⇐⇒ χ(Li) = ⊥ .

5.2 Information-Theoretic Blinding

In the signature scheme (yet to be described), we use both the polynomials
(π0, ..., π�) and the linear combination (ν0, ..., ν�) from Lemma 1: the latter to
create a signature, and the former to indicate how to verify it. However, since the
linear coefficients νi reveal which of the Li are true, they must be kept secret. In
the actual signature, these coefficients appear not as integers but as exponents
of elements of G, and are thus already computationally hidden; however, this is
not enough and we need to take an extra step to ensure perfect hiding.

By Lemma 1 we know that
∑�

i=0 νi πi = Z0, where each νi ∈ Fp and each
πi ∈ Fp[Z0, ..., Zϑ]1. We hide the linear coefficients νi using random blinding
terms (h0, ..., h�) such that

∑�
i=0 hi πi = 0. Since

∑�
i=0 (νi + hi)πi = Z0, the

blinded coefficients νi + hi still bear witness that Υ̃ (L0, ..., L�) = �. However,
these witnesses have been rendered information-theoretically indistinguishable,
because the distribution of (ν0 + h0, ..., ν� + h�) is conditionally independent of
the truth values of the Li given that Υ̃ (L0, ..., L�) = �.

The difficulty is that no scalar hi will satisfy
∑�

i=0 hi πi = 0 when the πi

contain uninstantiated variables. However, given a specific set of πi, it is easy to
build hi that have polynomial values.

1. Draw a random vector s = (s1, ..., s�) ∈ F
�
p of scalar coefficients.

2. For i = 1, ..., �, define hi = −si π0, and set the remaining term h0 =∑�
j=1 sj πj .

In the actual scheme, these polynomials are evaluated “in the exponent” for un-
known assignments to the Zk, but regardless of their values we have

∑�
i=0 hi πi =

(
∑�

j=1 sj πj)π0 +
∑�

i=1 (−si π0)πi = 0, and so the blinding terms (h0, ..., h�)
meet our requirements.

Remark that the random vector s can be chosen independently of the πi. This
is important for the actual signature scheme, where the relevant polynomials
will have coefficients that involve discrete logarithms not known explicitly (in
addition to the Zk being instantiated as discrete logarithms of random group
elements). In spite of this, we will be able to select a suitable vector s and
compute the blinding terms hi “in the exponent”.

5.3 Construction

The full mesh signature scheme can now be described as follows.



Mesh Signatures 223

Initialization: Given a security parameter κ and a public random string K ∈
{0, 1}poly(κ), all participants generate the common bilinear instance G =
(p, G, Ĝ, Gt, g, ĝ, e) ← G(1κ; K). Here, we require that the accompanying
isomorphism ψ : Ĝ → G be efficiently computable.

The string K also indicates a hash function H : {0, 1}∗ → Fp from a
collision-resistant family.

Given a mesh size parameter λ, the string K then specifies λ+1 elements
ĝ0, ĝ1, ..., ĝλ in Ĝ, on which the efficient algorithm for ψ can be applied to
obtain the images g0, g1, ..., gλ in G.

Additionally, K defines λ + 1 random triples (Â0,k, B̂0,k, Ĉ0,k) ∈ Ĝ
3 for

k ∈ {0, ..., λ}; these elements together constitute a public verification key
“in the sky” with no known signing key. We define A0,k = ψ(Â0,k), B0,k =
ψ(B̂0,k), C0,k = ψ(Ĉ0,k), in G, again easy to compute.

Key generation: To create a key pair, User #i draws a triple (ai, bi, ci) ∈
(F×p )3 as signing key. User #i computes for each k ∈ {0, ..., λ} the triple
(Âi,k, B̂i,k, Ĉi,k) = (ĝai

k , ĝbi

k , ĝci

k ) ∈ Ĝ
3, and lets these 3 (λ + 1) group ele-

ments constitute his or her verification key.
For simplicity, we write (Ai,k, Bi,k, Ci,k) = (ψ(Âi,k), ψ(B̂i,k), ψ(Ĉi,k)) =

(gai

k , gbi

k , gci

k ) ∈ G
3, which anyone can compute from the verification key of

User #i thanks to ψ.
Mesh signature: On input the following mesh signature specification:

– � atomic signature specifications [VKi : Msgi], not necessarily all distinct,
and � boolean flags Li, for i = 1, ..., �;

– a well-formed formula Υ with � boolean inputs; and an assignment χ :
{L1, ..., L�} → {⊥, �} that satifies Υ (L1, ..., L�) = �;

– ∀i = 1, ..., � such that χ(Li) = �, a valid Boneh-Boyen signature in G
on the statement [VKi : Msgi], given as a pair,

( ui = g
1

a+b w+c ti , ti ) , for random ti ∈ Fp ,

where w = Msgi and (a, b, c) is the signing key for the clause [VKi : Msgi].
The signer firsts extends Υ into Υ ′ that involves the public key “in the sky”:
1. Compute Msg0 = H([VK1 : Msg1] , ..., [VK� : Msg�] , Υ ) by hashing the

mesh specification, and associate the literal L0 to the clause [VK0 : Msg0].
2. Construct Υ̃ = L0 ∨ Υ , which is well-formed per the definition.
3. Extend χ so that χ(L0) = ⊥, as we lack an atomic signature for L0.

The signer then builds the mesh signature from the circuit Υ̃ , the assignment
χ, and the atomic signatures (ui, ti) known for such i that χ(Li) = �, as:
4. Create a flattened representation of Υ̃ and χ as discussed in Section 5.1.

Accordingly, let π0, ..., π� ∈ Fp[Z0, ..., Zϑ] be public degree-1 multivariate
polynomials that encode Υ̃ , and ν0, ..., ν� ∈ Fp the secret scalar coeffi-
cients of a linear combination that expresses χ. Explicitly determine all
the coefficients yj,k ∈ Fp in all polynomials πj =

∑ϑ
k=0 yj,k Zk.

5. Create a random blinding vector s = (s1, ..., s�) ∈ F
�
p as in Section 5.2.

6. ∀i ∈ {0, ..., �} : χ(Li) = ⊥, pick ti ∈ Fp and fix ui = g0 = 1 ∈ G.



224 X. Boyen

7. For all j = 0, ..., � and k = 0, ..., ϑ, let mj = Msgj and calculate,

vj,k =
(
Aj,k B

mj

j,k C
tj

j,k

)yj,k

, vj =
ϑ∏

k=0

vj,k .

8. Compute, for i = 1, ..., �, and k = 0, ..., ϑ, respectively,

Si = ui
νi v0

−si , Pk =
�∏

j=1

vj,k
sj .

(The value of any intervening ui such that χ(Li) = ⊥ is unimportant
since then νi = 0; this is true in particular for the 0-th user “in the sky”.)

9. Output the mesh signature, consisting of the statement Υ and the tuple,

σ = ( t0, ..., t�, S1, ..., S�, P0, ..., Pϑ ) ∈ F
�+1
p × G

�+ϑ+1 .

Mesh verification: A fully qualified mesh signature package consists of:
– � + 1 propositions [VK0 : Msg0] , ..., [VK� : Msg�] viewed as inputs to,
– an arborescent monotone threshold circuit Υ̃ : {⊥, �}�+1 → {⊥, �},
– a mesh signature σ = (t0, ..., t�, S1, ..., S�, P0, ..., Pϑ) ∈ F

�+1
p × G

�+ϑ+1.
To verify such a signature, the verifier proceeds as follows:
1. Ascertain that Υ̃ (�, �, ..., �) = �, extract from Υ̃ (L0, ..., L�) the sub-

circuit Υ (L1, ..., L�) such that Υ̃ = Υ ∨ L0, and verify that Msg0 =
H([VK1 : Msg1] , ..., [VK� : Msg�] , Υ ).

2. Compute the representation (π0, ..., π�) of the formula Υ̃ by reproducing
the deterministic conversion of Section 5.1.

3. For i = 0, ..., �, determine the coefficients yi,k ∈ Fp of the polynomials
πi =

∑ϑ
k=0 yi,k Zk.

4. For i = 0, ..., � and k = 0, ..., ϑ, retrieve (Âi,k, B̂i,k, Ĉi,k) from the key
VKi, let mi = Msgi, and calculate,

v̂i,k =
(
Âi,k B̂mi

i,k Ĉti

i,k

)yi,k

, v̂i =
ϑ∏

k=0

v̂i,k .

5. Using the pairing, verify the equalities, for all k = 0, ..., ϑ,

e (Pk, v̂0) ·
�∏

i=1

e (Si, v̂i,k) =

{
e(g, ĝ0) for k = 0
1 otherwise

.

6. Accept the signature if and only if all ϑ + 1 equalities hold in Gt.
(Optional) Probabilistic check: Mesh signatures can be verified using fewer

total pairings, at the cost of some additional random bits and exponentia-
tions. In the same setting as above, replace Step 5 onward by the following:
5′. Set d0 = 1, pick random d1, ..., dϑ ∈ Fp, and verify the single equality,

e(
ϑ∏

k=0

P dk

k , v̂0) ·
�∏

i=1

e(Si,

ϑ∏

k=0

v̂dk

i,k) = e(g, ĝ0) .

6′. Accept the signature as valid if and only if the equality holds in Gt.



Mesh Signatures 225

Theorem 3. The mesh signature is consistent.

Proof. For any list of public polynomials π0, ..., π� and secret coefficients ν0, ..., ν�

that respectively encode per Lemma 1 a well-formed mesh specification Υ̃ and
an assignment χ that satisfies it, we need to show that a signature created by
the above algorithm will be accepted by the same. A straightforward sequence
of substitutions in the scheme description shows this to be the case.

Theorem 4. The mesh signature has everlasting perfect anonymity.

Theorem 5. The mesh signature is existentially unforgeable under an adaptive
attack, against a static adversary that makes no more than q mesh signature
queries, and no more than q atomic signature queries to each of the � honest
users, adaptively, provided that the (q, � + 1)-Poly-SDH assumption holds in G,
in the common random string model.

Optimization. We note that the user keys and the key “in the sky” can be
shortened significantly. It turns out that in the proofs the bi are always known
to the simulators and are thus superfluous: we can set bi = 1 and omit the
B̂i,k = ĝbi

k = ĝk from the keys. This holds in the ring scheme, too.
We can independently compress the key “in the sky” to just two elements

of Ĝ, if we observe that for Υ̃ = Υ ∨ L0 the encoding algorithm of Section 5.1
always gives π0 = Z0, i.e., y0,0 = 1 and y0,k = 0 for k 
= 0, meaning that the
tuples (Â0,k, ..., Ĉ0,k) for k 
= 0 are in fact never used. Furthermore, it is safe to
set B̂0,0 = ĝ, which leaves just the pair (Â0,0, Ĉ0,0).

6 Conclusion

We have introduced mesh signatures as a generalization of ring signatures with
a richer language for expressing signer ambiguity. Mesh signatures scale to large
crowds with many co-signers and independent certificate authorities; they can
even implicate unwilling individuals who, by withholding their ring public key,
would have otherwise remained out of reach. Because in principle mesh signatures
require neither trusted setup nor centralized authorities, they provide a credible
answer to the question of how to leak a secret authoritatively.

We have constructed a simple and practical mesh signature scheme in prime
order bilinear groups, that achieves everlasting unconditional anonymity, and
existential unforgeability in the common random string model, without trusted
setup authority. To obtain this result, we introduced a new complexity assump-
tion, which we prove sound in the generic model; it is in the spirit of the SDH
assumption, but better exploits the group structure of the values computed by
pairing. Incidentally, we obtain an efficient ring signature without random ora-
cles as a special case of our construction.

Acknowledgements

The author wishes to express his gratitude to Anna Lysyanskaya and the anony-
mous referees of Eurocrypt 2007 for many valuable comments.



226 X. Boyen

References

1. Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from
a variety of keys. In Proceedings of AsiaCrypt 2002, volume 2501 of LNCS, pages
415–32. Springer, 2002.

2. Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/.

3. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In Proceedings of TCC
2006, LNCS. Springer, 2006.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology—EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73.
Springer, 2004.

5. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Advances in Cryptology—CRYPTO 2004, volume 3152 of LNCS, pages 41–55.
Springer, 2004.

6. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and ver-
ifiably encrypted signatures from bilinear maps. In Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of LNCS, pages 416–32. Springer, 2003.

7. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Proceedings of TCC 2005, Lecture Notes in Computer Science. Springer-
Verlag, 2005.

8. Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size
group signatures. In Public Key Cryptography—PKC 2007, volume 4450 of LNCS,
pages 1–15. Springer, 2007.

9. Jan Camenisch and Anna Lysyanskaya. Signature schemes with efficient protocols.
In Proceedings of SCN 2002, LNCS. Springer, 2002.

10. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology—CRYPTO 2004, volume
3152 of LNCS. Springer, 2004.

11. Melissa Chase and Anna Lysyanskaya. Signature of knowledge. In Advances in
Cryptology—CRYPTO 2006, volume 4117 of LNCS. Springer, 2006.

12. David Chaum and Eugène van Heyst. Group signatures. In Advances in
Cryptology—EUROCRYPT 1991, volume 547 of LNCS, pages 257–65. Springer,
1991.

13. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Ad-
vances in Cryptology—EUROCRYPT 2006, volume 4004 of LNCS, pages 1–13.
Springer, 2006.

14. Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon Yuen. Ring
signatures without random oracles. In Proceedings of AsiaCCS 2006, pages 297–
302. ACM Press, 2006.

15. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Advances in Cryptology—
CRYPTO 1994, volume 839 of LNCS, pages 174–87. Springer, 1994.

16. Yevgeniy Dodis, A. Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In Advances in Cryptology—EUROCRYPT 2004,
volume 3027 of LNCS, pages 609–26. Springer, 2004.

17. Cynthia Dwork and Moni Naor. Zaps and their applications. In Proceedings of
FOCS 2000, pages 542–552. IEEE Press, 2000.

http://eprint.iacr.org/


Mesh Signatures 227

18. Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge or the
timing model for designing concurrent protocols. Journal of the ACM, 51(6):851–
98, 2004.

19. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pair-
ings for cryptographers. Cryptology ePrint Archive, Report 2006/165, 2006.
http://eprint.iacr.org/2006/165/ .

20. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new
techniques for NIZK. In Advances in Cryptology—CRYPTO 2006, LNCS. Springer,
2006.

21. Javier Herranz and Germán Sáez. Forking lemmas for ring signature schemes.
In Proceedings of IndoCrypt 2003, volume 2904 of LNCS, pages 266–79. Springer,
2003.

22. Javier Herranz and Germán Sáez. New distributed ring signatures for general
families of signing subsets. Cryptology ePrint Archive, Report 2004/377, 2004.
http://eprint.iacr.org/.

23. Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from com-
putational Diffie-Hellman in cryptographic groups. Journal of Cryptology, 16(4),
2003.

24. Mauricio Karchmer and Avi Wigderson. On span programs. In Annual Conference
on Structure in Complexity Theory, 1993.

25. Victor Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4), 2004.

26. Moni Naor. Deniable ring authentication. In Advances in Cryptology—CRYPTO
2002, volume 2442 of LNCS, pages 481–98. Springer, 2002.

27. Ron Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Proceedings
of AsiaCrypt 2001, volume 2248 of LNCS, pages 552–65. Springer, 2001.

28. Hovav Shacham and Brent Waters. Efficient ring signatures without random or-
acles. In Public Key Cryptography—PKC 2007, volume 4450 of LNCS. Springer,
2007.

29. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology—EUROCRYPT 1997, volume 1233 of LNCS. Springer,
1997.

30. Marten van Dijk. A linear construction of secret sharing schemes. Designs, Codes
and Cryptography, 12(2):161–201, 1997.

31. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS. Springer,
2005.

32. Victor K. Wei and Tsz Hon Yuen. (Hierarchical identity-based) thresh-
old ring signatures. Cryptology ePrint Archive, Report 2006/193, 2006.
http://eprint.iacr.org/.

http://eprint.iacr.org/2006/165/
http://eprint.iacr.org/
http://eprint.iacr.org/


The Power of Proofs-of-Possession:
Securing Multiparty Signatures against

Rogue-Key Attacks

Thomas Ristenpart and Scott Yilek

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{tristenp,syilek}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{tristenp,syilek}

Abstract. Multiparty signature protocols need protection against rogue-
key attacks, made possible whenever an adversary can choose its public
key(s) arbitrarily. For many schemes, provable security has only been es-
tablished under the knowledge of secret key (KOSK) assumption where
the adversary is required to reveal the secret keys it utilizes. In practice,
certifying authorities rarely require the strong proofs of knowledge of se-
cret keys required to substantiate the KOSK assumption. Instead, proofs
of possession (POPs) are required and can be as simple as just a signa-
ture over the certificate request message. We propose a general registered
key model, within which we can model both the KOSK assumption and
in-use POP protocols. We show that simple POP protocols yield provable
security of Boldyreva’s multisignature scheme [11], the LOSSW multisig-
nature scheme [28], and a 2-user ring signature scheme due to Bender,
Katz, and Morselli [10]. Our results are the first to provide formal evi-
dence that POPs can stop rogue-key attacks.

Keywords: Proofs of possession, PKI, multisignatures, ring signatures,
bilinear maps.

1 Introduction

We refer to any scheme that generates signatures bound to a group of parties
as a multiparty signature scheme. We focus on schemes that are both adap-
tive and decentralized: the set of potential signers is dynamic and no group
manager is directly involved in establishing eligibility of participants. Examples
include multisignatures, ring signatures, designated-verifier signatures, and ag-
gregate signatures. These schemes require special care against rogue-key attacks,
which can be mounted whenever adversaries are allowed to choose their pub-
lic keys arbitrarily. Typical attacks have the adversary use a public key that
is a function of an honest user’s key, allowing him to produce forgeries eas-
ily. Rogue-key attacks have plagued the development of multiparty signature
schemes [26,20,22,30,32,33,25,11,28,38,31].

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 228–245, 2007.
c© International Association for Cryptology Research 2007



The Power of Proofs-of-Possession 229

One method for preventing rogue-key attacks is to require, during public key
registration with a certificate authority (CA), that a party proves knowledge of its
secret key. This setting has typically been formalized as the knowledge of secret
key (KOSK) assumption [11]: schemes are analyzed in a setting where adver-
saries must reveal their secret keys directly. This abstraction has lead to simple
schemes and straightforward proofs of security. To name a few: Boldyreva’s mul-
tisignature scheme [11] (we call it BMS), the LOSSW multisignature scheme [28]
(we call it WMS for brevity and its basis on Waters signatures [40]), the LOSSW
sequential aggregate signature scheme [28], and many designated-verifier signa-
ture schemes [23,39,27,24]. Since simple rogue-key attacks against these schemes
are known, it might appear that the security of these schemes actually depends
on parties performing proofs of knowledge during registration.

Drawbacks of the KOSK assumption. Unfortunately, there are substantial
drawbacks to using the KOSK assumption. Bellare and Neven discuss this in de-
tail [7]; we briefly recall some of their discussion. First and foremost, the KOSK
assumption is not realized by existing public key infrastructures (PKI). Registra-
tion protocols specified by the most widely used standards (RSA PKCS#10 [36],
RFC 4210 [1], RFC 4211 [37]) do not specify that CA’s should require proofs of
knowledge. Thus, to use schemes proven secure under the KOSK assumption,
one would be faced with the daunting task of upgrading existing (and already
complex) PKI. This would likely require implementing clients and CA’s that sup-
port zero-knowledge (ZK) proofs of knowledge that have extraction guarantees
in fully concurrent settings [4]. Non-interactive ZK proofs of knowledge [17,16,19]
could also be utilized, but these are more computationally expensive.

The plain setting. In the context of multisignatures, Bellare and Neven [7]
show that it is possible to dispense with the KOSK assumption. They provide
a multisignature scheme which is secure, even against rogue-key attacks, in the
plain public-key setting, where registration with a CA ensures nothing about a
party’s possession or knowledge of a secret key. Here we are interested in some-
thing different, namely investigating the security of schemes (that are not secure
in the plain setting) under more realistic key registration protocols, discussed
next.

Proofs of possession. Although existing PKIs do not require proofs of knowl-
edge, standards mandate the inclusion of a proof of possession (POP) during
registration. A POP attests that a party has access to the secret key associated
with his/her public key, which is typically accomplished using the functionality
of the key pair’s intended scheme. For signature schemes, the simplest POP has
a party sign its certificate request message and send both the message and sig-
nature to the CA. The CA checks that the signature verifies under the public
key being registered. In general, such proofs of possession (POPs) are clearly
not sufficient for substantiating the KOSK assumption. In fact, POPs have not
(previously) lead to any formal guarantees of security against rogue key attacks,
even though intuitively they might appear to stop adversaries from picking ar-
bitrary public keys. This logical gap has contributed to contention regarding the
need for POPs in PKI standards [2].



230 T. Ristenpart and S. Yilek

Our contributions. We suggest analyzing the security of multiparty signa-
ture schemes in a registered key model, which allows modeling a variety of key
registration assumptions including those based on POPs. Using the new model,
we analyze the security of the BMS and WMS multisignature schemes under
POP protocols. We show that, interestingly, requiring the in-use and standard-
ized POP protocol described above still admits rogue-key attacks. This implies
the intuition mentioned above is flawed. On the positive side, we show how a
slight change to the standardized POP protocol admits proofs of security for
these schemes. We also investigate the setting of ring signatures. We describe
how the key registration model can be utilized to result in improved unforge-
ability guarantees. In particular we show that the Bender, Katz, and Morselli
2-user ring signature scheme based on Waters signatures [10] is secure against
rogue-key attacks under a simple POP protocol. We now look at each of these
contributions in more detail.

The registered key model. A key registration protocol is a pair of interac-
tive algorithms (RegP, RegV), the former executed by a registrant and the latter
executed by a certifying authority (CA). We lift security definitions to the reg-
istered key model by giving adversaries an additional key registration oracle,
which, when invoked, executes a new instance of RegV. The security game can
then restrict adversarial behavior based on whether successful registration has
occurred. Security definitions in the registered key model are thus parameterized
by a registration protocol. This approach allows us to straightforwardly model a
variety of registration assumptions, including the KOSK assumption, the plain
setting and POP-based protocols.

Multisignatures under POP. A multisignature scheme allows a set of par-
ties to jointly generate a compact signature for some message. These schemes
have numerous applications, e.g. contract signing, distribution of a certificate
authority, or co-signing. The BMS and WMS schemes are simple multisigna-
ture schemes that are based directly on the short signature schemes of Boneh,
Lynn, and Shacham (BLS) [14] and Waters [40]. (That is, a multisignature with
group of size one is simply a BLS or Waters signature.) These schemes give
short multisignatures (just 160 bits for BMS). Moreover, multisignature genera-
tion is straightforward: each party produces its BLS or Waters signature on the
message, and the multisignature is just the (component-wise) product of these
signatures. Both schemes fall prey to straightforward rogue-key attacks, but have
proofs of security under the KOSK assumption [11,28].

We analyze these schemes when key registration requires POPs. We show
that the standardized POP mechanism described above, when applied to these
schemes, does not lead to secure multisignatures. Both schemes fall to rogue-key
attacks despite the use of the standardized POPs. We present a straightforward
and natural fix for this problem: simply use separate hash functions for POPs and
multisignatures. We prove the security of BMS and WMS multisignatures under
such POP mechanisms, giving the first formal justification that these desirable
schemes can be used in practice. Both proofs reduce to the same computational
assumptions used in previous KOSK proofs and the reductions are just as tight.



The Power of Proofs-of-Possession 231

Ring signatures under POP. Ring signatures allow a signer to choose a
group of public keys and sign a message so that it is verifiable that some party
in the group signed it, but no adversary can determine which party it was. The
canonical application of ring signatures is leaking secrets [35]. Bender, Katz,
and Morselli (BKM) have given a hierarchy of anonymity and unforgeability
definitions for ring signature schemes [10]. For κ-user schemes, where only rings
of size κ are allowed, we point out that the ability to mount rogue-key attacks
(as opposed to the ability to corrupt honest parties) is a crucial distinguisher of
the strength of unforgeability definitions. We introduce new security definitions
that facilitate a formal analysis of this fact. BKM also propose two 2-user ring
signature schemes that do not rely on random oracles, and prove them to meet
the weaker unforgeability guarantee. As pointed out by Shacham and Waters,
these schemes do not meet the stronger definition due to rogue-key attacks [38].

We show that the KOSK assumption provably protects against rogue-key at-
tacks for a natural class of ring signature schemes (both the BKM 2-user schemes
fall into this class). We go on to prove the security of the BKM 2-user scheme based
on Waters signatures under a simple POP-based registration protocol.

Schemes in the plain setting. We briefly overview some schemes built for
the plain setting. The Micali, Ohta, and Reyzin multisignature scheme [31] was
the first to be proven secure in the plain setting, but it requires a dedicated
key setup phase after which the set of potential signers is necessarily static. The
multisignature scheme of Bellare and Neven [7] does not require a key setup
phase, and is proven secure in the plain setting. While computationally efficient,
it requires several rounds of communication between all co-signers, which is more
than the “non-interactive” BMS and WMS schemes.

Bender, Katz, and Morselli introduced the first ad-hoc ring signature scheme
that provably resists rogue-key attacks [10]. Their scheme is not efficient, requir-
ing semantically-secure encryption for each bit of a message. The ring signature
scheme of Shacham and Waters [38] is more efficient but still not as efficient as
the BKM schemes for rings of size two. Particularly, their ring signatures are
at least three times as long as those given by the BKM scheme based on Wa-
ters signatures and they require more computational overhead. Of course, their
solution works on rings with size greater than two.

Finally, aggregate signature schemes due to Boneh et al. [13] and Lysyanskaya
et al. [29] are secure in the plain setting.

Related work and open problems. Boldyreva et al. [12] investigate cer-
tified encryption and signature schemes. They utilize a POP-based protocol
to show the security of traditional certified signatures. They do not consider
multiparty signatures. Many schemes beyond those treated here rely on the
KOSK assumption and finding POP-based protocols for such schemes, if pos-
sible, constitutes an important set of open problems. A few examples are the
LOSSW sequential aggregate signature scheme [28], the StKD encryption scheme
due to Bellare, Kohno, and Shoup [5], and various designated-verifier signature
schemes [23,39,27,24].



232 T. Ristenpart and S. Yilek

2 Preliminaries

Basic notation. We denote string concatenation by || . Let S be any set.
Then we define S ∪← s for any appropriate value s as S ← S ∪{s}. For a multiset
S, let S − {s} denote the multiset S with one instance of element s removed.
For multisets S and R, let S\R be the multiset formed by repeatedly executing
S ← S −{r} for each r ∈ R (including duplicates). We define s

$← S as sampling
uniformly from S and s

$← A(x1, x2, . . .) assigns to s the result of running A on
fresh random coins and the inputs x1, x2, . . .. For any string M , let M [i] denote
the ith bit of M . For a table H, let H[s] denote the element associated with s. We
write Time(A) = max{t1, t2, . . .} where A = (A1, A2, . . .) is a tuple of algorithms
and t1, t2, . . . are their worst case running times.

Bilinear maps and co-CDH. The schemes we consider use bilinear maps. Let
G1, G2, and GT be groups, each of prime order p. Then G∗1, G∗2, and G∗T represent
the set of all generators of the groups (respectively). Let e: G1×G2 → GT be an
efficiently computable bilinear map (also called a pairing). For the multisignature
schemes we consider, we use the asymmetric setting [14,13] where G1 �= G2 and
there exists an efficiently computable isomorphism ψ: G2 → G1. The asymmetry
allows for short signatures, while ψ is needed in the proofs. For the ring signature
schemes we consider, we instead use the symmetric setting [10,38] where G1 =
G2. Let n represent the number of bits needed to encode an element of G1; for the
asymmetric setting n is typically 160. Finally let g be a generator in G2. For the
rest of the paper we treat G1, G2, GT , p, g, e as fixed, globally known parameters.
Then we define the advantage of an algorithm A in solving the Computational
co-Diffie-Hellman (co-CDH) problem in the groups (G1, G2) as

Advco-cdh
(G1,G2)(A) = Pr

[
A(g, gx, h) = hx : x

$← Zp; h
$← G1

]

where the probability is over the random choices of x and h and the coins used
by A. Here Zp is the set of integers modulo p. Note that in the symmetric setting
this is just the CDH problem.

For a group element g, we write 〈g〉 to mean some canonical encoding of g as a
bit string of the appropriate length. We write 〈g〉n to mean the first n bits of 〈g〉.
We use the shorthand �u (resp. �w) to mean a list of group elements u1, . . . , un

(resp. w1, . . . , wn). Let tE , tψ , and te be the maximum times to compute an
exponentiation in G1, compute ψ on an element in G2, and compute the pairing.

Signature schemes. A signature scheme S = (Kg, Sign, Ver) consists of a key
generation algorithm, a signing algorithm that outputs a signature given a secret
key and a message, and a verification algorithm that outputs a bit given a public
key, message, and signature. We require that Ver(pk, M, Sign(sk, M)) = 1 for
all allowed M and valid pk, sk. Following [18], we define the advantage of an
adversary A in forging against S in a chosen message attack as

Advuf
S (A) = Pr

[
Ver(pk, M, σ) = 1 : (pk, sk) $← Kg; (M, σ) $← ASign(sk,·)(pk)

]

where the probability is over the coins used by Kg, Sign, and A.



The Power of Proofs-of-Possession 233

3 The Registered Key Model

Key registration protocols. Let P and S be sets and K ⊆ P × S be
a relation on the sets (representing public keys, secret keys, and valid key
pairs, respectively). A key registration protocol is a pair of interactive algorithms
(RegP, RegV). A party registering a key runs RegP with inputs pk ∈ P and
sk ∈ S. A certifying authority (CA) runs RegV. We restrict our attention (with-
out loss of generality) to protocols in which the last message is from RegV to RegP
and contains either a pk ∈ P or a distinguished symbol ⊥. We require that run-
ning RegP(pk, sk) with RegV results in RegV’s final message being pk whenever
(pk, sk) ∈ K.

We give several examples of key registration protocols. The plain registration
protocol Plain = (PlainP, PlainV) has the registrant running PlainP(pk, sk) send
pk to the CA. The CA running PlainV, upon receiving a public key pk, simply
replies with pk. This protocol will be used to capture the plain model, where no
checks on public keys are performed by a CA. To model the KOSK assumption,
we specify the registration protocol Kosk = (KoskP, KoskV). Here KoskP(pk, sk)
sends (pk, sk) to the CA. Upon receiving (pk, sk), the KoskV algorithm checks
that (pk, sk) ∈ K. (We assume that such a check is efficiently computable; this is
the case for key pairs we consider.) If so, it replies with pk and otherwise with ⊥.

We refer to registration protocols that utilize the key’s intended functionality
as proof-of-possession based. For example, let S = (Kg, Sign, Ver) be a signature
scheme. Define the registration protocol S-Pop = (PopP, PopV) as follows. Run-
ning PopP on inputs pk, sk results in sending the message pk || Sign(sk, 〈pk〉) to
the CA. Upon receiving message pk || σ, a CA running PopV replies with pk if
Ver(pk, 〈pk〉, σ) = 1 and otherwise replies with ⊥. This corresponds to the sim-
plest POPs for signature schemes specified in PKCS#10 and RFCs 4210/4211.

The registered key model. We consider security definitions that are cap-
tured by a game between an adversary and an environment. To lift such se-
curity definitions to the registered key model, we use the following general ap-
proach. Adversaries are given an additional key registration oracle OKReg that,
once invoked, runs a new instance of RegV for some key registration proto-
col (RegP, RegV). If the last message from RegV is a public key pk, then pk is
added to a table R. This table can now be used to modify winning conditions or
restrict which public keys are utilized by the adversary in interactions with the
environment. Security of schemes under the new definition is therefore always
with respect to some registration protocol.

The key registration protocols mentioned so far are two round protocols : the
registrant sends a first message to the CA, which replies with a second message
being either pk or ⊥. For any two round protocol Reg = (RegP, RegV), the OKReg
oracle can be simplified as follows. An adversary queries with a first message, at
which point RegP is immediately run and supplied with the message. The oracle
halts RegP before it sends its reply message. The message is added to R if it is
not ⊥. The oracle finally returns pk or ⊥ appropriately.



234 T. Ristenpart and S. Yilek

Experiment Expmsuf-kr
MS,Reg (A)

par
$← MPg; (pk∗, sk∗) $← MKg(par); Q ← ∅; R ← ∅

Run A(par, pk∗) handling oracle queries as follows

OMSign(V, M), where pk∗ ∈ V: Q ∪← M ; Simulate a new instance of
MSign(sk∗, V, M), forwarding messages to and from A appropriately.

OKReg: Simulate a new instance of algorithm RegV, forwarding messages to
and from A. If the instance’s final message is pk �= ⊥, then R ∪← pk.

A halts with output (V, M, σ)
If ( pk∗ ∈ V ) ∧ ( M /∈ Q ) ∧ ( MVf(V, M, σ) = 1 ) ∧ ( (V −{pk∗})\R = ∅ ) then

Return 1
Return 0

Fig. 1. Multisignature security experiment in the registered key model

4 Multisignatures Using POPs

The goal of a multisignature scheme is for a group of parties, each with its own
public and secret keys, to jointly create a compact signature on some message.
Following the formulation in [7], a multisignature scheme is a tuple of algorithms
MS = (MPg, MKg, MSign, MVf). A central authority runs the (randomized) pa-
rameter generation algorithm MPg to create a parameter string par that is given
to all parties and is an (usually implicit) input to the other three algorithms. The
(randomized) key generation algorithm MKg, independently run by each party,
outputs a key pair (pk, sk). The MSign interactive protocol is run by some group
of players. Each party locally runs MSign on input being a secret key sk, a multi-
set of public keys V , and a message M . It may consist of multiple rounds, though
the protocols we consider here only require two rounds: a request broadcast to all
parties and the response(s). Finally, the verification algorithm MVf takes as input
a tuple (V , M, σ), where V is a multiset of public keys, M is a message, and σ is
a signature, and returns a bit. We require that MVf(V , M, MSign(sk, V , M)) = 1
for any M and where every participant correctly follows the algorithms.

Multisignature security. Let MS = (MPg, MKg, MSign, MVf) be a multisig-
nature scheme, Reg = (RegP, RegV) be a key registration protocol, and A be
an adversary. Figure 1 displays the security game Expmsuf-kr

MS,Reg (A). The experi-
ment simulates one honest player with public key pk∗. The goal of the adver-
sary is to produce a multisignature forgery: a tuple (V , M, σ) that satisfies the
following four conditions. First, the honest public key pk∗ is in the multiset
V at least once. Second, the message M was not queried to the multisigna-
ture oracle. Third, the signature verifies. Fourth, each public key in V − {pk∗}
must be in R, where V − {pk∗} means the multiset V with one occurrence of
the honest key removed. We define the msuf-kr-advantage of an adversary A
against a multisignature scheme MS with respect to registration protocol Reg
as Advmsuf-kr

MS,Reg (A) = Pr
[
Expmsuf-kr

MS,Reg (A) ⇒ 1
]
. The probability is taken over the



The Power of Proofs-of-Possession 235

random coins used in the course of running the experiment, including those used
by A. The definitions can be lifted to the random oracle model [8] in the natural
way. It is easy to show that our definition is equivalent to the definition in [7]
when Reg = Plain and equivalent to the definition in [11] when Reg = Kosk.

In the case of two-round multisignature schemes, the multisignature oracle can
be simplified: it just computes the honest parties’ share of the multisignature and
outputs it. Furthermore, we assume without loss of generality that adversaries
never output a forgery on a message previously queried to their signing oracle
and that they always output a forgery with V including the trusted party’s public
key.

We now prove the security of the BMS and WMS multisignature schemes
relative to POP-based protocols that differ from current standards only by use
of a distinct hash function. In Section 4.3 we discuss attacks against the schemes
when standardized registration protocols are utilized.

4.1 Multisignatures Based on BLS Signatures

BLS signatures and multisignatures. Let H : {0, 1}∗ → G1 be a ran-
dom oracle. Boneh, Lynn, and Shacham [14] specify a signature scheme BLS =
(B-Kg, B-Sign, B-Vf). The algorithms work as follows:

B-Kg:
sk

$← Zp; pk ← gsk

Return (pk, sk)

B-SignH(sk, M):
Return H(M)sk

B-VfH(pk, M, σ):
If e(H(M), pk) = e(σ, g) then

Return 1
Return 0

The BMS = (B-MPg, B-MKg, B-MSign, B-MVf) multisignature scheme [11] is a
simple extension of BLS signatures. Parameter generation just selects the groups,
generators, and pairings as described in Section 2. Key generation, using the
global parameters, creates a key pair as in B-Kg. Multisignature generation for
participants labeled 1, . . . , v, public keys V = {pk1, . . . , pkv}, and a message
M proceeds as follows. Each participant i computes σi

$← B-Sign(ski, M) and
broadcasts σi to all other participants. The multisignature is σ ←

∏v
i=1 σi. On

input V , M, σ the verification algorithm B-MVf computes PK =
∏v

i=1 pki and
then runs B-VfH(PK, M, σ), returning its output. Boldyreva proved the scheme
secure under the KOSK assumption [11].

The B-Pop protocol. We now specify a POP-based key registration protocol
under which we can prove BMS secure. Let Hpop: {0, 1}∗ → G1 be a random
oracle. Then we define the B-Pop = (B-PopP, B-PopV) protocol as follows. Al-
gorithm B-PopP(pk, sk) sends pk || B-SignHpop(sk, 〈pk〉) and algorithm B-PopV,
upon receiving (pk, π) computes B-VfHpop (pk, 〈pk〉, π) and if the result is 1 replies
with pk and otherwise with ⊥. We point out that one can use the same random
oracle (and underlying instantiating hash function) for both H and Hpop as long
as domain separation is enforced. The following theorem captures the security
of BMS with respect to this key registration protocol.



236 T. Ristenpart and S. Yilek

Theorem 1. Let H, Hpop: {0, 1}∗ → G1 be random oracles. Let A be an
msuf-kr-adversary, with respect to the B-Pop propocol, that runs in time t, makes
qh, qpop, qs, and qk queries to H, Hpop, the signing oracle, and the key registra-
tion oracle, and outputs a multisignature forgery on a group of size at most v.
Then there exists an adversary B such that

Advmsuf-kr
BMS,B-Pop(A) ≤ e(qs + 1) · Advco-cdh

(G1,G2)(B)

where B runs in time t′ ∈ O(t log t + (qh + qpop + v)tE + (qk + 1)te).

Proof. We wish to construct a co-CDH adversary B, which on input g, X, h
utilizes an msuf-kr adversary A to help it compute hx where x = logg X . We
adapt a game-playing [9] approach due to Bellare for proving the security of
BLS signatures [3]. Without loss of generality, we assume that A always queries
H(M) before querying B-Sign(M). Likewise we assume that A always queries
Hpop(〈pk〉) before querying OKReg(pk, π) for any π. Figure 2 details a sequence
of four games. The game G0, which does not include the boxed statements,
represents the core of our adversary B.

The execution G0(A) proceeds as follows. First Initialize is executed, which
initializes several variables, including a co-CDH problem instance (g, X, h). Then
A is run with input X . Oracle queries by A are handled as shown. Game G0
programs H (lazily built using an initially empty table H[·]) to sometimes return
values that include h and sometimes not, depending on a δ-biased coin (we
notate flipping such a coin by δc

δ← {0, 1}). Intuitively, the δc values correspond
to guessing which H query will correspond to the forgery message. G0 programs
Hpop (lazily built using an initially empty table Hp[·]) to always include h. This
is so that the adversarially-supplied POPs can be used to help extract the co-
CDH solution from a forgery. Queries to OKReg invoke an execution of B-PopV,
utilizing the Hp table for the algorithm’s random oracle. Successful registrations
have the POP signature stored in the table P (which is initially set everywhere
to ⊥). Once A halts with output a potential forgery the Finalize procedure is
executed. We define the subroutine CheckForgery (not explicitly shown in the
games for brevity) as follows. It checks that all keys in the multiset have an
entry defined in P except the honest user’s key (though if there are multiple
copies of the honest user’s key, then P[pk∗] must not be ⊥). Then it checks if the
multisignature verifies under the multiset of public keys given. If either check
fails it returns zero, otherwise it returns one. Note that in the game x is not
used beyond defining the co-CDH problem instance.

The adversary B, when run on input (g, X, h), follows exactly the steps of
G0(A), except that it uses its co-CDH problem instance to supply the appropri-
ate values. We now must justify that Advco-cdh

(G1,G2)(B) = Pr [G0(A) � ⊥] where
G0(A) � ⊥ means that the output of G0’s Finalize procedure is not ⊥. By con-
struction the behavior of G0(A) and B are equivalent, and thus all that remains
to be shown is that if the variable G0(A) does not output ⊥, then it outputs
the co-CDH solution hx. Let us fix some more notation related to the variables
in the Finalize procedure of G0. Define ski = logg pki and πi = P[pki] for each
i ∈ [1 .. d]. Then ψ(pki) = gski

1 holds for each i. Define βi = α−γi = B[pki]. Now,



The Power of Proofs-of-Possession 237

procedure Initialize
x

$← Zp; X ← gx; h
$← G1; c ← 0

g1 ← ψ(g); X1 ← ψ(X)
Return X

On query H(M):
c ← c + 1; Mc ← M

αc
$← Zp; δc

δ← {0, 1}
If δc = 1 then H[M ] ← gαc

1
Else H[M ] ← hgαc

1
Return H[M ]

On query B-Sign(M):
Let k be such that M = Mk

Sk ← 1
If δk = 1 then Sk ← X

αk
1

Else bad ← true ; Sk ← H[M ]x

Return Sk

On query Hpop(N): G0 G1

B[N ] $← Zp; Return Hp[N ] ← hg
B[N]
1

On query OKReg(pk, π):
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk] ← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd}, M, σ)
f ← CheckForgery({X, pk1, . . . , pkd}, M, σ)
If f = 0 then Return ⊥
Let k be such that M = Mk; α ← αk

For each i ∈ [1 .. d] do γi ← α − B[〈pki〉]
w ← ⊥
If δk = 0 then

w ← σX−α
1
�d

i=1 (P[pki]−1 ψ(pki)−γi)
Else bad ← true ; w ← hx

Return w

procedure Initialize
x

$← Zp; X ← gx; h
$← G

∗
1; c ← 0

Return X

On query H(M):
c ← c + 1; Mc ← M

αc
$← Zp; δc

δ← {0, 1}
Return H[M ] $← G1

On query B-Sign(M):
Let k be such that M = Mk

if δk = 1 then Sk ← H[M ]x

Else bad ← true; Sk ← H[M ]x

Return Sk

On query Hpop(N): G2
Return Hp[N ] $← G1

On query OKReg(pk, π):
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk] ← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd}, M, σ)
f ← CheckForgery({X, pk1, . . . , pkd}, M, σ)
If f = 0 then Return ⊥
Let k be such that M = Mk; α ← αk

If δk = 0 then w ← hx

Else bad ← true; w ← hx

Return w

procedure Initialize
x

$← Zp; X ← gx; h
$← G

∗
1; c ← 0

Return X

On query H(M):
Return H[M ] $← G1

On query B-Sign(M):
c ← c + 1; Return H [M ]x

On query Hpop(N):
Return Hp[N ] $← G1

On query OKReg(pk, π): G3
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk] ← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd}, M, σ)
f ← CheckForgery({X, pk1, . . . , pkd}, M, σ)
If f = 0 then Return ⊥
For each j ∈ [1 .. c] do

δj
δ← {0, 1}; If δj = 0 then bad ← true

δj+1
δ← {0, 1}; If δj+1 = 1 then bad ← true

Return hx

Fig. 2. Games used in proof that BMS is secure using POPs



238 T. Ristenpart and S. Yilek

because CheckForgery returns one if G0(A) does not output ⊥, we necessarily
have that e(H[M ], PK) = e(σ, g) and that e(Hp[〈pki〉], pki) = e(πi, g) for each
i ∈ [1 .. d]. In turn this means that σ = (hgα

1 )x+sk1+...+skd and πi = (hgβi

1 )ski for
each i ∈ [1 .. d]. Thus, we can see that w = hx:

w = σX−α
1

d∏

i=1

π−1
i ψ(pki)−γi =

(hgα
1 )x+sk1+...+skd

Xα
1 ·

∏
(hgβi

1 )ski(gski
1 )α−βi

= hx .

Now we move through a sequence of games to lower bound the probability that
G0(A) actually succeeds in terms of A’s advantage. Let Good be the event that
bad is never set to true. What we show is that

Pr [G0(A) � ⊥] ≥ Pr [G0(A) � ⊥ ∧ Good] = Pr [G1(A) � ⊥ ∧ Good] (1)
= Pr [G2(A) � ⊥ ∧ Good] (2)
= Pr [G3(A) � ⊥ ∧ Good] (3)
= Pr [G3(A) � ⊥] · Pr [Good] (4)

≥ Advmsuf
BMS (A) · 1

e
· 1
qs + 1

(5)

which implies the theorem statement. Now to justify this sequence of equations.� Game G0 and G1 are identical-until-bad. A variant [6] of the fundamental
lemma of game-playing [9] justifies Equation 1. � Game G2 simplifies game G1
by taking advantage of knowing x. Queries to H are always answered with values
uniformly chosen from G1. Signature queries are always answered with H[M ]x.
The value hx is always returned by Finalize. These changes mean we never need
g1 and X1, so they are omitted. The only distinction between G2 and G1 then
is how these values are computed; their distributions remain the same and we
therefore have justified Equation 2. � We now note that in game G2 the values
chosen for the δc variables have no impact on any of the values returned by
procedures in the game, and only affect the setting of bad. Furthermore, not all
of the δ values can actually set bad: only those that end up being referenced
during signing queries and the one extra for the forgery. With these facts in
mind, we modify G2 to get game G3, in which we defer all possible settings
of bad until the Finalize procedure. We only perform δ-biased coin tosses c + 1
times: one for each signature query and one for the forgery. Equation 3 is justified
by the fact that none of these changes affect the other variables in the game.
(We also make some other cosmetic changes to simplify the games, but these do
not modify distributions involved.) � It is clear in game G3 that the event Good
and “G3(A) � ⊥” are independent, justifying Equation 4. � Lastly, we note
that G3 now exactly represents the environment of Expmsuf-pop

BMS (A) because if
G3(A) does not output ⊥ then A’s output is a valid forgery. The lower bound
Pr [Good] ≥ (e(qs + 1))−1 is standard (see, e.g. [6,15]).

The adversary B runs A. Additionally B must perform an exponentiation for
each H and Hpop query and one for each key in the forgery set V . Finally B
must perform a pairing for each OKReg query and to verify the forgery. Thus B
runs in time t′ ∈ O(t log t + (qh + qpop + v)tE + (qk + 1)te) where |V| = v. ��



The Power of Proofs-of-Possession 239

4.2 Multisignatures Based on Waters Signatures

Waters signatures and multisignatures. Let H : {0, 1}n → G1 be a hash
function and define the signature scheme W = (W-Kg, W-Sign, W-Vf) as shown
below.

W-Kg:
α

$← Zp; sk ← hα

pk ← e(h, g)α

Return (pk, sk)

W-SignH(sk, M):
r

$← Zp; ρ ← gr

σ ← sk · H(M)r

Return (σ, ρ)

W-VfH(pk, M, (σ, ρ)):
If e(σ, g) · e(H(M), ρ)−1 = pk then

Return 1
Return 0

Although one could use a random oracle for H , we can avoid the random oracle
model by using the following hash function, as done in [28]. A trusted party, in
addition to picking h, chooses u, u1, . . . , un

$← G1 and publishes them globally.
Define Hu,�u: {0, 1}n → G1 by Hu,�u(M) = u ·

∏n
i=1 u

M [i]
i . For simplicity we

restrict ourselves to the message space {0, 1}n, but in practice we can use a
collision-resistant hash function to expand the domain.

The WMS = (W-Pg, W-MKg, W-MSign, W-MVf) multisignature scheme [28]
is a straightforward extension of the Waters’ signature scheme. Parameter gen-
eration chooses h, u, �u as specified above in addition to fixing all the groups,
generators, and pairings as per Section 2. Key generation, using the generated
parameters, computes keys as in W-Kg. To generate a multisignature for mul-
tiset V = {pk1, . . . , pkv}, each participant i computes (σi, ρi)

$← W-Sign(ski, M)
and broadcasts (σi, ρi). The multisignature is (

∏v
i=1 σi,

∏v
i=1 ρi). To verify a

signature (σ, ρ) for a message M and public keys V = {pk1, . . . , pkv}, simply let
PK ←

∏v
i=1 pki and then return W-Vf(PK, M, (σ, ρ)). This scheme was proven

secure using the KOSK assumption in [28].

The WM-Pop protocol. Let w, w1, . . . , wn
$← G1 be global parameters with

associated hash function Hw,�w. These parameters require trusted setup, partic-
ularly because the CA should not know their discrete logs. (One might there-
fore have the trusted party that runs W-Pg also generate w, �w.) We define the
following key registration protocol WM-Pop = (WM-PopP, WM-PopV): Algo-
rithm WM-PopP takes as input (pk, sk) and sends pk || (π, �) where (π, �) =
W-SignHw, �w (sk, 〈pk〉n). Algorithm WM-PopV receives pk || (π, �) and then runs
W-VfHw, �w(pk, 〈pk〉n, (π, �)) and if the result is 1, replies with pk and else replies
with ⊥. The following theorem, proof of which is given in the full version of the
paper [34], and Theorem 2 in [28] (security of WMS under the KOSK assump-
tion) establish the security of WMS under WM-Pop.

Theorem 2. Let A be an msuf-kr-adversary, with respect to the WM-Pop pro-
tocol, that runs in time t, makes qs signing queries, qk registration queries, and
outputs a forgery for a group of size at most v. Then there exists an adversary B
such that

Advmsuf-kr
WMS,WM-Pop(A) ≤ Advmsuf-kr

WMS,Kosk(B)

and where B runs in time t′ ∈ O(t log t + ntE + (tE + tψ + te)qk) and makes qs

signature queries.



240 T. Ristenpart and S. Yilek

4.3 Attacks Against Standardized Key Registration Protocols

We show how the standardized proof-of-possession based key registration pro-
tocols (as per PKCS#10 [36] and RFCs 4210/4211 [1,37]) fail to prevent rogue
key attacks. Let BadPop = (BadP, BadV) be the standardized key registration
protocol for BMS and let the algorithms be as follows: Algorithm BadP, on in-
put (pk, sk) sends pk || B-SignH(sk, 〈pk〉) and algorithm BadV, upon receiving
(pk, π), runs B-VfH(pk, 〈pk〉, π) and replies with pk if the result is 1 and ⊥ oth-
erwise. Here H is the same hash function as used in B-MSign and B-MVf.

We define a simple msuf-kr adversary A that successfully mounts a rogue-key
attack against BMS with respect to the BadPop registration protocol. Adversary
A gets the honest party’s public key pk∗ which is equal to gsk∗

. It then chooses
s

$← Zp. Its public key is set to pk = gs/pk∗ = gs−sk∗
. The forgery on any

message M and multiset {pk∗, pk} is simply H(M)s, which clearly verifies under
the two public keys given. Now to register its key, the adversary makes the query
OMSign({pk∗}, 〈pk〉), receiving σ = H(〈pk〉)sk∗

. Then A sets π ← H(〈pk〉)s/σ
and registers with pk || π. It is easy to see that this verifies, and thus A can
always output a multisignature forgery: its msuf-kr advantage is one.

An analogous key registration protocol could be defined for WMS, and again
a simple attack shows its insecurity. Both approaches fall to attacks because the
signatures used for key registration and normal multisignatures are calculated
in the same manner. This motivated our simple deviations from standardized
registration protocols for the B-Pop and WM-Pop protocols.

4.4 Other POP Variants

Another class of POP-based registration protocols for signature schemes has
the CA send a random challenge to the registrant. The registrant must then sup-
ply a signature over the challenge message. Our results apply to such protocols,
also, see the full version for details.

5 Ring Signatures in the Registered Key Model

A ring signature scheme RS = (RPg, RKg, RSign, RVf) consists of four algorithms.
The parameter generation algorithm generates a string par given to all parties
and (often implicitly) input to the other three algorithms. The key generation
algorithm RKg outputs a key pair (pk, sk). The algorithm RSignsk(V , M) ≡
RSign(sk, V , M) generates a ring signature on input a secret key sk, a message
M, and a set of public keys V such that there exists pk ∈ V for which (pk, sk) is
a valid key pair. We further assume that |V| ≥ 2 and all keys in V are distinct. It
outputs a ring signature. Lastly the verification algorithm RVf(V , M, σ) outputs
a bit. We require that RVf(V , M, RSignsk(V , M)) = 1 for any message M , any
valid set of public keys, and for any valid sk with a pk ∈ V . Ring signatures that
only allow rings of size κ are called κ-user ring signatures.

New anonymity definition. We propose a stronger definition of anonymity
than those given by Bender et al. [10]. Intuitively, our definition requires that no



The Power of Proofs-of-Possession 241

adversary should be able to tell what secret key was used to generate a ring sig-
nature, even if the adversary itself chooses the secret keys involved. Formally, let
A be an adversary and RS = (RPg, RKg, RSign, RVf) be a ring signature scheme.
Then the experiment Expr-anon-ind-b

RS (A) works as follows: it runs par
$← RPg

and then runs A(par), giving it a left-or-right oracle ORSignLR(·, ·, ·). The or-
acle takes queries of the form ORSignLR(S, V , M) where S = (sk0, sk1) and
V = pk0, . . . , pkv−1 is a set of public keys such that (pk0, sk0) and (pk1, sk1) are
valid key pairs. The oracle returns RSignskb

(V , M). Finally A outputs a bit b′,
and wins if b = b′. The r-anon-ind advantage of A is

Advr-anon-ind
RS (A) = Pr

[
Expr-anon-ind-0

RS (A) ⇒ 1
]

− Pr
[
Expr-anon-ind-1

RS (A) ⇒ 1
]
.

We say a scheme is perfectly r-anon-ind anonymous if the advantage of any
adversary is zero.

The r-anon-ind definition is stronger than the strongest definition given in [10]
(see the full version for details). Even so, both of the BKM 2-user ring signature
schemes meet it, and are, in fact, perfectly r-anon-ind anonymous.

Unforgeability definitions. We expand the unforgeability definitions given
in [10], drawing a distinction between attacks where honest parties can be cor-
rupted and rogue-key attacks (where the adversary can choose public keys). We
also lift the strongest unforgeability definition to the registered key model. Fix
some number η, representing the number of trusted potential honest signers.
Figure 3 gives the security experiment for the strongest definition of security
lifted to the registered key model, r-uf3-kr, which represents resistance to rogue-
key attacks. A weaker definition, r-uf2, is obtained by defining an experiment
Expr-uf2

RS (A) that is the same as Expr-uf3-kr
RS,Reg (A) except we do not allow the ad-

versary to choose its own public keys. We also omit the key registration oracle
and remove the requirement in ORSign that all adversarily chosen keys must be
in R. Lastly, we weaken this definition one step further by defining Expr-uf1

RS (A),
which disallows corruption queries. We thus define the following advantages:

• Advr-uf3-kr
RS,Reg (A) = Pr[Expr-uf3-kr

RS,Reg (A) ⇒ 1] (rogue-key attacks, equivalent to
Definition 7 in [10] when Reg = Plain)

• Advr-uf2
RS (A) = Pr[Expr-uf2

RS (A) ⇒ 1] (corruption attacks, similar to a defi-
nition in [21])

• Advr-uf1
RS (A) = Pr[Expr-uf1

RS (A) ⇒ 1] (chosen subring attacks, Definition 6
in [10])

For κ-user ring signatures that meet the strongest anonymity definition, we have
that security against corruption attacks is actually implied by security against
chosen subring attacks. The reduction is tighter for small κ. This stems from
having to guess a particular ring out of the η potential participants in the proof.
The proof is given in the full version.

Theorem 3. Let RS be a κ-user ring signature scheme. Let η ≥ κ be some
number and let A be an r-uf2 adversary that makes at most qs signature queries,



242 T. Ristenpart and S. Yilek

Experiment Expr-uf3-kr
RS,Reg (A)

par
$← RPg; (pki, ski)

$← RKg(par) for i ∈ [1 .. η]; S ← {pk1, . . . , pkη}
Q ← C ← R ← ∅
Run A(par, S) handling oracle queries as follows
ORSign(s, V, M), where s ∈ [1 .. η] and pks ∈ V:

Q ∪← (V, M); If ( V \ S ) \ R �= ∅ then Return ⊥
Return RSignsks

(V, M)

OCorrupt(i), where i ∈ [1 .. η]: C ∪← pki; Return ski

OKReg: Simulate a new instance of algorithm RegV, forwarding messages to
and from A. If the instance’s last message is pk �= ⊥, then R ∪← pk.

A outputs (V, M, σ)
If RVf(V, M, σ) = 1 ∧ ( (V, M) /∈ Q ) ∧ ( V ⊆ S \ C ) then Return 1
Return 0

Fig. 3. Ring signature unforgeability experiment in the registered key model

qc corruption queries, and runs in time at most t. Then there exists adversaries
Ba and Bu such that

Advr-uf2
RS (A) ≤

(
η

κ

)
Advr-anon-ind

RS (Ba) +
(

η

κ

)
Advr-uf1

RS (Bu)

where Ba uses qs queries and runs in time ta ∈ O(t log t+(η+1)Time(RS)) and
Bu uses qs queries and runs in time tu ∈ O(t log t + (η + 1 + qs)Time(RS)).

Using KOSK. Using the key registration protocol Kosk, any scheme that is
unforgeable with respect to corruption attacks (r-uf2) and meets our strong
definition of anonymity is also secure against rogue-key attacks (r-uf3-kr). Note
that this result (unlike the last) applies to any ring signature scheme, not just
κ-user ring signature schemes.

Theorem 4. Fix η and let RS be a ring signature scheme for which tK is the
maximal time needed to validate a key pair. Let A be an r-uf3-kosk adversary that
makes at most (qs, qc, qk) signature queries, corruption queries, and registration
queries, and runs in time at most t. Then there exists adversaries Ba and Bu

such that
Advr-uf3-kr

RS,Kosk(A) ≤ Advr-anon-ind
RS (Ba) + Advr-uf2

RS (Bu)

where Ba runs in time ta ∈ O(t log t + (η + 1)Time(RS)), using at most qs sign
queries, and Bu runs in time tu ∈ O(t log t+ qktK+(η+1+ qs)Time(RS)), using
at most qs sign queries and qc corrupt queries.

The proof is given in the full version. We can apply Theorem 3 and then The-
orem 4 to the two 2-user ring signature schemes from Bender et al., rendering
them secure against rogue-key attacks when Kosk is used for key registration.

Using POPs. For all the reasons already described, we’d like to avoid the
KOSK assumption wherever possible. Thus, we give a proof-of-possession based



The Power of Proofs-of-Possession 243

registration protocol for the 2-user scheme based on Waters signatures from
Bender et al. [10]. Let WRS = (W-RPg, W-RKg, W-RSign, W-RVf). The para-
meter generation selects groups, generators, and a pairing in the symmetric
setting as per Section 2. The key generation algorithm W-RKg chooses α

$← Zq,
sets g1 ← gα, and chooses random elements u, u1, . . . , un

$← G∗1. Finally it out-
puts pk ← g1, u, u1, . . . , un and sk ← α. Define W-RSignsk({pk, pk′}, M) as
follows. (Without loss we assume sk corresponds to pk.) Parse pk as g1, u, �u
and pk′ as g′1, u

′, �u′ and let H ′(M) = Hu,�u(M) · Hu′,�u′(M). Finally, return
W-SignH′

(g′sk
1 , M). The verification algorithm W-RVf({pk, pk′}, M, (σ, ρ)) first

parses pk as g1, u, u1, . . . , un and pk′ as g′1, u′, u′1, . . . , u′m and defines H ′ as in
signature generation. Then it outputs one if e(g1, g

′
1) · e(H ′(M), ρ) = e(σ, g).

In [10] the scheme is proven secure against r-uf1 adversaries, but as shown
in [38] the scheme is not secure against rogue-key attacks without key registra-
tion. We now show a simple proof-of-possession based registration protocol to
render the scheme secure. Choose global parameters h0, h1, w, w1, . . . , wn

$← G1
(this will require trusted setup, and could be accomplished with W-RPg). Then
we specify the registration protocol WR-Pop = (WR-PopP, WR-PopV). Algo-
rithm WR-PopP takes as input (sk, pk) and sends pk || (π0, �0, π1, �1) which
is simply computed by generating the two signatures W-SignHw, �w (hsk

0 , 〈pk〉n)
and W-SignHw, �w (hsk

1 , 〈pk〉n). Algorithm WR-PopV, upon receiving the message,
verifies the signatures in the natural way: get g1 from pk and check that both
e(g1, h0) · e(Hw,�w(〈pk〉n), �0) = e(π0, g) and e(g1, h1) · e(Hw,�w(〈pk〉n), �1) =
e(π1, g). If both signatures verify, the algorithm replies with pk and otherwise
⊥. The following theorem captures security of WRS with respect to the WR-Pop
registration protocol. The proof is given in the full version.

Theorem 5. Fix η. Let A be an r-uf3-kr adversary with respect to the WR-Pop
protocol that makes at most qs signature queries, qc corruption queries, qk key
registration queries, and runs in time at most t. Then there exists an adversary
B such that

Advr-uf3-kr
WRS,WR-Pop(A) ≤ η2Advuf

W(B)

where B makes at most qs signing queries and runs in time tB ∈ O(t log t +
ηtE + qstE + (qk + 1)te).

Acknowledgements

The authors thank Mihir Bellare for suggesting that they investigate the security
of multisignature schemes when the proof of knowledge is replaced by a proof of
possession akin to ones currently used in PKIs, and for many useful discussions.
The authors thank the anonymous reviewers for their helpful comments. The
first author is supported by NSF grant CNS–0524765. The second author is
supported by NSF grant CNS–0430595 and a Jacobs School Fellowship.



244 T. Ristenpart and S. Yilek

References

1. C. Adams, S. Farrell, T. Kause, T. Mononen. Internet X.509 public key infrastruc-
ture certificate management protocols (CMP). Request for Comments (RFC) 4210,
Internet Engineering Task Force (September 2005)

2. N. Asokan, V. Niemi, P. Laitinen. On the usefulness of proof-of-possession. In
Proceedings of the 2nd Annual PKI Research Workshop. (2003) 122–127

3. M. Bellare. CSE 208: Advanced Cryptography. UCSD course (Spring 2006).
4. M. Bellare, O. Goldreich. On Defining Proofs of Knowledge. In CRYPTO ’92.

Volume 740 of LNCS, Springer (1993) 390–420
5. M. Bellare, T. Kohno, V. Shoup. Stateful public-key cryptosystems: how to encrypt

with one 160-bit exponentiation. ACM Conference on Computer and Communi-
cations Security. (2006) 380–389

6. M. Bellare, C. Namprempre, G. Neven. Unrestricted aggregate signatures. Cryp-
tology ePrint Archive, Report 2006/285 (2006) http://eprint.iacr.org/.

7. M. Bellare, G. Neven. Multi-signatures in the plain public-key model and a gen-
eralized forking lemma. In ACM Conference on Computer and Communications
Security. (2006) 390–399

8. M. Bellare, P. Rogaway. Random oracles are practical: a paradigm for designing ef-
ficient protocols. In ACM Conference on Computer and Communications Security.
(1993) 62–73

9. M. Bellare, P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT ’06. Volume 4004 of LNCS,
Springer (2006) 409–426

10. A. Bender, J. Katz, R. Morselli. Ring signatures: Stronger definitions, and con-
structions without random oracles. In TCC ’06. Volumne 3876 of LNCS, Springer
(2006) 60–79

11. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In PKC ’03. Volume 2567 of
LNCS, Springer (2002) 31–46

12. A. Boldyreva, M. Fischlin, A. Palacio, B. Warinschi. A closer look at PKI: security
and efficiency. Public Key Cryptography (2007), to appear.

13. D. Boneh, C. Gentry, B. Lynn, H. Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. In EUROCRYPT ’03. Volume 2656 of LNCS, Springer
(2003) 416–432

14. D. Boneh, B. Lynn, H. Shacham. Short signatures from the weil pairing. In
ASIACRYPT ’01. Volume 2248 LNCS, Springer (2001) 514–532

15. J.S. Coron. On the exact security of full domain hash. In CRYPTO ’00. Volume
1880 of LNCS, Springer (2000) 229–235

16. A. De Santis, G. Persiano. Zero-knowledge proofs of knowledge without interaction
(extended abstract). In FOCS ’92. IEEE (1992) 427–436

17. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In CRYPTO ’05. Volume 3621 of LNCS, Springer (2005) 152–
168

18. S. Goldwasser, S. Micali, R. Rivest. A Paradoxical Solution to the Signature Prob-
lem. In FOCS ’84. IEEE (1984) 441–449.

19. J. Groth, R. Ostrovsky, A. Sahai. Perfect non-interactive zero knowledge for NP.
In EUROCRYPT ’06. Volume 4004 of LNCS, Springer (2006) 339–358

20. L. Harn. Group-oriented (t,n) threshold digital signature scheme and digital mul-
tisignature. Computers and Digital Techniques, IEEE Proceedings 141(5) (1994)
307–313

http://eprint.iacr.org/


The Power of Proofs-of-Possession 245

21. J. Herranz. Some digital signature schemes with collective signers. Ph.D. Thesis,
Universitat Politècnica De Catalunya, Barcelona. April, 2005.

22. P. Horster, M. Michels, H. Petersen. Meta signature schemes based on the discrete
logarithm problem. In IFIP TC11 Eleventh International Conference on Informa-
tion Security (IFIP/SEC 1995) (1995) 128–141

23. M. Jakobsson, K. Sako, R. Impagliazzo. Designated verifier proofs and their ap-
plications. In EUROCRYPT ’96. Volume 1070 of LNCS, Springer (1996) 143–154

24. F. Laguillaumie, D. Vergnaud. Designated verifier signatures: anonymity and effi-
cient construction from any bilinear map. In Security in Communication Networks,
4th International Conference, SCN 2004. Volume 3352 of LNCS, Springer (2005)
105–119

25. S.K. Langford. Weakness in some threshold cryptosystems. In CRYPTO ’96.
Volume 1109 of LNCS, Springer (1996) 74–82

26. C.M. Li, T. Hwang, N.Y. Lee. Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders. In EUROCRYPT ’94. Vol-
ume 950 of LNCS, Springer (1995) 194–204

27. H. Lipmaa, G. Wang, F. Bao. Designated verifier signature schemes: attacks, new
security notions and a new construction. In ICALP 2005. Volume 3580 LNCS,
Springer (2005) 459–471

28. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters. Sequential aggregate
signatures and multisignatures without random oracles. In EUROCRYPT ’06.
Volume 4004 of LNCS, Springer (2006) 465–485

29. A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham. Sequential Aggregate Signa-
tures from Trapdoor Permutations. In EUROCRPYT ’04. Volume 3027 of LNCS,
Springer (2004) 74–90

30. M. Michels, P. Horster. On the risk of disruption in several multiparty signature
schemes. In ASIACRYPT ’96. Volume 1163 of LNCS, Springer (1996) 334–345

31. S. Micali, K. Ohta, L. Reyzin. Accountable-subgroup multisignatures. In ACM
Conference on Computer and Communications Security. (2001) 245–254

32. K. Ohta, T. Okamoto. A digital multisignature scheme based on the Fiat-Shamir
scheme. In ASIACRYPT ’91. Volume 739 of LNCS, Springer (1993) 139–148

33. K. Ohta, T. Okamoto. Multi-signature schemes secure against active insider at-
tacks. IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences E82-A(1) (1999) 21–31

34. T. Ristenpart, S. Yilek. The power of proofs-of-possession: securing multi-
party signatures against rogue-key attacks. Full version of current paper.
http://www.cse.ucsd.edu/users/tristenp/

35. R.L. Rivest, A. Shamir, Y. Tauman. How to leak a secret. In ASIACRYPT ’01.
Volume 2248 of LNCS, Springer (2001) 552–565

36. RSA Laboratories: RSA PKCS #10 v1.7: Certification Request Syntax Standard
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-10/pkcs-10v1 7.pdf.

37. J. Schaad. Internet X.509 public key infrastructure certificate request message
format (CRMF). Request for Comments (RFC) 4211, Internet Engineering Task
Force (September 2005)

38. H. Shacham, B. Waters. Efficient ring signatures without random oracles. Public
Key Cryptography (2007), to appear.

39. R. Steinfeld, L. Bull, H. Wang, J. Pieprzyk. Universal designated-verifier signa-
tures. In ASIACRYPT ’03. Volume 2894 of LNCS, Springer (2003) 523–542

40. B. Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT ’05. Volume 3494 of LNCS, Springer (2005) 114–127

http://www.cse.ucsd.edu/users/tristenp/
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-10/pkcs-10v1_7.pdf


Batch Verification of Short Signatures

Jan Camenisch1, Susan Hohenberger2,�, and Michael Østergaard Pedersen3,�

1 IBM Research, Zürich Research Laboratory
jca@zurich.ibm.com

2 The Johns Hopkins University
susan@cs.jhu.edu

3 University of Aarhus
michael@daimi.au.dk

Abstract. With computer networks spreading into a variety of new en-
vironments, the need to authenticate and secure communication grows.
Many of these new environments have particular requirements on the
applicable cryptographic primitives. For instance, several applications
require that communication overhead be small and that many messages
be processed at the same time. In this paper we consider the suitability
of public key signatures in the latter scenario. That is, we consider sig-
natures that are 1) short and 2) where many signatures from (possibly)
different signers on (possibly) different messages can be verified quickly.

We propose the first batch verifier for messages from many (certified)
signers without random oracles and with a verification time where the
dominant operation is independent of the number of signatures to verify.
We further propose a new signature scheme with very short signatures,
for which batch verification for many signers is also highly efficient. Prior
work focused almost exclusively on batching signatures from the same
signer. Combining our new signatures with the best known techniques
for batching certificates from the same authority, we get a fast batch ver-
ifier for certificates and messages combined. Although our new signature
scheme has some restrictions, it is the only solution, to our knowledge,
that is a candidate for some pervasive communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices
from vehicles to dog collars will soon be expected to communicate with their
environments. For example, many governments and industry consortia are cur-
rently planning for the future of intelligent cars that constantly communicate
with each other and the transportation infrastructure to prevent accidents and
to help alleviate traffic congestion [11,37]. Raya and Hubaux suggest that ve-
hicles will transmit safety messages every 300ms to all other vehicles within a
minimum range of 110 meters [36], which in turn may retransmit these messages.

� Research performed while at IBM Research, Zürich Research Laboratory.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 246–263, 2007.
c© International Association for Cryptology Research 2007



Batch Verification of Short Signatures 247

For such pervasive systems to work properly, there are many competing con-
straints [11,37,27,36]. First, there are physical limitations, such as a limited spec-
trum allocation for specific types of communications and the potential roaming
nature of devices, that require that messages be kept very short and (security)
overhead be minimal [27]. Yet for messages to be trusted by their recipients,
they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication
must be added. Third, different messages from many different signers may need
to be verified and processed quickly (e.g., every 300ms [36]). A possible fourth
constraint that these authentications remain anonymous or pseudonymous, we
leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of
pervasive communication applications. Generating one signature every 300ms is
not a problem for current systems, but transmitting and/or verifying 100+ mes-
sages per second might pose a problem. Using RSA signatures for example seems
attractive as they are verified quickly, however, one would need approximately
3000 bits to represent a signature on a message plus the certificate (i.e., the pub-
lic key and signature on that public key) which might be too much (see Section
8.2 of [36]). While many new schemes based on bilinear maps can provide the
same security with significantly smaller signatures, they take significantly more
time to verify.

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems
that one needs to improve on the verification of the bilinear-map based schemes.
In this paper we take this route and investigate the known batch-verification
techniques and to what extent they are applicable to such schemes. More pre-
cisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay,
and Rabin [2] to the case of signatures from many signers. We also do this for
a weaker notion of batch verification called screening and show the relation
of these notions to the one of aggregate signatures. Surprisingly, for most
known aggregate signature schemes a batching algorithm is provably not
obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Waters IBS scheme [39,7]. To our knowl-
edge, this is the first batch verifier for a signature scheme without random
oracles. When identities are k1 bits and messages are k2 bits, our algorithm
verifies n Waters IBS signatures using only (k1+k2+3) pairings. Individually
verifying n signatures would cost 3n pairings.

3. We present a new signature scheme, CL*, derived from the Camenisch and
Lysyanskaya signature scheme [8]. We show that CL* can be realized with-
out random oracles when the message space is polynomial. CL* signatures
require only one-third the space of the original CL signatures– on par with
the shortest signatures known [5] –, but users may only issue one signature



248 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

per period (e.g., users might only be allowed to sign one message per 300ms).
We present a batch verifier for these signatures from many different signers
that verifies n signatures using only three total pairings, instead of the 5n
pairings required by n original CL signatures. Yet, our batch verifier has the
restriction that it can only batch verify signatures made during the same
period. CL* signatures form the core of the only public key authentication,
known to us, that is extremely short and highly efficient to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens
implicitly in IBS schemes, such as Waters. To achieve this functionality with
CL* signatures, we use a known batch verifier for the Boneh, Lynn, and
Shacham signatures in the random oracle model [5,4] that can batch verify
n signatures from the same signer using only two pairings.

1.2 Batch Verification Overview

Batch cryptography was introduced in 1989 by Fiat [17] for a variant of RSA.
Later, in 1994, Naccache, M’Räıhi, Vaudenay and Raphaeli [35] gave the first
efficient batch verifier for DSA signatures, however an interactive batch verifier
presented in an early version of their paper was broken by Lim and Lee [31].
In 1995 Laih and Yen proposed a new method for batch verification of DSA
and RSA signatures [29], but the RSA batch verifier was broken five years later
by Boyd and Pavlovski [6]. In 1998 Harn presented two batch verification tech-
niques for DSA and RSA [22,23] but both were later broken [6,25,26]. The same
year, Bellare, Garay and Rabin took the first systematic look at batch verifi-
cation [2] and presented three generic methods for batching modular exponen-
tiations, called the random subset test, the small exponents test and the bucket
test which are similar to the ideas from [35,29]. They showed how to apply these
methods to batch verification of DSA signatures and also introduced a weaker
form of batch verification called screening. In 2000 some attacks against differ-
ent batch verification schemes, mostly ones based on the small exponents test
and related tests, were published [6]. These attacks do not invalidate the proof
of security for the small exponents test, but rather show how the small expo-
nents test is often used in a wrong way. However, they also describe methods
to repair some broken schemes based on this test. In 2001 Hoshino, Masayuki
and Kobayashi [24] pointed out that the problem discovered in [6] might not
be critical for batch verification of signatures, but when using batch verification
to verify for example zero-knowledge proofs, it would be. In 2004 Yoon, Cheon
and Kim proposed a new ID-based signature scheme with batch verification [15],
but their security proof is for aggregate signatures and does not meet the def-
inition of batch verification from [2]; hence their title is somewhat misleading.
Of course not all aggregate signature schemes claim to do batch verification. For
example Gentry and Ramzan present a nice aggregate signature scheme in [19]
that does not claim to be, nor is, a batch verification scheme. Other schemes
for batch verification based on bilinear maps were proposed [12,40,41,42] but all
were later broken by Cao, Lin and Xue [10]. In 2006, a method was proposed for



Batch Verification of Short Signatures 249

identifying invalid signatures in RSA-type batch signatures [30], but Stanek [38]
showed that this method is flawed.

1.3 Efficiency of Prior Work and Our Contributions

Efficiency will be given as an abstract cost for computing different functions.
We begin by discussing prior work on RSA, DSA, and BLS signatures mostly for
single signers, and then discuss our new work on Waters, BLS, and CL signatures
for many signers. Note that Lim [32] provides a number of efficient methods for
doing m-term exponentiations and Granger and Smart [21] give improvements
over the naive method for computing a product of pairings, which is why we
state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m

i=1 e(gi, hi) where gi ∈ G, hi ∈ H.
m-MultExpCosts

G(k) s m-term exponentiations
∏m

i=1 gai where g ∈ G, |ai| = k.
PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCosts

G(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCosts

G Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

If s = 1 we will omit it. Throughout this paper we assume that n is the number of
message/signature pairs and �b is a security parameter such that the probability
of accepting a batch that contains an invalid signature is at most 2−�b .

RSA* is a modified version of RSA by Boyd and Pavlovski [6]. The difference
to normal RSA is that the verification equation accepts a signature σ as valid
if ασe = m for some element α ∈ Z

∗
m of order no more than 2, where m is

the product of two primes. The signatures are usually between 1024 − 2048 bits
and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2Zm

(�b) + ExpCostZm
(k), where k is the number

of bits in the public exponent e, can be found in [6]. Note that verifying n
signatures by verifying each signature individually only costs ExpCostn

Zm
(k), so

for small values of e (|e| < 2�b/3) the naive method is a faster way to verify
RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [2] presents a screening algorithm for RSA that assumes distinct messages
from the same signer and costs 2n + ExpCostZm

(k).

DSA** is a modified version of DSA from [35] compatible with the small expo-
nents test from [6]. There are two differences to normal DSA. First there is no
reduction modulo q, so the signatures are 672 bits instead of 320 bits and second,
individual verification should check both a signature σ and −σ and accept if one
of them holds. Messages and public keys are both 160 bits long. Using the small
exponents test the cost is n-MultExpCostG(�b) + ExpCost2G(160) + HashCostnG +
MultCost2n+1 multiplications. This method works for a single signer only.



250 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

Waters IBS is the Waters 2-level hierarchical signature scheme from [7] for
which we provide a batch verifier without random oracles in Section 4. An in-
teresting property of this scheme is that the identity does not need to be ver-
ified separately. Identities are k1 bits, messages are k2 bits and a signature is
three group elements in a bilinear group. The computational effort required
depends on the number of messages and the security parameters. Let M =
n-MultExpCost

GT
(�b) + n-MultExpCost3G(�b) + PairCost3G,G + GroupTestCost3n

G +
MultCost4 and refer to the table below for efficiency of the scheme. We assume
that k1 < k2.

n < k1 : M +n-MultPairCost2G,G + ExpCost2n
G (�b) + MultCostk1+k2

k1 ≤ n ≤ k2 : M +k1-MultPairCostG,G + n-MultPairCostG,G

+n-MultExpCostk1
G

(�b) + ExpCostnG(�b) + MultCostk2

n > k2 : M +k1-MultPairCostG,G + k2-MultPairCostG,G

+n-MultExpCost2G(�b)

The naive application of Waters IBS to verify n signatures costs PairCost3n
G,G +

MultCostn(k1+k2+3). Also note that in many applications we do not need to trans-
mit the identity as a separate parameter, as it is given to us for free. For example
as the hardware address of the network interface card.

BLS is the signature scheme by Boneh, Lynn and Shacham [5,4]. We discuss
batch verifiers for BLS signatures based on the small exponents test. For a screen-
ing algorithm, aggregate signatures by Boneh, Gentry, Lynn and Shacham [3]
can be used. The signature is only one group element in a bilinear group and
the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCost

G,G +n-MultExpCostG(�b)+PairCostG,G +ExpCostnGT
(�b)+

GroupTestCostnG+HashCostnG, but for single signer it is only n-MultExpCost2G(�b)+
PairCost2

G,G + GroupTestCostnG + HashCostnG.

CL* is a new variant of Camenisch and Lysyanskaya signatures [8] presented in
Section 5. The signature is only one bilinear group element and the same for the
public key. Batch verification costs n-MultExpCost2G(�b) + n-MultExpCostG(|w| +
�b)+PairCost3G,G +GroupTestCostnG +HashCostnG, where w is the output of a hash
function. However, the scheme has some additional restrictions.

Bucket Test. Bellare, Garay and Rabin [2] provide a method called the bucket
test which is even more efficient than the small exponents test for large values
of n. We note that one can use the tests we outline in this paper as subroutines
to the bucket test to further speed up verification.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen, Sign, Verify)
that also is correct and secure. The correctness property states that for all
Gen(1�) → (pk , sk), the algorithm Verify(pk , m, Sign(sk , m)) = 1.



Batch Verification of Short Signatures 251

There are two common notions of security. Goldwasser, Micali, and Rivest [20]
defined a scheme to be unforgeable as follows: Let Gen(1�) → (pk , sk). Sup-
pose (m, σ) is output by a p.p.t. adversary A with access to a signing oracle
Osk (·) and input pk . Then the probability that m was not queried to Osk (·) and
yet Verify(pk , m, σ) = 1 is negligible in �. An, Dodis, and Rabin [1] proposed
the notion of strong unforgeability, where if A outputs a pair (m, σ) such that
Verify(pk , m, σ) = 1, then except with negligible probability at some point oracle
Osk (·) was queried on m and outputted signature σ exactly. In other words, an
adversary cannot create a new signature even for a previously signed message.
Our batch verification definitions work with either notion. The signatures used
in Section 4 meet the GMR [20] definition, while those in Section 5 meet the
ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signa-
tures on (possibly) different messages by (possibly) different signers. The input
is {(t1, m1, σ1), . . . , (tn, mn, σn)}, where ti specifies the verification key against
which σi is purported to be a signature on message mi. We extend the defini-
tions of Bellare, Garay and Rabin [2] to deal with multiple signers. And this is
an important point that wasn’t a concern with only a single signer: one or more
of the signers may be maliciously colluding.

Definition 1 (Batch Verification of Signatures). Let � be the security pa-
rameter. Suppose (Gen, Sign, Verify) is a signature scheme, n ∈ poly(�), and
(pk1, sk1), . . . , (pkn, skn) are generated independently according to Gen(1�). Then
we call probabilistic Batch a batch verification algorithm when the following con-
ditions hold:

– If Verify(pk ti
, mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 , m1, σ1), . . . ,

(pk tn
, mn, σn)) = 1.

– If Verify(pk ti
, mi, σi) = 0 for any i ∈ [1, n], then Batch((pk t1 , m1, σ1), . . . ,

(pk tn
, mn, σn)) = 0 except with probability negligible in k, taken over the

randomness of Batch.

Note that Definition 1 does not require verification keys to belong to honest
users, only to keys that were generated honestly (and are perhaps now held
by an adversary). In practice, users could register their keys and prove some
necessary properties of the keys at registration time.

Confusion between Batch Verification, Aggregate Signatures, and Screening. As
we discussed in the introduction, several works (e.g., [15,16]) claim to do batch
verification when, in fact, they often meet a weaker guarantee called screening [2].
However, in most cases the confusion is about words, e.g. when the words batch
verification are used to describe an aggregate signature scheme.

Definition 2 (Screening of Signatures). Let � be the security parameter.
Suppose (Gen, Sign, Verify) is a signature scheme, n ∈ poly(�) and (pk∗, sk∗) ←
Gen(1�). Let Osk∗(·) be an oracle that on input m outputs σ = Sign(sk∗, m). Then



252 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

for all p.p.t. adversaries A, we call probabilistic Screen a screening algorithm
when μ(�) defined as follows is a negligible function:

Pr[(pk∗, sk∗) ← Gen(1�), (pk1, sk1) ← Gen(1�), . . . , (pkn, skn) ← Gen(1�),

D ← AOsk∗ (·)(pk∗, (pk1, sk1), . . . , (pkn, skn)) :
Screen(D) = 1 ∧ (pk∗, mi, σi) ∈ D ∧ mi �∈ Q] = μ(�),

where Q is the set of queries that A made to O.

The above definition is generalized to the multiple-signer case from the single-
signer screening definition of Bellare et al. [2].

Interestingly, screening is the (maximum) guarantee that most aggregate sig-
natures offer if one were to attempt to batch verify a group of signatures by
first aggregating them together and then executing the aggregate-verification al-
gorithm. Consider the aggregate signature scheme of Boneh, Gentry, Lynn and
Shacham [3] based on the BLS signatures [5,4]. First, we describe the BLS sig-
natures. Let e : G × G → GT , where g generates the group G of prime order q.
Gen chooses a random sk ∈ Zq and outputs pk = gsk . A signature on message
m is σ = H(m)sk , where H is a hash function. To verify signature σ on message
m, one checks that e(σ, g) = e(H(m), pk). Given a group of message-signature
pairs (m1, σ1), . . . , (mn, σn) (all purportedly from the same signer), BGLS ag-
gregates them as A =

∏n
i=1 σi. Then all signatures can be verified in aggregate

(i.e., screened) by testing that e(A, g) = e(
∏n

i=1 H(mi), pk ). This scheme is not,
however, a batch verification scheme since, for any a �= 1 ∈ G, the two invalid
message-signature pairs P1 = (m1, a · H(m1)sk ) and P2 = (m2, a

−1 · H(m2)sk )
will verify under Definition 2 (as BGLS prove [3]), but will not verify under
Definition 1. Indeed, for some pervasive computing applications only guarantee-
ing screening would be disastrous, because only P1 may be relevant information
to forward to the next entity – and it won’t verify once it arrives! To be fair,
batch verification is not what aggregate schemes were designed to do, but it is a
common misuse of them.

Let D = {(t1, m1, σ1), . . . , (tn, mn, σn)}. We note that while Screen(D) = 1
does not guarantee that Verify(pk ti

, mi, σi) for all i; it does guarantee that the
holder of sk ti authenticated mi. Thus, we can always prove this by first creat-
ing a new signature scheme (Gen, Sign, Verify′) where the verification algorithm
Verify′ is modified w.r.t. the original scheme as follows. Apart from the original
signatures, it also accepts signatures σ′i derived from D such that if and only
if for all (ti, mi, σi) ∈ D, Verify′(pk ti

, mi, σ
′
i) = 1 we have Screen(D) = 1. One

method to construct σ′i would be to give a zero-knowledge proof of knowledge
of D such that Screen(D) = 1, although (using the naive solution) these new
signatures σ′i will require O(n) space and Verify′ will run in O(n) time.

3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security para-
meter 1�, outputs the parameters for a bilinear map as (q, g, G, GT , e), where



Batch Verification of Short Signatures 253

G, GT are of prime order q ∈ Θ(2�). The efficient mapping e : G × G → GT is
both: (Bilinear) for all g ∈ G and a, b ← Zq, e(ga, gb) = e(g, g)ab; and (Non-
degenerate) if g generates G, then e(g, g) �= 1. Following prior work, we write G

and GT in multiplicative notation, although G is actually an additive group. Our
constructions from Section 5 also work in the setting e : G1 × G2 → GT , where
G1 and G2 are distinct groups, possibly without efficient isomorphisms between
them, but it is more tedious to write. However, this later implementation allows
for the shortest group elements. We note that if the Waters IBS scheme also
works in this setting, so will our proposed batch verifier in Section 4.

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [6]
observed that the proofs of security for many previous batch verification or
screening schemes assumed that the signatures (potentially submitted by a ma-
licious adversary) were elements of an appropriate subgroup. For example, it
was common place to assume that signatures submitted for batch DSA verifi-
cation contained an element in a subgroup G of Z

∗
p of prime order q. Boyd and

Pavlovski [6] pointed out efficient attacks on many batching algorithms via ex-
ploiting this issue. Of course, group membership cannot be assumed, it must be
tested and the work required by this test might well obliterate all batching effi-
ciency gains. E.g., verifying that an element y is in G by testing if yq mod q = 1;
easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [6]
suggest methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to
avoid this common mistake in batch verification. To do so, we must say more
about the groups in which we are working. Let E be an elliptic curve over a finite
field Fp and let O denote the point at infinity. We denote the group of points on
E defined over Fp as E(Fp). Then, a prime subgroup G ⊆ E(Fp) of order q is
chosen appropriately for our mapping. Our proofs will require that elements of
purported signatures are members of G and not E(Fp)\G. The question is: how
efficiently can this fact be verified? Determining whether some data represents
a point on a curve is easy. The question is whether it is in the correct subgroup.
Assuming we have a bilinear map e : G1 × G2 → GT . In all the schemes we use,
signatures are in G1, so this is the group we are interested in testing membership
of. Elements in G1 will always be in Fp and have order q, so we can use cofactor
multiplication: The curve has hq points over Fp, so if an element y satisfies the
curve equation and hy �= O (here G1 is expressed in additive notation), then that
element is in G1. If one chooses a curve with h = 1 then this test is trivial, but
even if h > 1, but still much smaller than q, this test is efficient. Chen, Cheng
and Smart discuss this and ways to test membership in G2 in [14].

4 Batch Verification Without Random Oracles

In this section, we present a method for batch verifying signatures together
with their accompanying certificates. We propose using Waters Two-Level Hi-
erarchical Signatures [39,7] with the first level corresponding to the certificate



254 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

and the second level used for signing messages. We assume all certificates orig-
inate from the same authority. The scheme is secure under the Computational
Diffie-Hellman assumption in the plain model. This batch verification method
can execute in different modes, optimizing for the lowest runtime. Let n be
the number of certificate/signature pairs, let 2k1 be the number of users, and
let k2 be the bits per message. Then our batch verifier will verify n certifi-
cate/signature pairs with asymptotic complexity of the dominant operations
roughly MIN{(2n + 3) , (k1 + n + 3) , (n + k2 + 3) , (k1 + k2 + 3)}. Suppose
there are one billion users (k1 = 30) and RIPEMD-160 is used to hash all the
messages (k2 = 160), then when n ≥ 64 batching becomes faster than individual
verification. However, one can imagine many usage scenarios where devices send
predefined messages requiring less than 160 bits, e.g., ISO defined error mes-
sages. For example, if k1 = 30 and k2 = 32, then when n ≥ 22 batching should
be used.

4.1 Batch Verification for Waters IBS

We describe a batch verification algorithm for the Waters IBS scheme from [7],
where the number of pairings depends on the security parameter and not on the
number of signatures. We assume that the identities are bit strings of length k1
and the messages are bit strings of length k2. First we describe the signature
scheme. Let BSetup(1�) → (q, g, G, GT , e).

Setup: First choose a secret α ∈ Zq and calculate A = e(g, g)α. Then pick two
random integers y′, z′ ∈ Zq and two random vectors y = (y1, . . . , yk1) ∈ Z

k1
q

and z = (z1, . . . , zk2) ∈ Z
k2
q . The master secret key is MK = gα and the

public parameters are given as: PP = g, A, u′ = gy′
, u1 = gy1, . . . , uk1 =

gyk1 , v′ = gz′
, v1 = gz1 , . . . , vk2 = gzk2

Extract: To create a private key for a user with identity ID = (κ1, . . . , κk1) ∈
{0, 1}k1, select r ∈ Zq and return KID =

(
gα(u′

∏k1
i=1 uκi

i )r, g−r
)
.

Sign: To sign a message m = (m1, . . . , mk2) ∈ {0, 1}k2 using private key K =
(K1, K2), select s ∈ Zq and return S =

(
K1(v′

∏k2
j=1 v

mj

j )s, K2, g
−s

)
.

Verify: To verify a signature S = (S1, S2, S3) from identity ID = (κ1, . . . , κk1)
on message M = (m1, . . . , mk2), check that e(S1, g) · e(S2, u

′∏k1
j=1 u

κj

j ) ·
e(S3, v

′∏k2
j=1 v

mj

j ) = A. If this equation holds, output accept; otherwise out-
put reject.

We now introduce a batch verifier for this signature scheme. The basic idea
is to adopt the small exponents test from [2] and to take advantage of the pecu-
liarities of bilinear maps. Let KeyGen, Sign and Verify be as before.

Batch Verify: Let κi
j and mi

k denote the j’th bit of the identity of the i’th
signer respectively the k’th bit in the message signed by the i’th signer, and
let Si = (Si

1, S
i
2, S

i
3) denote the signature from the i’th signer. First check

if Si
1, S

i
2, S

i
3 ∈ G for all i. If not; output reject. Otherwise generate a vector



Batch Verification of Short Signatures 255

Δ = (δ1, . . . , δn) where each δi is a random element of �b bits from Zq and
set P = e(

∏n
i=1 Si

1
δi , g) · e(

∏n
i=1 Si

2
δi , u′) · e(

∏n
i=1 Si

3
δi , v′). Depending on

the values of k1, k2 and n (c.f. below), pick and check one of the following
equations:

n∏

i=1

Aδi = P ·
n∏

i=1

e(Si
2
δi

,

k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (1)

n∏

i=1

Aδi = P ·
k1∏

j=1

e(
n∏

i=1

Si
2
δiκ

i
j , uj) ·

n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (2)

n∏

i=1

Aδi = P ·
k1∏

j=1

e(
n∏

i=1

Si
2
δiκ

i
j , uj) ·

k2∏

j=1

e(
n∏

i=1

Si
3
δim

i
j , vj) (3)

Output accept if the chosen equation holds; otherwise output reject.

Let us discuss which equation should be picked. Assume that k1 < k2 (i.e.,
that fewer bits are used for the identities of the users than for the messages). If
n < k1 use equation 1, if k1 ≤ n ≤ k2 use equation 2; otherwise use equation 3.

Theorem 1. The above algorithm is a batch verifier for the Waters IBS.

Proof. First we prove that Verify(IDt1 , M1, S1) = · · · = Verify(IDtn , Mn, Sn) =
1 ⇒ Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1. This follows from the veri-
fication equation for the Waters IBS scheme:

n∏

i=1

Aδi =
n∏

i=1

⎛

⎝e(Si
1, g) · e(Si

2, u
′

k1∏

j=1

u
κi

j

j ) · e(Si
3, v
′

k2∏

j=1

v
mi

j

j )

⎞

⎠
δi

= e(
n∏

i=1

Si
1
δi

, g) ·
n∏

i=1

e(Si
2
δi

, u′
k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

, v′
k2∏

j=1

v
mi

j

j )

= P ·
n∏

i=1

e(Si
2
δi

,

k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (4)

Since for all i, Verify(IDti , Mi, Si) = 1, Si
2 is a valid part of a signature, and

hence Si
2 ∈ G. This means that we can write Si

2 = gbi for some bi ∈ Zq and get
∏n

i=1 e(Si
2
δi ,

∏k1
j=1 u

κi
j

j ) =
∏n

i=1 e(gδibi , g
�k1

j=1 yjκi
j ) = e(g, g)

�n
i=1

�k1
j=1 δibiyjκi

j =
∏k1

j=1 e(g
�n

i=1 δibiκ
i
j , gyj) =

∏k1
j=1 e(

∏n
i=1 Si

2
δiκ

i
j , uj). We can do the same with

∏n
i=1 e(Si

3
δi ,

∏k2
j=1 v

mi
j

j ), so correctness of the different verification equations fol-
lows from this and equation 4.

We must now show the other direction. This proof is an application of the
technique for proving the small exponents test in [2]. Since Si

1, S
i
2, S

i
3 ∈ G we



256 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

can write Si
1 = gai , Si

2 = gbi and Si
3 = gci for some ai, bi, ci ∈ Zq. This means

that the verification equation for Waters IBS can be rewritten as:

e(g, g)α = e(ga, g) · e(gb, gy′
g
�k1

j=1 yjκj ) · e(gc, gz′
g
�k2

j=1 zjmj )

= e(g, g)a+y′b+z′c+b
�k1

j=1 yjκj+c
�k2

j=1 zjmj (5)

Using 5 we can rewrite equation 1 as:

e(g, g)
�n

i=1 δiα = e(g, g)
�n

i=1 δi

�
ai+y′bi+z′ci+bi

�k1
j=1 yjκj+ci

�k2
j=1 zjmj

�
(6)

Setting βi = α−
(
ai + y′bi + z′ci + bi

∑k1
j=1 yjκ

i
j + ci

∑k2
j=1 zjm

i
j

)
and rewriting

equation 6 we get:

e(g, g)
�n

i=1 δiα−
�n

i=1 δi

�
ai+y′bi+z′ci+bi

�k1
j=1 yjκj+ci

�k2
j=1 zjmj

�
= 1

⇒
n∑

i=1

δiα −
n∑

i=1

δi

⎛

⎝ai + y′bi + z′ci + bi

k1∑

j=1

yjκj + ci

k2∑

j=1

zjmj

⎞

⎠ ≡ 0 (mod q)

⇒
n∑

i=1

δiβi ≡ 0 (mod q) (7)

Assume that Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1, but for at least
one i it is the case that Verify(IDti , Mi, Si) = 0. Assume wlog that this is true
for i = 1, which means that β1 �= 0. Since q is a prime then β1 has an inverse γ1
such that β1γ1 ≡ 1 (mod q). This and equation 7 gives us:

δ1 ≡ −γ1

n∑

i=2

δiβi (mod q) (8)

Given (IDti , Mi, Si) where i = 1 . . . n, let E be an event that occurs if
Verify(IDt1 , M1, S1) = 0 but Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1, or
in other words that we break batch verification. Note that we do not make any
assumptions about the remaining values. Let Δ′ = δ2, . . . , δn denote the last
n − 1 values of Δ and let |Δ′| be the number of possible values for this vector.
Equation 8 says that given a fixed vector Δ′ there is exactly one value of δ1 that
will make event E happen, or in other words that the probability of E given a
randomly chosen δ1 is Pr[E|Δ′] = 2−�b . So if we pick δ1 at random and sum over
all possible choices of Δ′ we get Pr[E] ≤

∑|Δ′|
i=1 (Pr[E|Δ′] · Pr[Δ′]). Plugging in

the values, we get: Pr[E] ≤
∑2�b(n−1)

i=1

(
2−�b · 2−�b(n−1)

)
= 2−�b . �

5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures to-
gether with their accompanying certificates. We propose using the BLS signa-
ture scheme [5] for the certificates and a modified version of the CL signature



Batch Verification of Short Signatures 257

scheme [8] for signing messages. This method requires only two pairings to verify
n certificates (from the same authority) and three pairings to verify n signatures
(from possibly different signers). The cost for this significant efficiency gain is
some usage restrictions, although as we will discuss, these restrictions may not
be a problem for some of the applications we have in mind.

Certificates: We use a batch verifier for BLS signatures from the same author-
ity as described in Section 5.1. The scheme is secure under CDH in the ran-
dom oracle model. To verify n BLS certificates costs n-MultExpCost2

G(�b) +
PairCost2G,G + GroupTestCostnG + HashCostnG, using the Section 1.2 notation.

Signatures: We describe a new signature scheme CL* with a batch verifier
in Section 5.2. The scheme is secure under the LRSW assumption in the
plain model when the message space is a polynomial and in the random
oracle model when the message space is super-polynomial. We assume that
there are discrete time or location identifiers φ ∈ Φ. A user can issue at
most one signature per φ (e.g., this might correspond to a device being al-
lowed to broadcast at most one message every 300ms) and only signatures
from the same φ can be batch verified together. To verify n CL* signa-
tures, costs n-MultExpCost2

G(�b) + n-MultExpCostG(|w| + �b) + PairCost3G,G +
GroupTestCostnG + HashCostnG, where w is the output of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham
signatures [5,4] described in Section 2, using the small exponents test [2].

Batch Verify: Given purported signatures σi from n users on messages Mi for
i = 1 . . . n, first check that σi ∈ G for all i and if not; output reject. Oth-
erwise compute hi = H(Mi) and generate a vector δ = (δ1, . . . , δn) where
each δi is a random element of �b bits from Zq. Check that e(

∏n
i=1 σδi

i , g) =∏n
i=1 e(hi, pk i)δi . If this equation holds, output accept; otherwise output reject.

Theorem 2. The algorithm above is a batch verifier for BLS signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons.

Single Singer for BLS. However, BLS [5,4] previously observed that if we have
a single signer with public key v, the verification equation can be written as
e(

∏n
i=1 σδi

i , g) = e(
∏n

i=1 hδi

i , v) which reduces the load to only two pairings.

Theorem 3 ([5,4]). The algorithm above is a single-signer, batch verifier for
BLS signatures.

5.2 A New Signature Scheme CL*

In this section we introduce a new signature scheme secure under the LRSW as-
sumption [33], which is based on the Camenisch and Lysyanskaya signatures [8].



258 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

Assumption 4 (LRSW Assumption). Let BSetup(1�) → (q, g, G, GT , e). Let
X, Y ∈ G, X = gx, and Y = gy. Let OX,Y (·) be an oracle that, on input a value
m ∈ Z

∗
q , outputs a triple A = (a, ay, ax+mxy) for a randomly chosen a ∈ G. Then

for all probabilistic polynomial time adversaries A(·), ν(�) defined as follows is a
negligible function:

Pr[(q, g, G, GT , e) ← BSetup(1�); x ← Zq; y ← Zq; X = gx; Y = gy;

(m, a, b, c) ← AOX,Y (q, g, G, GT , e, X, Y ) : m /∈ Q ∧ m ∈ Z
∗
q ∧

a ∈ G ∧ b = ay ∧ c = ax+mxy] = ν(�) ,

where Q is the set of queries that A made to OX,Y (·).
The Original CL Scheme. Recall the Camenisch and Lysyanskaya signa-
tures [8]. Let BSetup(1�) → (q, g, G, GT , e). Choose the secret key (x, y) ∈ Z

2
q at

random and set X = gx and Y = gy. The public key is pk = (X, Y ). To sign a
message m ∈ Z

∗
q , choose a random a ∈ G and compute b = ay, c = axbxm. Out-

put the signature (a, b, c). To verify, check whether e(X, a) · e(X, b)m = e(g, c)
and e(a, Y ) = e(g, b) holds.

CL*: A version of the CL Scheme Allowing Batch Verification. Our
goal is to batch-verify CL signatures made by different signers. That is we need
to consider how to verify equations of the form e(X, a) · e(X, b)m = e(g, c) and
e(a, Y ) = e(g, b). The fact that the values X , a, b, and c are different for each
signature seems to prevent efficient batch verification. Thus, we need to find a
way such that many different signers share some of these values. Obviously, X
and c need to be different. Now, depending on the application, all the signers can
use the same value a by choosing a as the output of some hash function applied
to, e.g., the current time period or location. We then note that all signers can use
the same b in principle, i.e., have all of them share the same Y as it is sufficient
for each signer to hold only one secret value (i.e., sk = x). Indeed, the only
reason that the signer needs to know Y is to compute b. However, it turns out
that if we define b such that loga b is not known, the signature scheme is still
secure. So, for instance, we can derive b in a similar way to a using a second hash
function. Thus, all signers will virtually sign using the same Y per time period
(but a different one for each period).

Let us now describe the resulting scheme. Let BSetup(1�) → (q, g, G, GT , e).
Let φ ∈ Φ denote the current time period or location, where |Φ| is polynomial.
Let M be the message space, for now let M = {0, 1}∗. Let H1 : Φ → G,
H2 : Φ → G, and H3 : M × Φ → Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X .
Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message

m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature
σ = axbxw. Otherwise, abort.

Verify: On input message-period pair (m, φ) and purported signature σ, com-
pute w = H3(m||φ), a = H1(φ) and b = H2(φ), and check that e(σ, g) =
e(a, X) · e(b, X)w. If true, output accept; otherwise output reject.



Batch Verification of Short Signatures 259

Theorem 5. Under the LRSW assumption in G, the CL* signature scheme is
existentially unforgeable in the random oracle model for message space M =
{0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with
probability ε in forging CL* signatures, then we can construct a p.p.t. adversary
B that solves the LRSW problem with probability ε · |Φ|−1 · q−1

H in the random
oracle model, where qH is the maximum number of oracle queries A makes to
H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary BOX,Y (·)

against LRSW operates as follows on input (q, g, G, GT , e, X, Y ). Let � be the
security parameter. We assume that Φ is pre-defined. Let qH be the maximum
number of queries A makes to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g, G, GT , e) to A. Choose a random
w′ ∈ M and query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′).
Choose a random φ′ ∈ Φ. Treat H1, H2, H3 as random oracles. Allow A
access to the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X . For i = 1 to n, choose a random sk i ∈ Zq

and set pk i = gski . Output to A the keys pk∗ and all (pk i, sk i) pairs.
3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose

random ri and si in Zq for each time period (except φ′). Set up H1 and H2
such that:

H1(φi) =

{
gri if φi �= φ′

a′ otherwise
(9)

and

H2(φi) =

{
gsi if φi �= φ′

b′ otherwise
(10)

Pick a random j in the range [1, qH ]. Choose random tl,i ∈ Zq, such that
tl,i �= w′, for l ∈ [1, qH ] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi �= φ′ or l �= j

w′ otherwise
(11)

B records m∗ := mj . Finally, set the signing query oracle such that on the
lth query involving period φi:

Osk∗(ml||φi) =

⎧
⎪⎨

⎪⎩

abort if φi = φ′ and l �= j

c′ else if φi = φ′ and l = j

XriX(si)tl,i otherwise
(12)

4. Output: At some point A stops and outputs a purported forgery σ ∈ G

for some (ml, φi). If φi �= φ′, B did not guess the correct period and thus
B outputs a random guess for the LRSW game. If ml = m∗ or the CL*
signature does not verify, A’s output is not a valid forgery and thus B outputs
a random guess for the LRSW game. Otherwise, B outputs (tl,i, a′, b′, σ) as
the solution to the LRSW game.



260 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

We now analyze B’s success. If B is not forced to abort or issue a random guess,
then we note that σ = H1(φi)xH2(φi)xH3(ml||φi). In this scenario φi = φ′ and
tl,i �= w′. We can substitute as σ = (a′)x(b′)x(tl,i). Thus, we see that (tl,i, a′, b′, σ)
is indeed a valid LRSW instance. Thus, B succeeds at LRSW whenever A suc-
ceeds in forging CL* signatures, except when B is forced to abort or issue a
random guess. First, when simulating the signing oracle, B is forced to abort
whenever it incorrectly guesses which query to H3, during period φ′, A will even-
tually query to Osk∗(·, ·). Since all outputs of H3 are independently random, B
will be forced to abort at most q−1

H probability. Next, provided that A issued a
valid forgery, then B is only forced to issue a random guess when it incorrectly
guesses which period φ ∈ Φ that A will choose to issue its forgery. Since, from
the view of A conditioned on the event that B has not yet aborted, all outputs
of the oracles are perfectly distributed as either random oracles (H1, H2, H3) or
as a valid CL* signer (Osk∗). Thus, this random guess is forced with probabil-
ity at most |Φ|−1. Thus, if A succeeds with ε probability, then B succeeds with
probability ε · |Φ|−1 · q−1

H . �

Theorem 6. Under the LRSW assumption in G, the CL* signature scheme is
existentially unforgeable in the plain model when |M| is polynomial.

Proof sketch. If there exists a p.p.t. adversary A that succeeds with probability
ε in forging CL* signatures when |M| = poly(�), then we can construct a p.p.t.
adversary B that solves the LRSW problem with probability ε · |Φ|−1 · |M|−1.
Canetti, Halevi, and Katz [9] described one method of constructing a universal
one-way hash function that satisfies a polynomial number of input/output con-
straints, i.e., pairs (xi, yi) such that H(xi) = yi. Furthermore, we note that H1,
H2 and H3 have |Φ|, |Φ|, and |Φ| · |M| constraints, respectively. Since these are
all polynomials, B can efficiently construct the appropriate hash functions. The
analysis follows the proof with random oracles.

Efficiency Note. First, we observe that the CL* signatures are very short, re-
quiring only one element in G. Since the BLS signatures also require only one
element in G, and since a public key for the CL* scheme is also only one group
element, the entire signature plus certificate could be transmitted in three G

elements. In order to get the shortest representation for these elements, we need
to use asymmetric bilinear maps e : G1 × G2 → GT , where G1 �= G2, which will
allow elements in G1 to be 160 bits and elements of G2 to be 1024 bits for a se-
curity level comparable to RSA-1024 [28,18]. For BLS this means that the public
key will be around 1024 bits, but since we use it for single signer, the public key
of the certifying authority is probably embedded in the systems at production
time. For CL* signatures we need to hash into G1 which according to Galbraith,
Paterson and Smart [18] can be done efficiently. To summarize; using BLS and
CL* we can represent the signature plus certificate using approximately 1344
bits with security comparable to RSA-1024, compared to around 3072 bits for
actually using RSA-1024. We note that this is based on current state of the art
for pairings, and might improve in the future.



Batch Verification of Short Signatures 261

Second, suppose one uses the universal one-way hash functions described by
Canetti, Halevi, and Katz [9] to remove the random oracles from CL*. These
hash functions require one exponentiation per constraint. In our case, we may
require as many as |Φ| · |M| constraints. Thus, the cost to compute the hashes
may dampen the efficiency gains of batch verification. However, our scheme
will benefit from improvements in the construction of universal one-way hash
functions with constraints. To keep |Φ| small in practice, users might need to
periodically change their keys.

Batch Verification of CL* Signatures. Batch verification of n signatures
σ1, . . . , σn on messages m1, . . . , mn for the same period φ can be done as follows.
Assume that user i with public key Xi signed message mi. Set wi = H(mi||φ).
First check if σi ∈ G for all i. If not; output reject. Otherwise pick a vector
Δ = (δi, . . . , δn) with each element being a random �b-bit number and check
that e(

∏n
i=1 σδi

i , g) = e(a,
∏n

i=1 Xδi

i ) · e(b,
∏n

i=1 Xwiδi

i ). If this equation holds,
output accept; otherwise output reject.

Theorem 7. The algorithm above is a batch verifier for CL* signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons.

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed
the large body of existing work, almost exclusively dealing with single signers.
We extended the general batch verification definition of Bellare, Garay and Ra-
bin [2] to the case of multiple signers. We then presented, to our knowledge,
the first efficient and practical batch verification scheme for signatures without
random oracles. We focused on solutions that comprehended the time to verify
the signature and the corresponding certificate for the verification key. First, we
presented a batch verifier for the Waters IBS that can verify n signatures using
only (k1 +k2 +3) pairings (the dominant operation), where identities are k1 bits
and messages are k2 bits. This is a significant improvement over the 3n pairings
required by individual verification. Second, we presented a solution in the ran-
dom oracle model that batch verifies n certificates and n CL* signatures using
only 5 pairings. Here, CL* is a variant of the Camenisch-Lysyanskaya signatures
that is much shorter, allows for efficient batch verification from many signers,
but where only one signature can be safely issued per period.

It is an open problem to find a fast batch verification scheme for short sig-
natures without the period restrictions from Section 5. Perhaps this can be
achieved by improving the efficiency of our scheme in Section 4, using some of
the techniques applied to the Waters IBE by Naccache [34] and Chatterjee and
Sarkar [13]. Another exciting open problem is to develop fast batching schemes
for various forms of anonymous authentication such as group signatures, e-cash,
and anonymous credentials.



262 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

Acknowledgments

We thank Jean-Pierre Hubaux and Panos Papadimitratos for helpful discus-
sions about the practical challenges of vehicular networks. We are also grateful
to Paulo Barreto, Steven Galbraith, Hovav Shacham, and Nigel P. Smart for
their comments on testing membership in bilinear groups. Finally we thank Ivan
Damg̊ard and the anonymous reviewers for their valuable input. Jan Camenisch
was supported by the EU projects ECRYPT and PRIME, contracts IST-2002-
507932 and IST-2002-507591. Michael Østergaard Pedersen was supported by
the eu-DOMAIN IST EU project, contract no. IST-004420.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In EUROCRYPT ’02, volume 2332, p. 83–107, 2002.

2. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In EUROCRYPT ’98, LNCS vol. 1403.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT ’03, LNCS vol. 2656.

4. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
Cryptology, 17(4):297–319, 2004.

5. D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing. In
ASIACRYPT ’01, volume 2248 of LNCS, p. 514–532, 2001.

6. C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes. In
ASIACRYPT ’00, volume 1976 of LNCS, p. 58–71, 2000.

7. X. Boyen and B. Waters. Compact group signatures without random oracles. In
EUROCRYPT ’06, volume 4004 of LNCS, p. 427–444, 2006.

8. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO ’04, volume 3152 of LNCS, p. 56–72, 2004.

9. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT ’03, volume 2656 of LNCS, p. 255–271, 2003.

10. T. Cao, D. Lin, and R. Xue. Security analysis of some batch verifying signatures
from pairings. International Journal of Network Security, 3(2):138–143, 2006.

11. Car 2 Car. Communication consortium. http://car-to-car.org.
12. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman

groups. In PKC ’03, p. 18–30, 2003.
13. S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient IBE

scheme with short(er) public parameters in the standard model. In ICISC ’05,
volume 3935 of LNCS, p. 257–273, 2005.

14. L. Chen, Z. Cheng, and N. Smart. Identity-based key agreement protocols from
pairings, 2006. Cryptology ePrint Archive: Report 2006/199.

15. J. H. Cheon, Y. Kim, and H. J. Yoon. A new ID-based signature with batch
verification, 2004. Cryptology ePrint Archive: Report 2004/131.

16. S. Cui, P. Duan, and C. W. Chan. An efficient identity-based signature scheme
with batch verifications. In InfoScale ’06, p. 22, 2006.

17. A. Fiat. Batch RSA. In CRYPTO ’89, volume 435, p. 175–185, 1989.
18. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers,

2006. Cryptology ePrint Archive: Report 2006/165.

http://car-to-car.org


Batch Verification of Short Signatures 263

19. C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In Public Key
Cryptography 2005, volume 3958 of LNCS, p. 257–273, 2006.

20. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

21. R. Granger and N. Smart. On computing products of pairings, 2006. Cryptology
ePrint Archive: Report 2006/172.

22. L. Harn. Batch verifying multiple DSA digital signatures. In Electronics Letters,
volume 34(9), p. 870–871, 1998.

23. L. Harn. Batch verifying multiple RSA digital signatures. In Electronics Letters,
volume 34(12), p. 1219–1220, 1998.

24. F. Hoshino, M. Abe, and T. Kobayashi. Lenient/strict batch verification in several
groups. In ISC ’01, p. 81–94, 2001.

25. M.-S. Hwang, C.-C. Lee, and Y.-L. Tang. Two simple batch verifying multiple
digital signatures. In ICICS ’01, p. 233–237, 2001.

26. M.-S. Hwang, I.-C. Lin, and K.-F. Hwang. Cryptanalysis of the batch verifying
multiple RSA digital signatures. Informatica, Lith. Acad. Sci., 11(1):15–19, 2000.

27. IEEE. 5.9 GHz Dedicated Short Range Communications.
http://grouper.ieee.org/groups/scc32/dsrc.

28. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels,
2005. Cryptology ePrint Archive: Report 2005/076.

29. C.-S. Laih and S.-M. Yen. Improved digital signature suitable for batch verification.
IEEE Trans. Comput., 44(7):957–959, 1995.

30. S. Lee, S. Cho, J. Choi, and Y. Cho. Efficient identification of bad signatures in
RSA-type batch signature. IEICE Trans. on Fundamentals of Electronics, Com-
munications and Computer Sciences, E89-A(1):74–80, 2006.

31. C. Lim and P. Lee. Security of interactive DSA batch verification. In Electronics
Letters, volume 30(19), p. 1592–1593, 1994.

32. C. H. Lim. Efficient multi-exponentation and application to batch verification of
digital signatures, 2000. http://dasan.sejong.ac.kr/~chlim/english_pub.html.

33. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In SAC,
volume 1758 of LNCS, p. 184–199, 1999.

34. D. Naccache. Secure and practical identity-based encryption, 2005. Cryptology
ePrint Archive: Report 2005/369.

35. D. Naccache, D. M’Räıhi, S. Vaudenay, and D. Raphaeli. Can D.S.A. be improved?
complexity trade-offs with the digital signature standard. In EUROCRYPT ’94,
volume 0950 of LNCS, p. 77–85, 1994.

36. M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal of Com-
puter Security, 15:39–68, 2007.

37. SeVeCom. Security on the road. http://www.sevecom.org.
38. M. Stanek. Attacking LCCC batch verification of RSA signatures, 2006. Cryptology

ePrint Archive: Report 2006/111.
39. B. Waters. Efficient identity-based encryption without random oracles. In EURO-

CRYPT ’05, volume 3494 of LNCS, p. 320–329, 2005.
40. H. Yoon, J. H. Cheon, and Y. Kim. Batch verifications with ID-based signatures.

In ICISC, p. 233–248, 2004.
41. F. Zhang and K. Kim. Efficient ID-based blind signature and proxy signature from

bilinear pairings. In ACISP ’03, volume 2727 of LNCS, p. 312–323, 2003.
42. F. Zhang, R. Safavi-Naini, and W. Susilo. Efficient verifiably encrypted signature

and partially blind signature from bilinear pairings. In Indocrypt 2003, volume
2904 of LNCS, p. 191–204, 2003.

http://grouper.ieee.org/groups/scc32/dsrc
http://dasan.sejong.ac.kr/~chlim/english_pub.html
http://www.sevecom.org


Cryptanalysis of SFLASH with Slightly
Modified Parameters

Vivien Dubois, Pierre-Alain Fouque, and Jacques Stern

École normale supérieure
DI, 45 rue d’Ulm, 75230 Paris cedex 05, France

{vivien.dubois,pierre-alain.fouque,jacques.stern}@ens.fr

Abstract. SFLASH is a signature scheme which belongs to a family of
multivariate schemes proposed by Patarin et al. in 1998 [9]. The SFLASH
scheme itself has been designed in 2001 [8] and has been selected in 2003
by the NESSIE European Consortium [6] as the best known solution for
implementation on low cost smart cards. In this paper, we show that
slight modifications of the parameters of SFLASH within the general
family initially proposed renders the scheme insecure. The attack uses
simple linear algebra, and allows to forge a signature for an arbitrary
message in a question of minutes for practical parameters, using only
the public key. Although SFLASH itself is not amenable to our attack, it
is worrying to observe that no rationale was ever offered for this “lucky”
choice of parameters.

1 Introduction

Multivariate Cryptography is an area of research which attempts to build asym-
metric primitives, based on hard computational problems related to multivariate
quadratic polynomials over a finite field. Multivariate schemes have recently re-
ceived much attention, for several reasons. First, the hard problems of reference
are not known to be polynomial in the quantum model, unlike integer factoriza-
tion and the discrete logarithm problems. More importantly, Multivariate Cryp-
tography offers a large collection of primitives and problems of a new flavor.
In general, multivariate schemes require modest computational resources and
can be implemented on low cost smart cards. Moreover, these schemes benefit
from several nice properties such as providing very short or very fast signatures.
Also, they are quite versatile: a number of generic non-exclusive variations can
be derived from a few basic schemes. Even when the original schemes are weak,
variations are often considered to avoid structural attacks.

One of the more elaborate outcomes of Multivariate Cryptography is probably
the SFLASH signature scheme. Designed by Patarin et al. [8], it is among the
fastest signatures schemes known, with NTRUSign and TTS [4,11]. Although
initial tweaks in the first version of SFLASH were shown inappropriate [3], the
second version of SFLASH is currently considered secure, as testified from the
recent acceptance of this primitive by the NESSIE European Consortium [6].

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 264–275, 2007.
c© International Association for Cryptology Research 2007



Cryptanalysis of SFLASH with Slightly Modified Parameters 265

The structure of SFLASH is among the simplest in Multivariate Cryptog-
raphy. Roughly speaking, SFLASH is a truncated C∗ scheme. The C∗ scheme
was invented by Matsumoto and Imai in 1988 [5], and was shown to be insecure
by Patarin in 1995 [7]. Later, Patarin et al. considered the simple variation of
C∗ consisting in deleting from the public key a large number of coordinates [9].
Schemes derived from C∗ by this principle are called C∗− schemes; they are
well suited for signature. As soon as the number of deleted coordinates is large
enough, C∗− schemes are considered secure. SFLASH belongs to the C∗− fam-
ily and has been chosen as a candidate for the NESSIE selection, and finally
accepted.

Our Results. We argue that the security of the C∗− schemes remains insuffi-
ciently understood. In particular, one may rightfully question the reasons for
the particular choice of parameters opted for in SFLASH. Might other parame-
ters yield the same security ?

In this paper, we show that many choices of parameters for C∗− schemes
are insecure. Our approach uses basic properties of the differential as introduced
in [2]. Since the differential is bilinear and symmetric, it seems natural to consider
skew-symmetric linear maps with respect to this function. This property is so
specific and overdefined that the space of skew-symmetric maps is left unchanged
when we replace the full public key of C∗ by its truncated version C∗−, even
when the number of deleted coordinates is very large. Skew-symmetric maps can
be recovered from their defining equation in terms of the differential of a C∗−

public key, using only linear algebra. Once this has been achieved, compositions
of these maps with the public key can be used to recover a full C∗ public key,
which can then be inverted using the original attack by Patarin [7].

The schemes under attack are those for which the internal C∗ parameter
and the number of variables are not coprime. Such parameters are perfectly ac-
ceptable for practical realizations of C∗− schemes in the current state of crypt-
analysis. SFLASH with the recommended set of parameters escapes this attack.
However, this shows that the elements underlying the security of C∗− schemes
and their relations with parameters are not well identified. To illustrate this
point, we show that changing the parameters of SFLASH by one renders the
scheme breakable in a few minutes.

Organization of the Paper. In Section 2, we recall the definition of C∗ and C∗−

schemes. Then, in Section 3, we characterize skew-symmetric maps with respect
to the differential of C∗. In Section 4, we show that the same maps can be
recovered from a truncated version C∗− of the original C∗ public key. Finally,
in section 5, we show how their use allows us to restore a full C∗ public key.

2 C∗ and C∗−

Before we describe the C∗ and C∗− schemes, we recall the generic construction
of multivariate schemes.



266 V. Dubois, P.-A. Fouque, and J. Stern

2.1 The Generic Construction of Multivariate Schemes

We denote by F
n
q the n-dimensional vector space over the finite field Fq with q

elements. A function from F
n
q to F

m
q is defined by m coordinate-polynomials in

n variables. When these polynomials have multivariate degree 2, the function is
termed quadratic. Finding a preimage of a quadratic function involves solving
a multivariate quadratic system of equations, an NP-hard problem in general.
Nevertheless, some classes of easily invertible quadratic functions are known
and can form the basis of a multivariate asymmetric scheme. More precisely, the
generic construction of multivariate schemes is the following. The key generation
algorithm hides an easily invertible quadratic function F by two linear (or affine)
changes of coordinates U and T into a function P defined by

P = T ◦ F ◦ U

P is the public key and U, T are the secret key. The proponents of multivariate
cryptography argue that the function P is a random-looking quadratic function,
which is expected to be hard to invert by general purpose techniques. An en-
crypted message can be decrypted by using the secret key (T, U) to undo the
hiding process and by solving the easy internal quadratic system.

2.2 The C∗ Scheme

The C∗ scheme was proposed by Matsumoto and Imai in 1988 [5]. In the C∗

scheme, the internal easy-to-invert function is defined from a monomial over the
degree n extension field of Fq, denoted Fqn , of the form

F (x) = x1+qθ

where θ is a positive integer. The function F is isomorphic to a quadratic function
from F

n
q into itself and provided q is even, the integer θ can be chosen so that

F is a permutation. This happens if and only if gcd(qθ + 1, qn − 1) = 1. In
Appendix A, we show that, denoting by d the gcd of θ and n, this is equivalent
to the condition that n

d is odd.
The C∗ scheme, as previously described, was shown to be insecure by Patarin

[7]. It was observed that, for any x, y such that F (x) = y, we have

yqθ

.x − y.xq2θ

= 0

It follows that there exist n bilinear relations between a ciphertext and the
corresponding plaintext. These bilinear relations can be found from the public
key with a few plaintext-ciphertext pairs. Using these bilinear relations allows
us to recover the plaintext from any ciphertext, by linear algebra.

Several ways to withstand the attack by Patarin were later considered. Among
the most promising, are the C∗− schemes. In the next section, we recall these
schemes in detail.



Cryptanalysis of SFLASH with Slightly Modified Parameters 267

2.3 C∗− Schemes

A C∗− scheme is derived from a C∗ scheme by simply deleting from the C∗

public key some of the quadratic polynomials. More precisely, for some additional
parameter r, the key generation builds a C∗ scheme and then deletes from the
public key the last r coordinates. In the sequel, Π will denote the projection on
the first (n − r) coordinates, P the C∗ public key, and PΠ the resulting C∗−

public key.
To find a preimage under PΠ of a string y of (Fq)n−r, the user first has to pad

y with some string k of (Fq)r, and then has to find the preimage of (y, k) by P
using its secret key U, T . Using a C∗− scheme for encryption is therefore quite
awkward: to recover the plaintext, the user has to review all possible paddings k,
compute for each k the corresponding preimage, and identify the plaintext among
these preimages by using some message redundancy. However, C∗− schemes are
well-suited for signature, even for large q and r, since in this setting any of the
qr preimages of y by PΠ is a valid signature of y. To sign the message y, the
user chooses an arbitrary k and the signature consists in the preimage of (y, k)
by P . In the sequel, we only consider the C∗− scheme in the signature setting.

C∗− schemes were first introduced by Patarin et al. [9], but the idea of en-
hancing the security of multivariate schemes by deleting a few coordinates from
the public key first appeared in Shamir [10]. In [9], Patarin et al. describe a
technique for reconstructing a C∗ public key from a C∗− public key with com-
plexity of the order of qr. Accordingly, the parameters q and r must be chosen
such that qr � 280 for practical instantiations of C∗− schemes. The illustrative
notation C∗−− is sometimes used in this case. No condition is specified in the
literature for choosing the parameter θ besides the obvious requirement that the
corresponding monomial should be invertible and, as seen before, all values of θ
whose gcd d with n is such that n

d is odd can be chosen. In fact, choosing a large
d allows a faster inversion of the C∗ monomial, as observed by Ding [1], and can
be an attractive choice.

SFLASH. Practical instantiations of C∗− schemes were proposed by Patarin
et al. as candidates to the European call for primitives NESSIE in 2001. These
instantiations were called FLASH and SFLASH. Initially, some tweak was added
to SFLASH to decrease the size of the public key, however this tweak rendered
the scheme insecure, as shown by Gilbert and Minier in 2002 [3], and discarded.
Without this tweak, FLASH and SFLASH are very similar and therefore, only
SFLASH was later considered by the NESSIE evaluation process, and finally
accepted in 2003. The recommended parameters of SFLASH are q = 27, n = 37,
θ = 11 and r = 11; signatures are 239 bits long. Until now, no weakness was
reported in either SFLASH or the general design principle of C∗− schemes.

In the sequel, we will show that many C∗− schemes are insecure. The C∗−

schemes under attack are those for which the gcd d of θ and n is not 1. Note that
this is different than the condition that n

d is odd, which is needed to make the
mapping invertible. The attack makes it possible to forge a signature in a matter
of minutes for practical parameters. The attack does not apply to SFLASH for



268 V. Dubois, P.-A. Fouque, and J. Stern

which the recommended parameters θ and n are coprime. However this “lucky”
choice appears to be accidental since no rationale was offered for it.

3 Skew-Symmetric Maps w.r.t the Differential of C∗

In this section, we consider some properties of the differential of the internal C∗

monomial. Implications of these properties to C∗− schemes will be addressed in
the next section.

The differential, defined as follows, can be considered for any quadratic func-
tion F . For any element a, the difference function x �→ F (x + a) − F (x) is affine
and its constant term is F (a) − F (0). Its linear part is called the differential of
F at a and is denoted DF (a, x) :

DF (a, x) = F (x + a) − F (x) − F (a) + F (0)

DF (a, x) is actually bilinear and symmetric when considered as a function of a
and x. Our attack is based on considering skew-symmetric maps with respect to
this bilinear function i.e. linear maps M such that for all choices of x and a

DF (a, M(x)) + DF (M(a), x) = 0

This is a very strong condition, and when F is defined by a random collection
of quadratic polynomials, only trivial solutions M are expected to satisfy this
condition. However, when F (x) = x1+qθ

, its differential is

DF (a, x) = aqθ

x + axqθ

(1)

The skew-symmetric maps with respect to the differential of such a C∗ mono-
mial are given by the following theorem.

Theorem 1. Let M be a linear map; M is skew-symmetric with respect to
DF (a, x) if and only if M is the multiplication by some element ξ satisfying
ξqθ

+ ξ = 0.

Proof. A linear map M over Fqn is a sum of q-powerings : M(x) =
∑n−1

i=0 λix
qi

.
When DF is the differential of the C∗ monomial given by (1), we get for any
elements a, x in Fqn

n−1∑

i=0

λia
qθ

xqi

+
n−1∑

i=0

λqθ

i a xqi+θ

+
n−1∑

i=0

λia
qi

xqθ

+
n−1∑

i=0

λqθ

i aqi+θ

x = 0

Since the monomials aqu

xqv

are a basis of the space of bilinear maps over Fqn ,
we obtain the following equations corresponding to the various elements of the
basis

λ0 + λqθ

0 = 0 (coefficient of axqθ

)

λi = 0, i �= 0, θ (coefficient of aqi

xqθ

, i �= 0, θ)

(λθ)qθ

= 0 (coefficient of axq2θ

)



Cryptanalysis of SFLASH with Slightly Modified Parameters 269

Conversely, it is straightforward to see that multiplications by an element ξ

satisfying ξqθ

+ ξ = 0 are skew-symmetric with respect to DF :

DF (a, ξ.x) + DF (ξ.a, x) = ξqθ

aqθ

x + ξaxqθ

+ aqθ

ξx + aξqθ

xqθ

= 0

which concludes the proof. ��

We denote by Kθ the set of the elements ξ such that ξqθ

+ξ = 0. By the linearity of
q-powerings, this is a linear space. The non-zero elements of Kθ are the (qθ−1)-th
roots of the unity and the number of these elements is gcd(qθ −1, qn−1) = qd−1
where d is the gcd of θ and n. Consequently, Kθ is a linear space of dimension d.

For any element ξ in Kθ, we denote by Mξ multiplication by ξ. As stated
by the theorem, the maps Mξ are the skew-symmetric applications with respect
to the differential of the C∗ monomial. They form a linear space isomorphic to
Kθ. When d = 1, Kθ is generated by 1, and all the maps Mξ are colinear to
the identity. This case is trivial since scalar multiples of the identity are skew-
symmetric with respect to any bilinear product. Accordingly, non-trivial maps
Mξ only exist when d > 1.

4 Recovering the Skew-Symmetric Maps from a C∗−

Public Key

Let P be a C∗ public key and let PΠ be the C∗− public key obtained from P
by deleting the last r coordinates. Since P is a composition T ◦ F ◦ U where F
is the internal C∗ monomial and U, T are secret changes of coordinates, PΠ is
the composition TΠ ◦ F ◦ U where TΠ is obtained from T by removing the last
r rows. The differential of PΠ is

DPΠ(a, x) = TΠ (DF (U(a), U(x)))

Since DF (U(a), U(x)) is isomorphic by U to DF (a, x), the skew-symmetric maps
with respect to DF (U(a), U(x)) are the maps denoted Nξ defined by

Nξ = U−1 ◦ Mξ ◦ U

By the linearity of TΠ , all the maps Nξ are also skew-symmetric with respect to
the truncated DPΠ :

DPΠ(a, Nξ(x)) + DPΠ(Nξ(a), x) = 0

We argue that they are likely to be the only ones, even when the number r of
deleted coordinates is very close to n.

For any pair (a, x), the equation

DPΠ(a, L(x)) + DPΠ(L(a), x) = 0 (2)

gives us n − r linear equations in the n2 coefficients of the unknown L. Since
Equation (2) is bilinear and symmetric in (a, x) and trivial when a = x, taking



270 V. Dubois, P.-A. Fouque, and J. Stern

n2 linearly independent choices for a and x, we construct a system of (n−r)n(n−
1)/2 linear equations in the n2 coefficients of L. The kernel of these equations
must contain the d-dimensional space formed by the maps Nξ. Assuming that
all the generated linear equations are otherwise independent, the kernel does not
contain other solutions up to r satisfying

(n − r)
n(n − 1)

2
≥ n2 − d

According to this heuristic, the maps Nξ are likely to be the only solutions of
our greatly overdefined system of linear equations provided that r ≤ rmax where

rmax = n −
⌈
2

n2 − d

n(n − 1)

⌉
= n − 3

which is very close to n. Consequently, we expect to find the same linear subspace
of solutions even if we delete from the C∗ public key almost all the quadratic
polynomials, in order to generate the C∗− public key.

Though this analysis is rather naive, it provides a good estimate of the ac-
tual value of rmax as observed from some computer experiments. In the table
below, we report on the actual value of rmax found for several parameters, to be
compared with the heuristic value n − 3.

n 36 36 38 39 39 40 42 42 44
θ 8 12 10 13 9 8 12 14 12
d 4 12 2 13 3 8 6 14 4

rmax 33 32 35 35 36 37 39 38 41

The parameters chosen for these experiments are very close to the recom-
mended parameters n = 37 and θ = 11 for SFLASH, with the same value of
q = 27. Note that in practice r would be chosen to be much smaller than n –
about n

3 in SFLASH – and thus our approach could be easily applied even if not
all the equations happen to be sufficiently independent.

Using Equation (2) with n2 independent choices for a and x, we find all maps
Nξ by linear algebra. This takes a few seconds for practical parameters.

5 Recomposing a C∗ Public Key Using Skew-Symmetric
Maps

At this point, we assume that the linear space of skew-symmetric maps Nξ has
been computed. Non-trivial Nξ are those which are not colinear to the identity.
For any non-trivial Nξ, we can now generate two C∗− public keys PΠ and PΠ◦Nξ.
We next show that, provided r is at most n

2 , completing PΠ with r arbitrary
polynomials from PΠ ◦ Nξ creates a valid C∗ public key with high probability.
Though higher values of r are not of practical interest, the technique can be



Cryptanalysis of SFLASH with Slightly Modified Parameters 271

generalized to r ≤ n(1 − 1
d ) using d − 1 linearly independent non-trivial maps

Nξ, as shown in Appendix B.
Let us recall that the function PΠ is a composition TΠ ◦ F ◦ U , where U is a

secret isomorphism, F is the C∗ monomial and TΠ consists of n−r linearly inde-
pendent rows. Besides, Nξ equals U−1◦Mξ ◦U , where Mξ denotes multiplication
by ξ. The composition of PΠ and Nξ is

PΠ ◦ Nξ = TΠ ◦ F ◦ Mξ ◦ U

Since F is multiplicative, multiplying the input by ξ results in multiplying the
output by F (ξ). Therefore

PΠ ◦ Nξ = TΠ ◦ MF (ξ) ◦ F ◦ U

where MF (ξ) denotes the multiplication by F (ξ). Since Nξ is non-trivial, ξ is not
colinear to 1, and since the inverse of F is a power function, F (ξ) is not colinear
to 1 either. Hence, MF (ξ) is non-trivial and the matrices TΠ and TΠ ◦MF (ξ) are
distinct.

The n−r quadratic polynomials defining PΠ are linear combinations encoded
by the rows of TΠ of the n quadratic polynomials defining F ◦ U , whereas the
n − r quadratic polynomials defining PΠ ◦ Nξ are different linear combinations
encoded by the rows of TΠ ◦MF (ξ) of the same n quadratic polynomials defining
F ◦U . Adding r polynomials of PΠ ◦Nξ to PΠ recomposes a valid C∗ public key
if and only if the corresponding rows of TΠ ◦MF (ξ) added to the rows of TΠ form
a full rank system. Let us select, for instance, the r first rows of TΠ ◦MF (ξ). The
rows of TΠ generate a subspace of dimension n−r of (Fq)n. A random vector lies
in a subspace of dimension n − k of (Fq)n with probability q−k. Therefore, if we
assume that the selected rows of TΠ ◦MF (ξ) are random vectors, the probability
that they form with the rows of TΠ a full rank system is

(
1 − 1

qr

)(
1 − 1

qr−1

)
. . .

(
1 − 1

q

)
� 1 − 1

q

With this probability, adding the r first polynomials of PΠ ◦ Nξ to PΠ will
recover a valid C∗ public key (which is not necessarily identical to the C∗ key
we started with). This public key corresponds to a secret key T obtained by
adding to TΠ the first r rows of TΠ ◦MF (ξ). We then apply Patarin’s attack and
recover n message-signature bilinear relations. If adding the r first polynomials
fails to recover a C∗ public key (which can be detected by the failure of Patarin’s
attack), we can retry with a different set of r polynomials of PΠ ◦ Nξ, or try a
different value of ξ. The probability of success in at most t independent trials is
expected to be 1 − q−t.

The table below provides some timings (in seconds) for an actual imple-
mentation of our attack on a single PC. We successfully recovered a C∗ pub-
lic key from a C∗− public key for all the listed values of the parameters n, θ
which are close to those of SFLASH and with the same value of q = 27.



272 V. Dubois, P.-A. Fouque, and J. Stern

n 36 36 38 39 39 40 42 42 44
θ 8 12 10 13 9 8 12 14 12
d 4 12 2 13 3 8 6 14 4
r 11 11 11 12 12 12 13 13 13

C∗− �→ C∗ 57s 57s 94s 105s 90s 105s 141s 155s 155s

6 Forging Signatures Using Patarin’s Attacks

Our attack makes it possible to recover a C∗ public key from a C∗− public key
in a few seconds for practical parameters. Then, it remains to apply Patarin’s
attack to this public key and this is the “expensive” step of the attack.

As shown in [7], once Patarin’s bilinear relations have been computed, we get
for any message a subspace of dimension d containing at least one valid signature.
Finding this signature requires trying all the qd elements of this subspace. When
d is large, additional linear equations can be generated to avoid exhaustive search
using another attack also described in [7] which takes advantage of a small value
of n

d .
The first attack, involving a precomputation in time (log2 q)2n6 and then

qd(log2 q)2n3 for each signature, is efficient when d is small. The second at-
tack, involving a precomputation in time (log2 q)2n3 k+1

2 where k = n
d and then

(log2 q)2n3 for each signature, is efficient when n
d is small.

We summarize in the table below the complexities of Patarin’s attacks for
several choices of parameters which are close to those of SFLASH (and with the
same value of q = 27). The star symbol at parameter d or n

d specifies which of
the two attacks devised by Patarin is considered.

n 36 36 38 39 39 40 42 42 44
θ 8 12 10 13 9 8 12 14 12
d 4∗ 12 2∗ 13 3∗ 8 6∗ 14 4∗

n/d 9 3∗ 19 3∗ 13 5∗ 7 3∗ 11
r 11 11 11 12 12 12 13 13 13

Precomputation 236 236 236 236 236 251 236 236 236

Signature forgery 249 221 235 221 236 221 257 221 249

7 Conclusion

We have demonstrated a very simple but very powerful attack against a large
class of C∗− schemes, namely those for which the number of variables n and
the C∗ parameter θ are not coprime. This attack transforms any such C∗−

scheme into a full C∗ scheme in a few seconds, even when the number of deleted
coordinates is much larger than encountered for practical purposes. This is a



Cryptanalysis of SFLASH with Slightly Modified Parameters 273

major discovery since it was currently believed that even a weak scheme such
as C∗ can be made secure by simply deleting a sufficiently large number of
coordinates from the public key. We have shown that this design fails for some
choices of parameters. This shows that the security of C∗− schemes relies on
mechanisms which are more subtle than anticipated, and does not necessarily
improve when we increase the parameters. In particular, it is quite worrying to
observe that no rationale was ever offered for the parameters recommended for
SFLASH. It should be added that further unpublished work performed by the
authors together with Adi Shamir has shown that the weakness of C∗− schemes
was not only a matter of parameter choice, since they were able to mount a
practical attack against the actual SFLASH schemes.

Acknowledgements. We are very grateful to Adi Shamir for interesting dis-
cussions and helpful remarks. Part of this work is supported by the Commission
of the European Communities through the IST program under contract IST-
2002-507932 ECRYPT.

References

1. J. Ding. A New Variant of the Matsumoto-Imai Cryptosystem through Perturba-
tion. In PKC ’04, LNCS 2947, pages 305–318. Springer-Verlag, 2004.

2. P. A. Fouque, L. Granboulan, and J. Stern. Differential Cryptanalysis for Multi-
variate Schemes. In Eurocrypt ’05, LNCS 3494, pages 341–353. Springer-Verlag,
2005.

3. H. Gilbert and M. Minier. Cryptanalysis of SFLASH. In Eurocrypt ’02, LNCS
2332, pages 288–298. Springer-Verlag, 2002.

4. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN : Digital Signatures Using the NTRU Lattice. In CT-RSA ’03, LNCS
2612, pages 122–140. Springer-Verlag, 2003.

5. T. Matsumoto and H. Imai. Public Quadratic Polynomial-tuples for Efficient
Signature-Verification and Message-Encryption. In Eurocrypt ’88, LNCS 330, pages
419–453. Springer-Verlag, 1988.

6. NESSIE. New European Schemes for Signatures Integrity and Encryption. Portfo-
lio of recommended cryptographic primitives. http://www.nessie.eu.org/index.
html

7. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eu-
rocrypt’88. In Crypto ’95, LNCS 963, pages 248–261. Springer-Verlag, 1995.

8. J. Patarin, N. Courtois, and L. Goubin. FLASH, a Fast Multivariate Signature
Algorithm. In CT-RSA ’01, LNCS 2020, pages 297–307. Springer-Verlag, 2001.

9. J. Patarin, L. Goubin, and N. Courtois. C∗
−+ and HM : Variations Around Two

Sechemes of T. Matsumoto and H. Imai. In Asiacrypt ’98, LNCS 1514, pages
35–49. Springer-Verlag, 1998.

10. A. Shamir. Efficient Signature Scheme Based on Birational Permutations. In
Crypto ’93, LNCS 773, pages 1–12. Springer-Verlag, 1993.

11. B. Y. Yang and J. M. Chen. Building Secure Tame-like Multivariate Public-
Key Cryptosystems: The New TTS. In ACISP ’05, LNCS 3574, pages 518–531.
Springer-Verlag, 2005.

http://www.nessie.eu.org/index.html
http://www.nessie.eu.org/index.html


274 V. Dubois, P.-A. Fouque, and J. Stern

A Constructing a Bijective C∗ Monomial

The internal C∗ monomial x1+qθ

is bijective in the field Fqn if and only if qθ + 1
and qn − 1 are coprime.

When q is odd, both qθ + 1 and qn − 1 are even, and their gcd is a multiple of
2. Therefore, q odd never yields a bijective C∗ monomial.

When q is even, then qθ − 1 and qθ + 1 are coprime and therefore

gcd(q2θ − 1, qn − 1) = gcd(qθ − 1, qn − 1). gcd(qθ + 1, qn − 1)

We denote by A, B and C the above gcds. We determine A and B and then
deduce C. Denoting by d the gcd of θ and n, B equals qd −1. On the other hand,
A equals qgcd(2θ,n) − 1. We have

gcd(2θ, n) = d. gcd(2
θ

d
,
n

d
)

and since θ
d and n

d are coprime, the right-hand gcd is 2 when n
d is even and 1

otherwise. Hence, A equals q2d − 1 when n
d is even, and qd − 1 when n

d is odd.
Finally, C equals qd + 1 when n

d is even, and 1 when n
d is odd.

The choices of θ and n yielding a bijective C∗ monomial are therefore those
for which n

d is odd.

B Recovering a Full C∗ When r Is over n
2

In Section 5, we have shown how to recover a C∗− public key into a full C∗

public key, using one single non-trivial skew-symmetric map Nξ, when r ≤ n
2 .

In this appendix, we show that this technique can be generalized up to

r = min
{

rmax ; n
(
1 − 1

d

) }

Let us recall that rmax is the maximal value of r allowing to recover the d-
dimensional space of skew-symmetric maps. This value can be found experi-
mentally and is given in Section 4 for some parameters. For r smaller than
rmax, let N1

ξ , . . . , Nd−1
ξ form with the identity a basis of the space of skew-

symmetric maps. Aside from PΠ , we get d − 1 independent C∗− public keys
PΠ ◦ N1

ξ , . . . , PΠ ◦ Nd−1
ξ . We use coordinates of these additional C∗− public key

to complete PΠ into a full C∗ public key. The overall number of coordinates
available is d(n− r), so that there is no hope to recover a full C∗ if r > n(1− 1

d).
When all coordinates are linearly independent, we can recover a full C∗ up to
r = n(1− 1

d). This has never failed to work in practice. The table below provides



Cryptanalysis of SFLASH with Slightly Modified Parameters 275

timings for some parameters and the largest value of r allowing the attack. The
star symbol at parameter r indicates that the value considered corresponds to
rmax.

n 36 36 38 39 39 40 42 42 44
θ 8 12 10 13 9 8 12 14 12
d 4 12 2 13 3 8 6 14 4

r = min{rmax, n(1 − 1
d )} 27 32∗ 19 35∗ 26 35 35 38∗ 33

C∗− �→ C∗ 65s 51s 112s 79s 107s 95s 134s 117s 202s



Differential Cryptanalysis of the Stream Ciphers
Py, Py6 and Pypy�

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. Py and Pypy are efficient array-based stream ciphers de-
signed by Biham and Seberry. Both were submitted to the eSTREAM
competition. This paper shows that Py and Pypy are practically inse-
cure. If one key is used with about 216 IVs with special differences, with
high probability two identical keystreams will appear. This can be ex-
ploited in a key recovery attack. For example, for a 16-byte key and a
16-byte IV, 223 chosen IVs can reduce the effective key size to 3 bytes.
For a 32-byte key and a 32-byte IV, the effective key size is reduced to
3 bytes with 224 chosen IVs. Py6, a variant of Py, is more vulnerable to
these attacks.

Keywords: Differential Cryptanalysis, Stream Cipher, Py, Py6, Pypy.

1 Introduction

RC4 has inspired the design of a number of fast stream ciphers, such as ISAAC
[8], Py [2], Pypy [3] and MV3 [10]. RC4 was designed by Rivest in 1987. Being the
most widely used software stream cipher, RC4 is extremely simple and efficient.
At the time of the invention of RC4, its array based design was completely
different from the previous stream ciphers mainly based on linear feedback shift
registers.

There are two main motives to improve RC4. One motive is that RC4 is byte
oriented, so we need to design stream ciphers that can run more efficiently on
today’s 32-bit microprocessors. Another motive is to strengthen RC4 against
various attacks [7,11,16,5,6,12,15,17,13,14]. Two of these attacks affect the secu-
rity of RC4 in practice: the broadcast attack which exploits the weakness that
the first few keystream bytes are heavily biased [12], and the key recovery attack
using related IVs [6] which results in the practical attack on RC4 in WEP [13].
These two serious weaknesses are caused by the imperfection in the initialization
of RC4.

Recently Biham and Seberry proposed the stream cipher Py [2] which is re-
lated to the design of RC4. Py is one of the fastest stream ciphers on 32-bit
� This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 276–290, 2007.
c© International Association for Cryptology Research 2007



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 277

processors (about 2.5 times faster than RC4). A distinguishing attack against
Py was found by Paul, Preneel and Sekar [18]. In that attack, the keystream
can be distinguished from random with about 288 bytes. Later, the attack was
improved by Crowley [4], and the data required in the attack is reduced to 272.
In order to resist the distinguishing attack on Py, the designers of Py decided
to discard half of the outputs, i.e., the first output of the two outputs at each
step is discarded. The new version is called Pypy [3]. Py and Pypy are selected
as focus ciphers in the Phase 2 of the ECRYPT eSTREAM project.

The initializations of Py and Pypy are identical. In this paper, we show that
there are serious flaws in the initialization of Py and Pypy, thus these two ciphers
are vulnerable to differential cryptanalysis [1]. Two keystreams can be identical
if a key is used with about 216 IVs with special differences. It is a practical threat
since the set of IVs required in the attack may appear with high probability in
applications. Then we show that part of the key of Py and Pypy can be recovered
with chosen IVs. For a 16-byte key and a 16-byte IV, 223 chosen IVs can reduce
the effective key size to 3 bytes.

Py6 [2] is a variant of Py with reduced internal state size. We show that Py6
is more vulnerable to the attacks against Py and Pypy.

This paper is organized as follows. In Sect. 2, we illustrate the Key and IV
setups of Py and Pypy. Section 3 describes the attack of generating identical
keystreams. The key recovery attack is given in Sect. 4. In Sect. 5, we outline
the attacks against Py6. Section 6 concludes this paper.

2 The Specifications of Py and Pypy

Py and Pypy are two synchronous stream ciphers supporting key and IV sizes
up to 256 bytes and 64 bytes, respectively. The initializations of Py and Pypy
are identical. The initialization consists of two stages: key setup and IV setup.

In the following descriptions, P is an array with 256 8-bit elements. Y is
an array with 260 32-bit elements, s is a 32-bit integer. YMININD = −3,
YMAXIND = 256. The table ‘internal permutation’ is a constant permutation
table with 256 elements. ‘∧’ and ‘&’ in the pseudo codes denote binary XOR
and AND operations, respectively. ‘u8’ and ‘u32’ mean ‘unsigned 8-bit integer’
and ‘unsigned 32-bit integer’, respectively. ‘ROTL32(a,n)’ means that the 32-bit
a is left rotated over n bits.

2.1 The Key Setup

The key setups of Py and Pypy are identical. In the key setup, the key is used
to initialize the array Y . The description is given below.

keysizeb=size of key in bytes;
ivsizeb=size of IV in bytes;
YMININD = -3; YMAXIND = 256;
s = internal_permutation[keysizeb-1];
s = (s<<8) | internal_permutation[(s ^ (ivsizeb-1))&0xFF];



278 H. Wu and B. Preneel

s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again */
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}
/* Algorithm C is the following ‘for’ loop */
for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

2.2 The IV Setup

The IV setups of Py and Pypy are identical. In the IV setup, the IV is used to
affect every bit of the internal state. EIV is a temporary byte array with the
same size as the IV. The IV setup is given below.

/* Create an initial permutation */
u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);
u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;
for(i=0; i<256; i++)
{

P(i)=internal_permutation[v];
v+=d;

}
/* Now P is a permutation */
/* Initial s */
s = ((u32)v<<24)^((u32)d<<16)^((u32)P(254)<<8)^((u32)P(255));
s ^= Y(YMININD)+Y(YMAXIND);

/* Algorithm A is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 279

{
s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again, but with the last words of Y, and update EIV */
/* Algorithm B is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

/*updating the rolling array and s*/
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0)^(s&0xFF);
rotate(EIV);
swap(P(0),P(x0));
rotate(P);
Y(YMININD)=s=(s^Y(YMININD))+Y(x0);
rotate(Y);

}
s=s+Y(26)+Y(153)+Y(208);
if(s==0)

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

2.3 The Keystream Generation

After the key and IV setup, the keystream is generated. One step of the keystream
generation of Py is given below. Note that the first output at each step is discarded
in Pypy.

/* swap and rotate P */
swap(P(0), P(Y(185)&0xFF));
rotate(P);

/* Update s */
s+=Y(P(72)) - Y(P(239));
s=ROTL32(s, ((P(116) + 18)&31));

/* Output 8 bytes (least significant byte first) */
output ((ROTL32(s, 25) ^ Y(256)) + Y(P(26)));



280 H. Wu and B. Preneel

output (( s ^ Y(-1)) + Y(P(208)));
/* Update and rotate Y */
Y(-3)=(ROTL32(s, 14) ^ Y(-3)) + Y(P(153));
rotate(Y);

3 Identical Keystreams

We notice that the IV appears only in the IV setup algorithm described in
Sect. 2.2. At the beginning of the IV setup, only 15 bits of the IV (iv[0] and
iv[1]) are applied to initialize the array P and s (the least significant bit of iv[1]
is not used). For an IV pair, if those 15 bits are identical, then the resulting P
are the same. Then we notice that the IV is applied to update s and EIV as
follows.

for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

We call the first ‘for’ loop Algorithm A, and the second ‘for’ loop Algorithm B.
In the following, we give two types of IV pairs that result in identical keystreams.

3.1 IVs Differing in Two Bytes

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differing in only two consecutive bytes with iv1[i]⊕iv2[i] = 1, the least significant
bit of iv1[i] is 1, iv1[i + 1] �= iv2[i + 1] (1 ≤ i ≤ ivsizeb − 1), and iv1[j] = iv2[j]
for 0 ≤ j < i and i + 1 < j ≤ ivsizeb − 1. We trace how the difference in IV
affects s and EIV in Algorithm A. At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the ith step, EIV1[i] �= EIV2[i]. Let β1 = EIV1[i], and β2 =
EIV2[i]. We obtain that s1 − s2 = 256+ δ1, where δ1 = (β1 ⊕ x) − (β2 ⊕ x), and
x = ROTL32(s, 8). Then we look at the next step.



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 281

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i+1] �= iv2[i+1], if iv2[i+1]− iv1[i+1] = δ1, then s1 and s2 become
identical with high probability. Let s1 = s2 with probability p1. Based on the
simulation, we obtain that p1 = 2−10.6. If s1 = s2, then EIV1[i+1] = EIV2[i+1],
and in the following steps i+2, i+3, · · · , i + ivsizeb − 1 in Algorithm A, s1 and
s2 remain the same, and EIV1[j] = EIV2[j] for j �= i.

After Algorithm A, the iv[i] and iv[i+1] are used again to update s and EIV
in Algorithm B. At the ith step in Algorithm B,

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, EIV1[i] = EIV2[i] with probability 1
255 . Let γ1 = s01,

and γ2 = s02. If EIV1[i] = EIV2[i], we know that γ2 − γ1 = β1 − β2. At the
end of this step, s1 − s2 = 256 + δ2, where δ2 = (γ1 ⊕ y) − (γ2 ⊕ y), and y is
ROTL32(s,8). Note that δ1 and δ2 are correlated since γ2 − γ1 = β1 − β2. Then
we look at the next step.

s = s + iv[i+1] + Y(YMAXIND-i-1);
u8 s0 = P(s&0xFF);
EIV(i+1) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, if iv2[i + 1] − iv1[i + 1] = δ2, then s1 and s2 become
identical with high probability. Note that iv2[i + 1] − iv1[i + 1] = δ1, and δ1
and δ2 are correlated, so iv2[i + 1] − iv1[i + 1] = δ2 with probability larger than
2−8. Let s1 = s2 with probability p′1. Based on a simulation, we obtain that
p′1 = 2−5.6. Once the two s values are identical, EIV1[i + 1] = EIV2[i + 1], and
in the following steps i + 2, i + 3, · · · , i + ivsize − 1 in Algorithm B, s1 and s2
remain the same, and EIV1[i + 2] = EIV2[i + 2], EIV1[i + 3] = EIV2[i + 3], · · ·,
EIV1[i + ivsize − 1] = EIV2[i + ivsize − 1].

Thus after introducing the IV to update s and EIV , s1 = s2 and EIV1 =
EIV2 with probability p1 × 1

255 × p′1 ≈ 2−24.2.
Note that once an IV has been introduced in Algorithm A and B, the IV is

not used in the rest of the IV setup. Thus once s1 = s2 and EIV1 = EIV2 at
the end of Algorithm B, we know that those two keystreams will be the same.

Experiment 1. We use 214 random 128-bit keys in the attack. For each key,
we randomly generate 216 pairs of 128-bit IV that differ in only two bytes:
iv1[6]⊕iv2[6] = 1, iv1[7] �= iv2[7]. We found that 111 pairs of those 230 keystream
pairs are identical. For example, for the key (08 da f2 35 a3 d5 94 e2 85 cc 68



282 H. Wu and B. Preneel

ba 7e 10 8a b4), and the IV pair (6e e7 09 b1 35 85 2f 07 1a fe 3f 50 a8 84 30
11) and (6e e7 09 b1 35 85 2e 80 1a fe 3f 50 a8 84 30 11), the two keystreams
are identical, and the first 16 keystream bytes of Pypy are (6f eb ca 18 54 3f 59
96 b6 17 8a 54 6e bd 45 1f).

From the experiment, we deduce that for an IV pair with the required differ-
ence, the two keystreams are identical with probability about 111

230 = 2−23.2,
about twice the theoretical value.

The IV difference at two bytes. In the above analysis, the difference is chosen
as iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1] (i ≥ 1). We can generalize this type
of IV difference so that iv1[i] and iv2[i] can take other differences. As long as
(iv1[i] − iv2[i]) mod 256 = 1 or 255, iv1[i + 1] �= iv2[i + 1] (i ≥ 2), there is a
non-zero probability that the two keystreams can be identical.

For example, if iv1[i] ⊕ iv2[i] = 3, the two least significant bits of iv1[i] are 01
or 10, and iv1[i + 1] �= iv2[i + 1] (i ≥ 2), then two identical keystreams appear
with probability 2−23.2. On average, if iv1[i]−iv2[i] = 1, and iv1[i+1] �= iv2[i+1]
(i ≥ 2), then two identical keystreams appear with probability 2−26.4.

3.2 IVs Differing in Three Bytes

In the above attack, we deal with the ith and (i + 1)th bytes of the IV, and use
the difference at iv[i + 1] to eliminate the difference introduced by iv[i] in s. In
the following, we introduce another type of difference to deal with the situation
when the difference at iv[i + 1] cannot eliminate the difference introduced by
iv[i] in s. The solution is to introduce a difference in iv[i + 4].

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differ in only three bytes iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of iv1[i]
is 1, iv1[i +1] �= iv2[i+ 1], iv1[i +4] ⊕ iv2[i+ 4] = 0x80, and the most significant
bit of iv1[i+4] is 0, where i ≥ 2. We trace how the difference affects s and EIV .
At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, EIV1[i] �= EIV2[i], and s1 − s2 = 0x8000 + δ1, where δ1
is the difference of two different 8-bit numbers. Then we look at the next step.

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i + 1] �= iv2[i + 1], s1 − s2 = 0x8000 with probability p2 = 2−8. If
s1 − s2 = 0x8000, then EIV1[i + 1] ⊕ EIV2[i + 1] = 0.



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 283

Since v1[i + 2] = v2[i + 2], at the end of the (i + 2)th step of Algorithm A,
EIV1[i + 2] = EIV2[i + 2], and s1 − s2 = 0x800000 with probability close to 1.

Since v1[i + 3] = v2[i + 3], at the end of the (i + 3)th step of Algorithm A,
EIV1[i + 3] = EIV2[i + 3], and s1 − s2 = 0x80000000 with probability close to
1. Now consider the (i + 4)th step.

s = s + iv[i+4] + Y(YMININD+i+4);
u8 s0 = P(s&0xFF);
EIV(i+4) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, the probability that EIV1[i + 4] = EIV2[i + 4], and
s1 = s2 is 1. So for the above 5 steps, s1 = s2 with probability p2. Once s1 = s2,
in the following steps i + 5, i + 6, · · · , i + ivsize − 1 in Algorithm A, the s1 and
s2 remain the same, and EIV1[i + 5] = EIV2[i + 5], EIV1[i + 6] = EIV2[i + 6],
· · ·, EIV1[i + ivsize − 1] = EIV2[i + ivsize − 1].

Then iv[i] and iv[i + 1] are used again to update s and EIV . With a similar
analysis, we can show that at the end of the updating, EIV1 = EIV2, s1 = s2
with probability about (p2)2 × 1

255 ≈ 2−24. (As shown in the experiment in the
next subsection, this probability is about 2−22.9.)

The IV difference at three bytes. In the above analysis, the difference is
chosen at only three bytes, iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of
iv1[i] is 1, iv1[i + 1] �= iv2[i + 1], iv1[i + 4] ⊕ iv2[i + 4] = 0x80, and the most
significant bit of iv1[i + 4] is 0 (i ≥ 2). For this type of IV difference, we can
generalize it so that iv1[i] and iv2[i] can choose other differences instead of 0x80.
In fact, once we set the difference as iv1[i] − iv2[i] = iv2[i + 4] − iv1[i + 4],
iv1[i + 1] �= iv2[i + 1] (i ≥ 2), then the two keystreams are identical
with probability close to 2−23. For two IVs different only at three bytes, if
iv1[1] ⊕ iv2[1] = 1, iv1[2] �= iv2[2], and iv1[1] − iv2[1] = iv2[5] − iv1[5], then this
IV pair is also weak.

3.3 Improving the Attack

The number of IVs required to generate identical keystreams can be reduced in
practice. The idea is to generate more IV pairs from a group of IVs. For the IV
pair with a two-byte difference iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1], if iv[2]
takes all the 256 values, then we can obtain 255 × 255 = 215.99 IV pairs with
the required differences from 512 IVs. Thus with 512 chosen IVs, the probability
that there is one pair of identical keystreams becomes 215.99 × 2−23.2 ≈ 2−7.2.
With about 27.2 × 512 = 216.2 IVs, identical keystreams can be obtained.

Experiment 2. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the least significant bit
of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, while all
the other 119 IV bits remain unchanged for each key (but those 119 IV bits are



284 H. Wu and B. Preneel

random from key to key). Then we obtain 255 × 255 = 215.99 IV pairs with the
required difference. Among these 216 × 215.99 ≈ 232 IV pairs, 447 IV pairs result
in identical keystreams.

The above experiment shows that with 216 × 512 = 225 selected IVs, 447 IVs
result in identical keystreams. It shows that two identical keystreams appear for
every 225

447 = 216.2 IVs.

For the IV pair with three-byte difference, a similar improvement can also be
applied.

Experiment 3. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the most significant
bit of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, and
the most significant bit of iv[8] is different from the most significant bit of iv[4],
while all the other 118 IV bits remain unchanged for each key (but those 118 IV
bits are randomly generated for each key). Then we obtain 255 × 255 = 215.99

IV pairs with the required difference. Among these 216 × 215.99 ≈ 232 IV pairs,
570 IV pairs result in identical keystreams.

The above experiment shows that with 216 × 512 = 225 selected IVs, 570 IVs
result in identical keystreams. It means that two identical keystreams appear for
every 225

570 = 215.9 IVs.

Remarks. The attacks show that the Py and Pypy are practically insecure. In
the application, if the IVs are generated from a counter, or if the IV is short
(such as 3 or 4 bytes), then the special IVs (with the differences as illustrated
above) appear with high probability, and identical keystreams can be obtained
with high probability.

4 Key Recovery Attack on Py and Pypy

In this section, we develop a key recovery attack against Py and Pypy by ex-
ploiting the collision in the internal state. The key recovery attack consists of
two stages: recovering part of the array Y in the IV setup and recovering the
key information from Y in the key setup.

4.1 Recovering Part of the Array Y

We use the following IV differences to illustrate the attack (the other IV dif-
ferences can also be used). Let two IVs iv1 and iv2 differ only in two bytes,
iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1] (i ≥ 1), and the least significant bit of
iv1[i] be 1. This type of IV pair results in identical keystreams with probability
2−23.2.

We first recover part of Y from Algorithm A in the IV setup (more information
of Y will be recovered from Algorithm B).



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 285

Note that the permutation P in Algorithm A is unknown. According to the
IV setup algorithm, there is 15 bits of secret information in P , i.e., there are
at most 215 possible permutations. During the recovery of Y , we assume that
P is known (the effect of the 15-bit secret information in P will be analyzed
in Sect. 4.2). For ivm, denote the s at the end of the jth step of Algorithm A
as sm

j , and denote the least and most significant bytes of sm
j as sm

j,0 and sm
j,3,

respectively. Denote the least and most significant bytes of Y (j) with Yj,0 and
Yj,3, respectively. Note that in Algorithm A, Y remains the same for all the IVs.
Denote ξ as a binary random variable with value 0 with probability 0.5. Denote
with B(x) a function that gives the least significant byte of x. If the keystreams
for iv1 and iv2 identical, then from the analysis given in Sect. 3.1, we know that
s1

i+1 = s2
i+1, i.e.,

s1
i + iv1[i + 1] = s2

i + iv2[i + 1] . (1)

From Algorithm A, we know

si = ROTL32(si−1 + iv[i] + Y (−3 + i), 8)
⊕P (B(si−1 + iv[i] + Y (−3 + i))) (2)

Thus we obtain

si,0 = P (B(si−1,0 + iv[i] + Y (−3 + i))) ⊕ B(si−1,3 + Y (−3 + i) + ξi) , (3)
(s1

i − s1
i,0) − (s2

i − s2
i,0) = (iv1[i] − iv2[i]) << 8 = 256 , (4)

where ξi is caused by the carry bits at the 24th least significant bit position when
iv[i] and Y (−3+i) are introduced, and (4) holds with probability 1−2−15. From
(1), (3) and (4), we obtain

(P (B(s1
i−1,0 + iv1[i] + Y−3+i,0))⊕ B(s1

i−1,3 + Y−3+i,3 + ξi,1))+ 256+ iv1[i +1]

=(P (B(s2
i−1,0 + iv2[i] + Y−3+i,0)) ⊕ B(s2

i−1,3 + Y−3+i,3 + ξi,2)) + iv2[i + 1], (5)

where ξi,1 = ξi,2 with probability 1 − 2−15 since the iv[i] has a negligible effect
on the value of ξ1 and ξ2. In the following, we use ξi to represent ξi,1 and ξi,2.

Denote ivθ as a fixed IV with the first i bytes being identical to all the IVs
with differences only at iv[i] and iv[i + 1]. Thus sθ

i−1,0 = s1
i−1,0 = s2

i−1,0, and
sθ

i−1,3 = s1
i−1,3 = s2

i−1,3. (5) becomes

(P (B(sθ
i−1,0 + iv1[i] + Y−3+i,0)) ⊕ B(sθ

i−1,3 + Y−3+i,3 + ξi)) +256+ iv1[i + 1]

= (P (B(sθ
i−1,0 + iv2[i] + Y−3+i,0)) ⊕ B(sθ

i−1,3 + Y−3+i,3 + ξi)) + iv2[i + 1] . (6)

Using another IV pair different at iv[i] and iv[i + 1], and the first i bytes being
the same as ivθ, another equation (6) can be obtained if there is collision in their
internal states. Suppose that several equations (6) are available. We consider that
the value of ξi is independent of iv[i] in the following attack since ξi is affected by
iv[i] with small probability 2−15. We can recover the values of B(sθ

i−1,0+Y−3+i,0)



286 H. Wu and B. Preneel

and B(sθ
i−1,3 + Y−3+i,3 + ξi). From the experiment, we find that if there are two

equations (6), on average the correct values can be recovered together with 5.22
wrong values. If there are three, four, five, six, seven equations (6), in average
the correct values can be recovered together with 1.29, 0.54, 0.25, 0.12, 0.06
wrong values, respectively. It shows that the values of B(sθ

i−1,0 + Y−3+i,0) and
B(sθ

i−1,3 + Y−3+i,3 + ξi) can be determined with only a few equations (6).
After recovering several consecutive B(sθ

i−1,0+Y−3+i,0) and B(sθ
i−1,3+Y−3+i,3

+ξi) (i ≥ 1), we proceed to recover part of the information of the array Y . From
the values of B(sθ

i−1,0 +Y−3+i,0), B(sθ
i−1,3 +Y−3+i,3 + ξi) and (3), we determine

the value of sθ
i,0. From the values of B(sθ

i,0 + Y−3+i+1,0) and sθ
i,0, we know the

value of Y−3+i+1,0.

Generating the equations (6). The above attack can only be successful if we
can find several equations (6) with the same sθ

i−1,0 and sθ
i−1,3. In the following,

we illustrate how to obtain these equations for 2 ≤ i ≤ ivsizeb−3. At the begin-
ning of the attack, we set a fixed ivθ. For all the IVs different at only iv[i] and
iv[i + 1], we require that their first i bytes are identical to that of ivθ. Let the
least significant bit of iv[i] and the 8 bits of iv[i + 1] choose all the 512 values,
and the other 119 bits remain unchanged, then we obtain a 255 × 255 ≈ 216

desired IV pairs. We call these 512 IVs a desired IV group. According to Ex-
periment 2, this type of IV pair results in identical keystreams with probability
2−23.2, we thus obtain 2−23.2

216 = 2−7.2 identical keystream pairs from one desired
IV group. It means that we can obtain 2−7.2 equations (1) from one desired IV
group. We modify the values of the 7 most significant bits of iv1[i] and iv2[i],
and 3 bits of iv1[i + 2] and iv2[i + 2], then we obtain 27 × 23 = 210 desired IV
groups. From these desired IV groups, we obtain 210 × 2−7.2 = 7 equations (1).
There are 27 × 23 × 29 = 219 IVs being used in the attack. To find all the si,0
for 2 ≤ i ≤ ivsizeb − 3, we need (ivsizeb − 4) × 219 IVs in the attack.

We are able to recover sθ
i,0 for 2 ≤ i ≤ ivsizeb − 3, which implies that we can

recover the values of Y−3+i,0 for 3 ≤ i ≤ ivsizeb−3. Then we proceed to recover
more information of Y by considering Algorithm B. Applying an attack similar
to the above attack and reusing the IVs, we can recover the values of Y256−i,0
for 3 ≤ i ≤ ivsizeb − 3.

Thus with (ivsizeb − 4) × 219 IVs, we are able to recover 2 × (ivsizeb − 6)
bytes of Y : Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤ ivsizeb − 3.

4.2 Recovering the Key

In the above analysis, we recovered the values of Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤
ivsizeb−3 by exploiting the difference elimination in s. Next, we will recover the
15-bit secret information in P by exploiting the difference elimination in EIV .
Denote sθ

i in Algorithm A and B as sA,θ
i and sB,θ

i , respectively. Denote EIV1[i] at
the end of Algorithm A and B as EIV A

1 [i] and EIV B
1 [i], respectively. For two IVs

differing in only iv[i] and iv[i + 1] and generating identical keystreams, EIV A
1 [i],

EIV A
2 [i], EIV B

1 [i] and EIV B
2 [i] are computed as:



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 287

EIV A
1 [i] = P (B(sA,θ

i−1,0 + iv1[i] + Y−3+i,0)) (7)

EIV A
2 [i] = P (B(sA,θ

i−1,0 + iv2[i] + Y−3+i,0)) (8)

EIV B
1 [i] = EIV A

1 [i] + P (B(sB,θ
i−1,0 + iv1[i] + Y256−i,0)) (9)

EIV B
2 [i] = EIV A

2 [i] + P (B(sB,θ
i−1,0 + iv2[i] + Y256−i,0)) (10)

Since the two keystreams are identical, it is required that

EIV B
1 [i] = EIV B

2 [i] . (11)

Note that the values of B(sA,θ
i−1,0 + Y−3+i,0) and B(sB,θ

i−1,0 + Y256−i,0) are deter-
mined when we recover part of Y from Algorithm A and Algorithm B, respec-
tively. Eight bits of information on P is revealed from (7),(8),(9),(10) and (11).
In Sect. 4.1, there are about 7 pairs of IVs resulting in identical keystreams for
each value of i. Thus P can be recovered completely.

We proceed to recover the key information. We consider the last part of the
key schedule:

for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

We call the above algorithm Algorithm C. From Algorithm C, we obtain the
following relation:

B(Y−3+i,0 + key[i + 1 mod keysizeb] + ξ′i)
⊕P ′(B(Y−3+i+3,0 + key[i + 4 mod keysizeb])) = Y−3+i+4,0 , (12)

where P ′ indicates the ‘internal permutation’, ξ′i indicates the carry bit noise
introduced by key[i + 2] and key[i + 3]; it is computed as ξ′i ≈ (key[i + 2] +
Y−3+i+1,0) >> 8. The value of the binary ξ′i is 0 with probability about 0.5.

Once the values of Y−3+i,0 (3 ≤ i ≤ ivsizeb− 3) are known, we find a relation
(12) linking key[i + 1 mod keysizeb] and key[i + 4 mod keysizeb] for 3 ≤ i ≤
ivsizeb − 7. Each relation leaks at least 7 bits of key[i + 1 mod keysizeb] and
key[i + 4 mod keysizeb]. The values of Y256−i,0 (3 ≤ i ≤ ivsizeb − 3) are also
known, thus we can find a relation (12) linking key[i + 1 mod keysizeb] and
key[i+4 mod keysizeb] for 262−ivsizeb ≤ i ≤ 252. Thus there are 2×(ivsizeb−
9) relations (12) linking the key bytes.

For the 16-byte key and 16-byte IV, 14 relations (12) can be obtained: 7
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 10, and another 7 relations
(12) linking key[i] and key[i + 3 mod 16] for 7 ≤ i ≤ 13. There are 13 key bytes
in these 14 relations (12). Note that the randomness of ξ′i does not affect the
overall attack (once we guess the values of key[4], key[5] and key[6], then we



288 H. Wu and B. Preneel

obtain the other key bytes key[j] (7 ≤ j ≤ 15), key[0], and all the ξ′j (3 ≤ j ≤
9 and 247 ≤ j ≤ 249). Thus these 14 relations are sufficient to recover the 13
key bytes. The effective key size is reduced to 3 bytes and these three bytes can
be found easily with brute force search.

For the 32-byte key and 32-byte IV, 46 relations (12) can be obtained: 23
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 26, and another 23 relations
(12) linking key[i] and key[i + 3 mod 32] for 7 ≤ i ≤ 29. There are 29 key bytes
in these 46 relations. The effective key size is again reduced to 3 bytes.

5 The Security of Py6

Py6 is a variant of Py with reduced internal state size. The array P is a permu-
tation with only 64 elements, and the array Y has 68 entries. Py6 was proposed
to achieve fast initialization, but it is weaker than Py. Paul and Preneel has
developed distinguishing attack against Py6 with data complexity 268.6 [19].
In the following, we show that identical keystreams are genereated from Py6
with high probability. There is no detailed description of the key and IV setups
of Py6. Thus we use the source code of Py6 submitted to eSTREAM as refer-
ence. In our experiment, the following IV differences are used: iv1[i]−iv2[i] = 32,
iv1[i+1] �= iv2[i+1], iv1[i+1] >> 6 = iv2[i+1] >> 6, and iv2[i+5]−iv1[i+5] = 8
(i ≥ 2). After testing 230 pairs with the original Py6 source code, we found that
identical keystreams appear with probability 2−11.45. This probability is much
larger than the probability 2−23 for Py and Pypy. It shows that Py6 is much
weaker than Py and Pypy.

6 Conclusion

In this paper, we developed practical differential attacks against Py, Py6 and
Pypy: the identical keystreams appear with high probability, and the key infor-
mation can be recovered when the IV size is more than 9 bytes. To resist the
attacks given in this paper, we suggest that the IV setup be performed in an
invertible way.

Several ciphers in the eSTREAM competition have been broken due to the
flaws in their IV setups: DECIM [20], WG [21], LEX [21], Py, Pypy and VEST
[9]. We should pay great attention to the design of the stream cipher IV setup.

Acknowledgements

The authors would like to thank the anonymous reviewers of Eurocrypt 2007 for
their helpful comments.

References

1. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems.”
Advances in Cryptology – Crypto’90, LNCS 537, A. J. Menezes and S. A. Vanstone
(Eds.), pp. 2–21, Springer-Verlag, 1991.



Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 289

2. E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher Using Rolling
Arrays.” The ECRYPT eSTREAM project Phase 2 focus ciphers. Available at
http://www.ecrypt.eu.org/stream/ciphers/py/py.ps .

3. E. Biham, J. Seberry, “Pypy (Roopy): Another Version of Py.” The ECRYPT
eSTREAM project Phase 2 focus ciphers. Available at http://www.ecrypt.eu.org/
stream/p2ciphers/py/pypy p2.ps

4. P. Crowley, “Improved Cryptanalysis of Py.” Available at http://www.ecrypt.
eu.org/stream/papersdir/2006/010.pdf .

5. S. R. Fluhrer, D. A. McGrew, “Statistical Analysis of the Alleged RC4 Keystream
Generator,” Fast Software Encryption – FSE 2000, LNCS 1978, B. Schneier (Ed.),
pp. 19–30, Springer-Verlag, 2000.

6. S. R. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm
of RC4,” Selected Areas in Cryptography – SAC 2001, LNCS 2259, S. Vaudenay
and A.M. Youssef (Eds.), pp. 1–24, Springer-Verlag, 2001.

7. J. Golić, “Linear statistical weakness of alleged RC4 keystream generator,” Ad-
vances in Cryptology – Eurocrypt’97, LNCS 1233, W. Fumy (Ed.), pp. 226–238,
Springer-Verlag, 1997.

8. R. J. Jenkins Jr., “ISAAC,” Fast Software Encryption – FSE 1996, LNCS 1039,
D. Gollmann (Ed.), pp. 41–49, Springer-Verlag, 1996.

9. A. Joux, J. Reinhard, “Overtaking VEST.” Fast Software Encryption – FSE 2007,
LNCS, A. Biryukov (Ed.), Springer-Verlag, to appear.

10. N. Keller, S. D. Miller, I. Mironov, and R. Venkatesan, “MV3: A new word based
stream cipher using rapid mixing and revolving buffers,” Topics in Cryptology –
CT-RSA 2007, The Cryptographers’ Track at the RSA Conference 2007, LNCS
4377, M. Abe (Ed.), pp. 1–19, Springer-Verlag, 2006.

11. L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege, “Analysis
Methods for (Alleged) RC4,” Advances in Cryptology – ASIACRYPT’98, LNCS
1514, K. Ohta and D. Pei (Eds.), pp. 327–341, Springer-Verlag, 1998.

12. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software
Encryption – FSE 2001, LNCS 2355, M. Matsui (Ed.), pp. 152–164, Springer-
Verlag, 2001.

13. I. Mantin, “A Practical Attack on the Fixed RC4 in the WEP Mode.” Advances in
Cryptology – ASIACRYPT 2005, LNCS 3788, B. Roy (Ed.), pp. 395–411, Springer-
Verlag, 2005.

14. I. Mantin, “Predicting and Distinguishing Attacks on RC4 Keystream Generator.”
Advances in Cryptography – EUROCRYPT 2005, LNCS 3494, R. Cramer (Ed.),
pp. 491–506, Springer-Verlag, 2005.

15. I. Mironov, “(Not so) random shuffles of RC4,” Advances in Cryptology –
CRYPTO’02, LNCS 2442, M. Yung (Ed.), pp. 304–319, Springer-Verlag, 2002.

16. S. Mister and S. E. Tavares, “Cryptanalysis of RC4-like Ciphers,” Selected Areas
in Cryptography – SAC’98, LNCS 1556, S. Tavares, H. Meijer (Eds.), pp. 131–143,
Springer-Verlag, 1998.

17. S. Paul, B. Preneel, “A NewWeakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher,” Fast Software Encryption – FSE
2004, LNCS 3017, B. Roy (Ed.), pp. 245–259, Springer-Verlag, 2004.

18. S. Paul, B. Preneel, S. Sekar, “Distinguishing Attack on the Stream Cipher Py.”
Fast Software Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (Ed.), pp. 405–
421, Spring-Verlag, 2006.

19. S. Paul, B. Preneel, “On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition.” Advances in Cryptology – ASIACRYPT 2006, LNCS 4284, K.
Chen, and X. Lai (Eds.), pp. 69–83, Spring-Verlag, 2006.



290 H. Wu and B. Preneel

20. H. Wu, B. Preneel, “Cryptanalysis of the Stream Cipher DECIM.” Fast Software
Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (ed.), pp. 30–40, Springer-
Verlag, 2006.

21. H. Wu, B. Preneel, “Resynchronization Attacks on WG and LEX.” Fast Software
Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (ed.), pp. 422–432, Springer-
Verlag, 2006.



Secure Computation from Random Error
Correcting Codes

Hao Chen1,�, Ronald Cramer2,��, Shafi Goldwasser3, Robbert de Haan4,� � �,
and Vinod Vaikuntanathan5

1 Department of Computing and Information Technology, School of Information
Science and Engineering, Fudan University, Shanghai, China

chenhao@fudan.edu.cn
2 CWI, Amsterdam & Mathematical Institute, Leiden University, The Netherlands

http://www.cwi.nl/∼cramer
3 MIT, Cambridge, Massachusetts, USA & Weizmann Institute of Science, Rehovot,

Israel
http://theory.lcs.mit.edu/∼shafi
4 CWI, Amsterdam, The Netherlands

http://www.cwi.nl/∼haan
5 MIT, Cambridge, Massachusetts, USA

http://www.mit.edu/∼vinodv

Abstract. Secure computation consists of protocols for secure arith-
metic: secret values are added and multiplied securely by networked
processors. The striking feature of secure computation is that security is
maintained even in the presence of an adversary who corrupts a quorum
of the processors and who exercises full, malicious control over them.
One of the fundamental primitives at the heart of secure computation
is secret-sharing. Typically, the required secret-sharing techniques build
on Shamir’s scheme, which can be viewed as a cryptographic twist on
the Reed-Solomon error correcting code. In this work we further the
connections between secure computation and error correcting codes. We
demonstrate that threshold secure computation in the secure channels
model can be based on arbitrary codes. For a network of size n, we then
show a reduction in communication for secure computation amounting
to a multiplicative logarithmic factor (in n) compared to classical meth-
ods for small, e.g., constant size fields, while tolerating t < ( 1

2 − ε)n
players to be corrupted, where ε > 0 can be arbitrarily small. For large
networks this implies considerable savings in communication. Our re-
sults hold in the broadcast/negligible error model of Rabin and Ben-Or,
and complement results from CRYPTO 2006 for the zero-error model of
Ben-Or, Goldwasser and Wigderson (BGW). Our general theory can be
extended so as to encompass those results from CRYPTO 2006 as well.
We also present a new method for constructing high information rate
ramp schemes based on arbitrary codes, and in particular we give a new
construction based on algebraic geometry codes.

� Hao Chen’s research has been supported by NSFC grants 10225106 and 90607005.
�� Ronald Cramer’s research has been partially supported by NWO VICI.

� � � Robbert de Haan’s research has been partially funded by the Dutch
BSIK/BRICKS project PDC1.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 291–310, 2007.
c© International Association for Cryptology Research 2007

http://www.cwi.nl/~cramer
http://theory.lcs.mit.edu/~shafi
http://www.cwi.nl/~haan
http://www.mit.edu/~vinodv


292 H. Chen et al.

1 Introduction

Secure computation consists of protocols for secure arithmetic: secret values are
added and multiplied securely by networked processors. The striking feature
of secure computation is that security is maintained even in the presence of
an adversary who corrupts a quorum of the processors and who exercises full,
malicious control over them. A crowning achievement of cryptography in the late
’80s was the following result (stated informally):

Any function that can be computed, can be computed securely.

This statement (appropriately formalized) was shown in the computational
setting by Goldreich, Micali and Wigderson [16] and in the information-theoretic
setting by Ben-Or, Goldwasser and Wigderson [2] and Chaum, Crépeau and
Damgaard [5]. Our focus in this paper will be on the information-theoretic
setting.

One of the fundamental primitives at the heart of information-theoretic secure
computation is secret-sharing. Typically, the required secret-sharing techniques
build on Shamir’s scheme, which can be viewed as a cryptographic twist on
the Reed-Solomon error correcting code. In this work we further the study on
the connections between secure computation and error correcting codes. We
demonstrate that threshold secure computation in the secure channels model
can be based on arbitrary codes, in two steps.

First we identify sufficient, specialized conditions on a secret sharing scheme
in order that it can serve as an essentially seamless replacement of Shamir’s
scheme in the context of secure computation. Second, we show how arbitrary
error correcting codes give rise to such dedicated secret sharing schemes, and
we prove various bounds on the relevant achievable parameters. We also analyze
high information rate ramp schemes based on arbitrary codes, and in particular
we give a new construction based on algebraic geometry codes.

A t-threshold secret-sharing scheme among n players typically has the follow-
ing complementary pair of guarantees: (1) Privacy: The shares of any set of at
most t players reveal no information about the secret, and (2) Reconstruction:
The shares of t+1 players, together, reveal the entire secret. Linear threshold se-
cret sharing schemes are known to be equivalent to maximum-distance-separable
(MDS) codes. By known lower bounds on MDS codes (or equivalently, on ma-
troids), the smallest possible field K on which the shares can lie is of size at least
max{n − t, t + 2} ≥ n+2

2
1. We show that this obstacle can be circumvented by

bounding corruption tolerance an arbitrary constant fraction of n away from its
maximal value �n−1

2 �.
In turn, we use this result to improve the existing results on information-

theoretic secure computation. The existing approaches, which use variants of
Shamir’s threshold secret-sharing scheme, incur a communication overhead as
the size of the working field is larger than n due to Shamir’s scheme. This can
1 In fact, the so-called Main Conjecture on MDS codes implies that |K| is at least n

minus a constant.



Secure Computation from Random Error Correcting Codes 293

amount to a multiplicative factor of a (large) power of log n bits. Our results
alleviate this and allow, for instance, constant size fields K as opposed to linear
size, while corruption tolerance t is at most an (arbitrary) constant fraction of n
away from optimal. Such a (small) loss is unavoidable over sub-linear size fields
due to (the above-mentioned) impossibility results from combinatorics.

Concretely, by using Gilbert-Varshamov type of arguments, we show that for
each ε there is a constant size field K and an infinite family of quasi-threshold
(i.e., ramp) parameters (ti, ni) such that for each of them there is an ideal (or
information rate 1/2) linear secret sharing scheme over K that has multiplica-
tion, ti-privacy and (ni − ti)-reconstruction and (1

2 − ε)ni ≤ ti < 1
2ni. Other

interesting examples include schemes over F2 where corruption tolerance t is
about n

10 , or in fact, t ≈ n
5 for n ≤ 100.

Trading corruption tolerance for small fields was first used in [6] where a class
of algebraic geometric secret sharing schemes was introduced that are ideal,
linear, offer t-privacy and (n − 2t)-reconstruction and satisfy the strong multi-
plication property rather than only the multiplication property. It was shown
there how this enables low-communication threshold multi-party computation
over small (e.g. constant) size fields in the zero-error/perfect security/active ad-
versary model of Ben-Or, Goldwasser and Wigderson (BGW) [2]. This result
owes to the special multi-linear algebraic structure induced by rational function
evaluation (for the strong multiplication property, which also implies efficient
error correction algorithms), the existence of families of algebraic curves with
many rational points (to enable a small field), and reductions from secure com-
putation to these dedicated secret sharing schemes. Of course, the techniques
from [6] can be adapted to obtain the quasi-threshold schemes of the type we
consider in this work (at least when |K| is a square); their properties are different
but similar enough to facilitate easy adaptation.

However, our first point is that quasi-threshold schemes of the type we con-
sider here are much easier to design. In fact, they can be constructed from
arbitrary (or even randomly chosen) error correcting codes. Our second point
is that, although these quasi-threshold schemes cannot be used as the basis for
BGW type of secure computation (as opposed to the schemes from [6]), they
can serve as an essentially seamless replacement of Shamir’s scheme in known
secure computation protocols in the broadcast model of Rabin and Ben-Or (such
as [26,9,12]) supplemented with preprocessing. In this model a broadcast prim-
itive is given and small, non-zero errors are tolerated, but corruption tolerance
is greater, i.e., up to 1

2n instead of 1
3n as in the BGW model. An important

advantage of the use of our quasi-threshold schemes here is that they can lead to
much more communication-efficient protocols. More concretely, when operating
in Beaver’s preprocessing model [1], we can obtain a reduction in communica-
tion amounting to a multiplicative logarithmic factor (in n), while tolerating a
number of corrupted players that is arbitrarily close to the optimal value of n/2.
Note that this may offer a considerable gain in case of very large networks. For
similar results in the zero-error BGW model, see [6].



294 H. Chen et al.

We also consider high information rate ramp schemes based on arbitrary
codes. These are schemes where the secret is a vector of field elements, but
shares consist of a single field element (or at least a shorter vector than the
secret). This of course is impossible in perfect secret sharing schemes, which
necessarily have shares of size at least the size of the secret. In ramp schemes
one has t-privacy and r-reconstruction, and one does care if there are sets of
size in between these bounds whose joint shares reveal partial information about
the secret. The earliest example of such a scheme we are aware of is the one by
Blakley and Meadows [4] (see also [19,24] in the references therein), which is a
variation on Shamir’s scheme. We give a full treatment of linear ramp schemes
from arbitrary error correcting codes, and show various bounds. As an applica-
tion we give a new scheme based on algebraic geometry that improves the high
information rate scheme given at the end of [6].

1.1 Organization of the Paper

This paper is organized as follows. In Section 3 we study linear quasi-threshold
secret sharing schemes with multiplication and show how these can be con-
structed from codes. Additionally, we prove several bounds on the achievable
parameters. We also argue there how these schemes can essentially seamlessly
replace Shamir’s scheme in secure computation in the Rabin/Ben-Or model with
preprocessing and indicate what savings can be achieved due to our results.

In Section 4.1 and Section 4.2, we describe a general approach for constructing
high information rate ramp schemes from linear codes. Finally, in Section 4.3, we
present a new high information rate ramp scheme based on algebraic geometry
that improves the one presented in [6] and demonstrate that we can obtain high
information rate ramp schemes from randomly generated codes and can predict
bounds on their parameters with high probability.

2 Preliminaries and Definitions

2.1 Basic Definitions from Coding Theory

We establish notational conventions that we will use throughout this paper. Let
K be a finite field.

Definition 1. The Hamming weight wH(c) of a vector c ∈ Kn is the number of
non-zero positions in c. For a subspace C ⊂ Kn, the minimum distance dmin(C)
is defined as min{wH(c) | c ∈ C\{0}}.

An [n, k, d]-code C over K is defined to be a k-dimensional subspace of Kn with
dmin(C) = d.

Definition 2. The dual code C⊥ for a code C consists of all vectors c∗ ∈ Kn

such that 〈c∗, c〉 = 0 for all c ∈ C, where 〈·, ·〉 denotes the standard inner product.
Whenever d is used to denote the minimum distance of C, d⊥ is used to denote
the minimum distance of C⊥.



Secure Computation from Random Error Correcting Codes 295

2.2 Threshold and Ramp Secret Sharing Schemes

In what follows, the reader is assumed to be familiar with linear secret sharing
schemes (For details, see [10,11,6]). However, we give a brief survey of the most
relevant properties below.

A secret-sharing scheme with t-privacy and r-reconstruction over a field K is
an algorithm that, on input a secret s0 ∈ Kd0 , outputs a vector (s1, . . . , sn) of
shares, where si ∈ Kdi for certain di > 0, such that for any A ⊂ {1, 2, . . . , n}
the following properties hold:

1. If |A| ≥ r, then the shares (si)i∈A jointly determine the value s0.
2. If |A| ≤ t, then the shares (si)i∈A jointly give no information about s0.

Such a scheme is called a t-threshold secret-sharing scheme when r = t+1. In
general (that is, when this is not the case), the scheme is called a ramp (quasi-
threshold) scheme with t-privacy and r-reconstruction.

The sets A for which the shares allow for reconstruction are referred to as
the accepted sets, whereas the sets for which the shares give no information
are called the rejected sets. The information rate of a secret sharing scheme is
d0/max{d1, . . . , dn}. A secret sharing scheme with information rate 1, which is
maximal for threshold secret sharing schemes, is said to be ideal.

A secret sharing scheme is said to be linear if for any two secrets s and
s′ and respective share vectors (s1, s2, . . . , sn) and (s′1, s

′
2, . . . , s

′
n), the vectors

(s1 + s′1, s2 + s′2, . . . , sn + s′n) and (λs1, λs2, . . . , λsn) are valid share vectors for
the secrets s+s′ and λs respectively. It is said to have the multiplication property
if given any two full share vectors (s1, s2, . . . , sn) and (s′1, s′2, . . . , s′n) for secrets
s and s′, there is a vector r such that 〈r, (s1s

′
1, s2s

′
2, . . . , sns′n)〉 = ss′, where 〈·, ·〉

denotes the standard inner product. It has strong multiplication with respect to
a t-adversary structure if the multiplication property holds with respect to any
combination of n − t shares. The latter property allows for reconstruction of the
secret after a pooling of all shares, even when the shares for up to t indices are
replaced by random values.

3 Linear Ramp Schemes with Multiplication from Codes

3.1 Massey’s Secret Sharing from Codes

Massey [22,23] gave the following construction of a secret sharing scheme from
an error correcting code. Let C be an [n + 1, k, d]-code over a finite field K.
We use coordinates (c0, c1, . . . , cn) for codewords. The dual code C⊥ is then an
[n + 1, n + 1 − k, d⊥]-code. We tacitly assume in this section that C is non-
degenerate, i.e., that the minimum distances of both C and C⊥ are greater
than 1.

Let s ∈ K be a secret value. Select a codeword c = (c0, c1, . . . , cn) ∈ C
uniformly at random such that c0 = s, and define the share-vector as (c1, . . . , cn).
Let LSSS(C) denote this linear secret sharing scheme. The access structure Γ (C),
i.e., the collection of accepted sets, is as follows. For a vector x, define sup(x) =



296 H. Chen et al.

{i : xi �= 0}. Consider the set V0 of all c∗ ∈ C⊥ such that c∗0 = 1. Then
Γ (C) = {sup(c∗) \ {0} : c∗ ∈ V0}.

We now extend this idea in several ways in order to obtain the claimed quasi-
threshold schemes, and we prove bounds on their existence.

3.2 Extensions of Massey’s Idea

We first report the following consequence (which appears to be part of folklore)
about the ramp parameters of this scheme and include a proof.

Theorem 1. Let C be an [n + 1, k, d]-code over a finite field K. Then LSSS(C)
offers linearity, (d⊥ − 2)-privacy and (n − d + 2)-reconstruction.

Proof. Linearity is clear; the sum of two code-words is a share-vector for the
sum of the secrets, and likewise for scalar multiplication. First, we argue that
Γ (C) = (Γ (C⊥))∗, i.e., the access structure of LSSS(C) is the dual of the access
structure of LSSS(C⊥), and vice versa.2 Indeed, A ∈ Γ (C) if and only if there
is c∗ ∈ C⊥ with c∗0 = 1 and ci = 0 for all i ∈ {1, . . . , n} \ A (:= A). The latter
is a share vector with secret equal to 1 in LSSS(C⊥), with shares equal to 0 for
A. The existence of such a share vector is equivalent to A �∈ Γ (C⊥). Now, from
the characterization of Γ (C) it is immediate that LSSS(C) rejects all sets of size
d⊥−2. Since LSSS(C⊥) rejects all sets of size d−2 and since Γ (C) = (Γ (C⊥))∗,
it must be that LSSS(C) accepts all sets of size n − d + 2. �

The exact privacy threshold tmax is equal to −2 + min{wH(c∗) : c∗ ∈ C⊥ :
c∗0 = 1}, i.e., this is the largest cardinality such that the joint shares of any set
of this cardinality give no information on the secret. The exact reconstruction
threshold rmin is equal to n + 2 − min{wH(c) : c ∈ C : c0 = 1}.

For A ⊂ {1, . . . , n}, let φA(C) denote the code restricted to the coordinates
from the set i ∈ A ∪ {0}, i.e., consisting of all codewords of C stripped of the
coordinates not in A ∪ {0}.

Definition 3. A self-dual code C is one for which C = C⊥. A code is weakly
self-dual if it there is a diagonal matrix W ∈ Kn+1,n+1 such that w00 = 1 and
Wc ∈ C⊥ for all c ∈ C. A code C is t-locally weakly self-dual if for all sets
B ⊂ {1, . . . , n} with |B| = n − t the code φB(C) is weakly self-dual.

The definition of self-dual is standard in the coding literature, while our def-
inition for weakly self-dual codes is a slight relaxation of the notion of quasi
self-orthogonal3 codes. The t-local variation appears to be novel. Simple exam-
ples are the following: the [n + 1, t + 1, n − t + 1]-Reed Solomon code is weakly
self-dual if t < n

2 and t-locally weakly self-dual if t < n
3 . The following theorem

demonstrates the relevance of these notions in secure computation.
2 The dual Γ ∗ is defined as A ∈ Γ ∗ if and only if {1, . . . , n} \ A �∈ Γ . It holds that

(Γ ∗)∗ = Γ .
3 For quasi self-orthogonal codes, the matrix W is required to be regular.



Secure Computation from Random Error Correcting Codes 297

Theorem 2. If C is a self-dual code of length n + 1 with minimum distance d,
then LSSS(C) offers linearity, t-privacy and (n−t)-reconstruction with t = d−2,
and it has the multiplication property. If C is weakly self-dual, then C has the
multiplication property and t = d⊥ − 2 if the matrix W is regular and otherwise
t = min{d − 2, d⊥ − 2}. If C is t-locally weakly self-dual then LSSS(C) has the
strong multiplication property with respect to the t-adversary structure.

Proof. Since d = d⊥ for self-dual codes, the privacy and reconstruction claims
follow from Theorem 1. From 〈c, c′〉 = 0 for all c, c′ ∈ C we get c0c

′
0 = −c1c

′
1 −

· · · − cnc′n. This implies the multiplication property (see [10,11,6] for the defi-
nition). For weakly self-dual codes, if W is regular then the minimum distance
of WC is the same as that of C. Since WC ⊂ C⊥, we must have d⊥ ≤ d,
and we apply Theorem 1. As to multiplication, we now have 〈Wc, c′〉 = 0, so
c0c
′
0 = −w1c1c

′
1 −· · ·−wncnc′n. The claim about the strong multiplication prop-

erty is now obvious from the definition. �

We can generalize this as follows, using a twist on an idea from [10]. Let C be a
code of length n+1 and minimum distance d. Consider the linear secret sharing
scheme LSSS†(C) defined as follows. Take the secret s, and generate random
shares (c1, . . . , cn) according to LSSS(C), and generate independently random
shares (c∗1, . . . , c

∗
n) according to LSSS(C⊥). The share vector is then defined as

((c1, c
∗
1), . . . , (cn, c∗n)).

Theorem 3. Let C be a code of length n + 1 and minimum distance d. Define
t(C) = min{d − 2, d⊥− 2}. Then: LSSS†(C) offers t(C)-privacy and (n − t(C))-
reconstruction and it has the multiplication property. In particular, t(C) < n/2.

The claim that t(C) < n/2 can for instance be verified by applying the Singleton-
bound to C as well as to C⊥. Note however that this scheme has information
rate 1/2.

Strong multiplication is much more elusive and is not achieved by the con-
struction above. In fact, the only way known to ensure strong multiplication
(with respect to the t-adversary structure) for LSSS(C) is when C is an alge-
braic geometry code defined by the Riemann-Roch space of a divisor of degree
2g + t on a genus g algebraic curve over a finite field, where 3t < n − 4g [6]. If
2t < n − 4g it is weakly self-dual. For the special case where g = 0, these corre-
spond to the well-known Reed-Solomon codes with the appropriate parameters.

3.3 Existence and Bounds

Our main objective in this section is to prove several lower bounds on the max-
imal value T taken over all values t = min{d − 2, d⊥ − 2} as C ranges over all
K-linear codes of length n + 1. In the following, an [n + 1, k]-code C is simply
a k-dimensional subspace of F

n+1
q and q is some fixed prime power. Where the

parameters n and k are clear, [n + 1, k]-code is simply abbreviated to code.



298 H. Chen et al.

General lower bounds on T . In Theorem 5 we give a general lower bound
on the maximal t. In Corollary 2 we treat the general case when K = F2. In
Theorem 6 we show that one can asymptotically get arbitrarily close to 1

2n, over
some constant size field. We also treat in that same corollary the parameterized
case where C is randomly selected and a security parameter regulates the error
probability that t is below a certain bound.

Definition 4. Let n ∈ Z>0 be fixed. Then T (n + 1, q) := maxC t(C), where C
ranges over all subcodes of F

n+1
q . Similarly, T ′(n + 1, q) := maxC t(C), where C

ranges over all weakly self-dual subcodes of F
n+1
q .

Definition 5. Let Ck have the uniform distribution over the set of [n + 1, k]-
subcodes of F

n+1
q . Then we define

T (n + 1, q, m, k) := max{d − 2 : P (min{dmin(Ck), dmin(C⊥k )} < d) < 2−m}

and T (n + 1, q, m) := maxk T (n + 1, q, m, k).

It is easy to see that T (n + 1, q) ≥ T (n + 1, q, 0). The following lemma is trivial.

Lemma 1. Suppose k ≤ n. For each pair (x, y) with x ∈ F
k
q \{0} and y ∈ F

n
q \{0}

there exists an n × k matrix M of rank k such that Mx = y.

The following theorem bounds the probability that a randomly chosen code has
a minimum distance less than some fixed value d. It is used for most of the
bounds that follow later.

Theorem 4. Let C have the uniform distribution over the set of [n, k]-subcodes
of F

n
q . Furthermore assume that d = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃y ∈ C : wH(y) < d) < qk+n(Hq(α)−1),

where Hq(λ) = λ logq(q − 1) − λ logq λ − (1 − λ) logq(1 − λ).

Proof. Let H have the uniform distribution over the set of n × k matrices of
rank k over Fq. Every such matrix corresponds to an ordered basis for a subcode
V of F

n
q . Since there is a one-to-one correspondence between the ordered bases

for V and the linear isomorphisms between V and F
k
q , each such subcode has the

same number of ordered bases. Therefore, the variable H induces a uniformly
random selection of an [n, k]-subcode of F

n
q .

Fix some non-zero x ∈ F
k
q . The variable Hx then corresponds to a uniformly

random selection from F
n
q , which can be seen as follows: First, by Lemma 1 for

any non-zero y ∈ F
n
q there exists an n×k matrix M of rank k such that Mx = y.

Now fix some y ∈ F
n
q and assume that Mx = y for some n×k-matrix M of rank

k. Then #{M ′ : M ′x = y} = #{M ′ : (M − M ′)x = 0} = #{M ′ : M ′x = 0},
so for every y ∈ F

n
q there are the same number of matrices of rank k such that

Mx = y.



Secure Computation from Random Error Correcting Codes 299

Now let x range over the elements of F
k
q . It follows that

P (∃y ∈ C : wH(y) < d) = P (∃x ∈ F k
q : wH(Hx) < d) ≤

∑

x∈(Fk
q)∗

P (wH(Hx) < d)

=
qk − 1
qn − 1

·
d−1∑

i=1

(
n

i

)
(q − 1)i <

qk

qn
· (q − 1)d

d−1∑

i=1

(
n

i

)

<
qk

qn
· qαn logq(q−1) · 2nH2(α) = qk+n(Hq(α)−1). �

Since there is a one-to-one correspondence between subcodes C of F
n
q and their

dual codes C⊥, the random variable C⊥ corresponds to a uniformly random
selection from the set of [n, n − k]-subcodes of F

n
q . Therefore, we immediately

obtain the following corollary.

Corollary 1. Let C have the uniform distribution on the set of [n, k]-subcodes
of F

n
q . Furthermore assume that d∗ = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃y ∈ C⊥ : wH(y) < d∗) < qnHq(α)−k.

Using the fact that −λ lnλ − (1 − λ) ln(1 − λ) < 3.3λ for 1/10 ≤ λ ≤ 1/2, we
obtain that

Hq(λ) < λ logq(q − 1) − 3.3
ln q

λ (1)

for 1/10 ≤ λ ≤ 1/2. This gives rise to the following theorem.

Theorem 5 T (n + 1, q, m) ≥ �β(n + 1, q, m)� − 2 with

β(n + 1, q, m) =
(n + 1) ln q − 2(m + 1) ln 2

2 ln(q − 1) + 6.6
,

provided that �β(n + 1, q, m)� ≥ n/10.

Proof. Set k = (n + 1)/2 and let C be as in Theorem 4. By Theorem 4 and
Corollary 1,

P (min{dmin(C), dmin(C⊥)} < d) ≤ P (dmin(C) < d) + P (dmin(C⊥) < d)

< 2 · q(n+1)Hq(α)−(n+1)/2.

We want P (min{dmin(C), dmin(C⊥)} < d) < 2−m. Filling in (1) and rewriting,
we see that this is the case if

d ≤ (n + 1) ln q − 2(m + 1) ln 2
2 ln(q − 1) + 6.6

· �

Corollary 2. If n ≥ 21, then T (n + 1, 2) ≥ �0.1n� − 2.



300 H. Chen et al.

Theorem 6. Fix any arbitrarily small ε > 0 and any m ∈ Z>0. Then there exists
a fixed finite field Fq over which for infinitely many n there exist [n + 1, k]-codes
C ⊂ F

n+1
q with (1/2 − ε)n ≤ t(C) ≤ n/2 where such a code can be selected with

probability at least 1 − 2−m using a random selection among the [n, k]-subcodes
of F

n+1
q .

Proof. Let d be the minimum distance of C and d⊥ the minimum distance
of C⊥. By Theorem 3, t(C) < n/2. Therefore, it suffices to show that (d − 2)
and (d⊥ − 2) can simultaneously get arbitrarily close to n/2 (relative to n) with
probability at least 1 − 2−m.

By Theorem 5,

T (n + 1, q, m) ≥ β(n + 1, q, m) − 2 =
(n + 1) ln q − 2(m + 1) ln 2

2 ln(q − 1) + 6.6
− 2

and we have that

lim
q→∞

(n + 1) ln q − 2(m + 1) ln 2
2 ln(q − 1) + 6.6

− 2 = lim
q→∞

(n + 1) ln q

2 ln(q − 1) + 6.6
− 2

≥ lim
q→∞

(n + 1) ln q

2 ln q + 6.6
− 2.

Since limx→∞ x
x+3.3 = limy→∞ y−3.3

y = limy→∞(1 − 3.3
y ) = 1, the final term

converges to (n + 1)/2 − 2 as q → ∞. We can therefore for any δ > 0 select
a q large enough such that T (n, q, m) ≥ n/2 − 3/2 − δ. For large enough n,
(3/2 + δ)/n < ε and the claim follows. �

So far we have assumed a random selection from the set of [n, k]-subcodes of F
n
q .

The lemma below demonstrates, together with the proof of Theorem 4, that we
can in fact perform this random selection by selecting n×k matrices at random,
where we obtain a matrix of rank k with probability at least 1/4.

Lemma 2 The probability that a randomly selected n×k-matrix over Fq has full
rank is larger than 1 − 1/q − 1/q2.

Bounds from (Weakly) Self-Dual Codes. In Corollary 3 we prove a general
lower bound on T for binary self-dual codes, and Theorem 8 shows that for
n < 100 the situation is much better than the bound indicates. We are especially
interested in self-dual codes, because secret sharing schemes based on self-dual
codes do not suffer from the 1/2 information rate loss that occurs in the general
case. Finally, in Theorem 9 we prove a much better lower bound for weakly
self-dual codes based on algebraic geometry, and not random codes. Note that
the results based on algebraic geometry are only known to hold if the size of the
field is a square.



Secure Computation from Random Error Correcting Codes 301

Theorem 7. Let n be any positive integer and let dGV be the largest integer such
that

∑

0<i<d

2|i

(
n

i

)
< 2n/2−1 + 1.

Then there exists a self-dual binary code of length n and minimum distance at
least dGV .

Proof. See [21,29,27]. �

Corollary 3. Fix ε > 0. For large enough n, T ′(n, 2) ≥ �(δ − ε)n� − 2, where
δ ≈ 0.11002786 is any truncated approximation of the unique solution less than
1/2 of H2(δ) = 1/2.

Proof. ([21,29,27]) Let d = α(n + 1). Since for α < 1/2,
∑

0<i<d

(
n+1

i

)
≤

2(n+1)H(α), the conditions of Theorem 7 are met if

(n + 1)H(α) ≤ n + 1
2

− 1 ⇔ H(α) ≤ 1
2

− 1
n + 1

.

The solution for α then comes arbitrarily close to δ as n increases. �

Theorem 8. There exist self-dual binary codes C of length n + 1 < 100 for
which dmin(C) > n/5. In particular, there exist self-dual binary codes C with
the following parameters:

n + 1 dmin(C)
12 4
22 6
24 8
46 10
48 12

Proof. See [14]. �

Theorem 9. When we take the maximum over algebraic geometry codes, then

T (n + 1, q2) >

(
1
2

− 1
q − 1

)
n.

Proof. This follows from a suitable choice of parameters for algebraic geome-
try codes and their duals and the existence of Garcia-Stichtenoth curves, using
techniques similar to those in [6]. �
For a corresponding result that ranges over t-locally weakly self-dual codes,
see [6].



302 H. Chen et al.

3.4 Application to VSS and Secure Computation

Using the results from Sections 3.2 and 3.3, we are now ready to discuss the fact
that our specialized secret sharing schemes can essentially seamlessly replace
Shamir’s scheme in the broadcast model of Rabin/Ben-Or, yielding significant
reductions in communication when working over a small field. More concretely,
when operating in Beaver’s preprocessing model [1] with a network of size n,
this results in a reduction in communication amounting to a multiplicative log-
arithmic factor (in n) in the on-line phase, while tolerating (1

2 − ε)n corrupted
players, where ε > 0 is arbitrarily small. Note that this may offer a considerable
gain in case of very large networks. For similar results in the zero-error BGW
model, see [6].

As an illustration, Theorem 6 together with Theorem 3 implies that for any
ε > 0, there exists a (fixed) finite field K and an infinite family of specialized
secret sharing schemes tolerating a ( 1

2 − ε)n-fraction of corrupted players. We
now focus on the communication-efficient protocol of Cramer, Damgaard and
Fehr [12] and outline the main changes necessary to enable the use of these
specialized secret-sharing schemes.The CDF protocol is stated in the broadcast
model of Rabin and Ben-Or [26] supplemented with a preprocessing phase as in-
troduced by Beaver [1]. The claimed reduction in communication will be achieved
in the on-line phase of the adapted CDF protocol.

The model of Rabin and Ben-Or assumes the presence of a broadcast chan-
nel and induces a non-zero (negligible) error probability. In Beaver’s model, an
independent preprocessing phase is implemented, which can take place even be-
fore the selection of the type of computation, that is used to compute VSSes
of random values and secret-shared “multiplication tables” of random values.
The attractive feature of this model is that, during the subsequent on-line phase
when the actual computation is performed, players only need to open a constant
number of VSSes for every secure multiplication (which saves a lot of commu-
nication). Moreover, no secure channels are required at all during this on-line
phase, as all communication is by broadcast. 4

Briefly, the main changes are as follows. First, in VSS we modify the usual
bivariate Shamir-sharing by using a technique from [10] for extending a linear
secret sharing scheme so as to enable the pair-wise checking protocols for VSS.
This is by having the fixed secret sharing matrix operating on random symmetric
matrices, rather than on random vectors. This can trivially be adapted to our
scenario here. Exactly as in the CDF protocol, the resulting two-level secret-
sharings are then augmented with unconditionally secure Information Checking
(IC) signatures. This completes the basis for VSS with a two-level sharing, where
all shares and sub-shares are signed. Multiplication of VSS’ed values can be
performed based on the linearity of the scheme and the multiplication property,
while addition essentially comes for free due to linearity of the VSS itself.

The preprocessing in the CDF protocol is a secure multi-party computation
that prepares VSSes of random multiplication tables, as well as VSSes of random
4 In some implementations broadcast isn’t even necessary in the on-line phase, but in

our case it is.



Secure Computation from Random Error Correcting Codes 303

inputs of players. The point however, is that by a specialized secure multi-party
computation the CDF preprocessing strips off one layer of shares, resulting in
VSSes with just a single layer of signed shares. This makes an on-line phase
possible that is much more communication-efficient. We assume now that the
security parameters are set so that these signatures in these one-level sharings
are correct except with negligible probability. This can be done by repeating the
information checking step sufficiently many times; the total amount of commu-
nication in this preprocessing phase would be the same as in CDF though, since
our field is small.

In the on-line phase each player first VSSes his real inputs, by broadcasting
the difference of this input with the random VSSed input that he has been
given in the pre-processing. The corresponding VSS is accordingly updated (non-
interactively). Secure computation in the on-line phase can subsequently take
place. Note that, as opposed to CDF, we are working here over a constant size
field. This means that, though the signatures themselves are correct with high
probability as a result of the CDF preprocessing as instructed above, they are “so
small” (as a matter of fact, equal to field elements) that successful forgeries can
be constructed with high probability. Thus, when opening such a (stripped) VSS,
a corrupted player could in principle make an individual honest player accept
a false share with high probability, by guessing the “small signature value” for
this individual player. An additional concern would be the following. For their
use in secure addition and secure multiplication, these signatures enjoy a certain
linearity property [9]. This requires, for each ordered pair of players, a secret
key part held by one of those players. This part remains fixed throughout the
protocol. Now, this fixed key part can be extracted from an honest player in a
single successful forgery, which, as we have seen above, has a high probability of
success. So, at first sight, there seems to be a risk that security might degrade
fatally over time, if there was any in the first place.

What saves the day completely is the ε-gap with n/2 in the number of cor-
rupted players, in combination with a simple elimination strategy regarding cor-
rupted players. Consider a corrupted player, and focus on his very first attempt
at cheating in the on-line phase. It is easy to see that if he doesn’t modify his
correct share, he can predict the behavior all of all honest players; rejection if the
corresponding correct signature was modified and acceptance otherwise. This is
due to the fact that the signature is deterministic given all secret information
held by the receiver and the purported share. So, he cannot gain advantage un-
less he modifies the correct share. In our adaptation of the CFD protocol, we
instruct that he broadcasts that purported share. Thus, if the correct share is
modified, he must also modify the corresponding correct signatures for many
honest players individually. More precisely, we instruct that a purported share
is accepted only if a majority of the players individually accept it. This is done
by local verification of individual signatures followed by majority voting us-
ing broadcast. 5 This means that he must guess the signatures for roughly εn

5 There is a slightly more sophisticated strategy involving error correction that gives
still better error probabilities.



304 H. Chen et al.

honest players, so as to get a majority (assuming that the adversary appropri-
ately coordinates this with the actions of the other t−1 corrupted players). Now,
if the field size |K| is, say, about 2/ε, then this probability is exponentially small
in n. Note that we can always replace our original fixed finite field K with a
large enough fixed extension field so that this condition holds, without changing
the other parameters and properties of the underlying specialized secret sharing
scheme. Thus, if a corrupted player makes his first attempt, he will be caught in
the voting phase with very high probability, and he is subsequently eliminated
from the network. This also means that the entropy of the fixed secret keys of
all honest players remains essentially intact, so the error probability analysis
is essentially the same throughout the on-line phase if n is indeed very large.
The network then moves to the next computation with the remaining players,
applying the same strategy as above. All in all, this reduces the communication
by a multiplicative factor log n, due to the fact that in the stripped VSS each of
the n shares now carries a signature for each individual receiving player that is
a log n factor smaller.

A Concrete Example. The case K = F2 is especially interesting, since the alge-
braic geometry results have no known strong bearing on this case. Our results
show that in the secure channels model (passive case), secure multiplication over
F2 can be done with just n2 bits communication, with corruption tolerance of a
constant fraction of n. This saves a multiplicative factor of O(log n) bits com-
pared to the standard approach based on Shamir’s scheme. For n below 100,
about 20 percent of the network may be corrupted, while the underlying scheme
is ideal due to the use of a self-dual code. For instance, with n = 48 − 1 = 47,
an adversary corrupting t = 12 − 2 = 10 players can be tolerated. In the ac-
tive adversary case (with preprocessing, as in [12]), the savings also amount
to a multiplicative factor of O(log n) bits. For large networks these savings in
communication can be rather substantial.

4 Ramp Schemes with High Information Rate

In a secret sharing scheme each subset of the player set is either rejected, which
means that the shares held by the players in the given set jointly do not give any
information about the underlying secret-shared value, or it is accepted, which
means that those shares jointly determine that secret uniquely. In other words,
there is no way in between. As a consequence (by an argument very similar to
the one used to show that the key is at least the size of the plain-text in the
perfectly secure one-time pad encryption scheme), the size of a share is at least
the size of the secret.

In what is sometimes called a non-perfect secret sharing scheme, there is a
third category of subsets, consisting of subsets whose joint shares gives some
partial (but not full) information about the secret. In such schemes it is possible
to have high information rate, i.e., the size of a share may be much smaller than
the size of the secret.



Secure Computation from Random Error Correcting Codes 305

Ramp schemes are a special case, and a variation on Shamir’s threshold secret
sharing scheme constitutes a well-known example [13]. This goes as follows. Let
K be a finite field with |K| > n+	, let x1, . . . , x�, y1, . . . , yn ∈ K be distinct and
let the yi’s be non-zero. Let τ, 	 be positive integers with 1 ≤ 	 ≤ τ . Consider a
secret vector α ∈ K� of length 	. Sample a polynomial f(X) ∈ K[X ] uniformly at
random such that its degree is at most τ and such that f(x1) = α1, . . . , f(x�) =
α�, and define the shares as s1 = f(y1), . . . , sn = f(yn). This is a scheme on n
players, and using Lagrange interpolation one proves that all player sets of size
at least τ + 1 are accepted, while all player sets of size at most τ + 1 − 	 are
rejected. Note that the scheme has information rate 	, i.e., each player gets one
element of K as a share while in fact the secret is a K-vector of length 	. In other
words, this is an (n, τ + 1, τ + 1 − 	, 	)-ramp scheme over K. It is also linear in
that each share is a K-linear combination of the coordinates of the secret vector
and (random) field elements.

An alternative [7] is to encode the secret vector in the first 	 lower order
coefficients of the polynomial f instead. This yields a ramp scheme with the
same parameters, except that the requirement on the size of the field K can be
relaxed, namely, |K| > n suffices here. Later we analyze this scheme in terms of
our general results from Section 4.1 and in Section 4.3 we generalize this result
in terms of algebraic geometry codes.

Interestingly, these two schemes give rise to complementary applications in
secure computation. The first one to parallel secure multi-party computation
with good amortized communication complexity [13], and the second to secure
atomic multiplication with low communication [7].

We generalize Massey’s scheme from Section 3.1 to high information rate ramp
schemes in Section 4.1. In Section 4.2, we give a completely general construction
that does not consume codelength (which corresponds to the number of players
in the scheme) for an increased information rate. As an application we use this
theory to analyse the alternative high information rate ramp scheme based on
Shamir presented above. Also, our general method gives rise to a new high infor-
mation rate ramp scheme based on algebraic geometry code which we introduce
in Section 4.3.

4.1 A High Information Rate Ramp Scheme

Let C be an [n + 	, k, d]-code over a finite field K. We now extend Massey’s
scheme from Section 3.1 in the direction of high information rate as follows. Let
	 be a non-negative integer such that 	 < d⊥.

Let s ∈ K�. Select a codeword c = (c′0, . . . , c
′
�−1, c1, . . . , cn) ∈ C at random

such that s = (c′0, . . . , c′�−1). Such c always exists. Define the coefficients of
(c1, . . . , cn) to be the shares. We claim that this is a linear ramp scheme with
information rate 	 that has (d⊥−	−1)-privacy and (n+l−d+1)-reconstruction.
This can be verified from the following facts.

Reconstruction follows from the fact that if there would exist two codewords
in C that agreed on n + l − d + 1 share locations, their difference would give a
codeword in C with Hamming weight less than d. As for privacy, note that in



306 H. Chen et al.

a generator matrix for C, any collection of m < d⊥ rows (the code is generated
by the columns) are linearly independent. So the corresponding columns span
Km. Therefore, for each j ∈ {0, . . . , 	 − 1} and for each A ⊂ {1, . . . , n} with
|A| ≤ d⊥ − 	 − 1 there exists a codeword c such that c′j = 1 and c′i = 0 for all
i ∈ {0, . . . , 	− 1} \ {j} and cu = 0 for all u ∈ A. This implies privacy as claimed.

4.2 A More Fruitful Approach

A disadvantage of the scheme above is that it consumes code-length in exchange
for secret-length. Below we describe an entirely general approach that doesn’t
have this disadvantage, and by means of which one can prove the existence of
improved ramp schemes (see Section 4.3).

Let Ĉ and C be linear codes of length n over K, i.e., they are subspaces of
the vector space Kn. Assume that C has dimension greater than 0 and that it
is a proper subspace of Ĉ. Choose an arbitrary linear code S such that

Ĉ = S + C and S ∩ C = {0},

i.e., a direct sum. This is always possible of course, for instance by completing
a basis of C to one of Ĉ. Write

	 = dimKĈ − dimKC (= dimKS)

and fix an arbitrary isomorphism ψ : K� −→ S.
We now define the following linear ramp scheme. Let s ∈ K� be the secret

vector. Sample uniformly at random c ∈ C and define the share vector ĉ as
ĉ = ψ(s) + c. 6

Note that this is a generalization of a scheme used by Ozarow and Wyner [25],
who considered the case Ĉ = Kn. In fact, all possible linear ramp schemes are
captured by this general scheme we consider here.

For A ⊂ {1, . . . , n}, let φA denote the function φA : Kn −→ K |A| where
(x1, . . . , xn) �→ (xi)i∈A, i.e., restriction to the coordinates labeled with A. Given
A, consider the restriction of φA to Ĉ. The set A is said to offer privacy if
the collection of shares {ĉi}i∈A give no information on the secret vector, and
reconstruction if those shares always determine the secret vector uniquely.

Theorem 10 Let 	 = dim Ĉ − dim C. The set A offers privacy if and only
if dim φA(Ĉ) − dim φA(C) = 0. The set A offers reconstruction if and only if
dim φA(Ĉ) − dim φA(C) = 	. More generally, the uncertainty about the secret
vector s, given the shares of A, is equal to r elements of K, where r is such that
	 − r = dim φA(Ĉ) − dim φA(C).

Proof. Privacy (for the set A) is equivalent to saying that for each possible
secret vector s ∈ K�, there is a share vector ĉ that “encodes” s and that sat-
isfies φA(ĉ) = 0. This is the same as saying that for each z ∈ S, there exists
6 Equivalently, one can say that we fixed an arbitrary isomorphism from K� to Ĉ/C,

and that the share vector is selected by mapping s to the residue-class of ψ(s) mod-
ulo C, and that ĉ is chosen uniformly at random from that residue-class.



Secure Computation from Random Error Correcting Codes 307

c ∈ C such that 0 = φA(z + c) = φA(z) + φA(c). Thus, φA(Ĉ) ⊂ φA(C).
Since the other inclusion holds regardless of A, the privacy claim follows. As for
unique reconstruction (for the set A), this is equivalent to saying that there are
no two distinct z, z′ ∈ S so that φA(z + c) = φA(z′ + c′) for some c, c′ ∈ C.
This is equivalent to saying that dim φA(S) = 	 and φA(S) ∩ φA(C) = {0}.
Since dim φA(Ĉ) − dim φA(C) = dim φA(S) − dim φA(S) ∩ φA(C), the recon-
struction claim follows. The cases in between these two extremes should now be
obvious. �

We give the following estimate with respect to privacy and reconstruction (which,
as one can prove by giving counter-examples, is not always sharp).

Corollary 4. The set A offers privacy if |A| < dmin(C⊥). The set A offers
reconstruction if |A| > n − dmin(Ĉ).

Proof. As for privacy, if |A| < dmin(C⊥), then φA(C) clearly has rank |A|, since
otherwise we could construct a codeword in C⊥ whose weight is smaller than
dmin(C⊥). Since φA(C) ⊂ φA(Ĉ) ⊂ K |A|, we must have φA(C) = φA(Ĉ), and
privacy follows from the theorem. As for reconstruction, if |A| > n − dmin(C),
then φA(ĉ) = 0 if and only if ĉ = 0, since otherwise C would contain a codeword
whose weight is smaller than dmin(C). Thus, φA is injective when restricted to
Ĉ, and ĉ follows uniquely from φA(ĉ). Since S ∩ C = {0}, ψ(s) and c follow
uniquely from ĉ. The secret vector s now follows uniquely from ψ(s) since ψ is
bijective. �

Note that from the Singleton-bound, we have dimKĈ ≤ n − dmin(Ĉ) + 1 and
dmin(C⊥)− 1 ≤ n−dimKC⊥ = dimKC. Thus, r − t ≥ dimKĈ −dimKC in any
linear ramp scheme.

Before presenting constructive results, we argue as an example that the Shamir
ramp scheme discussed earlier can be easily analyzed with this theory. Suppose
n > |K|, and let x1, . . . , xn be distinct non-zero elements of K. Consider the Van-
dermonde matrix M with n rows and t columns whose i-th row is (1, xi, . . . , x

t).
Let Ĉ be the code generated by all the columns. This is an (n, t + 1, n − t)-MDS
code. So its dual is an (n, n − t − 1, t + 2)-code. Let C be the code generated by
the last t + 1 − 	 columns. Clearly C ⊂ Ĉ. By appropriately scaling the rows of
C it is immediate that C is equivalent to an (n, t + 1 − 	, n − t + 	)-code. This
is an MDS code, so its dual is an (n, n − t − 1 + 	, t + 2 − 	)-code. So by our
theorem the resulting ramp scheme rejects all sets of size t + 1 − 	, and accepts
all sets of size t+1. Note that the gap between the two bounds here is 	, so that
is optimal.

4.3 High Information Rate Ramp Schemes: Existence and Bounds

In this section we demonstrate two methods for constructing high information
rate ramp schemes. First, we present a new high information rate ramp scheme



308 H. Chen et al.

that improves the one presented in [6], where Ĉ will be an algebraic geome-
try code and C will be a carefully selected algebraic geometry subcode of Ĉ.
Then, we demonstrate that high information rate ramp schemes can be ob-
tained from random codes and bound the error probabilities on their predicted
parameters.

Algebraic Geometry Codes. Select an absolutely irreducible smooth projec-
tive curve over a finite field K, write g for its genus and let {Q, P1, P2, . . . , Pn}
denote distinct points on the curve. Consider the rational divisor D̂ = (2g+t)·Q,
and let L(D̂) denote the corresponding Rieman-Roch space of rational functions.
Write Ĉ for the Goppa-code consisting of the codewords (f(P1), . . . , f(Pn)),
where f ranges over L(D̂). Also define the rational divisor D = (2g + t − 	) · Q,
and let L(D) denote the corresponding Rieman-Roch space of rational functions.
Write C for the Goppa-code consisting of the codewords (f(P1), . . . , f(Pn)),
where f ranges over L(D).

By the Riemann-Roch Theorem the dimension of Ĉ is g + t + 1, whereas the
dimension of C is g + t + 1 − 	. Since D̂ ≥ D, we have L(D) ⊂ L(D̂), and hence
C ⊂ Ĉ. It is fact that the minimum distance of C⊥ is at least deg D − 2g + 2 =
t − 	 + 2. Furthermore, it has been proven in [6] that we have reconstruction for
deg D̂ + 1 = 2g + t + 1 shares. Thus, by our theorem, we have a linear ramp
scheme over K with t − 	 + 1 privacy, 2g + t + 1 reconstruction and information
rate 	. Note that the improvement consists in the fact that the scheme above
does not use up any points on the curve in order to encode the secret vector.
Also note that by taking the projective line (i.e., g = 0) we recover the earlier
Shamir ramp scheme example. Using Garcia-Stichtenoth towers [15] our ramp
scheme can be defined over constant size fields. See [6] for more details.

Random Codes. Finally, the results in Section 3.3 demonstrate that we can
also obtain high information rate ramp schemes from randomly selected codes Ĉ
and C, provided that C ⊂ Ĉ. Theorem 10 demonstrates that for such codes C
and Ĉ, the corresponding ramp scheme provides privacy for any subset consisting
of at most dminC⊥) − 1 players and reconstruction for any subset consisting of
at least n − dmin(Ĉ) + 1 players.

One method of obtaining the appropriate distribution for C and Ĉ, as demon-
strated in the proof of Theorem 4, is to randomly select a matrix M from the
set of n× k̂-matrices of rank k̂ and let Ĉ be the code spanned by the columns. It
is easy to see that if we now look at the last k columns of M , these columns in
turn span a random [n, k]-subcode C of Kn that is furthermore contained in Ĉ.
Clearly, the corresponding scheme allows for a secret vector of length 	 = k̂ − k.

Suppose that we want the scheme to provide privacy for up to t players and
reconstruction for at least n−t̂ players. Using a similar argument as in Theorem 4
and using the fact that −λ ln λ − (1 − λ) ln(1 − λ) < 1.2

√
λ for 0 ≤ λ ≤ 1/2,

the following theorem is now straightforward to obtain. It provides, for many
different parameters and with arbitrarily high probability, a lower bound on t
and t̂ when we select the codes C and Ĉ at random.



Secure Computation from Random Error Correcting Codes 309

Theorem 11. Select an [n, k]-code C and an [n, k̂]-code Ĉ over Fq at random
under the restriction that C ⊂ Ĉ. Then

P (dmin(C⊥) < t) < q−(k−t logq(q−1)− 1.2
√

tn
ln q )

and
P (dmin(Ĉ) < t̂) < q−(n−k̂−t̂ logq(q−1)− 1.2

√
t̂n

ln q ).

References

1. D. Beaver. Efficient multiparty protocols using circuit randomization. In Proceed-
ings of CRYPTO ’91, volume 576, pages 420–432. Springer Verlag LNCS, 1992.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of STOC
1988, pages 1–10. ACM Press, 1988.

3. G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of National Com-
puter Conference ’79, volume 48 of AFIPS Proceedings, pages 313–317, 1979.

4. G. R. Blakley and C. Meadows. Security of ramp schemes. In Proceedings CRYPTO
’85, volume 196, pages 242–269. Springer Verlag LNCS, 1985.

5. D. Chaum, C. Crépeau, and I. Damgaard. Multi-party unconditionally secure
protocols. In Proceedings of STOC 1988, pages 11–19. ACM Press, 1988.

6. H. Chen and R. Cramer. Algebraic Geometric Secret Sharing Schemes and Secure
Multi-Party Computation over Small Fields. In Proceedings of 26th Annual IACR
CRYPTO, volume 4117, pages 516–531, Santa Barbara, Ca., USA, August 2006.
Springer Verlag LNCS.

7. R. Cramer, I. Damgaard, and R. de Haan. Atomic Secure Multi-Party Multi-
plication with Low Communication. In Proceedings of EUROCRYPT 2007, May
2007.

8. R. Cramer, I. Damgaard, and S. Dziembowski. On the complexity of verifiable
secret sharing and multi-party computation. In Proceedings of STOC 2000, pages
325–334. ACM Press, 2000.

9. R. Cramer, I. Damgaard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Multi-
Party Computations with Dishonest Minority. In Proceedings of 18th Annual IACR
EUROCRYPT, volume 1592, pages 311–326, Prague, Czech Republic, May 1999.
Springer Verlag LNCS.

10. R. Cramer, I. Damgaard, and U. Maurer. General secure multi-party computation
from any linear secret sharing scheme. In Proceedings of EUROCRYPT 2000,
volume 1807 of LNCS, pages 316–334. Springer Verlag, 2000.

11. R. Cramer, V. Daza, I. Gracia, J. Jimenez Urroz, G. Leander, J. Mart́ı-Farré, and
C. Padró. On codes, matroids and secure multi-party computation from linear
secret sharing schemes. In Proceedings of CRYPTO 2005, volume 3621 of LNCS,
pages 327–343. Springer-Verlag, 2005.

12. R. Cramer, I. Damg̊ard, and S. Fehr. On the Cost of Reconstructing a Secret– Or:
VSS with Optimal Reconstruction. In Proceedings of 21th Annual IACR CRYPTO,
volume 2139, pages 503–523, Santa Barbara, Ca., USA, August 2001. Springer
Verlag LNCS.

13. M. Franklin and M. Yung. Communication complexity of secure computation. In
Proceedings of STOC 1992, pages 699–710. ACM Press, 1992.



310 H. Chen et al.

14. P. Gaborit and A. Otmani. Experimental constructions of self-dual codes. Man-
uscript. Available from http://www.unilim.fr/pages perso/philippe.gaborit/
SD/, 2002.

15. A. Garćıa and H. Stichtenoth. On the asymptotic behavior of some towers of
function fields over finite fields. J. Number Theory, 61:248–273, 1996.

16. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In
Proceedings of STOC 1987, pages 218–229. ACM Press, 1987.

17. V. D. Goppa. Codes on algebraic curves. Soviet Math. Dokl, 24:170–172, 1981.
18. M. Karchmer and A. Wigderson. On span programs. In Proceedings of the Eight

Annual Structure in Complexity Theory Conference, pages 102–111. IEEE, 1993.
19. K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and S. Tsujii. Nonperfect Secret

Sharing Schemes and Matroids. In Proceedings EUROCRYPT 1993, pages 126–
141. Springer Verlag, 1993.

20. S. Lang. Algebra. Addison-Wesley Publishing Company, 1997.
21. F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson. Good self-dual codes

exist. Discrete Math., 3:153–162, 1972.
22. J. L. Massey. Minimal codewords and secret sharing. In Proceedings of the 6-th

Joint Swedish-Russian Workshop on Information Theory, pages 269–279, Molle,
Sweden, August 1993.

23. J. L. Massey. Some applications of coding theory in cryptography. Codes and
Ciphers: Cryptography and Coding IV, pages 33–47, 1995.

24. W. Ogata and K. Kurosawa. Some Basic Properties of General Nonperfect Secret
Sharing Schemes. J. UCS, 4(8):690–704, 1998.

25. L. H. Ozarow and A. D. Wyner. “Wire-tap-channel II”. AT&T Bell Labs Tech.
J., 63:2135–2157, 1984.

26. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proceedings of ACM STOC 1989, pages 73–85, 1989.

27. E. M. Rains and N. J. A. Sloane. Self-Dual Codes. A long sur-
vey article written for the Handbook of Coding Theory. Available from
http://www.research.att.com/∼njas/, 1998.

28. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

29. J. G. Thompson. Weighted averages associated to some codes. Scripta Math.,
29:449–452, 1973.

30. J. H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics.
Springer Verlag, 1999.

31. V. K. Wei. Generalized Hamming Weights for Linear Codes. IEEE Transactions
on Information Theory, 37(5):1412–1418, 1991.

http://www.unilim.fr/pages_perso/philippe.gaborit/SD/
http://www.unilim.fr/pages_perso/philippe.gaborit/SD/
http://www.research.att.com/~njas/


Round-Efficient Secure Computation in
Point-to-Point Networks�

Jonathan Katz�� and Chiu-Yuen Koo

Dept. of Computer Science, University of Maryland, College Park, USA
{jkatz,cykoo}@cs.umd.edu

Abstract. Essentially all work studying the round complexity of secure
computation assume broadcast as an atomic primitive. Protocols con-
structed under this assumption tend to have very poor round complexity
when compiled for a point-to-point network due to the high overhead of
emulating each invocation of broadcast. This problem is compounded
when broadcast is used in more than one round of the original protocol
due to the complexity of handling sequential composition (when using
round-efficient emulation of broadcast).

We argue that if the goal is to optimize round complexity in point-to-
point networks, then it is preferable to design protocols — assuming a
broadcast channel — minimizing the number of rounds in which broadcast
is used rather than minimizing the total number of rounds. With this in
mind, we present protocols for secure computation in a number of settings
that use only a single round of broadcast. In all cases, we achieve optimal
security threshold for adaptive adversaries, and obtain protocols whose
round complexity (in a point-to-point network) improves on prior work.

1 Introduction

The round complexity of cryptographic protocols — and, in particular, protocols
for secure multi-party computation of general functionalities — has been the
subject of intense study. Establishing bounds on the round complexity of various
tasks is, of course, of fundamental theoretical importance. Moreover, reducing
the round complexity of existing protocols is crucial if we ever hope to use
these protocols in the real world. If the best known protocol for a given task
requires hundreds of rounds, it will never be used; on the other hand, if we know
(in principle) that round-efficient solutions are possible, we can then turn our
attention to improving other aspects (such as computation) in an effort to obtain
a protocol that can be used in practice.

Previous research investigating the round complexity of protocols for secure
multi-party computation (MPC) has almost exclusively focused on optimizing
the round complexity under the assumption that a broadcast channel is available.
(We survey some of this work in Section 1.2.) In most settings where MPC

� Work done in part while the authors were visiting IPAM.
�� This research was supported by NSF CAREER award #0447075 and US-Israel

Binational Science Foundation grant #2004240.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 311–328, 2007.
c© International Association for Cryptology Research 2007



312 J. Katz and C.-Y. Koo

might potentially be used, however, only point-to-point channels are likely to be
available and a broadcast channel is not expected to exist. Nevertheless, the use
of a broadcast channel is justified in previous work by the fact that the broadcast
channel can always be emulated by having the parties run a broadcast protocol
over the point-to-point network.

We argue that if the ultimate goal is to optimize round complexity for point-
to-point networks (i.e., where the protocol will actually be run), then the above
may be a poor approach due to the high overhead introduced by the final step
of emulating the broadcast channel. Specifically:

• If the broadcast channel is emulated using a deterministic protocol [16,11],
then a lower bound due to Fischer and Lynch [13] shows that Ω(t+R) rounds
are needed to emulate R rounds of broadcast in the original protocol (this is
true regardless of how many parties broadcast during the same round). Here
and in the rest of the paper, t denotes the number of malicious parties and
may be linear in the total number of parties n. In particular, this will not
lead to sub-linear-round protocols with optimal security threshold t = Θ(n).

• Using randomized protocols, each round of broadcast in the original proto-
col can be emulated in an expected constant number of rounds [12,14,22].
Nevertheless, the exact constant is rather high. More problematic is that if
broadcast is used in more than one round of the original protocol, then it
is necessary to explicitly handle sequential composition of protocols with-
out simultaneous termination [6,24,22]. (This is not an issue if broadcast is
used in only a single round.) This leads to a substantial increase in round
complexity; we refer the reader to Appendix A for details.

To illustrate the point, consider the protocols of Micali and Rabin [25] and
Fitzi, et al. [15] (building on [17]) for verifiable secret sharing (VSS) with t < n/3.
The Micali-Rabin protocol uses 16 rounds but only a single round of broadcast;
the protocol of Fitzi et al. uses three rounds, two of which involve broadcast.
Compiling these protocols for a point-to-point network using the most round-
efficient randomized broadcast protocol known, the Micali-Rabin protocol runs
in an expected 31 rounds while the protocol by Fitzi et al. requires an expected
55 rounds! The conclusion is that optimizing round complexity using broadcast
does not, in general, lead to round-optimal protocols in the point-to-point model.

This suggests that if the ultimate goal is a protocol for a point-to-point net-
work, then it is preferable to focus on minimizing the number of rounds in which
broadcast is used rather than on minimizing the total number of rounds. This
raises in particular the following question:

Is it possible to construct constant-round (or even sub-linear-round) protocols
for secure computation that use only a single round of broadcast?

Note that for t = Θ(n) at least one round of broadcast is necessary if the protocol
uses a strict constant number of rounds, since broadcast itself cannot be achieved
over point-to-point channels in a strict constant number of rounds.

We resolve the above question in the affirmative in a number of settings.
Specifically, we show:



Round-Efficient Secure Computation in Point-to-Point Networks 313

1. A constant-round protocol using a single round of broadcast that is secure
for t < n/3 and assumes only the existence of one-way functions.

2. A constant-round protocol using a single round of broadcast that is secure
for t < n/2 and assumes only a public-key infrastructure (PKI) along with
secure signatures.

3. A protocol using a single round of broadcast and achieving information-
theoretic security for t < n/3. Here, the round complexity is linear in the
depth of the circuit being computed.

All protocols are secure even for adaptive adversaries.
Of course, the fact that a protocol uses broadcast in only a single round does

not necessarily imply that it yields the most round-efficient protocol in a point-
to-point setting. For the protocols we construct, however, this is indeed the case
(at least given the most round-efficient known techniques for emulating broadcast
over point-to-point channels). For example, the first protocol mentioned above
requires 41 rounds (in expectation) when compiled for a point-to-point network.
In contrast, any protocol for t < n/3 that uses broadcast in two rounds (even if
that is all it does!) will require at least 55 rounds (in expectation) when run in
a point-to-point network (see Appendix A). Similarly, any protocol for t < n/2
that uses broadcast in two rounds will require at least 96 rounds (in expectation)
in a point-to-point network. We stress again that the main issue in moving from
one broadcast to two (or more) broadcasts is the significant overhead in the
latter case needed to deal with sequential composition of protocols that do not
terminate in the same round.

1.1 Overview of Our Techniques

We give a high-level overview of the main techniques we use in constructing
the protocols outlined above. Call (a, b, c), where a, b, and c are elements of
some field, a random multiplication triple if a and b are uniformly distributed,
each of a, b, c is shared among the players,1 and c = ab. Beaver [3] shows that
if, in a “setup phase,” the parties share their inputs along with sufficiently-
many multiplication triples — in particular, one multiplication triple for each
multiplication gate of the circuit being evaluated — then the parties can evaluate
the circuit in a round-efficient manner without using any further invocations of
broadcast. Our task is thus reduced to showing how to perform the necessary
setup using only a single round of broadcast.

To achieve this, we use the concept of moderated protocols as introduced
in [22]. In such protocols, there is a distinguished party Pm known as the moder-
ator. Given a protocol Π , designed under the assumption of a broadcast channel,
the moderated version of Π is a protocol Π ′ that runs in a point-to-point network
and has the following properties (roughly speaking):

• At the end of Π ′, each party Pi outputs a binary value trusti(m).
• If the moderator Pm is honest, then each honest Pi outputs trusti(m) = 1.

This represents the fact that an honest party Pi “trusts” the moderator Pm.
1 For now, we do not specify the exact manner in which sharing is done.



314 J. Katz and C.-Y. Koo

• If any honest party Pi outputs trusti(m) = 1, then Π ′ achieves the function-
ality of Π .

In our prior work [22], we have shown2 how to compile any protocol Π into its
moderated version Π ′, while increasing the round complexity of Π by at most a
constant multiplicative factor (the exact effect on the round complexity depends
on the number of invocations of broadcast in Π). For t < n/3, the compilation
does not require any assumptions; for n/3 ≤ t < n/2, the compilation assumes
a PKI and digital signatures.

Let Πi denote some protocol, designed assuming a broadcast channel, that
shares the input value of party Pi as well as sufficiently-many multiplication
triples. Such protocols are constructed in, e.g., [7,29,1,19,9,10]. We compile Πi

into a moderated protocol Π ′i where Pi itself acts as the moderator. Now consider
the following protocol that uses broadcast in only a single round:

1. Run protocols {Π ′i}n
i=1 in parallel.3 Recall that Pi is the moderator in Π ′i.

2. Each party Pi broadcasts {trusti(1), . . . , trusti(n)}.
3. A party Pi is disqualified if |{j : trustj(i) = 1}| ≤ t; i.e., if t or fewer players

broadcast trustj(i) = 1. If Pi is disqualified, then a default value is used as
the input for Pi.

4. Let i∗ be the minimum value such that Pi∗ is not disqualified. The set of
random multiplication triples that the parties will use is taken to be the set
that was generated in Π ′i∗ .

Analyzing the above, note that if Pi is honest and there exists an honest ma-
jority, then at least t + 1 parties broadcast trustj(i) = 1. Hence an honest Pi is
never disqualified. On the other hand, at least one of the parties that broadcast
trustj(i∗) = 1 must be honest. The properties of moderated protocols discussed
earlier thus imply that Π ′i∗ achieves the functionality of Πi∗ . Since Πi∗ is as-
sumed to securely share sufficiently-many multiplication triples, it follows that
the above protocol securely shares sufficiently-many multiplication triples. A
similar argument shows that the inputs of all non-disqualified parties are shared
appropriately. We conclude that the above protocol implements the necessary
setup phase using only one round of broadcast.

In a naive compilation of Πi to Π ′i (following [22]), each round of broadcast
in Πi is replaced by six rounds in Π ′i (for the case t < n/3). Proceeding directly
thus yields secure MPC protocols with relatively high round complexity: after
all, existing constructions of protocols Πi achieving the needed functionality do
not attempt to minimize the number of rounds of broadcast. We present instead
a new set of protocols that minimize their use of broadcast. Furthermore, our
implementation of the setup phase deviates from the above simplified approach
in order to further optimize the round complexity of the final protocol. Along
the way, we construct round-efficient protocols for VSS that use broadcast only

2 Although our prior work only claims the result when Π is a VSS protocol, it is not
hard to verify that the proof extends for more general classes of functionalities.

3 In fact, only protocols Π ′
1, . . . , Π

′
t+1 need to share multiplication triples; the remain-

ing protocols only need to share the input of the appropriate player.



Round-Efficient Secure Computation in Point-to-Point Networks 315

once; these in turn yield the most round-efficient VSS and broadcast proto-
cols for point-to-point networks. For t < n/3 we show a 7-round VSS protocol
using broadcast once (the best previous VSS protocol using broadcast once, ob-
tained by combining [15,22], requires 14 rounds), and for t < n/2 we obtain a
5-round VSS protocol using broadcast once (the best previous protocol required
34 rounds [22]). The latter implies an expected 36-round broadcast protocol for
the same threshold (improved from 58 rounds in [22]).

1.2 Prior Work

There is a vast amount of work in the cryptographic and distributed computing
literature studying the round complexity of various tasks; here, we summarize
the work most relevant to our own.

Broadcast/Byzantine agreement. For t < n/2, broadcast and Byzantine
agreement (BA) have essentially the same round complexity (to within one
round); therefore, we freely interchange between the two. In a synchronous
network with pairwise authenticated channels and no additional setup, BA is
achievable iff t < n/3 [26,23]. In this setting, a lower bound of t + 1 rounds for
any deterministic protocol is known [13]. A protocol with this round complexity
(but exponential message complexity) was shown by Pease, et al. [26,23]. Fol-
lowing a long sequence of works, Garay and Moses [16] show a fully-polynomial
BA protocol with optimal resilience and round complexity.

To obtain protocols with sub-linear round complexity, researchers explored
the idea of using randomization [28,5]. This culminated in the work of Feldman
and Micali [12], who show a randomized BA protocol with optimal resilience
running in an expected constant number of rounds.

To achieve resilience t ≥ n/3, additional assumptions are needed; the most
common assumptions are digital signatures and a PKI. Under these assumptions,
linear-round deterministic broadcast protocols are known for t < n [26,23,11].
For t < n/2, randomized protocols with expected constant-round complexity
exist [14,22], the latter without any additional computational assumptions.

VSS. Gennaro, et al. [17] show a 2-round VSS protocol for t < n/4 and a 4-
round protocol for t < n/3. They also give a 3-round protocol for t < n/3 with
exponential complexity. Fitzi, et al. [15] determine the exact round complexity
of VSS by showing a fully-polynomial 3-round VSS protocol for t < n/3. Their
work also shows how to run many sequential VSS protocols at an amortized cost
of only (1 + ε) rounds.

We stress that the above consider the round complexity of VSS under the
assumption that a broadcast channel is available. (In particular, the VSS pro-
tocol from [15] is only optimal in this setting.) While of theoretical interest,
this appears to be a poor approach (as explained in the Introduction) if one is
ultimately interested in round-efficient protocols for point-to-point networks.

General secure MPC. Unconditionally-secure MPC protocols in point-to-
point networks exist for t < n/3 (combining [7,8] with [26]), or for t < n/2
assuming a broadcast channel is available [2,30]. The broadcast channel can



316 J. Katz and C.-Y. Koo

be removed for t < n/2 by relying on a PKI and digital signatures [11] or
information-theoretic pseudo-signatures [27].

Beaver, Micali, and Rogaway [4] gave a constant-round (computationally-
secure) protocol for secure MPC with t < n/2, assuming a broadcast channel
and one-way functions. Damg̊ard and Ishai [10] showed a constant-round protocol
under the same assumptions that is secure even for adaptive adversaries. These
can both be converted to expected constant-round protocols in point-to-point
networks by using the broadcast protocols mentioned above [12,22]. We stress
that the constant is rather high, on the order of hundreds of rounds.

The work of Gennaro et al. [17] mentioned earlier implies a 3-round MPC
protocol with resilience t < n/4, assuming the existence of one-way functions.
The resulting protocol uses broadcast in only a single round, and so yields a
very round-efficient protocol in point-to-point networks; the drawback is that
the resilience is not optimal. In subsequent work [18], the same authors show
that 2-round MPC is not possible (in general) for t ≥ 2. However, they show
that certain functionalities can be securely computed in 2 rounds for t < n/6.

Hirt, Nielsen, and Przydatek [21] show a protocol for asynchronous secure
MPC that uses only one round of broadcast. Their result is not directly compa-
rable to ours due to differences in the way rounds are counted in the synchronous
and asynchronous settings. (In particular, their protocol requires a linear num-
ber of rounds when directly adapted to the synchronous setting.) They assume
t < n/3 and a global setup assumption (stronger than a PKI).

Goldwasser and Lindell [20] show various round-efficient MPC protocols for
point-to-point networks; however, the point of their work is to consider weaker
security definitions in which fairness and output delivery are not guaranteed
(even when an honest majority exists).

1.3 Outline of the Paper

We review and formalize some standard notions in Section 2. In Section 3 we
focus on the case t < n/3 in both the computational and information-theoretic
settings. Section 4 discusses the case of t < n/2 (with computational security).
Due to lack of space, we defer some of the details to the full version.

2 Model and Preliminaries

We use the standard synchronous communication model where parties commu-
nicate using pairwise private/authenticated channels. In addition, we assume
a broadcast channel with the understanding that it will be emulated using a
round-efficient broadcast sub-routine. As a convenient shorthand, we say that
a protocol has round complexity (r, r′) if it uses r rounds in total and r′ ≤ r
of these rounds invoke broadcast (possibly by all parties). We emphasize that
since our aim is to minimize the eventual round complexity in point-to-point
networks, we will construct protocols that access the broadcast channel in only
a single round (i.e., (�, 1)-round protocols).



Round-Efficient Secure Computation in Point-to-Point Networks 317

When we say a protocol tolerates t malicious parties, we always mean that
it is secure against a rushing adversary who may adaptively corrupt up to t
parties during execution of the protocol and coordinate the actions of these
parties as they deviate from the protocol in an arbitrary manner. Parties not
corrupted by the adversary are called honest. In our protocol descriptions, we
implicitly assume that parties send a properly-formatted message at all times;
this is without loss of generality, as an improper or missing message can always
be interpreted as some default message.

For t < n/3 we do not assume any setup, but for t < n/2 we assume a PKI.
Note that, since we are assuming a broadcast channel, the additional assumption
of a PKI may not be necessary; nevertheless, we see no harm in assuming it since
a PKI will be needed anyway once we compile our protocols to run in a point-
to-point network. We leave open the question of constructing an (O(1), 1)-round
secure MPC protocol for t < n/2 that uses a broadcast channel but no PKI.

2.1 Gradecast

Gradecast was introduced by Feldman and Micali [12].

Definition 1. (Gradecast): A protocol for parties P = {P1, . . . , Pn}, where a
distinguished dealer P ∗ ∈ P holds initial input M , is a gradecast protocol toler-
ating t malicious parties if the following conditions hold for any adversary con-
trolling at most t parties:

• Each honest party Pi outputs a message mi and a grade gi ∈ {0, 1, 2}.
• If the dealer is honest, then the output of every honest party Pi satisfies
mi = M and gi = 2.

• If there exists an honest party Pi who outputs message mi and grade gi = 2,
then the output of every honest party Pj satisfies mj = mi and gj ≥ 1.

Lemma 1 ([12,22]). There exists a (3, 0)-round gradecast protocol tolerating
t < n/3 malicious parties and, assuming a PKI, a (4, 0)-round gradecast protocol
tolerating t < n/2 malicious parties.

2.2 Generalized Secret Sharing and VSS

Throughout, we assume a finite field F whose order is a power of 2 and which
contains [n] as a subset.

Definition 2. (1-level sharing): We say a value s ∈ F has been 1-level shared if
there exists a degree-t polynomial Fs(x) such that (1) Fs(0) = s and (2) player
Pi holds the share si

def= Fs(i). In this case, we say that Fs(x) shares s.

When t < n/3 the parties can reconstruct s by having all parties send their shares
to all other parties, and then having each party use Reed-Solomon decoding to
recover s. If s, s′ are 1-level shared then for any publicly-known α, β ∈ F the
value αs + βs′ has been 1-level shared as well. We recall the following technical
lemma concerning multiplication of shares [19]:



318 J. Katz and C.-Y. Koo

Lemma 2. Let A, B be degree-t polynomials over F, and α1, . . . , α2t+1 ∈ F dis-
tinct elements. Then A(0) · B(0) =

∑2t+1
i=1 βi · A(αi) · B(αi) for some constants

β1, . . . , β2t+1 ∈ F.

Definition 3. (2-level sharing): We say a value s ∈ F has been 2-level shared
if (1) there exists a degree-t polynomial Fs(x) that shares s and (2) for i ∈ [n],
there exists a degree-t polynomial Fsi(x), known to Pi, that shares si

def= Fs(i)
(i.e., each party Pj holds a share sj,i of si).

Definition 4. (3-level sharing): We say a value s ∈ F has been 3-level shared
if (1) there exists a degree-t polynomial Fs(x) that shares s; (2) for i ∈ [n],
the value si

def= Fs(i) has been 2-level shared; and (3) each party Pi knows the
polynomial Fsi(x) that shares si.

Note that if s is 3-level (resp., 2-level) shared, then it is 2-level (resp., 1-level)
shared as well.

Definition 5. (VSS with 2-level (resp., 3-level) sharing): A protocol for parties
P = {P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P holds an initial input s,
is a VSS protocol with 2-level (resp., 3-level) sharing tolerating t malicious parties
if the following conditions hold for any adversary controlling at most t parties
by the end of the protocol:

Secrecy: If the dealer is honest, then the joint view of the malicious parties
is independent of the dealer’s input s.

Commitment: At the end of the protocol, some value s′ is 2-level (resp.,
3-level) shared. Moreover, if the dealer is honest then s′ = s. On the other
hand, if the dealer is dishonest, then s′ can be efficiently computed from the
messages sent from the malicious parties to the honest parties during the
protocol execution. We refer to this latter property as extraction.

3 Secure Multiparty Computation for t < n/3

3.1 Outline of the Construction

We first construct a (7, 1)-round VSS protocol with 2-level sharing; this protocol
will be used by parties to share their inputs. This VSS protocol is based on the
(4, 3)-round VSS protocol due to Gennaro et al. [17].

Based on the above VSS protocol with 2-level sharing, we can construct an
(8, 1)-round VSS protocol with 3-level sharing. We sketch the protocol below:

1. The dealer shares the secret s using the VSS protocol with 2-level sharing. In
parallel, the dealer shares g1

def= Fs(1), . . . , gn
def= Fs(n) using n invocations

of the 2-level VSS protocol.
2. The parties reconstruct g1 −Fs(1), . . . , gn −Fs(n) and check if all the values

are equal to 0. If this condition does not hold, the dealer is disqualified.



Round-Efficient Secure Computation in Point-to-Point Networks 319

Using the above as a building block, we construct a (17, 3)-round protocol
for sharing a random multiple triple (a, b, c = ab). On a high level, our protocol
consists of the following steps:
1. Each party Pi shares two random values a(i) and b(i) using VSS with 3-level

sharing.
2. Set a =

∑
a(i) and b =

∑
b(i). Note that a and b have been 3-level shared.

Let Fa(x) and Fb(x) be the polynomials sharing a and b respectively. Using
the sharing of product of shares protocol from [7], each party Pi shares
Fa(i) ·Fb(i) (using VSS with 2-level sharing) and proves that the right value
is being shared; all parties can identify the set of parties that are not sharing
the correct value.

3. Since t < n/3, there exist 2t + 1 parties Pi that correctly share Fa(i) · Fb(i)
in step 2. Following Lemma 2, each party can compute its share of c non-
interactively.

The above protocol runs VSS twice sequentially. Using the amortization tech-
nique from [15], the round complexity can be reduced to (11, 3). The idea is as
follows: Suppose a party Pi needs to share two values a and b using VSS in two
consecutive steps. Pi can do the following instead:
1. Pi picks a random value r and shares a and r using VSS.
2. Pi broadcasts the value b−r. Since the value r has been shared and b−r has

been made public, each party can compute its share of b non-interactively.
By running the above protocols in parallel, we obtain a (11, 3)-round protocol

Πi that allows party Pi to both share its input and generate sufficiently-many
random multiplication triples (cf. the overview in Section 1.1). In Section 3.3,
we show how to use the ideas described in Section 1.1 (in particular, the idea
of using moderated protocols) to implement the needed setup for all parties via
a (21,1)-round protocol. (Our implementation of this protocol does not exactly
follow the description in Section 1.1 for the reason described there). Based on
this setup, we then show MPC protocols using only one round of broadcast in
both the information-theoretic and computational settings (based on [7] and [10],
respectively).

3.2 A (7, 1)-Round VSS Protocol with 2-Level Sharing

Our protocol is based on the (4, 3)-round VSS protocol of Gennaro et al. [17].
For readers who are already familiar with their protocol, we describe the two
main modifications we make:

• Instead of using a “random pad” technique to detect inconsistent shares and
resolve the inconsistencies in the next round — which requires two rounds
of broadcast — we use a different method that requires only one round of
broadcast. This gives us a (6, 2)-round protocol.

• After the above, two rounds of broadcast still remain in the protocol of
[17]. We devise a way for parties to postpone the first broadcast (and then
combine it with the second) without affecting the progress of the protocol.
This gives the (7, 1)-round protocol as claimed.



320 J. Katz and C.-Y. Koo

We start by describing a (6, 2)-round protocol. When we say the dealer P ∗ is
disqualified we mean that execution of the protocol halts, and a default value s′

is 2-level shared (using some default polynomials).

Round 1. The dealer chooses a random bivariate polynomial F ∈ F[x, y] of
degree t in each variable with F (0, 0) = s. The dealer sends to Pi the poly-
nomials gi(x) def= F (x, i) and hi(y) def= F (i, y).

Round 2. Pi sends hi(j) to Pj .
Round 3. Let h′j,i be the value Pi received from Pj . If h′j,i �= gi(j), then Pi

sends “complaini(j)” to the dealer.
Round 4. If the dealer receives “complaini(j)” from Pi in the last round, then

the dealer sends “complaini(j)” to Pj .
Round 5. For every ordered pair (i, j), parties Pi, Pj , and the dealer do the

following:
• If Pi sent “complaini(j)” to the dealer in round 3, then Pi broadcasts

“(Pi, i, j) : gi(j)” else Pi broadcasts “(Pi, i, j): no complaint”.
• If Pj received “complaini(j)” from the dealer in round 4, then Pj broad-

casts “(Pj , i, j) : hj(i)” else Pj broadcasts “(Pj , i, j): no complaint”.
• If the dealer received “complaini(j)” from Pi in round 3, then the dealer

broadcasts “(P ∗, i, j) : F (j, i)” else the dealer broadcasts “(P ∗, i, j): no
complaint”.

We say party Pi is unhappy if Pi broadcasted a message of the form “(Pi, i, j) :
Y ,” the dealer broadcasted a message of the form “(P ∗, i, j) : X ,” and4 X �=
Y . Similarly, Pi is unhappy if Pi broadcasted a message of the form “(Pi, j, i) :
Y ,” the dealer broadcasted a message of the form “(P ∗, j, i) : X ,” and X �= Y .

Round 6. For each unhappy party Pj , the dealer broadcasts the polynomials

gj(x) and hj(y), and each party Pi who is not unhappy broadcasts b′i,j
def=

hi(j) and c′i,j
def= gi(j).

A party Pi that is not unhappy becomes accusatory if, in round 6, for
some unhappy party Pj , the dealer broadcasts polynomial gj(x) and hj(y)
but b′i,j �= gj(i) and c′i,j �= hj(i).

A party that is neither unhappy nor accusatory is said to be happy. The
dealer is disqualified if the number of happy parties is less than n − t.

Output determination. If the dealer has not been disqualified, then a happy
party Pi keeps the polynomials gi(x) and hi(y) it received from the dealer
in the first round. An unhappy party Pi takes the polynomials broadcasted
by the dealer in the final round as gi(x) and hi(y). (We do not define what
accusatory players do, since if the dealer is not disqualified then all such
parties are malicious.) The share Pi holds with respect to s is si

def= gi(0),
and the share Pi holds with respect to si is si,j

def= hi(j).

We briefly argue that the requirements of Definition 5 hold. Consider an honest
dealer P ∗. For any pair of honest parties (Pi, Pj), the parties P ∗, Pi, and Pj

4 Note that X or Y can be field elements or the string “no complaint.”



Round-Efficient Secure Computation in Point-to-Point Networks 321

will always broadcast “no complaint” with respect to the ordered pair (i, j) in
round 5. Hence secrecy will not be violated. It is easy to see that an honest
party Pi will never become unhappy or accusatory. Therefore P ∗ will not be
disqualified as dealer.

Next consider a malicious dealer P ∗. Suppose two honest parties Pi and Pj

are holding inconsistent shares (i.e., h′j,i �= gi(j) or h′i,j �= gj(i)). In round 5,
they will broadcast different messages with respect to the ordered pair (i, j) (or
the ordered pair (j, i)). Hence the inconsistency is made known to all parties.
The commitment property then follows the argument in [17].

Call the above protocol Π(6,2). We now show how to transform Π(6,2) into
a (7, 1)-round protocol Π(7,1). The first four rounds of Π(7,1) are the same as
Π(6,2). Then the parties carry out the following instructions:

Round 5. If Pi is instructed to broadcast a message m in round 5 of Π(6,2),
then Pi sends the message m to all parties (via point-to-point links).

Round 6. Parties forward all the messages received in last round to all parties.
Round 7. The dealer does the following:

• For every ordered pair (i, j), if in round 6 the dealer received messages
of the form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with X �= Y , each from
t + 1 different parties, then the dealer broadcasts the polynomials gi(x)
and hi(y).

• Similarly, for every ordered pair (i, j), if in round 6 the dealer received
messages of the form “(Pj , i, j) : X” and “(P ∗, i, j) : Y ,” with X �= Y ,
each from t + 1 different parties, then the dealer broadcasts the polyno-
mials gj(x) and hj(y).

In parallel with the above, all parties Pk do the following:
• A party broadcasts all the messages it received in round 5 (note that the

round-5 messages include the identity of the sender).
• For every ordered pair (i, j), if in round 6 party Pk received messages

of the form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with X �= Y , each from
t + 1 different parties, then Pk broadcasts b′k,i

def= hk(i) and c′k,i
def= gk(i).

• For every ordered pair (i, j), if in round 6 party Pk received messages
of the form “(Pj , i, j) : X” and “(P ∗, i, j) : Y ,” with X �= Y , each from

t+1 different parties, then Pk broadcasts b′k,j
def= hk(j) and c′k,j

def= gk(j).
Output determination. Parties decide on their output as follows:

1. A party Pi is said to announce a message m if, in round 7, at least n − t
parties broadcast that they received m from Pi in round 5.

2. A party Pi is unhappy if Pi announced a message of the form “(Pi, i, j) :
Y ,” the dealer announced a message of the form “(P ∗, i, j) : X ,” and
X �= Y . Similarly, Pi is unhappy if Pi announced a message of the form
“(Pi, j, i) : Y ,” the dealer announced a message of the form “(P ∗, j, i) :
X ,” and X �= Y .

3. A party Pi that is not unhappy becomes accusatory if, in round 7, for
some unhappy party Pj , the dealer broadcasts polynomials gj(x) and
hj(y), and Pi broadcasts b′i,j and c′i,j with gj(i) �= b′i,j or hj(i) �= c′i,j .



322 J. Katz and C.-Y. Koo

We remark that because broadcast is used in round 7, all parties agree
on which parties are unhappy or accusatory.

4. The dealer is disqualified if any of the following conditions hold:
(DQ.1) There exists an ordered pair (i, j) such that the dealer does not

announce a message of the form “(P ∗, i, j) : X .”
(DQ.2) There exists an unhappy party Pi such that the dealer does not

broadcast gi(x) or hi(y) in round 7.
(DQ.3) The number of unhappy and accusatory parties exceeds t.

5. If the dealer has not been disqualified, then the parties determine their
output the same way as in Π(6,2).

We now make two observations regarding the protocol Π(7,1):

– If an honest party Pi sends a message m to all parties in round 5, then Pi

will be considered as announcing m by the end of round 7.
– If a (possibly malicious) party Pi announces a message m, then every honest

party received m from at least t + 1 different parties in round 6.

If an honest party Pi sends a message m to all parties in round 5, then all
honest parties receive it. Since all honest parties broadcast this information in
round 7 and there are at least n− t of them, the first condition above holds. If a
party Pi announces a message m in round 5, then, by definition, in round 7 at
least n − t parties broadcast that they received m from Pi in round 5. At least
n − t − t ≥ t + 1 of them are honest. These honest parties will forward m to all
parties in round 6. Hence the second condition above holds.

With the above observations, it is not hard to see that Π(7,1) will preserve
the commitment property of Π(6,2). Now we argue that secrecy is preserved as
well. The only issue is that, if Pi is malicious, then in round 7 an honest party
Pk may broadcast hk(i) and gk(i) (or an honest dealer may broadcast gi(x) and
hi(y)) even if Pi is not considered unhappy by the end of the protocol. However,
this does not affect secrecy since the malicious Pi already knows these values.

We defer the full description of the protocol Π(7,1) and the proof of correctness
to the full version.

3.3 Secure Multiparty Computation Using One Round of Broadcast

In this section, we describe how parties can share their inputs and generate
random multiplication triples using only one round of broadcast. As discussed
in Section 1.1, following such a “setup” phase the parties can then compute their
respective outputs without using any additional invocations of broadcast using
the techniques of Beaver [3]. For completeness, this too is discussed below.

As stated in Section 3.1, we can construct an (11, 3)-round protocol Πi that
simultaneously allows a party Pi to share its input and generate sufficiently-
many random multiplication triples. In the resulting protocol, broadcast is in-
voked in the 7th, 9th, and 10th rounds. We now show how to transform Πi into
a (21, 1)-round protocol Π ′i with the following properties: (1) By the end of the



Round-Efficient Secure Computation in Point-to-Point Networks 323

protocol, all honest parties output a common bit trust(i); (2) if Pi is honest, then
trust(i) = 1. Moreover, the view of the adversary remains independent of Pi’s
input; (3) if trust(i) = 1, then Pi’s input as well as all the random multiplication
triples have been 2-level shared. Furthermore, given the view of the adversary,
the first two components of each multiplication triple (a, b, c) are uniformly dis-
tributed in the field F.

Π ′i proceeds as follows: Each party Pj initializes a binary flag fj to 1. Roughly
speaking, the flag fj indicates whether Pj “trusts” Pi or not. The parties then
run an execution of Πi. When a party P is directed by Πi to send message m to
another party over a point-to-point channel, it simply sends this message. When
a party P is directed to broadcast a message m in the 7th or 9th round of Πi, all
parties run the following “simulated broadcast” sub-routine:

• P gradecasts the message m.
• Each party Pi gradecasts the message it output in the previous step.
• Let (mj , gj) and (m′j , g

′
j) be the output of party Pj in steps 1 and 2, respec-

tively. Within the underlying execution of Πi, party Pj will use m′j as the
message “broadcast” by P . Furthermore, Pj sets fj := 0 if either (or both)
of the following conditions hold: (1) g′j �= 2, or (2) m′j �= mj and gj = 2.

In the 10th round of Πi, when a party Pj is directed to broadcast a message m,
it simply broadcasts this message along with the flag fj. If fewer than 2t + 1
parties broadcast fj = 1, then all parties set trust(i) = 0; otherwise, all parties
set trust(i) = 1.

The transformation from Πi to Π ′i is similar to the compilation of VSS to
moderated VSS in [22], except that we retain the last invocation of broadcast in
Πi. The proof of correctness is similar and is omitted due to space limitations.

We now describe how to use the above to obtain a secure MPC protocol.

The information-theoretic setting. Suppose the given circuit has K mul-
tiplication gates. Following the approach in [7], we can construct the following
error-free multiparty computation protocol:

1. For 1 ≤ i ≤ n, protocol Π ′i is executed in parallel (i.e., Pi shares its input
values and generates5 K random multiplication triples). At the end of this
step, all parties agree on values trust(i) for i ∈ [n].

2. For each i, if trust(i) = 0, then Pi is disqualified and default values are used as
the input values of Pi. Let i∗ be the minimum value such that trust(i∗) = 1.
In the next step, parties use the multiplication triples generated in Π ′i∗ .

3. The parties evaluate the circuit gate by gate. Suppose that values x and y,
representing the values on the two input-wires of some gate in the circuit,
have been 1-level shared. The value of the output wire can be 1-level shared
as follows:

Addition gate: This is easy to do non-interactively.

5 An optimization is to have each party generate K/(n − t) random multiplication
triples, and then use (in step 3, below) the multiplication triples generated by the
first n − t non-disqualified parties.



324 J. Katz and C.-Y. Koo

Multiplication gate: Using the method suggested in [3], this can be re-
duced to one round of value reconstruction while consuming one random
multiplication triple (a, b, c). Specifically: the parties publicly reconstruct
dx = x−a and dy = y−b. Then, parties non-interactively compute shares
of dxdy + dxb + dya + c (using their shares of a, b, c). Note that if c = ab,
then dxdy + dxb + dya + c = xy (recall that calculations are performed
in a field of characteristic 2).

3. Output values are reconstructed by having all parties send appropriate shares
to the appropriate parties and using error correction.

The above protocol invokes one round of broadcast. The total number of rounds
required is equal to the depth of the circuit being computed plus 22.

The computational setting. Assuming the existence of one-way functions,
Damg̊ard and Ishai [10] give a multiparty computation protocol with round com-
plexity (O(1), O(1)). Roughly speaking, they transform evaluations of a given
circuit into evaluations of degree-3 polynomials. Using the approach described
in the last section, we can obtain an (O(1), 1)-round MPC protocol. (Details are
omitted due to space constraints.) The end result is that we obtain a (26, 1)-
round MPC protocol. Using the expected constant-round broadcast protocol
from [22], the (expected) round complexity of the MPC protocol becomes 41.6

4 Secure Multiparty Computation for t < n/2

For t < n/2, we assume a PKI and a secure digital signature scheme. Our
protocol is based on the protocols in [9,10]. On a high level, the construction is
similar to the case of t < n/3 with the following differences:
1. Since t may be greater than n/3, we can no longer apply Reed-Solomon

decoding to reconstruct shared values. Instead, we use the linear information
checking tool from [9]. Unfortunately, their protocol as described requires
additional invocations of broadcast. We show how to eliminate this usage of
broadcast by utilizing the PKI.

2. The presence of a PKI enables us to “catch” a malicious party who cheats
more easily. For instance, if a malicious party Pi sends two contradicting
messages (with valid signatures) to Pj and Pk, then the latter two parties
can conclude that Pi is cheating upon exchange of messages. This allows us
to construct more round-efficient protocols.

3. As in the case of t < n/3 (see Section 3.1), in the protocol for sharing a
random multiplication triple (a, b, c), the parties first share two random field
elements a and b and then each party shares aibi (where ai and bi are the
shares held by Pi with respect to a and b) and proves that the correct value
has been shared. In order for the parties to compute their shares of c (by

6 Even though broadcast is not used in the final round of the resulting protocol, we
do not need to introduce special techniques to deal with issues of non-simultaneous
termination since only secrets are reconstructed after broadcast is invoked.



Round-Efficient Secure Computation in Point-to-Point Networks 325

applying Lemma 2), there should exist a set of 2t + 1 parties Pi that have
correctly shared aibi. For t < n/3, this condition is always satisfied since
there are at least 2t + 1 honest parties. However, for t < n/2, we can only
guarantee that t+1 (honest) parties will correctly share the product of their
shares. Hence the protocol needs to be designed in such a way that if a party
does not share the product of its shares correctly, then its shares will be
made public.

Due to lack of space, we defer the actual details of the construction to the
full version. The round complexity of the final MPC protocol we construct is
(34, 1). When the protocol is compiled for a point-to-point network, the round
complexity is 64 (in expectation).

5 Conclusion

Previous work on round complexity has (for the most part) aimed to minimize
the total number of rounds for a given task, but under the assumption of a
broadcast channel “for free”. In fact, broadcast is not for free since emulating
broadcast over point-to-point channels is rather expensive. We argue here that
if one is ultimately interested in round-efficient protocols for point-to-point net-
works (which is where most protocols would eventually be run), then it is more
productive to focus on minimizing the number of rounds in which broadcast is
used. With this motivation, we have shown here protocols for secure multi-party
computation in a number of settings that use broadcast in a single round.

A number of interesting open questions are suggested by our work:

1. The work of [17,15] characterizes the round complexity of VSS (for t < n/3)
when a broadcast channel is available. Can we obtain a similar character-
ization of the round complexity of VSS in a point-to-point network? As a
step toward this goal, one might start by establishing the optimal round
complexity of VSS when the broadcast channel is used only once.

2. Our (O(1), 1)-round MPC protocol for t < n/2 assumes the existence of a
PKI. Does there exist a constant-round MPC protocol using a single round
of broadcast that does not rely on a PKI? Although a PKI will anyway
be needed to implement broadcast, the question is of theoretical interest.
Furthermore, such a protocol may be useful in settings (such as a small-
scale wireless network) when a broadcast channel is available, or when it is
desirable to minimize the usage of digital signatures for reasons of efficiency.

References

1. D. Beaver. Multiparty protocols tolerating half faulty processors. In Advances in
Cryptology — Crypto ’89, pages 560–572. Springer-Verlag, 1989.

2. D. Beaver. Secure multi-party protocols and zero-knowledge proof systems toler-
ating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.



326 J. Katz and C.-Y. Koo

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology — Crypto ’91, pages 420–432. Springer-Verlag, 1992.

4. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513, 1990.

5. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In 2nd Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1983.

6. M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

7. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Annual ACM
Symposium on Theory of Computing, pages 1–10. ACM Press, 1988.

8. D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages
11–19. ACM Press, 1988.

9. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multi-
party computations secure against an adaptive adversary. In Advances in Cryp-
tology — Eurocrypt ’99, volume 1592 of LNCS, pages 311–326. Springer-Verlag,
1999.

10. I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Adv. in Cryptology — Crypto 2005, pages 378–
394. Springer-Verlag, 2005.

11. D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM
J. Computing, 12(4):656–666, 1983.

12. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput., 26(4):873–933, 1997.

13. M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive
consistency. Info. Proc. Lett., 14(4):183–186, 1982.

14. M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differ-
ential consensus. In 22nd Annual ACM Symposium on Principles of Distributed
Computing, pages 211–220, 2003.

15. M. Fitzi, J. A. Garay, S. Gollakota, C. P. Rangan, and K. Srinathan. Round-
optimal and efficient verifiable secret sharing. In 3rd Theory of Cryptography Con-
ference, pages 329–342, 2006.

16. J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t
processors in t + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

17. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of
verifiable secret sharing and secure multicast. In 33rd Annual ACM Symposium
on Theory of Computing, pages 580–589, 2001.

18. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-round secure multiparty
computation. In Advances in Cryptology — Crypto 2002, pages 178–193. Springer-
Verlag, 2002.

19. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computation with applications to threshold cryptography. In Proc. 17th Annual
ACM Symposium on Principles of Distributed Computing, pages 101–111. ACM
Press, 1998.

20. S. Goldwasser and Y. Lindell. Secure computation without agreement. In
16th Intl. Conf. on Distributed Computing (DISC), pages 17–32. Springer-Verlag,
2002.



Round-Efficient Secure Computation in Point-to-Point Networks 327

21. M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience. In Adv. in Cryptology — EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science, pages 322–340. Springer-
Verlag, 2005.

22. J. Katz and C.-Y. Koo. On expected constant-round protocols for Byzantine
agreement. In Adv. in Cryptology — Crypto 2006. Full version available at
http://eccc.hpi-web.de/eccc-reports/2006/TR06-028/index.html.

23. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

24. Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols
without simultaneous termination. In Proc. 21st Annual ACM Symposium on
Principles of Distributed Computing, pages 203–212, 2002.

25. S. Micali and T. Rabin. Collective coin tossing without assumptions nor broad-
casting. In Adv. in Cryptology — Crypto ’90, pages 253–266. Springer-Verlag,
1991.

26. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980.

27. B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and Byzan-
tine agreement for t ≥ n/3. Technical Report RZ 2882 (#90830), IBM Research,
1996.

28. M. Rabin. Randomized Byzantine generals. In Proc. 24th IEEE Symposium on
Foundations of Computer Science, pages 403–409, 1983.

29. T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J.
ACM, 41(6):1089–1109, 1994.

30. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proc. 21st Annual ACM Symposium on Theory of Computing,
pages 73–85. ACM Press, 1989.

A Round Complexity of Emulating Broadcast

In this section, we discuss the round complexity of emulating broadcast by the
most round-efficient randomized protocol known [22], The randomized broad-
cast protocols of [22] allow all parties to broadcast a message simultaneously.7

Roughly speaking, the protocols consist of two phases. The first phase is a
“setup” phase that is independent of the messages being broadcast, and (only)
consists of parallel executions of moderated VSS. Using the VSS protocol devel-
oped in this work, for t < n/3, this initial phase can be implemented in (strict)
12 rounds.

The execution of the second phase depends on the messages being broadcast,
and terminates in 16 rounds (in expectation) assuming t < n/3. For a single
invocation of broadcast, the first 5 rounds of the second phase can be executed in
parallel with the last 5 rounds of the first phase, and hence the round complexity
of the entire broadcast protocol (in expectation) is 23. (See [22, Appendix C] for

7 Note, however, that the protocols do not achieve the “simultaneous broadcast” func-
tionality (i.e., with all broadcast messages being independent of each other). Instead,
they simply emulate a round of broadcast with rushing.



328 J. Katz and C.-Y. Koo

further details. Note that the numbers computed there do not take into account
the more efficient VSS protocol constructed here.)

However, if broadcast is invoked multiple times sequentially the round com-
plexity does not simply scale linearly. The reason is that the second phase does
not guarantee simultaneous termination and so sequential executions do not
compose directly; instead, additional steps (which increase the round complex-
ity) are needed. Without going into the details (see [22, Appendix C]), it is pos-
sible to show using the techniques of [6,24,22] that emulation of multiple rounds
of broadcast requires 32 rounds (in expectation) per additional broadcast, in
addition to an initial 23 rounds.

As stated in the Introduction, the Micali-Rabin VSS protocol uses 16 rounds
but only a single round of broadcast. In fact, the broadcast is used in the final
round. If the first 15 rounds of the Micali-Rabin protocol are executed in parallel
to the first phase of the broadcast protocol, then the Micali-Rabin protocol takes
31 = 15+16 rounds (in expectation) when compiled for a point-to-point network.
On the other hand, the protocol by Fitzi et al. requires 55 = 32 + 23 rounds
since they use two rounds of broadcast. (Messages sent during the one round of
their protocol that does not use broadcast can be “piggy-backed” on messages
sent as part of the broadcast protocols.)

For the case of t < n/2, the numbers are even worse: a single invocation
of broadcast takes 36 rounds (in expectation), while 58 rounds are needed per
additional broadcast when broadcast is used in two or more rounds.



Atomic Secure Multi-party Multiplication with
Low Communication

Ronald Cramer1,�, Ivan Damg̊ard2, and Robbert de Haan3,��

1 CWI, Amsterdam & Mathematical Institute, Leiden University, The Netherlands
cramer@cwi.nl

http://www.cwi.nl/∼cramer, http://www.math.leidenuniv.nl/∼cramer
2 Comp. Sc. Dept., Aarhus University & BRICS, Denmark

ivan@daimi.au.dk
3 CWI, Amsterdam, The Netherlands

R.de.Haan@cwi.nl
http://www.cwi.nl/∼haan

Abstract. We consider the standard secure multi-party multiplication
protocol due to M. Rabin. This protocol is based on Shamir’s secret
sharing scheme and it can be viewed as a practical variation on one of the
central techniques in the foundational results of Ben-Or, Goldwasser, and
Wigderson and Chaum, Crépeau, and Damgaard on secure multi-party
computation. Rabin’s idea is a key ingredient to virtually all practical
protocols in threshold cryptography.

Given a passive t-adversary in the secure channels model with synchro-
nous communication, for example, secure multiplication of two secret-
shared elements from a finite field K based on this idea uses one com-
munication round and has the network exchange O(n2) field elements,
if t = Θ(n) and t < n/2 and if n is the number of players. This is be-
cause each of O(n) players must perform Shamir secret sharing as part
of the protocol. This paper demonstrates that under a few restrictions
much more efficient protocols are possible; even at the level of a single
multiplication.

We demonstrate a twist on Rabin’s idea that enables one-round secure
multiplication with just O(n) bandwidth in certain settings, thus reducing
it from quadratic to linear. The ideas involved can additionally be em-
ployed in the evaluation of arithmetic circuits, where under appropriate
circumstances similar efficiency gains can be obtained.

1 Introduction

Given a passive t-adversary in the secure channels model with synchronous com-
munication, secure multiplication of two secret-shared elements from a finite field
K based on Rabin’s idea uses one communication round and has the network
exchange O(n2) field elements, if t = Θ(n) and t < n/2 and if n is the number of

� Ronald Cramer’s research has been partially supported by NWO VICI.
�� Robbert de Haan’s research has been partially funded by the Dutch BSIK/BRICKS

project PDC1.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 329–346, 2007.
c© International Association for Cryptology Research 2007

http://www.cwi.nl/~cramer
http://www.math.leidenuniv.nl/~cramer
http://www.cwi.nl/~haan


330 R. Cramer, I. Damg̊ard, and R. de Haan

players. This is because each of O(n) players must perform Shamir secret sharing
as part of the protocol.

We demonstrate a twist on Rabin’s idea that enables one-round secure mul-
tiplication with just O(n) bandwidth, thus reducing it from quadratic to linear.
However, to obtain this efficiency we need to decrease the maximal corruption
tolerance, but still t = Θ(n), i.e., a number of corruptions is tolerated that is
still a constant fraction of n. Furthermore, we require the finite field L to have a
certain property; it should contain a subfield K over which it has an extension
degree linear in n.

For this result we emphasize that, unlike in previous approaches (such as
[10]), the mentioned costs analysis is not amortized, as we consider “single-shot”
(or “atomic”) secure multiplication only. The techniques involved can provide
considerable efficiency gain in certain secure linear algebra computations, such
as securely computing the determinant of a matrix and securely solving a linear
system of equations, where the chosen field is typically large in order to ensure
a small error probability [5], [6].

A main handle that enables the result mentioned above is a theorem that
demonstrates that when certain values can be extracted from the shares in a
ramp scheme by means of a linear function, several linear functions on these
values can be securely computed at the cost of only a single multiplication and
using only a single round of communication. We demonstrate how this theorem,
together with a technique due to Franklin and Yung [7], can be used to speed
up computation over arithmetic circuits.

After discussing the theorem and the main idea behind our variation, we
detail some further handles for trade-offs between communication efficiency and
corruption tolerance. We also demonstrate similar reductions in communication
complexity for secure computation in the presence of an active adversary.

2 Rabin’s Secure Multiplication Protocol

We consider Rabin ’s idea (as explained in [9]) for secure multiplication. This
protocol is a key ingredient to virtually all practical protocols in threshold cryp-
tography.

For the moment we focus on the secure channels model with synchronous
communication, in the presence of a passive t-adversary where t is maximal such
that t < n/2 and where n is the number of players in the network. Assuming
that the network has (t, n)-Shamir-sharings of two secret values a and b, the
protocol allows the network to securely generate a (t, n)-Shamir-sharing of the
product a · b. The technical idea behind this protocol is a simple and elegant
reduction from secure multiplication to secure linear computation.

Concretely, let K be a finite field with |K| > n. Let x1, . . . , xn be distinct
non-zero elements from K. Each player Pi has a share ai in the secret a and a
share bi in the secret b. Let f denote the polynomial of degree at most t such
that f(0) = a and such that f(xi) = ai for all i. Similarly, g is the polynomial
defining the secret sharing of b.



Atomic Secure Multi-party Multiplication with Low Communication 331

Now note that the values (a1 ·b1, . . . , an ·bn) are consistent with the polynomial
f ·g, i.e., (fg)(xi) = aibi for all i. Since fg has degree at most 2t and since 2t < n,
these values uniquely determine f ·g, by Lagrange interpolation. Concretely, there
exists a (public) linear map φ : Kn −→ K such that φ(a1b1, . . . , anbn) = ab
always.

This reduces secure multiplication to secure linear computation: it is suffi-
cient to compute φ securely on the secret inputs aibi, where aibi is the input
of player Pi. These inputs can of course be computed locally. So, first the play-
ers perform input sharing, i.e., each player Pi (t, n)-Shamir-shares aibi among
the network, using a polynomial hi. Then each player Pj simply computes lo-
cally φ(h1(xj), . . . , hn(xj)) as his share in ab. The overall result is clearly a
(t, n)-Shamir-sharing of ab, defined by the polynomial h = φ(h1, . . . , hn). This
protocol takes a singe round of communication, and it involves the exchange of
O(n2) elements from K.

3 Prior Work: Parallel Secure Computation

Franklin and Yung [7] have shown that interesting advantages can be offered in
secure computation by relaxing the corruption tolerance level by just a constant
fraction of the number of players. They showed an amortized cost reduction
in communication complexity. More precisely, they assume that the number of
corrupted parties t satisfies t < cn where c is a constant less than the standard
maximum that can be tolerated in the given scenario (typically 1/2 or 1/3).
The same secure evaluation can now be performed on several different inputs
in parallel, while the total communication amounts to that of a single secure
evaluation.

Although our goals and techniques substantially differ from [7], we do use
some of the ideas. We recall their techniques below. Consider for simplicity the
secure channels model with a passive adversary, just as in the description of
Rabin’s idea, though with the following differences.

Let t̂ be a positive integer with t̂ < n/2, and let k be an integer with 1 ≤ k ≤ t̂.
Define t = t̂ − k. The finite field K is chosen such that |K| > n + k.

First consider the following variation on Shamir’s secret sharing scheme. Let
the sets {x1, . . . , xn} and {e0, . . . , ek} be two disjoint sets of distinct elements
from K.

– Let a = (u0, . . . , uk) be a vector of secret elements from K.
– Choose a random polynomial f(X) ∈ K[X ] of degree at most t̂ such that

f(e0) = u0, . . . , f(ek) = uk.

– Define the shares as

a1 = f(x1), . . . , an = f(xn).

Clearly, t̂ + 1 shares or more jointly determine f and hence the secret vector
a. As to privacy, it is a straightforward consequence of Lagrange-interpolation



332 R. Cramer, I. Damg̊ard, and R. de Haan

that t or fewer shares jointly give no information on the secret vector. So it is a
(t, t̂ + 1)-ramp scheme, with secrets of length t̂ − t + 1.

Now, k + 1 secure multiplications of (u0v0, . . . , ukvk) can be performed in a
very compact manner. Suppose that vectors a = (u0, . . . , uk) and b = (v0, . . . vk)
have been secret-shared. Say that the shares in a are (a1, . . . , an) (with defining
polynomial f) and the shares in b are (b1, . . . , bn) (with defining polynomial
g). The network may now obtain a secret-sharing according to the scheme above
(and with the same parameters) of the vector a∗b := (u0v0, . . . , ukvk) as follows.

First we note that for j = 0, 1, . . . , k, it holds that (fg)(ej) = ujvj . For a
reason similar to the one used in the description of Rabin’s idea, there exists
linear maps φj : Kn −→ K such that ujvj = φj(a1b1, . . . , anbn) (j = 0 . . . k).

Each player Pi now simply secret-shares (according to the scheme above, with
the same parameters) the vector (φ0(εi)aibi, . . . , φk(εi)aibi), where εi ∈ Kn is
the i-th unit vector. Define the polynomial h(X) =

∑n
i=1 hi(X), where hi is the

polynomial used by Pi in the sharing step above (i = 1 . . . n). This polynomial
is consistent with the parameters of the scheme, the secret encoded by it is the
vector a ∗ b and each player Pi can locally compute his share as

∑n
j=1 hj(xi).

We will demonstrate later that there is a more general way to look at this last
resharing step (see Theorem 1).

4 Ramp Schemes and Share Conversion

We now present a formal definition of (linear) ramp schemes, which can be seen
as a generalization of threshold secret sharing schemes.

Definition 1. Let Mi be a di × e matrix for i = 1, 2, . . . , n. For every set A ⊂
{1, 2, . . . , n}, let MA be the matrix defined by stacking the matrices (Mi)i∈A on
top of each other. The scheme defined as such is called a (linear) (t, t̂ + 1)-ramp
scheme of embedding degree k + 1 if the following two properties hold:

– For any A ⊂ {1, 2, . . . , n} with |A| ≥ t̂ + 1, there are vectors r0, r1, . . . , rk

such that riMA = ui, where ui is the ith unit vector.
– For any A ⊂ {1, 2, . . . , n} with |A| ≤ t and any vector v = (v0, v1, . . . , vk)

there is a vector κ ∈ KerMA where the first k+1 coordinates of κ correspond
with the coordinates of v.

Ramp schemes are used for secret sharing as follows. Let s = (s0, s1, . . . , sk) ∈
Kk+1 be a secret vector and choose b = (b0, b1, . . . , be−1) ∈ Ke at random under
the restriction that bi = si for i = 0, 1, . . . , k. Now define si := Mib ∈ Kdi as
the share for the ith player. Note that the embedding degree of the ramp scheme
defines the dimension of the secret space over K.

The first condition for ramp schemes is now equivalent to the statement for
the corresponding secret sharing scheme that t̂+ 1 or more players can compute
every coordinate of the secret vector via a linear combination of their shares.
Furthermore, the second condition is equivalent to the statement that for any



Atomic Secure Multi-party Multiplication with Low Communication 333

subset consisting of at most t players every possible secret vector is equally
consistent with their shares. Another key point to note is that ramp schemes
allow for a “gray zone” between the unqualified and the qualified number of
players, which allows the size of the shares to be smaller than the size of the
secret.

There is a way to rewrite the scheme due to Franklin and Yung to the nota-
tion used above by applying appropriate operations on the columns of a Van-
dermonde matrix. However, since the representation using polynomials is rather
convenient for both their scheme and our scheme from Section 5, we will stick to
a polynomial notation for these schemes in the sequel. Naturally, there is also a
straightforward way of rewriting our scheme to the formal notation above, which
boils down to the elimination of a number of columns from a Vandermonde
matrix.

One of the key ingredients of our results is the following theorem, which allows
us to convert shares between different types of linear ramp schemes, while at the
same time computing a number of linear functions on secret values in the ramp
scheme in parallel.

Theorem 1. Assume that the players hold shares c1, .., cn in a linear ramp
scheme of the secret vector (s1, .., sm) – which means there exist linear maps
φj : Kn −→ K such that sj = φj(c1, . . . , cn) (j = 0 . . .m) and that the set of
all players is qualified in this scheme. Furthermore, let arbitrary linear functions
F1, .., F�, Fi : Km → K, be given. Then in a single round of communication, the
shares in this scheme can be transformed into shares in any other linear ramp
scheme with secret space of dimension at least � with secret vector

(F0(s0, . . . , sm), . . . , F�(s0, . . . , sm)),

Furthermore, privacy is maintained for any subset of players for which privacy
holds in both of the ramp schemes involved.

Proof. Assume that the functions Fj are Fj(x0, . . . , xm) :=
∑m

w=0 μ
(j)
w xw for

some μ
(j)
w ∈ K and define β

(j)
i :=

∑m
w=0 μ

(j)
w φw(εi)ci. Note that

sj = φj(c1, . . . , cn) =
n∑

i=1

φj(εi)ci,

so that

Fj(s0, . . . , sm) =
m∑

w=0

μ(j)
w sw =

m∑

w=0

μ(j)
w

(
n∑

i=1

φw(εi)ci

)

=
n∑

i=1

(
m∑

w=0

μ(j)
w φw(εi)ci

)
=

n∑

i=1

β
(j)
i ,



334 R. Cramer, I. Damg̊ard, and R. de Haan

and that player i can ramp share the vector (β(0)
i , . . . , β

(�)
i ) in the target scheme,

as the coefficients β
(j)
i only depend on its share ci and public information. After

all players have reshared their shares in this way and the players locally sum
up their new shares, they obtain shares in the target scheme with secret vec-
tor (F0(s0, . . . , sm), . . . , F�(s0, . . . , sm)). The privacy claim is straightforward to
verify and the result follows. �	

In particular, Theorem 1 demonstrates that we can in a single round of commu-
nication securely compute any list of linear functions (up to a certain size) on the
ramp shared secret values. Combined with the techniques of Franklin and Yung,
this is used in Section 8 to enable more efficient evaluation of certain arithmetic
circuits. Theorem 1 is later also used in combination with the ramp scheme from
Section 5, where the resulting scheme allows to compute products of values in an
extension field of K using only shares and communication consisting of elements
in K.

5 Atomic Secure Multiplication: The Main Idea

In [7], the amortized communication complexity of a secure computation is re-
duced by performing a linear number of multiplications in parallel. The more
general techniques described in this section alternatively allow to reduce the
atomic communication complexity, i.e., the minimum communication complexity
required to perform a single secure multiplication. In particular, we demonstrate
how a decreased maximum corruption tolerance, while still a constant fraction
of n, allows one to gain a linear factor in communication complexity for a single
multiplication. However, for this we require that the finite field that is used in
the computation has some additional structure. These techniques can provide
considerable efficiency gain, for instance when used as a building block in secure
linear algebra computations over large finite extension fields [5,6].

The technical idea behind our result can be summarized as follows. We use
a dedicated ramp scheme, different from the one in [7]. It is defined using an
extension field L over K, but each share is just a single element from K. The
secret is an element in L, which is represented as a vector of elements from K by
fixing a basis of L over K and interpreting L as a vector space over K. This way,
the information rate of the scheme improves as the degree of L over K increases,
but we pay for this by having to decrease the corruption tolerance appropriately.

This approach is additive in the sense that sums of sharings of two elements
from L give a sharing of their sum. The relative difficulty lies in the product.
We show a variation on Rabin’s idea that allows the network to securely com-
pute, in a single round, the vector-representation over K of the product of two
elements from L, using just O(n) bandwidth. 1 Our idea depends crucially on
the properties of our dedicated ramp scheme.
1 Our results here should be contrasted with those of [4], which deals with low com-

munication secure computation over very small fields, and uses an entirely different
technique.



Atomic Secure Multi-party Multiplication with Low Communication 335

Definition 2. For each integer d with 0 ≤ d ≤ 2k the polynomial Hd is defined
as

Hd(X0, . . . , Xk, Y0, . . . , Yk) =
∑

0≤q,r≤k : q+r=d

Xq · Yr.

Definition 3. Let k be a non-negative integer and let t̂ be an integer with 2k < t̂.
The linear subspace Vk,t̂(K) of the vector space of polynomials of degree at most
t̂ consists of all polynomials f(X) ∈ K[X ] of the form

f(X) = a(X) + R(X) · X2k+1,

where a(X) ∈ K[X ] is a polynomial of (formal) degree k and where R(X) ∈
K[X ] is a polynomial of (formal) degree t̂ − 2k − 1.

Note the presence of a “gap” in the polynomials. It ensures that after local
multiplication of shares none of the higher-term random coefficients in the cor-
responding product polynomial interferes with the coefficients that results from
the lower-term coefficients (which contain the secret vectors). Furthermore, the
degree of the polynomials is chosen large enough to ensure that the higher-term
coefficients provide sufficient privacy.

Now assume that 2k < t̂. Thus, a(X) has degree at most k as a polynomial,
but its coefficient vector will be taken of length k + 1 in all the cases. We will
sometimes “identify a(X) with its coefficient vector a.” Similar for R(X). We
have the following trivially verified property.

Lemma 1. If f(X) = a(X)+R(X) ·X2k+1 and g(X) = b(X)+R′(X) ·X2k+1 ∈
Vk,t̂(K), then

f(X) · g(X) = H0(a, b) + H1(a, b) · X + . . . + H2k(a, b) · X2k + S(X) · X2k+1,

where a, b are taken as the coefficient vectors (of length k+1) of the corresponding
polynomials and where S(X) is a polynomial of degree at most 2t̂ − 2k − 1.

Now let L be an extension field of K of degree k + 1, and let θ be such that

L = K(θ).

The fact that 1, θ, . . . , θk is a basis for the field L as a k + 1-dimensional K-
vector space implies the following lemma. Let a = u0 + u1 · θ + . . . + uk · θk ∈ L
and b = v0 + v1 · θ + . . . + vk · θk ∈ L, with the ui and vj elements from K.

Lemma 2. With K, θ and L fixed as above, the following holds. There exist
linear maps χj : K2k+1 −→ K (j = 0 . . . k) such that for all a, b ∈ L

ab =
k∑

j=0

χj(H0(a, b), . . . , H2k(a, b)) · θj ,

where a and b are given by their respective coordinate vectors (u0, . . . , uk) and
(v0, . . . , vk).



336 R. Cramer, I. Damg̊ard, and R. de Haan

This lemma is easily verified by multiplying everything out, rewriting the powers
θj with j > k with respect to the basis chosen and making the substitutions.

Now consider the following secret sharing scheme. It is assumed that θ is
fixed (and public), as well as the other parameters introduced above. A secret
can be any element a ∈ L, represented as a k + 1-vector of elements from K:
a = u0 + u1θ + . . . + ukθk, with the uj in K. Each share will be an element of
K however. Define

t = t̂ − 2k.

1. Let
a = u0 + u1 · θ + . . . + uk · θk ∈ L

be the secret value.
2. Choose f(X) ∈ Vk,t̂(K) at random such that

f(X) = a(X) + R(X) · X2k+1,

where a(X) ∈ K[X ] is the polynomial of degree at most k whose coefficient
vector is (u0, . . . , uk) and where R(X) ∈ K[X ] is a polynomial of degree at
most t̂ − 2k − 1.

3. Set
a1 = f(x1) ∈ K, . . . , an = f(xn) ∈ K

as the shares.
4. For any set A ⊂ {1, . . . , n} with |A| ≥ t̂ + 1, the reconstruction of a ∈ L

from the shares {ai}i∈A is by standard Lagrange Interpolation.

As for privacy, we note the following. If |A| ≤ t (= t̂− 2k), then the collection
of shares {ai}i∈A gives no information on the secret a. Indeed, for each such set
A and for each z ∈ L there exists a κ(X) ∈ Vk,t̂(K) such that

κ(X) = z(X) + T (X) · X2k+1,

where T (X) is a polynomial of degree at most t̂ − 2k − 1, and such that

κ(xi) = 0 for all i ∈ A,

and this implies the privacy claim, for instance by a simple argument similar
to the one used in the analysis of general linear secret sharing. The existence
of κ(X) per se follows from the lemma below, an immediate consequence of
Lagrange’s Interpolation Theorem.

Lemma 3. Let x1, x2, . . . , xe be distinct non-zero elements of K. Let d be an
integer with d ≥ e. For any z0, . . . , zd−e ∈ K and for any y1, . . . , ye there exists
a polynomial κ(X) ∈ K[X ] of degree at most d such that

κ(X) = z0 + z1 · X + . . . + zd−e · Xd−e + higher order terms ,

and
κ(x1) = y1, . . . , κ(xe) = ye.



Atomic Secure Multi-party Multiplication with Low Communication 337

Proof. Define f1(X) =
∑d−e

j=0 zjX
j and let f2(X) be the polynomial of degree

at most e − 1 through the e points (yi − f1(xi))/xd−e+1
i . Then the polynomial

κ(X) = f1(X) + f2(X) · Xd−e+1 is the unique polynomial that has the required
properties. �	

Thus, the dedicated scheme above is a (t, t̂ + 1) ramp scheme with shares in K

and the secret in L (as a vector of length t̂−t
2 + 1 over K).

In order to state the claimed secure multiplication protocol we need the fol-
lowing lemma, which can easily be verified using arguments similar to the ones
used in standard proofs of Langrange’s Interpolation Theorem, or by using the
properties of Vandermonde determinants.

Lemma 4. Let x1, . . . , x�+1 be fixed distinct elements of K. Then there exist
linear maps φj : K�+1 −→ K (j = 0 . . . �) such that the following holds. Let
y1, . . . , y�+1 be any elements of K. Let f ∈ K[X ] be the unique polynomial of
degree at most � such that f(x1) = y1, . . . , f(x�+1) = y�+1. Then

f(X) = φ0(y1, . . . , y�+1) + φ1(y1, . . . , y�+1) · X + . . . + φ�(y1, . . . , y�+1) · X�.

Still in the secure channels model as before, assume that t̂ < n/2. Suppose that
values a = u0 +u1 ·θ+ . . .+uk ·θk ∈ L and b = v0 +v1 ·θ+ . . .+vk ·θk ∈ L, with
coefficients in K, have been secret-shared according to the dedicated scheme
explained above. Write f ∈ K[X ] for the polynomial defining the sharing of
a ∈ L, with respective shares a1, . . . , an ∈ K, and write g defining that of b ∈ L,
with respective shares b1, . . . , bn ∈ K.

It now follows immediately from the fact that t̂ < n/2 and from Lemmas 1, 2,
and 4 that there exist linear maps ψj : Kn −→ K such that

ab =
k∑

j=0

ψj(a1b1, . . . , anbn) · θj ∈ L.

The coefficients defining these linear maps can be computed efficiently. We can
now use Theorem 1 to convert the local products of the shares of the players
into a sharing of ab.

If the degree [L : K] = k + 1 of the extension field L satisfies the conditions
detailed below, we can now achieve O(n) communication.

We have
t + 2k = t̂ and t̂ < n/2.

So if we set, say,
2t̂ + 1 = n,

and
k = cn,

for some real constant c, then we can achieve t maximal such that

t <
(1 − δ)n

2
, where δ = 4c.



338 R. Cramer, I. Damg̊ard, and R. de Haan

If the parameters are such, secure multiplication of two elements from the
field L is done with communication O(n2) elements from K, which is equivalent
to O(n) elements from L. This is as claimed.

5.1 A More General View

It is possible to look at the secure multiplication protocols in a more general
way, that contain both our results and those of Franklin and Yung [7] as special
cases.

Both in the protocol of Franklin and Yung and our protocol from Section 5,
the protocols start out with two sets of shares, defining secret vectors (s0, ..., sm),
(s′0, ..., s′m) respectively. We then compute locally the pairwise products of shares
in the two vectors and these pairwise products can be seen as shares in a new
ramp scheme, different from the original one.

For instance, in the scheme by Franklin and Yung the secret vector defined by
the “local products” of the shares is (s0s

′
0, s1s

′
1, . . . , sms′m) according to the new

scheme defined On the other hand, in the protocol from Section 5, assuming the
same initial secret vectors, we obtain secret vector (

∑
i+j=0 si · s′j ,

∑
i+j=1 si ·

s′j , . . . ,
∑

i+j=2m si · s′j) consisting of all homogeneous sums of the secret co-
efficients. This is why we can obtain different results after the application of
Theorem 1.

In general, we can start from any ramp scheme R, do the local multiplications
and obtain a sharing of some quadratic function of the two original secret vectors
in a new ramp scheme R′ that depends on R. This is not always useful – for
instance, it is not always the case that the set of all players is qualified in R′.
Franklin/Yung and our scheme are two nicely structured examples, where useful
results are indeed obtained.

We note that one can also obtain the homogeneous sums we use by multiple
applications of Franklin and Yung’s scheme, but since this would require O(n)
applications of their scheme (in order to obtain the required cross-products) this
would be much less efficient.

6 Further Trade-Offs

In Section 5, we presented a scheme which is secure against a t-adversary. We
now show a variation that is secure against a (stronger) t′-adversary with t′ > t,
where t′−t is a constant fraction of n. Given again a finite field L with extension
degree k + 1 over a subfield K, the bandwidth requirement remains O(n), but
there is a larger hidden constant.

The idea is to introduce a slightly modified version of the dedicated ramp
scheme from Section 5. Basically, the coefficients of a secret element a ∈ L are
distributed over two polynomials f1 and f2 with smaller gaps than the polyno-
mial that was used before, and the secure multiplication is then performed with
these two polynomials by exploiting cross-products. This doubles the size of the
shares and the required bandwidth. There is also a natural generalization of this
idea involving more then two polynomials and cross-products of shares.



Atomic Secure Multi-party Multiplication with Low Communication 339

In Section 5, a t-adversary was defined where t = t̂ − 2k for some integer
t̂ < n/2 and where k + 1 is the degree of L over K. In this section, we fix the
value k̂ = 
(k−1)/2�, and define the t′-adversary by t′ = t̂−2k̂. We now explain
the details of the variation.

For an arbitrary value a = u0 + u1 · θ + . . . + uk · θk ∈ L, with coefficients in
K, we denote a(1) = u0 + u1 · θ + . . . + uk̂ · θk̂ and a(2) = a − a(1). Furthermore,
we define a(1)(X) = u0 + u1 · X + . . . + uk̂ · X k̂ and a(2)(X) = uk̂+1 + uk̂+2 · X +

. . . + uk · Xk−k̂−1.
For i ∈ {1, 2}, choose fi(X) ∈ Vk̂,t̂(K) at random such that

fi(X) = a(i)(X) + Ri(X) · X2k̂+1,

where a(1)(X) is the polynomial of formal degree k̂ with the initial coefficients
(u0, u1, . . . , uk̂), a(2)(X) is the polynomial of formal degree k − k̂ − 1 with the
remaining coefficients (uk̂+1, uk̂+2, . . . , uk) and where R1(X), R2(X) ∈ K[X ] are
polynomials of formal degree t̂ − 2k̂ − 1. Then f1 and f2 both encode exactly
half of the coefficients of a (if k is odd) or f1 encodes one more coefficient of a
than f2 (if k is even). These polynomials are used in this section to perform the
secure multiplication.

Assume that a value b = v0 + v1 · θ + . . . + vk · θk ∈ L has likewise been
encoded, resulting in polynomials b(1)(X), b(2)(X), g1(X) and g2(X), and that
every player Pi received the values a

(1)
i = f1(xi), a

(2)
i = f2(xi), b

(1)
i = g1(xi)

and b
(2)
i = g2(xi). By Lemma 3, no subset of t − 2k̂ players can obtain any

information about a(1), a(2), b(1) or b(2), and therefore the players in such a
subset also cannot obtain any information about a or b.

We now make use of the observation that

(ab)(X) = (a(1)b(1))(X)+ (a(1)b(2) + a(2)b(1))(X) · X k̂+1 + (a(2)b(2))(X) · X2k̂+2,

with as coefficients the values H0(a, b), H1(a, b), . . . , H2k(a, b). This is straight-
forward to verify using the discussion from the last section. Since by Lemma 4
there exists a linear map φ� such that for i, j ∈ {1, 2} the �th coefficient of
(figj)(X) can be computed as φ�(a

(i)
1 b

(j)
1 , a

(i)
2 b

(j)
2 , . . . , a

(i)
n b

(j)
n ), the same holds

for a(i)b(j)(X). In particular there exist linear maps ψ� : Kn −→ K such that

ab =
k∑

�=0

ψ�(C11, C12, C21, C22) · θ� ∈ L,

where Cij = (a(i)
1 b

(j)
1 , . . . , a

(i)
n b

(j)
n ) for i, j ∈ {1, 2}. Therefore, the techniques

from the previous section can be used to construct a multiplication protocol
that leads to two polynomials h1(X) and h2(X) of the proper form that encode
the coefficients of ab ∈ L.



340 R. Cramer, I. Damg̊ard, and R. de Haan

7 Secure MPC Against an Active Adversary (Overview)

Using the new techniques, we construct a protocol for secure multiplication in
the presence of an active t-adversary that requires only O(n2) bandwidth when
the multiplication is performed in a field L with extension degree k + 1 over
a subfield K. Again, the corruption tolerance is not maximal, as we require
t = t̂ − 3k with t < t̂ < n/4, but it is still a constant fraction of n. Below we
sketch the underlying ideas of the protocol. A more detailed description can be
found in the appendix.

The obvious weakness of the protocol described in Section 5 is that the out-
come completely depends on the polynomials hi that the players select. Even
if only one of these polynomials is not selected according to the protocol spec-
ification, the final outcome can encode any arbitrary element of L or not even
be of the correct form. However, a closer inspection of the protocol reveals that
the values of the leading coefficients of every polynomial hi mainly depend on
the corresponding value aibi. Therefore, we can use VSS to let the players secret
share their value aibi, and then let the players locally compute their shares in
polynomials hi that are guaranteed to be of the proper form. We now sketch the
key ingredients of the protocol.

Dedicated VSS. We use an adaptation of the four-round VSS protocol by
Gennaro et al. [8] that allows the players to verify the presence of a gap in
a secret sharing polynomial. In particular, we show that it is sufficient if the
polynomials that the honest players receive as their shares using this scheme
contain the desired gap.

Resharing step. Every player Pi reshares the value aibi using an instance of
the dedicated VSS scheme by embedding it in a secret sharing polynomial
vi of formal degree t̂ − k that has a gap of size 2k following the constant
coefficient. Furthermore, player Pi uses VSS to distribute evaluations on a
random polynomial of formal degree 2t̂ that has a zero constant coefficient.
The value aibi is the constant coefficient of a polynomial of formal degree
2t̂ in which all the players have a share due to the VSS scheme. Therefore,
the players can jointly subtract the polynomial vi from this polynomial and
mask the result by adding the random polynomial. These operations can
all be performed locally on the shares and lead to shares in the resulting
polynomial. The players then publicly reconstruct this polynomial by pooling
their shares and verify whether it has a zero constant coefficient. This ensures
that player Pi indeed reshared the value aibi.

Local computation. Since the polynomial hi(X) should contain the element

k∑

j=0

ψj(εi)aibiθ
j ∈ L,

the polynomial

hi(X) =
k∑

j=0

ψj(εi)Xjvi(X)



Atomic Secure Multi-party Multiplication with Low Communication 341

is of the correct form and every player Pm can locally compute a share hi(xm)
in this polynomial using the share vi(xm). The sum of these shares then gives
a share in a polynomial of the proper form that encodes the product ab.

8 Efficient Circuit Evaluation

This section shows another application of Theorem 1. Consider any arithmetic
circuit C and a set of inputs to C and suppose that we evaluate the circuit by
repeating the following two steps until all the gates have been evaluated:

1. Evaluate all linear gates for which we have both inputs, i.e., the addition
gates and gates that perform multiplication by a constant.

2. Evaluate all multiplication gates for which we have both inputs.

Now let S(C) be the minimum number of multiplication gates that are han-
dled in one instance of step 2. We will refer to this value S(C) as the multiplica-
tive speedup of C.2 Arithmetic circuits with large multiplicative speedup occur
frequently in settings related to secure linear algebra [5]. For instance, constant-
round protocols for secure unbounded fan-in multiplication and secure matrix
multiplication require many parallel secure multiplications in a single step.

It is a natural idea to apply the scheme of Franklin and Yung here to perform
these multiplications in parallel, but in order to do this it is required that the
values that are to be multiplied are “aligned” in the corresponding instances of
the ramp scheme.

Theorem 1 enables us to perform this aligning and more. If the inputs to
the multiplication are available as secrets of some ramp scheme, or even merely
available via a linear function on the shares that the players hold in a number
of (potentially different) ramp schemes, a single resharing round can be used
in order to correctly align the inputs to the parallel multiplications. This also
implies that the same resharing step can simultaneously perform the operations
required in step 1 before the multiplications are performed, and after local mul-
tiplication of the new shares we can continue with the preparations for the next
multiplication round. We formulate this consequence of Theorem 1 a bit more
precisely below.

Theorem 2. Consider an arithmetic circuit C over the field Fq with multiplica-
tive speedup m. Then there exists a passively secure protocol for n players that
securely evaluates C having communication complexity O(|C|n2k/m+C′), where
C′ is the complexity of sharing the inputs and k = log(q). The protocol is secure
against at most n/2 − m passive corruptions.

Proof. (Sketch) Assume for simplicity that each multiplication layer in C consists
of exactly m gates. Then to perform one set of multiplications, the protocol of
Franklin and Yung requires ramp sharings, say in ramp scheme R of two blocks A

2 This term is inspired by [11], where the speedup is defined to be the factor you save
in runtime due to parallelism.



342 R. Cramer, I. Damg̊ard, and R. de Haan

and B of m values each, where A contains all the left inputs to the multiplication
gates and B contains all the right inputs in matching order. Local multiplication
of the shares of A and B then produces a linear secret sharing (in a new scheme
R′) of all the outputs from the multiplication gates.

Now note that we can assume that as input to an instance of Step 1 above,
we have a linear sharing of all values going into Step 1. This is either obtained
because the inputs are shared initially, or we have a sharing in R′ which was
output from a previous instance of Step 2. All we need is that the set of all
players is qualified in the scheme that occurs here. We now need to subject these
values to a linear function and place the results in the blocks A and B. Using
Theorem 1, we can do exactly this in one round and communication complexity
n2k. Clearly, there can be no more than |C|/m multiplication layers, and the
scheme of Franklin and Yung that we start from is private as long as there are
at most n/2 − m corruptions. �	

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of STOC
1988, pages 1–10. ACM Press, 1988.

2. G. R. Blakley. Safeguarding cryptographic keys. In Proceedings Proceedings of
National Computer Conference ’79, volume 48 of AFIPS Proceedings, pages 313–
317, 1979.

3. D. Chaum, C. Crépeau, and I. Damgaard. Multi-party unconditionally secure
protocols. In Proceedings of STOC 1988, pages 11–19. ACM Press, 1988.

4. H. Chen and R. Cramer. Algebraic Geometric Secret Sharing Schemes and Secure
Multi-Party Computation over Small Fields. In Proceedings of 26th Annual IACR
CRYPTO, volume 4117, pages 516–531, Santa Barbara, Ca., USA, August 2006.
Springer Verlag LNCS.

5. R. Cramer and I. Damgaard. Secure Distributed Linear Algebra in Constant Num-
ber of Rounds. In Proceedings of CRYPTO 2001, volume 2139, pages 119–136.
Springer LNCS, 2001.

6. R. Cramer, E. Kiltz, and C. Padró. A Note on Secure Computation of the Moore-
Penrose and Its Application to Secure Linear Algebra. Manuscript, 2006.

7. M. Franklin and M. Yung. Communication complexity of secure computation. In
Proceedings of STOC 1992, pages 699–710. ACM Press, 1992.

8. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. In Proceedings of STOC 2001,
pages 580–589. ACM Press, 2001.

9. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fasttrack multi-
party computations with applications to threshold cryptography. In Proceedings of
PODC 1997, pages 101–111, 1998.

10. M. Hirt and U. Maurer. Robustness for Free in Unconditional Multi-Party Com-
putation. In Proceedings of CRYPTO 2001, volume 2139, pages 101–118. Springer
LNCS, 2001.

11. C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. Theoretical Computer Science, 71(1):95–132, 1990.

12. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.



Atomic Secure Multi-party Multiplication with Low Communication 343

A Secure MPC Against an Active Adversary

In this section we describe in detail the key ingredients of the protocol secure
against an active adversary, as described in Section 7. Throughout this section,
we assume that t = t̂ − 3k with t̂ < n/4.

A.1 VSS

We start by describing the adaptation of the four-round VSS protocol by Gen-
naro at al. [8] that allows the players to verify the presence of a gap in the secret
sharing polynomial.

Let f be the polynomial defining the sharing of a ∈ L, as described in
Section 5. The dealer D randomly selects a symmetric bivariate polynomial
F (X, Y ) =

∑t̂
i,j=0 eijX

iY j ∈ K[X, Y ] under the restriction that F (X, 0) =
f(X) and that eij = eji = 0 for j = k + 1, k + 2, . . . , 2k and i = 0, 1, . . . , n. The
dealer D and the players now execute the following steps:

1. D privately sends to every player Pi the polynomial fi(X) := F (X, xi) by
transmitting the t̂ − k coefficients that are not equal to zero by default.
In every subset of two players {i, j} one of the players (which one can be
fixed before execution of the protocol) selects a random pad rij = rji and
transmits this value privately to the other player in this set.

2. Player Pi broadcasts for every player Pj the value aij = fi(xj) + rij .
3. For every pair aij �= aji, the dealer, Pi and Pj each broadcast the value

fi(xj) = fj(xi) = F (xi, xj).
A player is called unhappy if his value does not match the dealer’s value.

If there are more than t unhappy players, the dealer is disqualified and the
protocol stops.

4. For every unhappy player Pi the dealer broadcasts fi(X) and every player
Pj that is not unhappy broadcasts the value fj(xi).

5. Every player checks for every broadcast polynomial fi(X) whether at least
3t̂ + 1 happy players Pj broadcast a value fj(xi) such that fi(xj) = fj(xi).
If this is not the case, the dealer is disqualified. The broadcast polynomials
are from here on (publicly) used as the shares of the corresponding players.

As in [8], this protocol has the properties that when the dealer is honest, no
new information is disclosed to the adversary after the first round and that when
the protocol completes all honest players have obtained consistent polynomials
fi(X). Therefore, the main properties to be verified here are that in the case
of an honest dealer no information is disclosed about a in the first round and
that in the case of a dishonest dealer the polynomial f(X) that is fixed by the
resulting polynomials fi(X) is of the proper form. Note that, since t̂ < n/4,
this protocol can easily be adjusted so that polynomials of formal degree 2t̂ are
distributed.

Below we present a security proof for a setting in which none of the initial
2k + 1 coefficients has a fixed value. The security for the case where some of the
coefficients are fixed to zero, but only k + 1 of the coefficients need to remain
secret, then follows as a straightforward application of this result.



344 R. Cramer, I. Damg̊ard, and R. de Haan

Lemma 5. Let F (X, Y ) be a random symmetric bivariate polynomial of formal
degree t̂ in each variable and define fi(X) := F (X, xi) for i = 1, 2, . . . , n. If
0 ≤ d ≤ t̂, then any subset of t̂−d polynomials fi(X) gives no information about
the first d + 1 coefficients of f(X) := F (X, 0).

Proof. Assume wlog that the given polynomials are {fi(X)}t̂−d
i=1 . We need to

show that for any selection for the first d + 1 coefficients of f(X), there is
a symmetric bivariate polynomial F (X, Y ) that is consistent with the given
polynomials and the selected coefficients. We show the equivalent statement
that there exist symmetric bivariate polynomials Fj(X, Y ) for j = 0, 1, . . . , d
such that Fj(X, xi) = 0 for i = 1, 2, . . . , t̂ − d and all the d + 1 lower coefficients
of Fj(X, 0) are zero except for the jth one, which is equal to one.

By Lemma 3, any selection c0, c1, . . . , cd for the first d + 1 coefficients of f
leads to a polynomial f ′(X) that is consistent with the selection and for which
f ′(xi) = 0 for i = 1, 2, . . . , t̂ − d. Let Cj be the selection where all selected
coefficients are zero, except for the first and the jth one which are equal to
one, and let fCj be the corresponding polynomial with those first coefficients for
which fCj (xi) = 0 for i = 1, 2, . . . , t̂ − d.

Define a number of symmetric bivariate polynomials FCj (X, Y ) by setting
FCj (X, Y ) := fCj(X)fCj(Y ) for j = 0, 1, . . . , d. Then we have that FCj (X, xi) =
fCj(X)fCj (xi) = 0 for i = 1, 2, . . . , t̂ − d and FCj (X, 0) = fCj(X)fCj(0) =
fCj(X). The polynomials F0(X, Y ) := FC0(X, Y ) and Fj(X, Y ) := FCj (X, Y ) −
FC0(X, Y ) for j = 1, 2, . . . , d are now of the desired form. �	

We now show that the default zeros in the polynomials fi(X) that the players
receive as their share ensure that the required gap is present in the polynomial
f(X).

Lemma 6. Take x0 = 0. For i = 0, 1 . . . , n, let fi(X) := F (X, xi) = ci0 +
ci1X + · · · + cit̂X

t̂ for certain cij ∈ K. If cik = 0 for at least t̂ + 1 values of i,
then the coefficient c0k of the polynomial f0(X) is zero.

Proof. Since F (X, Y ) =
∑t̂

i,j=0 eijX
iY j , fv(X) =

∑t̂
i=0(

∑t̂
j=0 eijv

j)X i and

in particular f0(X) =
∑t̂

i=0 ei0X
i. Now assume that cilk = 0 for distinct

i1, i2, . . . , it̂+1. This amounts to saying that
∑t̂

j=0 ekjil
j = 0 for l = 1, . . . , t̂ + 1

and therefore the polynomial
∑t̂

j=0 ekjY
j has to be the zero polynomial. We

conclude that ekj = 0 for j = 0, 1 . . . , t̂ so that in particular ek0 = c0k = 0. �	

A.2 Multiplication/Resharing Step

Suppose that both a ∈ L and b ∈ L have been secret-shared according to the ded-
icated VSS scheme described above, resulting in distributed polynomials fi(X)
and gi(X). The aim is to let the players execute a secure resharing protocol that
results in a secret-sharing of ab according to the dedicated VSS scheme. The
resharing protocol proceeds as follows for every player Pi:



Atomic Secure Multi-party Multiplication with Low Communication 345

1. Player Pi selects a polynomial of the form vi(X) = aibi +
∑t̂−k

l=2k+1 rlX
l,

where rl is chosen at random from K for l = 2k + 1, 2k + 2, . . . , t̂ − k
and embeds it in a random symmetric bivariate polynomial Vi(X, Y ) =
∑t̂

i,j=0 eijX
iY j ∈ K[X, Y ] under the restriction that Vi(X, 0) = vi(X)

and that eij = eji = 0 for j = 1, 2, . . . , 2k and i = 0, 1, . . . , n. This bi-
variate polynomial is then used for VSS, leading to shared polynomials
vij(X) := Vi(X, xj).

2. Player Pi selects at random a symmetric bivariate polynomial Ri(X, Y ) of
formal degree 2t̂ − 1 in each variable and distributes using VSS polynomials
rij(X) := Ri(X, xj), where the evaluations rij(0) determine the polynomial
ri(X) := Ri(X, 0) of formal degree 2t̂ − 1.

3. All players Pj broadcast the value fj(xi)gj(xi)−vij(0)+xjrij(0) and use er-
ror correction to reconstruct a polynomial of degree 2t̂. If the first coefficient
of the reconstructed polynomial is not zero, player Pi is disqualified.

First note that fj(xi)gj(xi) − vij(0) + xjrij(0) = (figi − vi)(xj) + xjri(xj),
so that the players reconstruct the sum of two polynomials where one of the
polynomials is random under the restriction that the first coefficient is equal
to zero. Since the VSS-schemes have the property that all honest players have
consistent shares at the end of the procedure, the polynomials ri(X), vi(X),
fi(X) and gi(X) are uniquely determined when all players pool their shares in
these polynomials. Since t̂ < n/4 < n/3, the same holds for the polynomials
Xri(X) and (figi)(X) and therefore also for the polynomial (figi − vi)(X) +
Xri(X). Furthermore, this polynomial has an initial coefficient equal to zero
if and only if the first coefficient of vi(X) is equal to aibi. Note also that the
additional zero’s in the bivariate polynomial Vi(X, Y ) ensure to the players that
the polynomial vi(X) is of the proper form.

We need to show that the n polynomials (figi−vi)(X)+Xri(X) together with
t evaluations on the points x1, x2, . . . , xt for every polynomial r, vi, fi and gi do
not give any information about a, b or ab. First, we can conclude by the following
lemma that the sum of two arbitrary polynomials of degree 2t̂ together with t
evaluations for these polynomials give no information about the first t̂ − t + 1
first coefficients of one of these two polynomials.

Lemma 7. Let f and g be polynomials of formal degree t̂ and let the polynomial
f + g and evaluations f(xi) and g(xi) be given for i = 1, 2, . . . , d. Then f + g
together with the given evaluations f(xi), g(xi) give no information about the
first t̂ − d + 1 coefficients of f .

Proof. By Lemma 3, for any selection C = (c0, c1, . . . , ct̂−d+1) there exists a
polynomial with these values as the first t̂−d+1 coefficients that evaluates to zero
in the points x1, x2, . . . , xd. Then adding this polynomial to f and subtracting it
from g leads to consistent polynomials f ′ and g′ with different initial coefficients,
while the sum f ′+ g′ remains the same. This works for every arbitrary selection
C, and therefore the given information is consistent with any selection for the
first coefficients of f . �	



346 R. Cramer, I. Damg̊ard, and R. de Haan

As a consequence of the lemma, given the evaluations of t players we can choose
polynomials of formal degree t̂ with arbitrary first k+1 coefficients that evaluate
to zero in the given points and add them to the polynomials fi and gi to give
polynomials f ′i and g′i. Then, the polynomial f ′ig

′
i − figi can be subtracted from

ri, which gives a polynomial r′i that is consistent with the given points on ri,
but for which the sum f ′ig

′
i + r′i is equal to figi + ri. Therefore, no information

about a, b or ab is leaked during the protocol.

A.3 Local Computation

In order to obtain the desired polynomials hi(X), every player Pi now locally
computes the polynomial

hi(X) =
n∑

j=1

(
k∑

l=0

ψk(εi)(X l + xi
l)

)
vji(X),

where ψl : Kn → K for l = 1, 2, . . . , n have been defined in Section 5.
Define h(X) :=

∑n
i=1(

∑k
l=0 ψl(εi)X l)vi(X). Then it is easy to verify that

h(X) has degree t̂ and we can write it in the form

(
k∑

l=0

(
n∑

i=1

ψl(εi)aibi

)
X l

)
+

t̂∑

l=2k+1

r′′l X l

for certain r′′2k+1, r
′′
2k+2, . . . , r

′′
t̂

∈ K. In particular, the first k + 1 coefficients
are the coefficients of ab. Below, we show that the evaluations hi(0) all give
evaluations on h(X) and that for all i, j ∈ {1, 2, . . . , n} we have that hi(xj) =
hj(xi), so that there exists a symmetric bivariate polynomial H(X, Y ) such that
H(X, 0) = h(X) and H(X, xi) = hi(X). Therefore, the resulting sharing is of
the desired form.

The following two, easy to verify lemmas show that the polynomials hi(X)
that the players obtain are part of a proper sharing of the polynomial h(X).
Therefore, the protocol described above gives us a proper sharing of the new
(product) secret.

Lemma 8. ∀1 ≤ i ≤ n : hi(0) = h(i).

Lemma 9. ∀1 ≤ i, j ≤ n : hi(j) = hj(i).



Cryptanalysis of the Sidelnikov Cryptosystem

Lorenz Minder� and Amin Shokrollahi

Laboratoire de mathématiques algorithmiques (LMA), EPFL

Abstract. We present a structural attack against the Sidelnikov cryp-
tosystem [8]. The attack creates a private key from a given public key.
Its running time is subexponential and is effective if the parameters of
the Reed-Muller code allow for efficient sampling of minimum weight
codewords. For example, the length 2048, 3rd-order Reed-Muller code as
proposed in [8] takes roughly an hour to break on a stock PC using the
presented method.

Keywords: Sidelnikov cryptosystem, McEliece cryptosystem, error-cor-
recting codes, structural attack.

1 Introduction

The McEliece cryptosystem [6] is one of the oldest known public-key cryptosys-
tems. The fact that it has not been broken in more than a quarter of a century
and that the best known attacks today are still exponential speaks for itself.

Despite its impressive security record, it plays a rather marginal role in prac-
tice, being far less popular than other systems, such as RSA. The principal reason
for this is that the McEliece cryptosystem is not as efficient as the alternatives.
The main problems are its large public keys, the fact that the message is sub-
ject to expansion (the cryptogram is longer than the plaintext message), and its
potentially high decryption complexity.

To understand the tradeoffs, we recall how the McEliece cryptosystem works.
Let C be a linear binary Goppa code of block length n, dimension k, and having
a decoding algorithm correcting up to t errors. Let G be a k×n generator matrix
for the code. Let P be a random n × n permutation matrix. Then there is an
efficient decoder for the code generated by G · P . Let A be a k × k invertible
matrix. The code generated by

Gpub := AGP

is the same as the code generated by GP . The public key is the pair (Gpub, t).
To encrypt a message vector x := (x1, . . . , xk) ∈ F

k
2 , we first compute xGpub and

then add t errors at random positions. The resulting vector y is the cryptogram.
The decrypting problem is to recover the value of x given y. The receiver can

decrypt this message, since he knows a decoding algorithm for C. An attacker has
to either resort to general decoding techniques, and attempt to solve a problem
� Supported by the Swiss National Fund, grant 200021-103683.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 347–360, 2007.
c© International Association for Cryptology Research 2007



348 L. Minder and A. Shokrollahi

which appears to be intractable, or recover the structure of the code given by
Gpub. For further details, see [6].

The McEliece cryptosystem can be generalized to codes other than Goppa
codes. A priori, any family of linear codes having decoders which allow for effi-
cient correction of a large number of errors with high probability could be used.

The efficiency and security of such a cryptosystem depend on several factors.
First, the number t of correctable errors has to be very large to render gen-
eral linear decoding algorithms inefficient, which is a security requirement. In
addition, the McEliece cryptosystem can be modified in a manner so that the
expansion factor to which a message is subjected depends on t, see the paper by
Niederreiter [7] for such modifications. At the limit, if capacity-achieving codes
could be used, t could be made so large that the expansion factor would converge
to 1.

Secondly, the difficulty of recovering the structure of a code given by an arbi-
trary, permuted generator matrix is highly dependent on the code in question.
An interesting dichotomy can be observed here: While modern, graph-based
codes (like LDPC-, expander-, LT- or turbo-codes) are all unsafe because of
the sparse parity checks revealing their structure, classical algebraic codes have
proved widely resistant to structural attacks. The most notable exception is
given by Sidelnikov and Shestakov [9], showing that generalized Reed-Solomon
codes are unsafe.

In 1994, the first author of [9] proposed a variant of the McEliece system, ba-
sically replacing the Goppa codes with Reed-Muller codes [8]. The advantage of
using Reed-Muller codes is that very efficient decoding algorithms are known for
these codes. Thus, using these codes allows simultaneously for faster decryption,
smaller key sizes and expansion factors close to 1, if the Niederreiter variant is
used.

While all those properties sound very promising, we will show in this paper
that Reed-Muller codes are a bad choice, too. More specifically, we present a
method to find a private key for a given public key. The most costly step of
this procedure is that of finding minimum weight codewords in the code. In the
low-rate setting of Reed-Muller codes, this is feasible even for fairly long block
lengths. This attack is, to our knowledge, the first known effective attack against
this cryptosystem, and it breaks in particular Sidelnikov’s original proposed
parameters (m = 11, r = 3) in less than an hour on a stock PC.

The key observation that makes the attack work, is the fact that minimum
weight words in the r-th Reed-Muller code of length 2m (this code is denoted
R(r, m)) are products of r minimum weight words in R(1, m). The attack uses
this fact to reduce the order: First, minimum weight codewords in the given,
permuted R(r, m) are found, and then a statistical test is applied to find factors
of those words which lie in the accordingly permuted R(r − 1, m). By iterating
this procedure, ultimately the permuted version of R(1, m) is found, which allows
easy identification of a suitable permutation.

The fact that there is only a single Reed-Muller code for a given block length
and dimension has been noticed as a cryptographic weakness before. The best



Cryptanalysis of the Sidelnikov Cryptosystem 349

known previous attack is using the support splitting algorithm[11], an algorithm
to find a permutation between two equivalent codes. While this algorithm is
generally very fast, it is ineffective against Reed-Muller codes: Its running time
is exponential in the dimension of the hull (i.e., the intersection of the code with
its dual), and Reed-Muller codes have a hull as big as the code itself.

This paper is organized as follows. First, we give a short summary of Reed-
Muller codes. Second, we present our results on the structure of these codes
which form the basis for the attack. Third, we present the attack with a running
time analysis.

2 Reed-Muller Codes

To recall the notation, we start by presenting the construction of these codes.
For further details the reader is referred to [5] or [3].

Reed-Muller codes can be constructed by using Boolean functions. A Boolean
function of m variables can be evaluated on 2m different positions. So to each
Boolean function we can associate a binary word of length 2m. The code R(r, m)
is the set of words obtained by evaluating all the Boolean functions of degree
≤ r in this way. We will subsequently call the variables evaluated v1, . . . , vm.

We denote by B(r, {v1, . . . , vm}) the set of Boolean functions in the variables
v1, . . . , vm of degree at most r.

Note that since the base field is F2, the term v2
i can be simplified to vi, which

implies that the degree of any variable in any term of these Boolean functions is
at most 1.

The fact that all functions generating words in B(r − 1, {v1, . . . , vm}) are also
in B(r, {v1, . . . , vm}) implies the following observation.

Proposition 2.1. For any m, we have R(0, m) ⊂ R(1, m) ⊂ · · · ⊂ R(m, m).

In what follows, we frequently switch back and forth between B(r, {v1, . . . , vm})
and R(r, m). Doing so in the most explicit manner would make the reasonings
a lot harder to read, and for this reason we decided to treat codewords and
Boolean functions as interchangeable. Note, however, that a codeword has a fixed
length, while a function does not. If x ∈ R(r, m) is a codeword, its extension to
R(r, m+1) is the codeword (x, x), i.e., the codeword obtained by evaluating the
function f ∈ B(r, {v1, . . . , vm}) at all the possible values of (v1, . . . , vm, vm+1).
Similarly, if x ∈ R(r, m) is a codeword whose corresponding function does not
depend on vm, then we can reduce x to R(r, m − 1), by evaluating the function
f corresponding to x on all the possible values of (v1, . . . , vm−1). Note that in
a Reed-Muller code, a position (coordinate) within a codeword can be specified
by the value of (v1, . . . , vm).

The block length n, dimension k and minimum distance d of R(r, m) are

n = 2m, k =
r∑

i=0

(
m

i

)
, d = 2m−r.



350 L. Minder and A. Shokrollahi

The support of a codeword x ∈ R(r, m), noted by supp(x), is the set of positions
i, for which xi �= 0.

3 Minimum-Weight Codewords

We will now present the structural property of Reed-Muller codes which
constitutes the theoretical foundation of our cryptanalysis of the Sidelnikov cryp-
tosystem.

The fact that products of r linearly independent first-order codewords are
minimum weight in R(r, m) is well-known. The following proposition states the
converse, namely, that minimum weight codewords in Reed-Muller codes can
always be written as a (pointwise) product of suitable words in the corresponding
first order code. In other words, the only functions giving rise to minimum weight
codewords are products of functions in B(1, {v1, . . . , vm}).

Proposition 3.1. Let f ∈ R(r, m) be a word of minimum weight. Then there
exist f1, f2, . . . , fr ∈ R(1, m), such that

f = f1 · f2 · · · fr,

as functions. The fi are of minimum weight in R(1, m).

Proposition 3.1 is proved in [4]. The same paper also gives more precise formulas
for the weight distribution, which can be used, in particular, to estimate the
number of minimum-weight words:

Proposition 3.2. There are at least

2mr−r(r−1).

minimum weight codewords in R(r, m).

We will make use of this fact in the analysis of the running time of our algorithm.

4 Cryptanalysis of the Sidelnikov Cryptosystem

The Sidelnikov variant of the McEliece cryptosystem [8] uses Reed-Muller codes
in combination with powerful decoding algorithms.

Reed-Muller codes are low-rate if any interesting error-correction capability is
to be obtained, which makes it easy to apply algorithms such as the Canteaut-
Chabaud-algorithm [1] to find low weight words, and also to decode if the num-
ber of errors is less than d/2 (half the minimum distance). However, there are
decoding-algorithms for Reed-Muller codes which decode many more errors (with
high probability) than d/2, and thus the low weight word finding algorithms can-
not be directly used for decoding.

Such algorithms can still be used to find minimum weight words in codes with
suitable parameters, though. In this section, we show how to exploit this fact to
invert trapdoors from Reed-Muller codes.



Cryptanalysis of the Sidelnikov Cryptosystem 351

4.1 Outline of the Attack

We now present an algorithm which, given a permuted, scrambled Reed-Muller
code C, constructs a permutation σ such that if the positions of C are permuted
accordingly, the resulting code is a Reed-Muller code.

Let σ be any permutation on {1, . . . , n}. For any code C of length n, we
denote by Cσ the code obtained from C with the positions permuted accord-
ing to σ, i.e., a word (x0, x1, . . . , xn) will be a codeword in Cσ if and only if
(xσ−1(1), . . . , xσ−1(n)) ∈ C.

The sketch of the attack is as follows. Let C = R(r, m)σ for some unknown σ,
given by an arbitrary generator matrix.

1. Find codewords in C which with very high probability also belong to R(r −
1, m)σ. Find enough such vectors to build a basis of R(r − 1, m)σ.

2. Iterate the previous step (with decreasing r) until obtaining R(1, m)σ.
3. Determine a permutation τ such that R(1, m)τ◦σ = R(1, m). Then

R(r, m)τ◦σ = R(r, m), and this fact can then be used to decode.

The meat of the attack lies in the first step, which is based on the properties
of Reed-Muller codes stated in the previous section.

4.2 Finding the Subcode R(r − 1, m)σ ⊆ R(r, m)σ

The basic idea of this step is to find a codeword for which we know that it is a
product of other codewords, and then to split off a factor lying in the R(r−1, m)σ

subcode.
By proposition 3.1, a minimum weight codeword is actually a product of

several codewords of R(1, m)σ. Hence, we do the following: We find a minimum
weight codeword x and split off a factor of this word.

To this end, we shorten the code on supp(x), and use the structure of the
shortened code to find a factor of x which lies in R(r − 1, m)σ.

Finding enough words in R(r − 1, m)σ will result in a basis of R(r − 1, m)σ.

Finding factors of minimum weight words. We drop the permutation σ in
this section, since our ideas do not depend on σ.

Let x ∈ R(r, m) be a minimum weight codeword. Using proposition 3.1, and
changing the basis, we can assume that x = v1v2 · · · vr. Let Csupp(x) be the code
R(r, m) shortened on the support of x. (In other words, Csupp(x) is the subcode
of R(r, m) containing only the words which are zero on supp(x), and with these
positions punctured afterwards.)

Write v̄ = (vr+1, . . . , vm), and let f be a codeword in Csupp(x). Then we can
write f as

f(v1, . . . , vr, v̄) =
∑

I∈2{1,...,r}

fI(v̄) ·
∏

i∈I

vi,

where for each I ⊆ {1, . . . , r}, we have fI ∈ B(r − |I|, {vr+1, . . . , vm}). The
condition that f be 0 on {v1 = v2 = · · · = vr = 1} implies

0 =
∑

I∈2{1,...,r}

fI(v̄), (1)



352 L. Minder and A. Shokrollahi

and shows in particular that f∅(v̄) ∈ B(r − 1, {vr+1, . . . , vm}). Therefore, if we
take any codeword in the shortened code, fix a value for (v1, . . . , vr), and look
at the positions determined by this value, we get a codeword in R(r − 1, m −
r). In other words, the shortened code is a concatenated code1 with the inner
codewords being on the disjoint sets of positions determined by the value of
(v1, . . . , vr).

We shorten on supp(x), i.e., the set {v1 = · · · = vr = 1}, so there are actually
2r − 1 such sets, and each is of length 2m−r. We apply the algorithm of the next
section (Algorithm 1.) to find the sets and then construct a word y of length 2m

that has ones exactly on the points {v1 = · · · = vr = 1}∪S, where S is one of the
determined sets, say {v1 = v2 = · · · = v� = 0, v�+1 = v�+2 = · · · = vr = 1}. The
set supp(x)∪S can also be written as {v1 = v2 = · · · = v�, v�+1 = · · · = vr = 1},
and hence we can write

y = (1 + v1 + v2)(1 + v2 + v3) · · · (1 + v�−1 + v�)v�+1 · · · vr,

which shows that y ∈ B(r − 1, {v1, . . . , vr}). Note that one can write x = viy for
any 1 ≤ i ≤ �, showing that y is indeed a factor of x.

Finding inner words in the shortened code. To solve the problem of dis-
tinguishing the sets with different values of (v1, . . . , vr), we use the fact that the
code is a concatenated code, with an inner codeword on each of these sets.

The problem of recovering concatenated codes has previously been studied by
Sendrier; the algorithm presented in [10] could possibly be applied in our case, if
one showed that the code in question verifies the assumptions of this algorithm,
namely that the most lightweight parity checks all have their support within one
inner word.

Another possibility is to use a similar method which acts on the code itself,
rather than on its dual, and works well in our setting. The method is based on a
statistical analysis, and we start by describing the relevant random experiment.
Let C be a concatenated code, i.e.,

C ⊆ Ci × · · · × Ci︸ ︷︷ ︸
n times Ci

,

where Ci is a non-trivial code of length ni and relative minimum distance δ,
called the inner code.

For our analysis, we need the following assumption: If Y ∈ C is sampled
randomly in the low weight words of C, we assume that the events {Yi = 1} and
{Yj = 1} are independent if the positions i and j do not belong to the same
inner block. (Note that this is almost universally true for linear codes with Y
sampled from all the words, and not just the low weight ones.)

Now we randomly sample words of relative weight < δ from C. Call these
samples X0, X1, . . ., and denote by (X�)k the k-th position of X�. For two indexes
1 ≤ i < j ≤ ni · n, we define the random variable
1 A concatenated code is a subspace of the Cartesian product of several nontrivial

codes.



Cryptanalysis of the Sidelnikov Cryptosystem 353

Iij,k :=

{
1 if (Xk)i = 1 and (Xk)j = 1,
0 otherwise.

The punch line will be that the behaviour of Iij,k depends on whether i and j
lie within the same inner code or not.

We first assume that i and j are not in the same inner block; then (Xk)i and
(Xk)j will be independent random variables, and we get

E[Iij,k] = Prob((Xk)i = 1 ∧ (Xk)j = 1)
= Prob((Xk)i = 1)Prob((Xk)j = 1)

≈ δ2,

assuming the relative weight of Xk is very likely close to δ.
The situation is different if i and j are in the same inner block. Let εk denote

the fraction of zero inner codewords of Xk, and let Tk,i be the indicator variable
being one whenever the inner block of Xk containing the position i (and also
position j) is nonzero. Then we get the following estimate for the case where i
and j are in the same inner block:

E[Iij,k | εk] = Prob((Xk)i = 1 ∧ (Xk)j = 1 | Tk,i = 1, εk) · Prob(Tk,i = 1 | εk)

≈
(

δ

1 − εk

)2

εk

= δ2 · εk

(1 − εk)2
.

Since the relative weight of Xk is less than δ, this means that the average relative
weight of the inner blocks is less than δ. Knowing that the relative distance of
the inner code is δ, we get the combinatorial guarantee that at least one of the
inner code blocks contains the zero codeword. We therefore know that εk ≥ n−1.
(In reality, we expect a constant fraction of them to be zero.)

Now, if for each pair of indices (i, j), we compute

Sij :=
N∑

k=1

Iij,k,

then, if N is large enough, those random variables can be used to determine the
inner codewords: Just declare (i, j) as belonging to the same set whenever Sij is
large enough.

After the sampling, the values Sij can then be used to recover the sets, using
a greedy algorithm, for example. Algorithm 1. illustrates this approach.

Note that the behaviour of εk has an impact on the complexity of the algo-
rithm. The bound εk ≥ n−1 guarantees that only a polynomial number of low
weight codewords has to be sampled, but larger values cause much faster con-
vergence. (In practice, choosing the number of observations linear in the number
of sets works well over a wide parameter range, although this is significantly less
than what we can prove to be sufficient.)



354 L. Minder and A. Shokrollahi

Algorithm 1. Decompose inner sets of C
C is a concatenated code of block length N = n · ni. The inner code Ci has distance di

and length ni. M is the number of samples deemed sufficient.
Let Sij ← 0, 1 ≤ i, j ≤ N .
for i = 1, . . . , M do

Sample a word (x1, . . . , xN) ∈ C of weight < N(di/ni).
for each (i, j) with xi = xj = 1 and i �= j do

Increment Sij .
end for

end for
for e = 1, . . . , n do

Let i be such that Sij is maximal for some j, i.e., i ← arg max1≤i≤N max1≤j≤N Sij

Te ← {i}
while |Te| < ni do

Let 1 ≤ i ≤ N be a vertex such that
�

j∈Te
Sij is maximal.

Te ← Te ∪ {i}
Let Sji ← −∞ and Sij ← −∞ for all 1 ≤ j ≤ N .

end while
end for

We close this section by noting that according to our definition, Reed-Muller
codes themselves are concatenated codes, so one could think of applying this
method directly, rather than first finding minimum weight words and shortening.
This does not work, since the minimum distance is in this case just large enough
to prevent any codewords from lying in the space we want to sample from.

4.3 The Case r = 1

Consider the matrix A formed by the rows corresponding to the codewords vm,
vm−1, . . . , v1 of the (unpermuted) R(1, m). By construction, the i-th column of
this matrix is just the number i − 1, if we read the vector as a binary number.
Any possible binary vector of length m appears exactly once among the columns
of this matrix, and if we add the all-one row, we get a generator matrix for a
first-order Reed-Muller code.

Now, let f1, f2, . . . , fm, fm+1 be a random basis of R(1, m)σ. If the all-one
codeword is not linearly dependent on f1, . . . , fm, then in the matrix Aσ formed
by the rows f1, . . . , fm, each column-vector is distinct. Thus, we can just reorder
the columns by moving the zero-vector to the first position, etc., and thus obtain
the matrix A. The same permutation applied to the positions of R(1, m)σ will
then yield R(1, m).

This suggests a simple method to find a suitable permutation: Pick any basis
f1, . . . , fm+1 of R(1, m)σ, check if the columns of the corresponding matrix Aσ

are distinct, repeat if not, identify the corresponding permutation otherwise.
What is the success-probability of such an iteration? Since the fi are linearly

independent, the following estimate of this probability holds:



Cryptanalysis of the Sidelnikov Cryptosystem 355

(2m+1 − 2)(2m+1 − 22) · · · (2m+1 − 2m)
(2m+1 − 1)(2m+1 − 2) · · · (2m+1 − 2m−1)

=
2m

2m+1 − 1
>

1
2
.

In other words, we need merely two trials on the average.

4.4 Running Time Analysis

In the analysis, we will take the quantity n = 2m (the block length) as the input
length, and we will assume r to be small with respect to m which leads to a
low-rate setting. This assumption is based on the fact that Reed-Muller codes
behave very poorly when r is large, and are therefore practically useless in these
instances. For this reason, we will assume r/m → 0 and r < m/2. In practice,
r is usually a small constant. See [2] for tradeoffs between r, m and decoding
thresholds.

The only computationally hard operation of the attack is the one of finding
low weight words in a code, everything else is polynomial time. Thus, in order
to determine the running time up to a polynomial factor, it is sufficient to verify
that only a polynomial number of low weight words is needed, and then to
restrict attention to the low weight word finding algorithm.

Checking that only a polynomial number of low weight words has to be found
is straightforward: In order to find a single vector in R(r − 1, m)σ, a minimum
weight word in the original code has to be found, and then the statistical test
has to be performed to recover the concatenated structure of the shortened code.
Since the bias in the statistical test is at least (2r − 1)−2 per observation, we
have to collect O(22r) = O(2m) = O(n) vectors to get good estimates.

Thus, finding a single vector of R(r − 1, m)σ needs the sampling of a polyno-
mial number of low weight words. But then, since O(k) = O(n), so does clearly
the sampling for a complete basis of R(r − 1, m)σ. And given that r � n, the
reduction to R(1, m)σ requires still only a polynomial number of samples.

Because of this, we conclude that, in the exponent, only the complexity of the
low weight word finding algorithm matters asymptotically, and we restrict our
attention to this algorithm. In practice, those polynomial factors do of course
matter to some extent, but notice that the degree of the polynomial is not very
large.

Finding very low weight codewords. The problem of finding very low weight
words is generally intractable for linear codes. For example, if the rate is kept
fixed and the relative weight of the sought word is fixed and small enough, then
even the best known algorithms are exponential in the block length.

However, finding low weight words is much easier if the rate is low, and if it
is not actually fixed but converges to 0 with the block length.

Good methods for finding low weight words are based on the following (in-
formation set decoding) algorithm: Take a random k × n generator matrix G of
the code, pick a random set I of k columns of G, and diagonalize the matrix G
on the set I. Check the rows of G to see if any of them is low weight. If not, try
again with another random set I.



356 L. Minder and A. Shokrollahi

The condition for a specific word in G of weight w to pop up as a row in such
a diagonalized matrix is that exactly one of its bits is inside the information set
and the other ones are outside. To simplify, we instead compute the probability
that none of its bits are in the information set, a probability which is a bit
smaller. We can approximate this by noting that if k is small compared to n, the
probability that none of the positions of I match with the support of the word
of weight w is roughly (

1 − w

n

)k

. (2)

This probability becomes large if k is very small with respect to n (i.e., the rate
is very low), or if w is very small.

Note that (2) estimates the probability of finding a single word of the given
weight given a random set I. If many words of the desired weight exist, the
probability has to be multiplied with the number of such words. The above
estimate decreases with w, but if such an algorithm is applied to find any word
of weight ≤ w0, then the larger w0 is, the easier the task becomes. The reason
for this apparent contradiction is simply that the number of acceptable words
increases dramatically with w0.

Finite-length analysis. The goal of this section is to specialize (2) to the case
of Reed-Muller codes, and to devise a crude bound which allows to estimate the
feasibility of the low weight word finding problems (and thus the attack) for
different values of r and m.

We first study the hardness of the minimum weight word finding procedure
for Reed-Muller codes. In this case, we have w = 2m−r and k =

∑r
i=0

(
m
i

)
≤

m−r+1
m−2r+1 · mr

r! . If we plug this into (2), we get the hit probability of at least

exp
{

m − r + 1
m − 2r + 1

· mr

r!
· ln

(
1 − 2−r

)}
(3)

for a single codeword per information set. By Proposition 3.2, there are at least
2mr−r(r−1) such words, and so the cost for finding any one of them can be
estimated to be at most

2−
m−r+1

m−2r+1 ·m
r

r! ·log2(1−2−r)−mr+r(r−1) (4)

diagonalizations of the generator matrix. This rough estimate predicts, for ex-
ample, that finding a minimum weight word in R(3, 11) would cost roughly 237

diagonalizations, and thus finding such words is feasible in that case.
As expected and easily seen by comparing to real running times, the bound

(4) is somewhat pessimistic, i.e., it overestimates the running time. For example,
finding a minimum weight word in R(3, 11) needs only about 217 diagonalizations
in practice. More precise estimates are of course possible, but result in uglier
formulas.

The other low weight finding instance operates on the shortened code. In
practice the sampling turns out to be much easier, because of the lower rate



Cryptanalysis of the Sidelnikov Cryptosystem 357

and the weakened condition on the weight. A conservative estimate is easy to
find. For example, one can show that there are at least 2mr−r(r−1)−(m+r2−4r+2)

minimum weight words in the shortened code, and then apply (3) to get a bound
similar to (4). The obtained bound is even weaker than (4), though: It does not
take into account the lower rate of the code, nor the fact that words do not have
to be strictly minimum weight in this case.

Asymptotic analysis. Asymptotically, the running time for the algorithm is

O(poly(n)) · eO(poly(log(n))) (5)

for any fixed value of r.
To see this, we start again with (3). Using the assumption that r/m → 0, and

writing the expression in terms of the block length n = 2m instead of m, we get
that this probability behaves like

exp {− log2(n)rCr(1 + o(1))} ,

where Cr is a constant depending only on r. This time, we assume there is just
a single minimum weight codeword, and thus a conservative estimate for the
number of trials to find a minimum weight word is

Clw := exp {log2(n)rCr(1 + o(1))} . (6)

We take Clw as the cost for both of the low weight sampling instances, deferring
justification of this to A.1. Using the fact that only a polynomial (in n) number
of samplings is needed, we conclude that (5) is is indeed a bound for the running
time of the algorithm.

For large r, the numbers get very large. That is not an artifact: If the code
is not sufficiently low-rate, then finding minimum weight becomes a very hard
problem, rendering the attack infeasible.

4.5 Experimental Running Time

To check the real-life behaviour, we ran our algorithm for different parameters
on a 2.4GHz PC. Our implementation uses rather simple low weight word find-
ing algorithms, and not elaborate ones like, e.g., the ones described in [1]. The
average running-times for ten runs were:2

r = 2 r = 3 r = 4
m = 5 (n = 32) < 0.01s
m = 6 (n = 64) < 0.01s
m = 7 (n = 128) 0.02s 5.261s
m = 8 (n = 256) 0.081s 2.059s
m = 9 (n = 512) 0.448s 3.462s 176.914s
m = 10 (n = 1024) 2.46s 26.6s 82197.4s
m = 11 (n = 2048) 18.34s 1192.71s no try

2 We only look at m > 2r; since in the other case, the attack can be carried out more
efficiently on the dual code.



358 L. Minder and A. Shokrollahi

As predicted by the analysis, the performance degrades quickly with larger r.
This does indeed exhibit a limit of our attack, but note that since the perfor-
mance of Reed-Muller codes degrades with large r, choosing such values would
very likely open the doors to other attacks.

The (r = 3, m = 7)-case is an anomaly of our implementation; we have decided
to leave the high numbers for consistency reasons.

Acknowledgement

We would like to thank Gérard Maze, Arjen Lenstra and Martijn Stam for
helpful discussions and reviewing early draft versions of this paper; their help
and support has been invaluable in the process of writing up this paper.

References

1. A. Canteaut, F. Chabaut, A new algorithm for finding minimum-weight words in a
linear code: application to primitive narrow-sense BCH-codes of length 511, 1998,
IEEE Transactions on Information Theory, 44(1):367-378

2. I. Dumer, K. Shabunov, Soft-decision decoding of Reed-Muller codes: a simplified
algorithm, 2006, IEEE Transactions on Information Theory 52(3): 954-963

3. W. Cary Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003, Cam-
bridge University Press

4. T. Kasami, N. Tokura, On the Weight Structure of Reed-Muller Codes, 1970, IEEE
Transactions on Information Theory, 16(6): 752-759

5. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, 1978,
North-Holland

6. R. J. McEliece, A public key cryptosystem based on algebraic coding theory, DSN
progress report, 42-44:114-116, 1978

7. H. Niederreiter, Knapsack-Type Cryptosystems and Algebraic Coding Theory, Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

8. V. M. Sidelnikov, A public-key cryptosystem based on binary Reed-Muller codes,
Discrete Mathematics and Applications, 4 No. 3, 1994

9. V. M. Sidelnikov, S. O. Shestakov, On insecurity of cryptosystems based on general-
ized Reed-Solomon codes, Discrete Mathematics and Applications, 2, No. 4:439–444,
1992

10. N. Sendrier, On the Structure of a randomly permuted concatenated code, EU-
ROCODE 94, October 1994.

11. N. Sendrier, Finding the permutation between equivalent codes: the support splitting
algorithm, IEEE Transactions on Information Theory, 46(4):1193-1203, 2000

A Appendix

This appendix contains detailed proofs that have been omitted in the paper, as
well as some other comments we do not consider vital for the understanding of
the paper.



Cryptanalysis of the Sidelnikov Cryptosystem 359

A.1 The Low Weight Word Problem in the Shortened Code

In the running-time analysis, we based our running-time estimates on estimates
on the difficulty of the low weight word finding problem.

It should be noted that two different low weight word finding problems have to
be solved; the minimum weight word finding problem in the Reed-Muller code,
and the low weight word finding problem in the shortened Reed-Muller code.

We assumed that the low weight word finding problem in the shortened code
is easier than the minimum weight word finding algorithm in the original code.
The reason for this is that first the weight restriction is relieved, and second, the
shortened code has lower rate, as we will now show.

The shortened code has lower rate. The correctness of our running time
analysis depends on the fact that the shortened code has lower rate. This is not
an obvious fact, since, even though the dimension clearly has to decrease, the
length does so too. We prove the assertion in this section.

We write Pr,m the number of linearly independent parity checks that R(r, m)
has, i.e., Pr,m = dim(R(r, m)⊥).

We can use (1) to deduce the number its number of linearly independent
parity checks in the shortened code, and get that there are

r∑

i=1

(
r

i

)
Pr−i,m−r

of them. We can deduce a similar formula for Pr,m itself using an induction on
the equality Pr,m = Pr,m−1 +Pr−1,m−1. We then get that for any � ≤ r, we have

Pr,m =
�∑

i=0

(
�

i

)
Pr−i,m−�.

Proposition A.1. The shortened code (constructed in the section on the attack)
has lower rate than the original code.

Proof. We have to show that
∑r

i=1

(
r
i

)
Pr−i,m−r

2m − 2m−r
>

∑r
i=0

(
r
i

)
Pr−i,m−r

2m
.

Rearranging the terms, we get that this is equivalent to showing that

1
1 − 2−r

>

∑r
i=0

(
r
i

)
Pr−i,m−r∑r

i=1

(
r
i

)
Pr−i,m−r

,

or yet,

2−r >
Pr,m−r∑r

i=0

(
r
i

)
Pr−i,m−r

.



360 L. Minder and A. Shokrollahi

Let μ be the weighted average of the Pr−i,m−r, i.e.,

μ = 2−r
r∑

i=0

(
r

i

)
Pr−i,m−r.

Then we see that we have to show

μ > Pr,m−r.

Now this last equation is true because

Pr,m−r < Pr−1,m−r < · · · < P0,m−r,

as implied by proposition 2.1. �

A.2 A Brief Note on the Generalized Sidelnikov System

The paper [8] also proposes to use more than a single generator. The proposition
is to juxtapose several differently scrambled generators, and then intermingle the
separate blocks with a right-hand permutation matrix. If u is some small integer,
R is a generator matrix of some R(r, m)-matrix of dimension k × n, E1, . . . , Eu

are random invertible matrices, and Γ is a un×un random permutation matrix,
then the public key is of the form

|E1R, E2R, . . . , EuR|Γ,

which is the generator matrix of some [un, k]-code.
In fact, there is no added security using this when compared to the case

u = 1. To see this, note that on the positions corresponding to EiR, all the
parity checks for R(r, m) are valid parity checks. So to recover the independent
code blocks, it is enough to sample low weight parity checks and to mark the
bits in their support as belonging to the same inner block. Doing this for not to
many codewords should be enough to recover the block decomposition.

In general, it is hard to find low weight words, but not if the sought words
are very low weight. Since R(r, m)⊥ = R(m− r−1, m), the lowest-weight in the
dual code is 2r+1, which is indeed very low weight for the values of r of interest
in practice.

So, in summary, breaking the general Sidelnikov system is roughly equivalent
to recovering a single Reed-Muller code.



Toward a Rigorous Variation of Coppersmith’s
Algorithm on Three Variables

Aurélie Bauer2 and Antoine Joux1,2

1 DGA
2 Université de Versailles Saint-Quentin-en-Yvelines

Laboratoire PRISM, 45, Avenue des Etats-Unis
78035 Versailles cedex, France

aurelie.bauer@prism.uvsq.fr, antoine.joux@m4x.org

Abstract. In 1996, Coppersmith introduced two lattice reduction based
techniques to find small roots in polynomial equations. One technique
works for modular univariate polynomials, the other for bivariate poly-
nomials over the integers. Since then, these methods have been used
in a huge variety of cryptanalytic applications. Some applications also
use extensions of Coppersmith’s techniques on more variables. However,
these extensions are heuristic methods. In the present paper, we present
and analyze a new variation of Coppersmith’s algorithm on three vari-
ables over the integers. We also study the applicability of our method to
short RSA exponents attacks. In addition to lattice reduction techniques,
our method also uses Gröbner bases computations. Moreover, at least in
principle, it can be generalized to four or more variables.

Keywords: Lattice reduction, Coppersmith’s algorithms, Gröbner basis.

1 Introduction

In 1996, Coppersmith introduced two methods for finding small roots of polyno-
mial equations using lattice reduction, one for the univariate modular case and
another one for the bivariate case over the integers [6,5,7]. These algorithms are
based on the same idea: using lattice reduction (e.g. LLL) in order to create a
second polynomial that has the same root as the first one. In both cases, this
construction leads to a rigorous method to recover the root. In particular, in the
bivariate case, the use of orthogonal lattice guarantees the independence of the
two polynomials and ensures that the root can be recovered. In order to simplify
and help understand Coppersmith’s methods, Howgrave-Graham [13] and Coron
[8] revisited his ideas and proposed alternative constructions.

Since 1996, many cryptanalytic applications have been based on these meth-
ods, for example the factorization of N = pq knowing a fraction of the most
significant bits on each factor. Another well-known example is the cryptanalysis
of RSA with small private key [4,2].

The applications of these algorithms for finding small roots of polynomial
equations can roughly be divided into two parts. On the one hand some re-
searchers try to generalize the original Coppersmith’s methods. For example, in

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 361–378, 2007.
c© International Association for Cryptology Research 2007



362 A. Bauer and A. Joux

[3], Blömer and May present new results using Coppersmith’s method for poly-
nomials whose shapes are more complicated than those originally considered in
Coppersmith’s articles. Another example is the paper of Howgrave-Graham [14]
in which he explains how to cast the problem of finding roots for particular poly-
nomials in the more general context of approximate GCD computations. On the
other hand, there are researchers trying to adapt all these methods for more
than two variables. As an example, several new attacks on RSA are proposed in
[9], using variants of the original method on three variables.

However, with more than two variables, one encounters a major obstruction.
Indeed, one can not guarantee any more that the polynomials outputted by
LLL reduction are algebraically independent. Still in some practical applications,
the approach continues to work. Despite this, more and more articles mention
problematic cases. For example, in [2] the authors analyze in details one of the
heuristic multivariate attacks proposed by Boneh and Durfee in [4]. In [11,12],
Hinek analyzes the problem of algebraic independence of the polynomials. He
focuses on the fact that in experiments algebraic dependency often leads to
difficulties and he says “in light of the observations in this work, it might be the
case that this lack of reported instances is simply due to a lack of experimental
observations”. In this paper, in order to avoid these difficulties we propose a
new generalization of Coppersmith’s method in three variables, using a new
lattice construction to find a third independent polynomial. Our construction
uses Gröbner basis in addition to lattice reduction.

This paper is organized as follows. In section 2, we recall a few facts about
lattice reduction and known heuristic variations of Coppersmith’s method on
three variables over the integers. We discuss the issue of polynomials indepen-
dence. In section 3, we present an overview of our main idea which generalizes
the method by using LLL reduction on a different lattice. To construct it, we
show that the use of Gröbner bases and their properties are essential. In section
4 we describe a criterion on the input polynomials that when satisfied allows
to develop a rigorous version. In section 5, we focus on one of the RSA attacks
proposed in [9] and we show some results of experiments made with our method.
The two approaches can then be compared. Finally, in section 6 we discuss the
possibility of generalizing to four or more variables.

2 Preliminaries

2.1 Lattices

Since lattices are an essential tool for Coppersmith’s attack, let us recall a few
facts about lattices and reduced basis. A lattice L is a discrete subgroup of Rn.
If L is a non-empty subset of Rn, L is a lattice if and only if there exists r
linearly independent vectors over R (with r ≤ n) such that

L = Zb1 ⊕ · · · ⊕ Zbr

The set B = (b1, . . . , br) is called a basis of L. In this paper, as in many crypto-
graphic applications, we focus on integer lattices L ⊂ Z

n.



Toward a Rigorous Variation of Coppersmith’s Algorithm 363

Let L be a lattice generated by the vectors B=(b1, . . . , br) and (b�
1, . . . , b

�
r), the

vectors from Gram-Schmidt’s orthogonalization of B. Let B be the r ×n-matrix
whose rows are the bi’s. The determinant of L is defined as

det L =
√

det(BtB) =
r∏

i=1

‖b�
i ‖2

where ‖‖ denotes the Euclidean norm. When L is a full-rank lattice (i.e. when
n = r) the formula can be simplified to det L = | detB|.

In 1982, Lenstra, Lenstra and Lovasz [15] introduced the LLL reduction al-
gorithm. Using this algorithm, one can obtain a reduced basis of a lattice L. To
analyze Coppersmith’s algorithm, we need to know that

‖b�
r‖ ≥ (detL)1/r 2−(r−1)/4 (1)

for any LLL reduced basis (b1, . . . , br).

2.2 Gröbner Basis on Three Variables

Let Z[x, y, z] be the polynomial ring in three variables x, y, z over Z. A monomial
is an elementary polynomial xα1yα2zα3 with (α1, α2, α3) ∈ N

3 and a term is
λxα1yα2zα3 with λ ∈ Z. In the following, when we refer to a monomial in a
set, we use both the notations (α1, α2, α3) and xα1yα2zα3. If p is a polynomial
defined over Z, the Newton polygon of p refers to the convex hull of all monomials
(viewed as points in N

3) that appear with a non zero coefficient in p.
A monomial ordering < on Z[x, y, z] is a total ordering on the set of mono-

mials which is compatible with multiplication. Among all existing orderings, a
frequently encountered one is called deglex and is defined as:

xα1yα2zα3 < xβ1yβ2zβ3 ⇔

⎧
⎪⎪⎨

⎪⎪⎩

α < β
or
α = β and ∃i ∈ {1, 2, 3}, αi < βi

∀j < i, αj = βj

where α = (α1 + α2 + α3) and β = (β1 + β2 + β3). If a monomial ordering is
chosen, the initial term of a polynomial p, denoted by in(p), refers to its greatest
term. Let I be an ideal of Z[x, y, z], in(I) is the set of all initial terms of the
polynomials which belong to I. If the set {q1, . . . , ql} is composed by polyno-
mials of I such that (in(q1), . . . , in(ql)) = in(I), we call it a Gröbner basis of
I. In practice, a Gröbner basis can be computed using F4 algorithm [10] imple-
mented in Magma. For a system of generators having d as its maximal degree,
the theoretical complexity is polynomial in d when the number of variables is
fixed.1

1 According to M. Bardet [1], the complexity in this case is upper bounded by d72. In
practice, the computation is very fast under Magma.



364 A. Bauer and A. Joux

2.3 Primary Decomposition

Let I be an ideal of Z[x, y, z]. It is said to be prime if the condition fg ∈ I
implies that either f or g belongs to I. The radical of I, denoted by

√
I, refers

to the set {f ∈ I, ∃n ∈ N, fn ∈ I}. A primary ideal J satisfies the following
condition: if fg belongs to J with f �∈ J , then g belongs to

√
J . If I is a primary

ideal, then
√

I is a prime one. In a noetherian ring, each ideal can be written
as an intersection of primary ideals. In practice, with the help of Magma, a few
seconds are needed to compute the primary decomposition of an ideal I or to
obtain its radical.

The set defined as {(x1, y1, z1) ∈ Z
3, ∀p ∈ I, p(x1, y1, z1) = 0} is denoted as

V (I). In the following, we say that (x1, y1, z1) is a root of I if it belongs to V (I).
If I has I1 ∩· · ·∩Ir as a primary decomposition, then V (I) = V (I1)∪· · ·∪V (Ir).
The following property holds: V (I) = V (

√
I).

2.4 Coppersmith’s Method, a Basic Variation on 3 Variables

Let p1(x, y, z) be an irreducible polynomial of Z[x, y, z] having (x0, y0, z0) as
root over the integers satisfying |x0| < X, |y0| < Y and |z0| < Z. As usual when
working with Coppersmith’s method, we denote by W1 the quantity ‖p̃1‖∞ where
‖p(x, y, z)‖∞ is the maximum of the absolute values of the coefficients of p and
p̃1(x, y, z) represents p1(xX, yY, zZ). Our goal is to recover the root (x0, y0, z0)
in polynomial time.

As in [3], we use the notion of admissible sets. Let M be a non-empty set of
three variables monomials. A polynomial p(x, y, z) is said to be defined over M
if p can be written as linear combination of monomials in M . Let S be another
non-empty set and f, g be two polynomials such that g = fp1. The ordered
pair (S, M) is said to be admissible for p1 if the property “g defined over M” is
equivalent with “f defined over S”. The cardinality of M and S are denoted by
m and s.

Coppersmith’s algorithm works by finding a second polynomial p2 algebraically
independent from p1, which has the same root over the integers. When working
with two variables, the resultant of p1 and p2 is non zero and the root can easily
be recovered. However, in our case, since we work with three variables, two poly-
nomials are not enough to recover the root. Still, it is a first important step. Thus,
we now describe how Coppersmith’s algorithm can be adapted in three variables
to find p2. We start by introducing the notation (x0

fy0
gz0

h)M that refers to
the vector (1, x0, y0, z0, . . . , x0

fy0
gz0

h, . . . ) with (f, g, h) ∈ M , where the order
of the coordinates depends on the monomial ordering. Then, let us take the vec-
tor r0 =(xf

0yg
0zh

0 )M and the lattice L1 generated by the rows of the matrix M1
(see figure 1).

The right hand part of M1 is denoted by P1 and the left hand one by
DM . As s < m, there exists a sublattice L′1 ⊂ L1 of dimension (m − s) such
that its vectors have their s last coordinates equal to zero. As (x0, y0, z0) is
a root of p1, the product s0 = r0M1 gives a short vector of L′1 defined by
s0 =((x0

X
)f (y0

Y
)g(z0

Z
)h)M |(0, . . . , 0) where the symbol | refers to the concate-

nation of the two vectors. Assume that (b1, . . . , br) is an LLL reduced basis of



Toward a Rigorous Variation of Coppersmith’s Algorithm 365

M1 =

�
������

. . .
X−fY −gZ−h� �� �

(f,g,h)∈M

. . .

xiyjzkp1� �� �
↓ ↓ ↓

�
					


m

�����

m←−−−−−−−−−−→ s←−−→

Fig. 1.

L′1 (with r = m − s), then when ‖s0‖ < ‖b�
r‖ we know that the inner product

< s0|b�
r > is equal to zero. That leads to a new polynomial p2 that has the same

root as p1.
As in [5], we can show that p2, as all polynomials obtained from L′1, is by

construction independent from p1. The crucial point of this proof is based on
the fact that, in this case, algebraic independence relies on linear independence.

In order to prove in advance that the inequality ‖s0‖ < ‖b�
r‖ holds, we need to

compute | detL′1|. This can be done by adapting the method of [5], see appendix
A. From the determinant computation, we derive the conditions on the bounds
X, Y, Z:

XsxY sy Zsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) (2)

with c a well-chosen constant. In this formula dx, dy and dz denote the maximum
degree of p1 in x, y, z and sx refers to

∑
(f,g,h)∈M\S f . The corresponding sums

on y and z are denoted by sy and sz .

2.5 Recovering the Root

With this method, we have two polynomials p1 and p2 that have (x0, y0, z0)
as common root over the integers, and are algebraically independent. Two ap-
proaches have been proposed to recover the root. The first idea is to compute the
(provably non-zero) resultant of p1 and p2 in one of the variables. This leads to
a polynomial in two variables, on which Coppersmith’s algorithm can be reused.
However, this polynomial usually has a very high degree. As a consequence, the
conditions on the bounds are too restrictive to make the method useful. Another
idea is to reuse Coppersmith’s method in three variables trying to find another
polynomial p3. The difficulty here is to ensure that p3 is algebraically indepen-
dent from p1 and p2. Many authors use this approach together with the heuristic
hypothesis that p3 happens to be independent from {p1, p2}.

2.6 The Notion of Independence

As this works focuses on the problem of algebraic independence, this notion has
to be rigorously defined. Three polynomials p1, p2, p3 are algebraically indepen-
dent if and only if P (p1, p2, p3) = 0 implies P = 0 for a polynomial P defined
over Q[x, y, z]. In general, showing this property is rather difficult. In our case,



366 A. Bauer and A. Joux

knowing that p1 is irreducible and that p2 does not belong to (p1), it can be
reduced to a simpler problem. When the ideal I = (p1, p2) is prime, whenever
p3 does not belong to I, then p1, p2 and p3 are algebraically independent. The
proof of this result can be found in appendix B. It uses the fact that (x0, y0, z0)
is a common root of these three polynomials.

In the sequel, when we refer to I, it implicitly means a prime ideal. As a
consequence, showing that p3 does not belong to I is a sufficient condition to
obtain the independence. Let us now discuss on what happens if I is not a prime
ideal. In this case, the analysis is more complicated. Two behaviors are possible
depending on the fact that I is a primary ideal or not. If I is primary, it is
sufficient to replace it by its radical, which is prime. In the other case, I can be
written as an intersection of primary ideals I1 ∩· · ·∩Ir , such that at least one of
the Ij has (x0, y0, z0) as root. One has just to replace I by the well-chosen ideal
and to take its radical if it is primary.

3 A New Lattice to Find a Third Independent Polynomial

Having recovered p1 and p2, we now want a method to create a third polynomial
p3 that has again the same root as p1 and p2 and moreover does not belong to
the ideal I = (p1, p2). The main idea is to construct a new lattice very similar
to Coppersmith’s one that can produce this third independent polynomial.

3.1 Overview of the Main Idea

Let start with analyzing the first step of Coppersmith’s algorithm. The proof
concerning the independence of p2 from p1 uses the fact that, in this case, al-
gebraic independence relies on linear independence. In three variables, a third
polynomial has to be found. As explained before, the main difficulty is less its
construction than the proof of its independence from I. Our goal is to adapt the
previous construction and to keep information both from p1 and p2. If IM is the
set of all polynomials belonging to I that are defined over M , one possible idea
would be to create a new lattice by using generators of IM as a Z-module. Thus,
any polynomial belonging to IM is generated by the columns of this new matrix.

Finding these generators is quite complicated as it is strongly linked to the
shape of the set M . For this reason, in the rest of this section, we only focus
on a pair (M, <) such that there exists an equivalence between belonging to M
and being smaller than a given monomial (< is compatible with the shape of
M). As an example, one can consider the set M defined as all (f, g, h) ∈ N

3

satisfying (f + g + h) ≤ n (with n an integer) and the deglex ordering. In order
to construct these generators, we need an additional tool. In the sequel, we show
that the use of truncated Gröbner basis gives us the right tool.

3.2 Truncated Gröbner Basis

As explained before, our goal here is to find linear generators of I (up to some
degree). Moreover, we want these polynomials to be defined over M in order to



Toward a Rigorous Variation of Coppersmith’s Algorithm 367

preserve the dimension of the lattice. Let us denote by F , the set we are looking
for. To sum up the property we require for the construction, one can say that if
p is a polynomial defined over M and belonging to I, we want it to be written
as linear combination of the polynomials ri where the set {r1, . . . , rt} refers to
F . To construct such a set, we need the use of “truncated Gröbner basis” whose
definition is given as follows:

Definition 1. Let G = {q1, . . . , qr} be a minimal Gröbner basis of I. A trun-
cated Gröbner basis of I related to M is the set of polynomials {qi1 , . . . , qil

} of
G such that for each j ∈ {i1, . . . , il}, qij is defined over M . The corresponding
set is denoted by GM .

The idea is just to keep among all polynomials that generate the ideal I, those
which are defined over M . Then, to obtain the set F , it is sufficient to multiply
the qij by monomials and keep products which remain defined over M . Thus, we
have a system of generators of the vector space IM . The creation of the set GM

from G has a complexity equal to O(rm) whereas those of F has one of O(rm2).
With this construction, the set F is not necessarily minimal. As a consequence,
one could improve this construction by deleting the extra polynomials. However,
keeping them does not increase the dimension of the lattice, and does not change
the proofs.

Note: When the set M cannot be described directly by a monomial ordering,
finding a set of generators F is more difficult. However, the examples of section 5
show that it can still be done in practice. The difficulty here is to give a theoretic
construction that works for all cases.

3.3 A Second Coppersmith’s Iteration

Knowing how to find the set F , we are able to construct a new lattice to recover
a polynomial p3 having (x0, y0, z0) as root over the integers. The positive point
of this construction is that we can now prove that p3 does not belong to the
ideal I. Let us explain in more details, how the lattice is constructed.

Let start by considering the m × t matrix P2 whose columns represent the
polynomials {r1, . . . , rt}. From P2, one can construct the lattice LI generated
by the rows of the following matrix:

MI =

⎛

⎜⎜⎜⎜⎝

. . .
X−fY −gZ−h
︸ ︷︷ ︸

(f,g,h)∈M

. . .

r1,...,rt︷ ︸︸ ︷
↓ ↓ ↓

⎞

⎟⎟⎟⎟⎠
m

�⏐⏐⏐⏐�

m←−−−−−−−−−−→ t←−−→
If we assume that t < m, there exists a sublattice L′I ⊂ LI whose dimension

is (m − t) such that its vectors have their t last coordinates equal to zero. Let
see again the vector r0 =(xf

0yg
0zh

0 )M . As (x0, y0, z0) is a root of all polynomials



368 A. Bauer and A. Joux

in I, the product t0 = r0MI satisfies t0 =((x0
X

)f (y0
Y

)g(z0
Z

)h)M |(0, . . . , 0). This
is a short vector of L′I . Assume that (c1, . . . , cr) is an LLL reduced basis of L′I
(with r = m − t). When ‖t0‖ < ‖c�

r‖, the inner product < t0|c�
r > is equal to

zero, that leads to a new polynomial p3 that has the same common root as p1
and p2.

Let focus on the most important point which is the independence of p3 from
the ideal I. By construction, the vector which refers to p3 is orthogonal to all
polynomials of the set F . Knowing that in each vector space E, if there exists
a vector x such that for all y ∈ E, < x|y >= 0, then x = 0, we necessarily have
p3 �∈ I. Indeed, if p3 is assumed to belong to I, it would be equal to zero, which
is not the case.

Then, from p1 and p2, we construct a polynomial p3 that again has (x0, y0, z0)
as a root over the integers and that does not belong to I. The resultant compu-
tation of the three polynomials leads to a non-zero result and the root can be
recovered easily. When trying to check if ‖t0‖ < ‖c�

r‖ is verified, some technical
difficulties related to the evaluation of the determinant of MI , are encountered.
As the considered lattice L′I is much more complicated than the initial one used
in the first iteration of Coppersmith’s algorithm on three variables, it makes the
analysis more difficult. In the general case, as we are not able to evaluate the
determinant of MI precisely, this can not give explicit bounds.

4 A Criterion That Guarantees Rigorous Success

Starting with the ideal I = (p1, p2), we give in this section a criterion on the input
polynomials that guarantees that p3 can be found with no further restrictions on
X, Y, Z. Let us consider the set F related to the ideal I. In the sequel, we use the
following criterion: F should be equal to {{xiyjzkp1}(i,j,k)∈S , p2}. The monomial
xaybzc refers to those which verifies |p̃2,(a,b,c)| = ‖p̃2(xX, yY, zZ)‖∞ = W2. The
gcd of the coefficients of p2 is denoted by d. In the sequel, we show that p3 can
be found with no further restrictions than what was required to obtain p2. The
proof relies on a variation of the method explained in appendix A and is written
using the same notations.

4.1 Some Preliminary Results

Consider P̄2 the (m × (s + 1)) matrix whose s first columns are multiples of p̃1
and the last one represent the polynomial p̃2. Thus, P̄2 is just composed by the
matrix P̄1 and one additional column that is p̃2. Using all results of the appendix
A, there exists a subset M̂ ⊂ M of size s such that if P̂1 is the matrix composed
by the rows of P1 related to M̂ , we are able to evaluate | det P̂1|. As p2 is defined
over M \ M̂ , we know that (a, b, c) can not belong to M̂ . Then, let take the set
Ṁ = M̂ ∪ {(a, b, c)}. We have |Ṁ | = (s + 1).

If we select from P̄2, the rows related to monomials in Ṁ , we obtain the
following matrix P̂2:



Toward a Rigorous Variation of Coppersmith’s Algorithm 369

P̂2 =

⎛

⎜⎜⎜⎝
P̂1

0
...
0

× . . . × ±W2

⎞

⎟⎟⎟⎠

That leads to
| det P̂2| ≥ W2W

s
1 2−6s(d2

x+d2
y+d2

z)

4.2 Construction of the Lattice LI

Let P2 be the (m × (s + 1)) matrix constructed as follows: the s first columns
represent xiyjzkp1 for all (i, j, k) ∈ S and the last one is p2. LI is the lattice
generated by the rows of the following matrix:

NI =
(
DM\Ṁ | P2

)

where DM\Ṁ is the resulting matrix coming from deletion in DM of the columns
related to monomials in Ṁ . This definition of LI is different from those of LI ,
which has been announced in the previous section. However using this con-
struction does not change the explanation, moreover it gives an easier analysis.
Multiplying the rows of NI related to (f, g, h) ∈ M by XfY gZh and the s first
columns of P2 related to (i, j, k) ∈ S by X−iY −jZ−k leads to the matrix N̄I

satisfying:
| det N̄I | = | detNI |XsxY sy Zsz

Making some elementary row operations on N̄I leads to:
(

Id A′

0 P̂2

)

whose determinant is equal to (det P̂2). Thus, we obtain

| detNI | ≥ X−sxY −syZ−szW2W
s
1 2−6s(d2

x+d2
y+d2

z)

4.3 Using LLL-Reduction to Construct p3

The demonstration follows the same idea as in the previous case. r0 is the vector
defined by r0 =(xf

0yg
0zh

0 )M and t0 = r0NI . We have

t0 = ((
x0

X
)f (

y0

Y
)g(

z0

Z
)h

M\Ṁ
)|(0, . . . , 0︸ ︷︷ ︸

s+1

)

The vector t0 has its (s + 1) last coordinates equal to zero. Moreover, its norm
is less than

√
m − s − 1. As the polynomial p1(x, y, z) is irreducible, and the gcd

of the coefficients of p2 is d, some elementary row operations on NI leads to the
following matrix:

N ′I =
(

A1 | B
A2 | 0

)
� (s + 1)

� (m − s − 1)



370 A. Bauer and A. Joux

where B is a diagonal matrix having 1 on its s first coefficients and d for the last
one. If we call L′I the lattice generated by the (m−s−1) last rows of the previous
matrix, we have |d · detL′I | = | detNI |. Moreover, the vector t0 belongs to L′I .
Let take r = m − s − 1, and assume that (c1, . . . , cr) is an LLL-reduced basis of
L′I . Thus ‖c�

r‖ ≥ 2−(r−1)/4| detL′I |1/r. As t0 belongs to L′I , when ‖t0‖ < ‖c�
r‖,

the inner product < t0|c�
r > is equal to zero that leads to a polynomial p3(x, y, z)

having the same common root as p1 and p2. This condition has to be satisfied:
√

m − s − 1 < 2−
m−s−2

4 | detL′I |
1

m−s−1

Then we can construct p3 if the following one is verified:

√
m − s

(m−s)
2(m−s−1)/4 < | detL′I |

√
m − s

(m−s)
2(m−s−1)/4XsxY sy Zsz <

W2

d

(
W s

1 2−6s(d2
x+d2

y+d2
z)

)

As X, Y, Z already verify the equation (2), we obtain that if d < W2 (this is
always the case), then we can construct p3. In this case, no further restrictions
on the bounds are needed to construct p3. This polynomial is independent from
the ideal I = (p1, p2), as explained in section 3.3.

For a well-chosen pair (M, <) (see section 3.2), the previous condition on
F can be stated in terms of the truncated Gröbner basis. More precisely, we
should have GM = {p1, p

′
2} and no multiples of p′2 should be defined over M .2

In practice, when GM = {p1, p
′
2}, the other condition is often true.

5 Application to “Partial Key Exposure Attack on RSA”

In this section, in order to better understand the way the algorithm works in
practice, we apply it to one of the partial key exposure attacks on RSA which
have been proposed in [9]. We start by describing the basis of this attack in
section 5.1 and 5.2.

5.1 The RSA Equation

Let N = pq be a RSA modulus. The RSA encryption exponent e and decryption
exponent d both satisfy the well-known equation ed ≡ 1 mod φ(N) which can be
rewritten into ed = 1+k(N−(p+q−1)). We focus on the particular case of a small
exponent d but without any restrictions on e except that e < φ(N). In addition,
part of the high order bits of d (d̃) are known to an attacker. As a consequence,
d can be rewritten as d̃ + d0 such that |d| ≤ Nβ and |d0| = |d − d̃| ≤ N δ. The
values of the two parameters β and δ will be used later. Putting these entries
into the RSA equation leads to the following polynomial:

fMSB1(x, y, z) = ex − yN + yz + R with R = ed̃ − 1
2 The polynomial p′

2 is obtained by replacing in p2 all multiples of the initial term of
p1 by multiples of p

(1)
1 where p

(1)
1 = p1 − in(p1).



Toward a Rigorous Variation of Coppersmith’s Algorithm 371

The problem remains to find the root (x0, y0, z0) = (d0, k, p + q − 1) of the
polynomial p1 = fMSB1(x, y, z) with |x0| < X, |y0| < Y and |z0| < Z knowing
that X = N δ, Y = Nβ and Z = 3

√
N .

5.2 A Heuristic Attack

We only sketch here the general idea of the attack proposed in [9], for further
details, the reader can refer to it. Let m and t be two small integers which are
taken in {0, 1, 2} for the experiments. Let S and M be two sets of N

3 defined as:

S = {(i, j, k)|(i + j) ≤ m, k ≤ j + t} M = {(f, g, h)|(f + g) ≤ m + 1, h ≤ g + t}
By multiplying p1 by monomials in S and n (a well-chosen integer) by mono-
mials in M , a collection of polynomials is obtained whose Newton polygons are
included in M and that have (x0, y0, z0) as root modulo n. A lattice is then
constructed with the coefficients of all these polynomials and an LLL reduction
is performed. By taking the two shortest vectors of the lattice (under some con-
ditions on the bounds, see [9]) two polynomials p2 and p3 can be constructed
such that they have (x0, y0, z0) as a root over the integers. If the three resulting
polynomials p1, p2, p3 are algebraically independent, it leads to the root by re-
sultant computations. Unfortunately, one can not guarantee the independence,
which makes this attack be a heuristic one.

5.3 Our Attack

Let us now explain our attack, that is the way we manage to recover the root of
p1 = fMSB1(x, y, z) by using the construction exposed in section 3.3. Starting
with two independent polynomials, our construction allows us to construct a
third one having the same common root and algebraically independent from the
two others. Constructing the first two polynomials from a single one is simply
done by using the construction of section 5.2. Indeed, while this construction is
heuristic for the third polynomial, it rigorously yields the second one. We denote
by p2 the second polynomial thus found.

Let us consider the ideal I = (p1, p2) which has to be prime for our construc-
tion. If this is not the case, some preliminary computations have to be performed
in order to replace I by another prime ideal which still has (x0, y0, z0) as a root.
If I is primary, it is sufficient to replace it by its radical. If I is not primary,
we can compute its primary decomposition I = I1 ∩ · · · ∩ Ir and replace it by
the corresponding ideal Ij (or

√
Ij if necessary). In practice, testing each Ij to

find the correct one is very fast since there is a small number of such ideals in
this decomposition. Finally, from Ij we construct a lattice LIj using an auxil-
iary set F as in section 3.2. After reducing L′Ij

, we obtain a third independent
polynomial p3.

The polynomial p2 is derived from p1 using Coron’s and Howgrave-Graham’s
variations [13,8] instead of the original Coppersmith method. As a consequence,
we cannot apply the criterion of section 4 to ensure that the construction of p3 is
always easier than the construction of p2. Nevertheless, it works extremely well
in practice.



372 A. Bauer and A. Joux

5.4 Experiments

Let us take N as a 256-bit modulus for the experiments. The following tables
show the results we obtained with some fixed values of the parameters m, t and
β for both the attack proposed in [9] (which we refer to as ”Method 1”) and
ours (”Method 2”). One hundred polynomials p1 are created for each value of
δ. The first column gives the number of times the original attack only provides
one polynomial, the second column refers to the number of times it provides two
polynomials. In this case, the number of (p1, p2, p3) really independent is given
in column 3. This number is counted too with our method (column 4). The value
of δ in bold corresponds to the best bound obtained in practise in [9].

Table 1. m = 1, t = 1, β = 0.35

Method 1 Method 2
δ p2 (p2, p3) Indep. OK

0.09 0 100 98 100
0.10 0 100 92 100
0.11 0 100 95 100
0.12 0 100 92 100
0.13 0 100 80 100
0.132 0 100 86 100
0.134 0 100 77 100
0.136 0 100 71 100
0.138 1 99 75 100
0.140 0 100 71 100
0.142 1 99 72 100
0.144 0 100 55 100
0.146 4 95 57 99
0.148 7 89 50 96
0.150 6 91 43 97

Table 2. m = 2, t = 0, β = 0.3

Method 1 Method 2
δ p2 (p2, p3) Indep. OK (Root Pb.)

0.14 0 100 100 100 (0)
0.15 0 100 97 100 (0)
0.16 0 100 97 100 (0)
0.17 0 100 82 100 (1)
0.18 0 100 60 100 (8)
0.182 0 100 47 100 (13)
0.184 0 100 47 100 (13)
0.186 0 100 33 100 (26)
0.188 0 100 18 100 (36)
0.190 0 100 16 100 (50)
0.192 0 100 6 100 (79)
0.194 7 82 0 89 (89)
0.196 14 49 0 63 (63)
0.198 4 42 0 46 (46)
0.20 4 25 0 29 (29)

The first table really show that there are no more problems due to indepen-
dence. Thus, our method can be applied beyond that of [9]. In the second table,
a different problem seems to appear during the computation. This behavior can
be explained quite simply. Indeed, as we noticed before, in this application, we
can not predict in advance the restrictions on the bounds in order to obtain p3
such that p3(x0, y0, z0) = 0. Surprisingly, this is not a problem to recover the
root (see the next section).

5.5 Special Cases of Interest

We saw in the previous section that even if there are sometimes root problems,
it does not prevent us to recover the root. The reason why is that, in all cases,
the Gröbner basis of the ideal I = (p1, p2) is so simple that it allows to recover
the root, without needing a third polynomial. Let us show some examples where
the ”root problem” appears for I prime, primary and non-primary. These toys
examples use the tiny parameter N � 250 with β = 0.3, m = 2, t = 0, and
δ = 0.190.

I is prime The initial parameters are:

p1 = 9450886190201x+ ((z − 155155341747587)y + 72582805940743679)
(x0 = 233, y0 = 482, z0 = 25517171) → (X = 496, Y = 18080, Z = 37368409)



Toward a Rigorous Variation of Coppersmith’s Algorithm 373

After using the polynomial p2, which is too large to print, coming from the
attack of [9], we have the following Gröbner basis:

{
q1 = xz − 39521501447/12x+ 46079/6z + 6785552382017/12
q2 = y − 12/197x − 92158/197

In particular, the polynomial q2 has (x0, y0, z0) as a root. By multiplying all
its coefficients by 197 and taking the equation modulo 197, we find x0 ≡ 36
mod 197. By testing then 36, 233, we find the root.

I is primary The initial parameters are:

p1 = −32390526593433x+ ((z − 96130883093383)y − 215591345005890049)
(x0 = 87, y0 = −2272, z0 = 20056623) → (X = 453, Y = 15661, Z = 29413906)

The polynomial p2 is taken to construct I = (p1, p2). As this ideal is not
prime, it is replaced by its radical, what gives:

{
r1 = xz − 128929299037/31x+ 206327/31z + 7024533450267/31
r2 = y + 31/92x + 206327/92

The polynomial r2 has (x0, y0, z0) as a root. By multiplying it by 92 and taking
the equation modulo 92, we obtain that x0 ≡ 87 mod 92. We find the root
x0 = 87.

I is non-primary The initial parameters are:

p1 = 1581190442669x+ ((z − 3199926510559)y + 7690910313142015)
(x0 = 165, y0 = 2485, z0 = 4282719) → (X = 237, Y = 5642, Z = 5366501)

By taking p2, we consider I = (p1, p2) which is not a primary ideal. Its primary
decomposition gives the two following prime ideals:

{
q1 = xz + 4274183387/42x+ 29185/6z − 268309596605/7
q2 = y − 42/85x − 40859/17

{
q′1 = xz + 4274183387/42x+ 34049/7z + 1590068930929/42
q′2 = y − 42/85x − 204294/85

By checking which of the two previous ideals has (x0, y0, z0) as root, we find
that it is the first one. In particular, the polynomial q2 has the right root. By
taking the equation modulo 85, we obtain that x0 ≡ 80 mod 85. This gives the
right root x0 = 165.

Some comments. First of all, it seems for the previous examples to work very
well because of the size of the parameters, but in fact we have the same behaviors
with N � 2256. As the previous equations only give the modular value of x0
and not its integer value, some tests have to be performed to recover the root.



374 A. Bauer and A. Joux

In almost cases, it has to be tested less than five times (we even often recover the
root directly). There are nevertheless some cases where the value of x0 is more
difficult to find. Another important point to notice is that in almost cases, the
ideals have the shape of those studied previously. It means that we can recover
the root with only two polynomials instead of three, except for very rare cases.

6 Possible Generalizations in More Variables

We expose here a method to replace the heuristic that appears in all articles
concerning small roots of polynomial equations in three variables by weaker
conditions. We show that the method can, in principle, be generalized to more
variables. Starting with an irreducible polynomial p1 having (x0,1, . . . , x0,n) as
root, the classical Coppersmith’s method provides a second polynomial p2 that
has the same root and that is independent from p1. For each j ∈ {3, . . . , n}, con-
sidering the ideal Ij−1 = (p1, . . . , pj−1), the polynomial pj can be constructed
such that pj �∈ Ij−1. If the ideal Ij−1 is prime, the polynomials p1, . . . , pj are al-
gebraically independent. As a consequence, using a successive sequence of prime
ideals, we can obtain n polynomials algebraically independent and which have
the same common root, that leads to (x0,1, . . . , x0,n).

7 Conclusion

The main result of this paper is a new variation of Coppersmith’s algorithm
on three variables, that uses both lattice reduction and Gröbner bases com-
putations. In general, the success of this method is controlled by the shape of
the Gröbner basis of the ideal I = (p1, p2) produced by a straight adaption of
Coppersmith’s algorithm to the trivariate case. This is a first important step
toward rigorous applications of Coppersmith’s method with more than two vari-
ables. We also show how variations on our technique can improve applications
of cryptographic interest.

Open problems are to generalize the method to more applications and to
determine general criteria yielding rigorous variants of Coppersmith’s algorithm
with a wide range of applicability.

References

1. M. Bardet. Etude de sytèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, University of Paris 6, 2004.

2. J. Blömer and A. May. Low Secret Exponent RSA Revisited. In CaLC ’01: Revised
Papers from the International Conference on Cryptography and Lattices, pages 4–
19, London, UK, 2001. Springer-Verlag.

3. J. Blömer and A. May. A Tool Kit for Finding Small Roots of Bivariate Polynomi-
als over the Integers. Proceedings of Eurocrypt 2005, Lecture Notes in Computer
Science, 3494:251–257, 2005.



Toward a Rigorous Variation of Coppersmith’s Algorithm 375

4. D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key Less Than N0.292.
IEEE Transactions on Information Theory, 46:1339–1349, July 2000.

5. D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with high bits known. In Advances in Cryptology-Eurocrypt ’96, Lecture Notes in
Computer Science, volume 1070, pages 178–189. Springer-Verlag, 1996.

6. D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In
Advances in Cryptology-Eurocrypt ’96, Lecture Notes in Computer Science, volume
1070, pages 155–165. Springer Verlag, 1996.

7. D. Coppersmith. Finding Small Solutions to Small Degree Polynomials. In Cryp-
tography and Lattice Conference, Lecture Notes in Computer Science, volume 2146.
Springer-Verlag, 2001.

8. J.-S. Coron. Finding Small Roots of Bivariate Integer Polynomial Equations Revis-
ited. In Advances in Cryptology-Eurocrypt ’04, Lecture Notes in Computer Science,
pages 492–505. Springer-Verlag, 2004.

9. M. Ernst, E. Jochemsz, A. May, and B.de Weger. Partial Key Exposure Attacks
on RSA up to Full Size Exponents. In Advances in Cryptology (Eurocrypt 2005),
Lecture Notes in Computer Science Volume 3494, pages 371-386, Springer-Verlag,
2005.

10. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, (139):61–88, 1999.

11. M. J. Hinek. New partial key exposure attacks on RSA revisited. Technical report,
CACR, Centre for Applied Cryptographic Research, University of Waterloo, 2004.

12. M. J. Hinek. Small Private Exponent Partial Key-Exposure Attacks on Multi-
prime RSA. Technical report, CACR, Centre for Applied Cryptographic Research,
University of Waterloo, 2005.

13. N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Re-
visited. In Proceedings of the 6th IMA International Conference on Cryptography
and Coding, pages 131–142, London, UK, 1997. Springer-Verlag.

14. N. Howgrave-Graham. Approximate Integer Common Divisor. In CaLC ’01: Lec-
ture Notes in Computer Science, volume 2146, pages 51–66. Springer-Verlag, 2001.

15. A.K. Lenstra, Jr. H.W. Lenstra, and L. Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:513–534, 1982.

A First Iteration Using a Basic Variation of
Coppersmith’s Method on Three Variables

Let p1(x, y, z) be an irreducible polynomial of Z[x, y, z] having (x0, y0, z0) as root
over the integers such that |x0| < X , |y0| < Y and |z0| < Z. Let S and M be
sets of monomials over N

3.

Theorem 1. If S and M are admissible sets for p1, we can find in polynomial
time p2(x, y, z) which has (x0, y0, z0) as a root over the integers and is alge-
braically independent from p1, provided that

XsxY sy Zsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) (3)

where we assume that (m − s)2 ≤ cs(d2
x + d2

y + d2
z) for some constant c.



376 A. Bauer and A. Joux

A.1 Preliminaries

We denote by P̄1 the (m × s) matrix defined in section 2.4 whose columns refer
to the coefficients of xiyjzkp̃1 for all (i, j, k) ∈ S. The following result holds:

Lemma 1. There exists a subset M̂ ⊂ M of size s such that if P̂1 is the matrix
composed by the rows of P̄1 corresponding to monomials in M̂ , we have

| det P̂1| ≥ W s
1 2−6s(d2

x+d2
y+d2

z)

We omit this proof because it follows the same idea as in [5], the point is that
we work on three variables instead of two.

A.2 Construction of the Lattice L1

The (m × s) matrix whose columns represent the polynomials xiyjzkp1 for all
(i, j, k) ∈ S is denoted by P1. Moreover, we call DM the (m×m) diagonal matrix
whose entries are X−fY −gZ−h with (f, g, h) ∈ M . L1 is the lattice generated
by the rows of the following matrix:

N1 =
(

DM\M̂ | P1

)

where DM\M̂ is the resulting matrix coming from deletion in DM of the columns

related to monomials in M̂ . One can observe that the definition of L1 is different
from those of L1, which has been introduced in section 2.4. In fact, the same
explanation holds with this definition, however, in this case, the conditions on
the bounds are easier to determine. By multiplying the rows of N1 related to
(f, g, h) ∈ M by XfY gZh and the columns of P1 related to (i, j, k) ∈ S by
X−iY −jZ−k, a matrix N̄1 is constructed and satisfies:

| det N̄1| = | detN1|XsxY syZsz

Making some elementary row operations on N̄1 leads to:
(

Id A

0 P̂1

)

whose determinant is equal to (det P̂1). Thus, we obtain that

| detN1| ≥ X−sxY −syZ−sz W s
1 2−6s(d2

x+d2
y+d2

z)

A.3 Using LLL-Reduction to Construct p2

Let consider the vector r0 =(xf
0yg

0zh
0 )M and s0 = r0N1. We have

s0 = ((
x0

X
)f (

y0

Y
)g(

z0

Z
))h

M\M̂
|(0, . . . , 0︸ ︷︷ ︸

s

)



Toward a Rigorous Variation of Coppersmith’s Algorithm 377

This vector satisfies the two following conditions :

– ‖s0‖2 ≤
√

m − s
– Its s last coordinates are equal to 0.

As the polynomial p1(x, y, z) is irreducible, some elementary row operations
on N1 leads to the following matrix:

N ′1 =
(

A1 | Id
A2 | 0

)
� s

� m − s

If we call L′1 the lattice generated by the (m − s) last rows of the previous
matrix, we obtain | detL′1| = | detN1|. Moreover, s0 belongs to L′1. Let take
r = m− s, and assume that (b1, . . . , br) is an LLL-reduced basis of L′1. We know
that ‖b�

r‖ ≥ 2−(r−1)/4| detL′1|1/r. As s0 is a vector belonging to the lattice L′1,
when ‖s0‖ < ‖b�

r‖, the inner product < s0|b�
r > is equal to zero, that leads to

a polynomial p2(x, y, z) which has the same root as p1(x, y, z). The following
condition has to be satisfied:

√
m − s < 2−

m−s−1
4 | detL′1|

1
m−s

to allow the construction of p2. Let see the more restrictive condition:

√
m − s < 2−

m−s−1
4 (2−6s(d2

x+d2
y+d2

z)W s
1 X−sxY −sy Z−sz)

1
m−s

Finally, if XsxY syZsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) is verified (for c a constant
such that (m − s)2 ≤ cs(d2

x + d2
y + d2

z)), the polynomial p2 can be constructed in
polynomial time. With this construction, the monomials of p2 belong to M \ M̂ .
It remains to prove that the polynomial p2 is independent from p1. In fact, if this
is not the case, the vector related to p2 is a linear combination of the columns of
P1. Knowing that p2 is orthogonal to all multiples of p1, this can not be possible.

B Algebraic Independence Between p1, p2 and p3

Here is the proof of the result given in section (2.6). If the ideal I = (p1, p2)
is prime and p3 �∈ I, we show that p1, p2 and p3 are algebraically indepen-
dent. Assume there exists a polynomial P defined over Q[x, y, z] such that
P (p1, p2, p3) = 0, our goal is to prove that P = 0. In the following, we de-
note by Δ(P ) the set of all points (a, b, c) ∈ N

3 such that xaybzc appears in P
with a non-zero coefficient.

Starting with
∑

(a,b,c)∈Δ(p) λ(a,b,c)p
a
1p

b
2p

c
3 = 0, the polynomial Q(x) can then

be defined as
∑n

c=0 μcx
c with μc =

∑
(a,b)|(a,b,c)∈Δ(P ) λ(a,b,c)p

a
1p

b
2. This polyno-

mial also has p3 as a root and we can assume that μ0 �= 0, otherwise the poly-
nomial Q(x) can be replaced by Q(x)/x. As p1 and p2 are already algebraically
independent, proving that Q = 0 implies that P = 0.



378 A. Bauer and A. Joux

The first step of the proof is to show that μ0, . . . , μn ∈ I. Indeed, let us take
Q(p3) evaluated in (x0, y0, z0). Knowing that p3 has (x0, y0, z0) as a root, it
implies that μ0(x0, y0, z0) = 0. As a consequence, its constant coefficient λ(0,0,0)
is equal to zero and then μ0 ∈ I. Using the equation Q(p3) = 0, we obtain
p3(μ1 + · · · + μnpn−1

3 ) ∈ I. As the ideal I is prime and as p3 �∈ I, we have
μ1 + · · · + μnpn−1

3 ∈ I. Evaluating again this quantity in (x0, y0, z0) leads to
μ1(x0, y0, z0) = 0, that implies μ1 ∈ I. We can then go on the proof by doing
the same for μ2, . . . , μn.

The previous results allow us to rewrite each μc as μc = p1 Fc(p1, p2)+
p2 Gc(p2) with Fc ∈ Q[x, y] such that degx(Fc) < degx(μc) and Gc a polynomial
of Q[x] defined by Gc(x) =

∑gc

i=0 lc,ix
i. The equation Q(p3) = 0 becomes then:

p1 (F0(p1, p2) + · · · + Fn(p1, p2)pn
3 ) = −p2(G0(p2) + · · · + Gn(p2)pn

3 )︸ ︷︷ ︸
∈(p1)

(4)

As the ideal (p1) is prime and as p2 does not belong to (p1), it implies that
G0(p2) + · · · + Gn(p2)pn

3 ∈ (p1) ⊂ (p1, p2). As before, by evaluating this ex-
pression in (x0, y0, z0), we can show that l0,0, . . . , ln,0 = 0. It implies that the
polynomials Gc(x) can be expressed as Gc(x) = p2Gc,2(x) with Gc,2(x) defined
as

∑gc−1
i=0 lc,i+1x

i. As a consequence, the right hand part of the equation (4)
which belongs to (p1), can be rewritten into −p2

2(G0,2(p2) + · · · + Gn,2(p2)pn
3 ).

By the same explanation, we finally show that Gc(x) = 0 for all c ∈ {0, . . . , n}.
Using the previous result, we can then rewrite μc as p1Fc(p1, p2). The equation

Q(p3) = 0 becomes:

p1(
n∑

c=0

Fc(p1, p2)pc
3) = 0 ⇒ R(p3) =

n∑

c=0

νcp
c
3 = 0

with νc = Fc(p1, p2). The polynomial R(x) satisfies Q(x) = p1R(x) and the
coefficients νc are such that degx(νc) < degx(μc). We then separate again νc

as p1Hc(p1, p2) + p2Ic(p2) and we show that Ic = 0 for all c ∈ {0, . . . , n}. By
recurrence, we finally obtain that Q(x) = pk

1V (x) with V (x) a polynomial defined
over Q[x] which has p3 as a root. It implies that V = 0, and thus P = 0. This
concludes the proof.



An L(1/3 + ε) Algorithm for the Discrete
Logarithm Problem for Low Degree Curves

Andreas Enge1 and Pierrick Gaudry2

1 INRIA Futurs & Laboratoire d’Informatique (CNRS/UMR 7161)
École polytechnique, 91128 Palaiseau Cedex, France

2 LORIA (CNRS/UMR 7503), Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy Cedex, France

Abstract. The discrete logarithm problem in Jacobians of curves of
high genus g over finite fields Fq is known to be computable with subex-
ponential complexity Lqg (1/2, O(1)). We present an algorithm for a fam-
ily of plane curves whose degrees in X and Y are low with respect to the
curve genus, and suitably unbalanced. The finite base fields are arbitrary,
but their sizes should not grow too fast compared to the genus. For this
family, the group structure can be computed in subexponential time of
Lqg (1/3, O(1)), and a discrete logarithm computation takes subexponen-
tial time of Lqg (1/3 + ε, o(1)) for any positive ε. These runtime bounds
rely on heuristics similar to the ones used in the number field sieve or
the function field sieve algorithms.

1 Introduction

The discrete logarithm problem in algebraic curves over finite fields has been
receiving particular attention since elliptic curves and subsequently Jacobian
groups of further algebraic curves have been proposed for discrete logarithm
based public key cryptosystems. Although it is now clear that high genus curves
are unsuitable for cryptographical use, it remains crucial to study algorithms for
solving the discrete logarithm problem in those curves for several reasons. The
first reason is that having a better understanding of the situation for high genus
curves might lead to algorithmic improvements also in the small genus case. The
second reason is that the Weil descent strategy of attacking the discrete loga-
rithm problem in elliptic curves defined over extension fields leads to a discrete
logarithm problem in the Jacobian of a high genus curve. Therefore a better al-
gorithm for high genus discrete logarithms becomes naturally a potential threat
for some elliptic curves.

It turned out very early that the discrete logarithm problem in high genus
hyperelliptic curves (for instance in the sense that the size q of the base field
is fixed, while the genus g tends to infinity) can be solved by a subexponential
algorithm of complexity Lqg (1/2, O(1)). The first such algorithm was proposed
in [1]. As other subexponential algorithms, it consists of fixing a factor base
of small prime elements (here, prime divisors) and of creating relations that
correspond to the zero element modulo an equivalence relation (here, equivalence

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 379–393, 2007.
c© International Association for Cryptology Research 2007



380 A. Enge and P. Gaudry

of divisors modulo principal divisors). After collecting sufficiently many relations
and somehow introducing the base of the discrete logarithm and the element
whose logarithm is sought, linear algebra yields the desired result. Assuming
that smooth elements, that are elements decomposing over the factor base, have
the same density as for instance smooth integers or polynomials, such algorithms
usually end up with a complexity of Lqg(1/2, O(1)).

The algorithm in [1] creates relations by randomly taking low degree functions
(that are linear in Y for the curve Y 2 = f(X)), whose divisors are relations. Its
analysis is only heuristic. The first proven algorithms are given in [15] for the
infrastructure of real-quadratic hyperelliptic function fields and in [5] for Jaco-
bians of hyperelliptic curves. Relations are obtained in a process similar to that
of [11] by taking random linear combinations of factor base elements, reducing
modulo the equivalence relation and checking for smoothness. A rigorous analy-
sis is derived from the lower bound on the density of smooth divisors in [7]. A
generic description of a similar algorithm can be found in [6]; it applies to all
class groups in which a smoothness result is known. Heuristically, it obtains a
running time of Lqg (1/2, O(1)) for the discrete logarithm problem in arbitrary
high genus curves, the smoothness result needed for a proof of the complexity is
however only available for hyperelliptic curves.

A proven algorithm of complexity Lqg (1/2 + ε, O(1)) for very general curves
over a fixed field Fq and with genus g tending to infinity (with the only restriction
that the curves contain a rational point and that the cardinality of the Jacobian
group is bounded by qg+O(

√
g)) is given in [3]. Unlike previous algorithms, it

appears to be specific to algebraic curves and relies on a double randomisation,
taking random combinations of factor base elements and a random function
in a Riemann–Roch space. A relation is obtained whenever the divisor of this
function is smooth. A more general algorithm is proposed in [13] that yields a
proven Lqg (1/2, O(1)) complexity without any restriction on the input curve.

Another line of research on the discrete logarithm problem for algebraic
curves, started in [8] and not pursued in this article, consists of fixing g and
having q tend to infinity. This leads to algorithms that are exponential, but
faster than generic algorithms of square root complexity as soon as g ≥ 3, see
[9, 4].

In the light of algorithms of complexity L(1/3) for the discrete logarithm prob-
lem in finite fields as well as for factoring integers, it has been an open problem
to determine whether this complexity can be achieved also for algebraic curves.
In this article, we present the first probabilistic algorithm of heuristic complex-
ity Lqg (1/3, O(1)) to compute the group structure of certain curves whose total
degree is relatively small compared to their genus. When introducing the two el-
ements of the Jacobian for which the discrete logarithm problem is to be solved,
some sacrifice has to be made; we obtain an algorithm of complexity bounded
by Lqg (1/3 + ε, o(1)) for any positive constant ε.

The relation collection phase is the same as in [1] and consists of looking for
smooth divisors of functions linear in Y . By applying it to the curves of our spe-
cial family, one readily obtains a lower degree of the affine part of the intersection



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 381

divisor than in the general case, from which a complexity of Lqg (1/3, O(1)) is de-
rived. For smoothing the two divisors involved in the discrete logarithm problem,
a process is employed that is similar to the one used in the number field sieve
or in the function field sieve. This is the general special-Q descent strategy (also
related to the so-called lattice sieving). Each divisor is partially smoothed into
prime divisors of degree less than the starting divisor. Then each such prime di-
visor Q is smoothed again into smaller prime divisors, and we iterate until every
divisor is rewritten in terms of elements of the factor base. However, in our case
it is necessary to add an arbitrarily small constant ε to the 1/3 parameter to
obtain a proper descent phenomenon; otherwise, the process would get stuck
after one step.

Let us mention that subsequently to our algorithm, Diem has presented at
the 10th Workshop on Elliptic Curve Cryptography (ECC 2006) an algorithm
based on similar ideas, but with a quite different point of view. He manages to
obtain a complexity of L(1/3, O(1) for the discrete logarithm phase, for which
our algorithm takes L(1/3+ ε, o(1)). We will show how to reach a complexity of
L(1/3, O(1)) for discrete logarithms in our setting in the long, journal version.

2 Main Idea

Before describing our algorithm with all its technical details on a general class
of curves, we sketch in this section the main idea yielding a complexity of
Lqg (1/3, O(1)) for the relation collection phase for a restricted class of curves.
We provide a simplified analysis by hand waving; Section 3 is devoted to a more
precise description of the heuristics used and of the smoothness properties needed
for the analysis.

Let Fq be a fixed finite field. We consider a family of Cab curves over Fq, that
is, curves of the form

C : Y n + Xd + f(X, Y )

without affine singularities such that gcd(n, d) = 1 and any monomial X iY j

occurring in f satisfies ni + dj < nd. Such a curve has genus g = (n−1)(d−1)
2 ;

we assume that g tends to infinity, and that n ≈ g1/3 and d ≈ g2/3 (we use
the symbol ≈, meaning “about the same size” with no precise definition). The
non-singular model of a Cab curve has a unique point at infinity, and it is Fq-
rational; so there is a natural bijection between degree zero divisors and affine
divisors, and in the following, we shall only be concerned with effective affine
divisors. Choose as factor base F the Lqg (1/3, O(1)) prime divisors of smallest
degree (that is, the prime divisors up to a degree of B ≈ logq Lqg (1/3, O(1))).
To obtain relations, consider functions linear in Y of the form

ϕ = a(X) + b(X)Y

with a, b ∈ Fq[X ], gcd(a, b) = 1 and deg a, deg b = δ ≈ g1/3. Whenever the affine
part div(ϕ) of the divisor of ϕ is smooth with respect to the factor base, it yields
a relation, and we have to estimate the probability of this event.



382 A. Enge and P. Gaudry

Let N be the norm of the function field extension Fq(C) = Fq(X)[Y ]/(Y n +
Xd + f(X, Y )) relative to Fq(X). The norm of ϕ is computed as

N(ϕ) = N(b)N
(
Y +

a

b

)

= bn
((

−a

b

)n

+ Xd + f
(
X, −a

b

))

= (−a)n + bnXd + f∗(X),

where each monomial X iY j occurring in f is transformed into a monomial
X i(−a)jbn−j in f∗.

Since ϕ is linear in Y , all prime divisors it contains are totally split over
Fq(X), and ϕ is B-smooth if and only if its norm is. We have

degX N(ϕ) ≤ max(n deg a, n deg b + d) = nδ + d ≈ g2/3.

Heuristically, we assume that the norm behaves like a random polynomial of
degree about g2/3. Then it is B-smooth with probability 1/Lqg(1/3, O(1)) (this
is the same theorem as the one stating that a random polynomial of degree
g is logq Lqg (1/2, O(1))-smooth with probability 1/Lqg(1/2, O(1)), cf., for in-
stance, Theorem 2.1 of [2]). Equivalently, we may observe that deg(div(ϕ)) =
degX(N(ϕ)) and assume heuristically that div(ϕ) behaves like a random ef-
fective divisor of the same degree. Then the standard results on arithmetic
semigroups (cf. Section 3) yield again that div(ϕ) is smooth with probability
1/Lqg(1/3, O(1)).

Thus, the expected time for obtaining |F| = Lqg (1/3, O(1)) relations is
Lqg (1/3, O(1)), which is also the complexity of the linear algebra step for com-
puting the Smith normal form and thus the group structure of the Jacobian. The
complexity of the discrete logarithm problem is not considered here, an analysis
for the full algorithm is given in Section 5.

It remains to show that the search space is sufficiently large to yield the re-
quired Lqg (1/3, O(1)) relations, or otherwise said, that the number of candidates
for ϕ is at least Lqg (1/3, O(1)). The number of ϕ is about

q2δ = q2g1/3
= exp(2 log qg1/3)

< exp(2(g1/3(log q)1/3)(log(g log q))2/3) = Lqg(1/3, O(1)).

The previous inequality in the place of the desired equality shows that a
more rigorous analysis requires a more careful handling of the log q factors; in
particular, δ has to be slightly increased. Moreover, the constant exponent in
the subexponential function needs to be taken into account. This motivates the
following section, in which we examine in more detail the smoothness heuristics
and results that are needed for the algorithm.

3 Smoothness

The algorithm presented in this article relies on finding relations as smooth
divisors of random polynomial functions of low degree. We suppose that all
curves are given by an absolutely irreducible plane affine model



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 383

C : F (X, Y )

with F ∈ Fq[X, Y ], where Fq is the exact constant field of the function field of C.
The factor base F consists essentially of the places of degree bounded by some
parameter μ, with a few technical modifications. Precisely, F is composed of the
following places:

– the places corresponding to the resolution of singularities, regardless of their
degrees, whose number is bounded by (d−1)(d−2)

2 with d = deg F . By in-
cluding them in F , the algorithm can be described as if the curves were
non-singular.

– the infinite places corresponding to non-singularities, regardless of their de-
grees, whose number is bounded by d by Bézout’s theorem. By adding them,
it becomes sufficient to only examine the affine part of any divisor.

– places of degree bounded by some parameter μ and of inertia degree 1 with
respect to the function field extension Fq(X)[Y ]/(F ) over Fq(X). Otherwise
said, places corresponding to prime ideals of the form (u, Y − v) with u ∈
Fq[X ] irreducible of degree at most μ and v ∈ Fq[X ] of degree less than
deg u; the inertia degree is in fact the degree of the second generator in Y .
Due to the way relations are obtained in the algorithm, no places of higher
inertia degree may occur.

A divisor is called F -smooth if it can be decomposed over the factor base;
thus only its affine part plays a role, and for polynomial functions, this is an
effective (i.e. non-negative) divisor. An effective divisor is called μ-smooth if it is
composed only of places of degree up to μ. To be able to analyse the smoothness
probability, we need the following reasonable assumption.

Heuristic 1. Let D be the divisor of a uniformly randomly chosen polynomial
of the form b(X)Y −a(X) and ν the degree of its affine part. Then the probability
of D to be F-smooth is the same as that of a random effective divisor of degree
ν to be μ-smooth.

Heuristic 1 covers the relation collection phase. For computing discrete loga-
rithms, arbitrary non-principal divisors need to be smoothed, and another as-
sumption is needed.

Heuristic 2. The probability of a uniformly randomly chosen effective divisor
of degree ν to be F-smooth is essentially the same as that of being μ-smooth.

Heuristic 2 claims in fact that places of inertia degree larger than 1 do not play
a role for smoothness considerations. In the analogous case of number fields this
is justified by the observation that these places have a Dirichlet density of 0,
and the situation is completely analogous for function fields: A place of degree
μ and inertia degree f dividing μ corresponds to a closed point on C with X-
coordinate in Fqμ/f and Y -coordinate in Fqμ , of which there are on the order of
qμ/f . Clearly, places with f ≥ 2 are completely negligible.



384 A. Enge and P. Gaudry

The probability of μ-smoothness is ruled by the usual results on smoothness
probabilities in arithmetic semigroups such as the integers or polynomials over
a finite field, cf. [14].

Unfortunately, most results in the literature assume a fixed semigroup and
give asymptotics for μ and ν tending to infinity, whereas we need information
that is uniform over an infinite family of curves. Theorem 13 of [13] provides
such a result:

Theorem 3 (Heß). Let 0 < ε < 1, γ = 3
1−ε and ν, μ and u = ν

μ such that
3 logq(14g + 4) ≤ μ ≤ νε and u ≥ 2 log(g + 1). Denote by ψ(ν, μ) the number of
μ-smooth effective divisors of degree ν. Then for μ and ν sufficiently large (with
an explicit bound depending only on ε, but not on q or g),

ψ(ν, μ)
qν

≥ e−u log u(1+ log log u+γ
log u ) = e−u log u(1+o(1)).

Notice that the proof of Theorem 3, similar in spirit to that for hyperelliptic
curves in [7], is entirely combinatorial and relies on the fact that there are es-
sentially qμ/μ places of degree μ. So we expect the result to hold even if one
restricts to places of inertia degree 1.

Denote by
L(α, c) = Lqg (α, c) = ec(g log q)α(log(g log q))1−α

for 0 ≤ α ≤ 1 and c > 0 the subexponential function with respect to g log q, and
let

M = Mqg = logq(g log q) =
log(g log q)

log q
.

The parameter g log q will be the input size for the class of curves we consider;
more intrinsically, this is the logarithmic size of the group in which the discrete
logarithm problem is defined.

Proposition 4. Let ν = �logq L(α, c)� = �cgαM1−α� and μ = �logq L(β, d)	 =
�dgβM1−β	 with 0 < β < α ≤ 1 and c, d > 0. Assume that there is a constant
δ > 1−α

α−β such that g ≥ (log q)δ. Then for g sufficiently large,

ψ(ν, μ)
qν

≥ L
(
α − β, − c

d
(α − β) + o(1)

)
,

where o(1) is a function that is bounded in absolute value by a constant (depend-
ing on α, β, c, d and δ) times log log(g log q)

log(g log q) .

Proof. One computes

u =
ν

μ
≤ c

d

(
g log q

log(g log q)

)α−β

(the inequality being due only to the rounding of ν and μ),

log u = (α − β) log(g log q)(1 + o(1))



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 385

and
log log u

log u
= o(1),

with both o(1) terms being of the form stipulated in the proposition. Applying
Theorem 3 yields the desired result. Its prerequisites are satisfied since

limg→∞
log μ

log ν
= limg→∞

β log g − (1 − β) log log q

α log g − (1 − α) log log q

≤ limg→∞
β log g

α log g − 1−α
δ log g

=
β

α − 1−α
δ

=: ε < 1

because of the definition of δ. Notice further that g → ∞ is equivalent to
g log q → ∞, and that also μ and ν tend to infinity when g does. �

The choice of μ shall insure that the factor base size, that is about qμ, becomes
subexponential. But the necessary rounding of μ, which may increase qμ by a
factor of almost q, may result in more than subexponentially many elements in
the factor base when q grows too fast compared to g.

Proposition 5. Let 0 < β < 1 and δ > 1−β
β . If g ≥ (log q)δ, then q = L(β, o(1))

for g → ∞. In particular, δ > max
(

1−α
α−β , 1−β

β

)
in Proposition 4 implies that

qμ = L(β, d + o(1)).

Proof. To verify the first assertion, one computes

q = elog q = e(log q)1−β(log q)β

≤ eg(1−β)/δ(log q)β(log(g log q))1−β

= e(g log q)β(log(g log q)1−β)g
1−β

δ
−β

,

and g
1−β

δ −β → 0 since 1−β
δ − β < 0. The second assertion is obvious. �

4 Computing the Group Structure

This section is concerned with the relation collection phase of the discrete loga-
rithm algorithm; an immediate application is the computation of the cardinality
and the group structure of the Jacobian of the curve. Relation collection is virtu-
ally identical to the process described for hyperelliptic curves in [1]; the running
time of L(1/3, O(1)) is obtained by applying it to a particular class of curves
that are of relatively low degree with respect to their genus and for which the
degrees in X and Y of a plane model are balanced in a certain way.

We consider absolutely irreducible curves over finite fields Fq of characteristic
p of the form

C : Y n + F (X, Y )



386 A. Enge and P. Gaudry

with F (X, Y ) ∈ Fq[X ] of degree d in X and at most n − 1 in Y . The function
field extension Fq(C) = Fq(X)[Y ]/(Y n + F (X, Y )) over Fq(X) is supposed to be
separable (which is for instance the case if p � n).

Most importantly, the degrees n and d are related to the genus g by

n ≤ n0g
1/3M−1/3 and d ≤ d0g

2/3M1/3

where M = log(g log q)
log q and n0, d0 are some positive constants.

For instance, C may be a Cab curve of degree n ∼ g1/3M−1/3 in Y and
d ∼ 2g2/3M1/3 in X .

For the running time analysis, we will want to apply Propositions 4 and 5
with α = 2/3 and β = 1/3; so we have to assume that the curves belong to a
family satisfying g ≥ (log q)δ for some δ > 2.

Algorithm 6 (Group structure)
Input: a curve C as above
Output: h = |JC(Fq)| and divisors D1, . . . , Dr with their orders h1, . . . , hr s.t.
JC(Fq) = 〈D1〉 × · · · × 〈Dr〉

1. Compute an approximation of h within a factor of 2, that is, h− and h+ s.t.

h− < h < h+ and h+ ≤ 2h−.

2. Fix a smoothness bound B = �logq L(1/3, ρ)	 (with a parameter ρ to be
determined later) and compute the factor base F consisting of all affine prime
divisors of C of degree at most B as well as all infinite prime divisors and
prime divisors corresponding to singularities regardless of their degrees. Let
t = |F| and F = {P1, . . . , Pt}.

3. Start with an empty matrix of relations R and repeat the following step until
s ≥ 2t relations are obtained (in practice, s slightly larger than t should
suffice):
Draw uniformly at random a function

ϕ = b(X)Y − a(X) ∈ Fq(C)

with a, b ∈ Fq[X ] of degree at most

m = �σg1/3M2/3�

(with a parameter σ to be determined later). If its divisor is F-smooth, that
is,

div ϕ =
t∑

i=1

eiPi,

add a column (e1, . . . , et)T to the matrix R.
4. Compute the rank of R; if it is less than t, declare failure and stop.



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 387

5. Compute the Smith normal form S = diag(hr, . . . , h1, 1, . . . , 1) of R, where
1 �= h1|h2| · · · |hr, and unimodular transformation matrices T ∈ Zt×t and
U ∈ Zs×s s.t. TRU = (S|0).
Let h = h1 · · ·hr. If h ≥ h+, declare failure and stop.
Otherwise return h, D1, . . . , Dr s.t.

(D1, . . . , Dr, 0, . . . , 0) = (P1, . . . , Pt)T−1

and h1, . . . , hr.

That the algorithm is correct follows from standard arguments such as given
in [1, 5, 6]. It remains to prove its failure probability and running time. We also
have to show that there actually are subalgorithms to carry out the different
steps; these are given together with the following running time analysis.

1. An approximation h̃ of h can be obtained by appropriately truncating the
L-series of the curve as in [13, Section 6]. The necessary counting of the
number of points on the curve over a small number of extension fields is
shown in [13] to be polynomial in g and log q for curves of degree in O(g).
The bounds on h are then given by h− = h̃/

√
2 and h+ =

√
2h̃.

2. The affine prime divisors of degree up to B are obtained by enumerating all
irreducible monic polynomials f ∈ Fq[X ] of degree up to B and factoring
Y n + F (X, Y ) over Fq[X ]/(f)[Y ]. Each factor of degree w yields a prime
divisor of degree w deg f . Altogether, these factorisations can be carried out
by O(qB) repetitions of a randomised algorithm with an expected running
time that is polynomial in n, B and log q, and thus ultimately in g log q.
Since polynomial terms are in L(1/3, o(1)), they can be neglected, and we
retain only the term O(qB) for the remainder of the analysis.

The number of singular places is bounded by O((nd)2) = O(g2) using the
genus formula for a plane curve. They can be fully described in polynomial
time, by computing the desingularisation trees of the singular points (see for
instance [10]).

The non-singular places at infinity are included in the intersection of the
projective curve with the line Z = 0, which has at most O(nd) = O(g)
elements by Bézout’s theorem, and these are also computable in polynomial
time.

So this step terminates with a factor base of size

t = O
(
nqB

)
= L(1/3, ρ + o(1))

that is computed in time L(1/3, ρ + o(1)).
3. To estimate the smoothness probability of div ϕ under Heuristic 1, we need

to compute the degree of its affine part. Denote the affine degree of a divisor
by degaff. Let σ1, . . . , σn be the different embeddings of Fq(C) into its Galois
closure (that exists because the function field extension is assumed to be
separable). The σi fixing Fq(X), they send affine to affine and infinite to
infinite prime divisors. Hence, all the degaff(ϕσi) are the same and given by

degaff ϕ =
1
n

degaff NFq(C)/Fq(X)(ϕ) = degX N(ϕ).



388 A. Enge and P. Gaudry

The norm of ϕ is computed as N(ϕ) = ResY (ϕ, Y n+F (X, Y )), and its degree
in X is bounded from above by

degX ϕ · degY C + degY ϕ · degX C = nm + d.

The divisor of ϕ is B-smooth if and only if its norm is; this test as well
as the decomposition of a smooth div ϕ into prime divisors boils down to a
factorisation of the norm in Fq[X ] and takes random polynomial time.

Let τ = (n0σ + d0)/3. Applying Propositions 4 and 5 under Heuris-
tic 1 with nm + d ≤ 3τg2/3M1/3 in the place of ν and B = �ρg1/3M2/3	
in the place of μ shows that a relation is obtained on average in time
L

(
1/3, τ

ρ + o(1)
)

, so that this step takes overall

L

(
1/3,

τ

ρ
+ ρ + o(1)

)
.

4. and 5. Since all entries of the matrix are of bit size polynomial in g log q, its
rank and Smith normal form can be computed in quartic time according to
[16, Proposition 8.10], that is in

L(1/3, 4ρ + o(1)).

The total running time of the algorithm thus becomes

L

(
1/3, max

(
τ

ρ
+ ρ, 4ρ

)
+ o(1)

)

with τ = (n0σ + d0)/3.
For any fixed σ (and thus τ), the value of ρ that minimises the running time

is ρ =
√

τ/3 and we get a complexity of L
(
1/3, 4

√
τ√
3

+ o(1)
)
.

Now τ is not a completely free parameter; it is connected to the success proba-
bility of the algorithm. It is in fact not clear whether the algorithm has a non-zero
success probability at all; as in [1], it is already unknown whether the principal
divisors of the special form considered in Step 3. generate the full relation lattice.
The analysis of the proven subexponential algorithm in [5], for instance, exploits
the fact that the created relations are essentially uniformly distributed among
all possible relations in a hypercube of side length about |JC(Fq)|. Since all our
relations are sparse, this line of argumentation definitely cannot be applied; as
in [1], the non-negligible success probability of the algorithm can only be con-
jectured (and notice also that it does not follow from a smoothness assumption
such as Heuristic 1).

A necessary condition for the success of the algorithm is nonetheless that the
number of potential functions ϕ tested for smoothness in Step 3. must be at least
as large as the number of tests, since otherwise the matrix is filled with redundant
multiple relations. Thus we need q2m ≥ L

(
1/3, 4

√
τ√
3

)
or, taking logarithms,

2σ ≥ 4√
3

√
τ =

4
3

√
n0σ + d0,



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 389

which holds asymptotically for σ → ∞. Precisely, the optimal value of σ is the
positive solution of the quadratic equation σ2 − 4

9n0σ − 4
9d0 = 0.

5 Computing Discrete Logarithms

In order to smooth the basis of the discrete logarithm and the element whose
logarithm is sought, we are going to perform a special-Q descent with a slightly
larger subexponentiality parameter 1/3 + ε. Let us first describe an algorithm
that does one step of the special-Q descent and that will be used as a building
block by the final algorithm.

Heuristic Result 7. Let Q be an affine prime divisor of the curve C of the
form div(u(X), Y −v(X)), with deg u(X) ≤ logq L(1/3+ t, c) for some constants
c > 0 and ε < t ≤ 1/3 − ε. There is an algorithm that finds a divisor R
equivalent to Q such that all prime divisors of R are either in F or have a
degree bounded by logq L(1/3 + t − ε, c′), and such that all these prime divisors
are of the form div(ui(X), Y − vi(X)). The heuristic expected running time is
bounded by L(1/3 + ε, cn0

c′ (1/3 + ε + o(1))).

Justification. Let us consider the set LQ of functions of the form a(X)+ b(X)Y
whose divisors contain Q in their support. In other words, this is the Fq[X ]-lattice

LQ = {a(X) + b(X)Y : u(X)|a(X) + v(X)b(X)}.

A basis of this lattice is given by the two vectors b1 = u(X) and b2 = −v(X)+Y .
Hence,

LQ = {λ(X)b1 + μ(X)b2 : λ, μ ∈ Fq[X ]}.

When λ and μ are taken of degree at most δ = logq L(1/3 + t, c), the function
ϕ corresponding to λ(X)b1 + μ(X)b2 has the form a(X) + b(X)Y with a and b
of degree Δ ≤ 2 logq L(1/3 + t, c). The degree of the norm of ϕ is then Δn + d,
which is dominated by logq L(2/3 + t, cn0).

We rely now on Heuristic 1 that says that the zero divisor of the function has
the same smoothness properties as a random effective divisor of the same degree,
and apply Proposition 4. Therefore the expected number of functions one has to
try before having found one whose divisor is logq L(1/3 + t − ε, c′)-smooth is

L
(
1/3 + ε,

cn0

c′
(1/3 + ε + o(1))

)
.

The fact that the prime divisors that we obtain are of the same form as Q
comes from the shape of the function we have chosen.

It remains to check that the number of functions we can test in the lattice is
large enough compared to this expected number of tests. With our choice of δ,
the size of the sieving space is L(1/3+ t, 2c), which is larger than any L(1/3+ ε)
since t is greater than ε. �



390 A. Enge and P. Gaudry

This result suffices to carry out a full descent if one can initialise the process
and finish it once smoothness is reached up to a t < ε. The next two heuristic
results explain these steps.

Heuristic Result 8. Assume that ρ > (1
3 + ε)n0

2 . Let Q be an affine prime
divisor of C of the form div(u(X), Y − v(X)), with deg u(X) ≤ logq L(1/3 +
t, c), for some constants c > 0 and 0 < t ≤ ε. There is an algorithm that
finds a divisor R equivalent to Q such that all prime divisors of R are in F
(defined with this value of ρ), and such that all these prime divisors are of the
form div(ui(X), Y − vi(X)). The heuristic expected running time is bounded by
L

(
1/3 + t, (1/3 + t) cn0

ρ + o(1)
)

.

Justification. Let us consider the same lattice LQ as in the proof of Proposition 7.
Assume that λ and μ are taken of degree at most δ = logq L(1/3 + t, c), then,
as before, the norm of the corresponding functions are of degree bounded by
logq L(2/3 + t, cn0). Using again Heuristic 1, one gets by Proposition 4 that a
logq L(1/3, ρ)-smooth divisor can be obtained in heuristic expected time

L

(
1/3 + t, (1/3 + t)

cn0

ρ
+ o(1)

)
.

One has to check that we have enough possibilities for λ and μ to cover this
search. The sieving space is q2δ = L(1/3 + t, 2c). Therefore it is large enough if
2c > (1/3 + t) cn0

ρ , that is if ρ > (1/3 + t)n0
2 . Since ε > t, this is guaranteed by

our hypothesis on ρ. �

Heuristic Result 9. Let D be a degree 0 divisor and
∑

P eP P its decomposition
into prime divisors such that

∑
P |mP | ∈ O(g). Then there is an algorithm that

finds a divisor R equivalent to D such that all prime divisors of R are of the
form div(ui(X), Y − vi(X)) with deg ui(X) ≤ logq L(2/3 − ε, c). The heuristic
expected running time is bounded by L(1/3 + ε, (1/3 + ε)1

c + o(1)).

Justification. In order to smooth D, we apply the classical Hafner-McCurley
strategy: a random linear combination of elements of the factor base is added to
D, and the obtained divisor is tested for smoothness. Each test takes polynomial
time since the effective group law in the Jacobian reduces to computing Riemann-
Roch spaces as in [12].

Following Heuristic 2, the additional restriction on the form of the prime
divisors has no influence on the running time, and the desired result follows
from Proposition 4. �

Armed with these heuristic partial smoothing results, we can now derive a full
special-Q descent algorithm. Let us fix a constant ε > 0, a parameter of the
algorithm. This ε is to be thought of as small (and of course ε < 1/6). The
algorithm assumes that Algorithm 6 has been run as a precomputation, with a
value of ρ that is larger than a bound given below. Similarly, the constants c0
and cK are made explicit below.



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 391

Algorithm 10 (Discrete logarithm)

1. Use Heuristic Result 9 to build a list L of prime divisors of degree at most
logq L(2/3−ε, c0), such that if we know their discrete logarithms, the discrete
logarithm of D is implied.

2. While there is a Q in L of degree more than logq L(1/3+ε, cK), use Heuristic
Result 7 to replace Q in L by a list of prime divisors of degree bounded by a
subexponential function with parameter reduced by ε.

3. For each Q in L that is not in F , use Heuristic Result 8 to decompose Q
in F .

In order to analyse the algorithm, let us model it by a tree: the root is the divisor
D, its sons are the prime divisors coming from its decomposition using Heuristic
Result 9, then each internal node corresponds to a prime divisor and its sons
are the prime divisors obtained using Heuristic Result 7 or Heuristic Result 8.
The depth of the tree is bounded by 1/(3ε) since at each intermediate step the
subexponential parameter is reduced by at least ε and one has to cover a range of
1/3. The number of sons of each node is bounded by g. Hence the total number
of nodes is bounded by g1/(3ε). Since ε is a fixed constant, this is a polynomial in
g log q and therefore contributes only for a o(1) in the subexponential complexity.

Let us allow a computation time of L(1/3 + ε, ν + o(1)), for fixed positive
constants ε and ν. Then the first step that uses Heuristic Result 9 can decompose
D in prime divisors of degree at most logq L(2/3−ε, c0) in time L(1/3+ε, ν+o(1))
for c0 = (1/3 + ε)/ν. Going one step down the tree, one can decompose these
primes using Heuristic Result 7 in primes of degrees at most logq L(2/3 − 2ε, c1)
in the same time, for c1 = c0n0(1/3 + ε)/ν. Going from level k to level k + 1 in
the tree will decompose in primes of degree at most logq L(2/3 − (k + 2)ε, ck+1)
in the same time, for ck+1 = ckn0(1/3 + ε)/ν. Finally, each last step will be
feasible in the same running time if ρ > cKn0(1/3 + ε)/ν, where K is the depth
of the tree.

This value of ρ is feasible and does not affect the overall complexity. It only
changes the exponent in the L(1/3) runtime of the group structure algorithm,
whose complexity remains negligible compared to the L(1/3 + ε) of the present
algorithm. Therefore, a suitable choice of ρ, c0 and cK in Algorithm 10 results
in a running time of L(1/3 + ε, ν + o(1)) for any given ε and ν.

Choosing ε/2 in the place of ε (and an arbitrary ν) shows that even a com-
plexity of L(1/3 + ε, o(1)) is achievable.

Remark. In the analysis, we have remained silent about the exact nature of the
o(1) terms. As long as a fixed number of them is involved, this does not pose
any problem. But at first sight, since Heuristic Result 7 is used a non-constant
number of times, one apparently needs to make the o(1) terms explicit to check
that they do not sum up to something that is not tending to zero. However,
although the number of nodes in the tree of Algorithm 10 is in g1/(3ε), the o(1)
term is the same for any given level in the tree, so that actually only the depth
of the tree is important for these o(1)-terms considerations. The depth of the
tree is in 1/(3ε), which is a constant, so that we actually consider a constant
number of o(1) terms and need not make them explicit.



392 A. Enge and P. Gaudry

6 Extensions to Wider Families of Curves

6.1 Highly Singular Curves

Consider the case where the curve has an equation of the appropriate form, but
with a genus that is much smaller than nd. Then letting g′ = nd, one may ap-
ply the exact same algorithms yielding an L(1/3 + ε) complexity. However, the
subexponential function is now taken with respect to qg′

. This may still result in
a subexponential complexity in qg, depending on the relation between q, g and g′.

6.2 Different Balancing Between n and d

Here we consider the case where n ≈ gα and d ≈ g1−α for α ∈
[ 1

3 , 1
2

]
. We shall

just give an informal description of an algorithm that yields an L(1/3) complexity
for the group structure. Note that to obtain the claimed complexity without ε, the
bounds on n and d should resemble the ones we have in Section 4. For instance,
bounds of the form n ≤ n0g

αM−α and d ≤ d0g
1−αMα would suffice. For the

sake of better readability, we content ourselves with approximate bounds.
Let us restrict to Cab curves for simplicity, and let us call P∞ the unique place

at infinity. We proceed as in Algorithm 6, but the functions we consider are of
the more general form:

ϕ = a0(X) + a1(X)Y + · · · + ak(X)Y k,

where the ai(X) have a degree bounded by gβ and k is taken of the form gγ ,
for some β and γ to be determined. Then the divisor of ϕ is of the form E −
(deg E)P∞, with E effective of degree bounded by gγ+1−α + gβ+α.

Fix a smoothness bound of gβ+γ ; with the usual heuristic, one can find E
that is smooth in time about gmax(α−γ,(1−α)−β). The consistency check that the
sieving space must be larger than the factor base yields the condition

β + γ ≥ max(α − γ, (1 − α) − β),

which gives β + 2γ ≥ α and γ + 2β ≥ 1 − α. This in turn imposes that β + γ ≥
1/3. Therefore, in this setting we can not hope to get something better than
an L(1/3) complexity. We now show that this complexity is achievable: taking
β = 2/3 − α and γ = α − 1/3, all the conditions are verified, and the complexity
is as announced.

In the particular case of α = 1/3, we recover β = 1/3 and γ = 0, which corre-
sponds to Algorithm 6. In the other extremal case α = 1/2, we get β = γ = 1/6.

If α gets smaller than 1/3, then the L(1/3) complexity is not achievable with
this algorithm. In fact, for each value of α ∈ [0, 1/3], there is an L(x) complexity
with x ∈ [1/3, 1/2], and finally, for hyperelliptic curves one essentially recovers
Adleman-Demarrais-Huang’s L(1/2) algorithm.

All of this concerns only the group structure. For the special-Q descent how-
ever, things get more complicated and the L(1/3 + ε) complexity is lost when
α is bigger than 1/3. More precisely, the same kind of computations as above
yields a complexity of L(α + ε) for α ∈ [1/3, 1/2].



An L(1/3 + ε) Algorithm for Discrete Logarithm Problem 393

Acknowledgement. We thank Claus Diem for his careful reading of our article
and many useful remarks.

References

[1] L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm for
discrete logarithms over the rational subgroup of the jacobians of large genus hyper-
elliptic curves over finite fields. In L. Adleman and M.-D. Huang, editors, ANTS-I,
volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer–Verlag, 1994.

[2] R. L. Bender and C. Pomerance. Rigorous discrete logarithm computations in
finite fields via smooth polynomials. In D. A. Buell and J. T. Teitelbaum, editors,
Computational Perspectives on Number Theory: Proceedings of a Conference in
Honor of A.O.L. Atkin, volume 7 of Studies in Advanced Mathematics, pages
221–232. American Mathematical Society, 1998.

[3] J.-M. Couveignes. Algebraic groups and discrete logarithm. In Public-key cryp-
tography and computational number theory, pages 17–27. de Gruyter, 2001.

[4] C. Diem. An index calculus algorithm for plane curves of small degree. In F. Heß,
S. Pauli, and M. Pohst, editors, ANTS-VII, volume 4076 of Lecture Notes in
Comput. Sci., pages 543–557. Springer–Verlag, 2006.

[5] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in
provably subexponential time. Math. Comp., 71:729–742, 2002.

[6] A. Enge and P. Gaudry. A general framework for subexponential discrete loga-
rithm algorithms. Acta Arith., 102:83–103, 2002.

[7] A. Enge and A. Stein. Smooth ideals in hyperelliptic function fields. Math. Comp.,
71:1219–1230, 2002.

[8] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture Notes in Comput. Sci., pages 19–34. Springer–Verlag, 2000.

[9] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp., 76:475–492, 2007.

[10] G. Haché. Construction effective de codes géométriques. PhD thesis, Université
de Paris VI, 1996.

[11] J. L. Haffner and K. S. McCurley. A rigorous subexponential algorithm for com-
putation of class groups. J. Amer. Math. Soc., 2(4):837–850, 1989.

[12] F. Heß. Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symbolic Comput., 33:425–445, 2002.

[13] F. Heß. Computing relations in divisor class groups of algebraic curves over finite
fields. Preprint, 2004.

[14] E. Manstavičius. Semigroup elements free of large prime factors. In F. Schweiger
and E. Manstavičius, editors, New Trends in Probability and Statistic, pages 135–
153, 1992.

[15] V. Müller, A. Stein, and C. Thiel. Computing discrete logarithms in real quadratic
congruence function fields of large genus. Math. Comp., 68(226):807–822, 1999.

[16] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Eid-
genössische Technische Hochschule Zürich, 2000.



General Ad Hoc Encryption
from Exponent Inversion IBE

Xavier Boyen

Voltage Inc.
Palo Alto

xb@boyen.org

Abstract. Among the three broad classes of Identity-Based Encryption
schemes built from pairings, the exponent inversion paradigm tends to
be the most efficient, but also the least extensible: currently there are no
hierarchical or other known extension of IBE based on those schemes.
In this work, we show that such extensions can be realized from IBE
systems that conform to a certain abstraction of the exponent inversion
paradigm. Our method requires no random oracles, and is simple and
efficient.

1 Introduction

Since the first practical constructions of the identity-based encryption (IBE)
primitive appeared a few years ago [18,9,4], a large body of work has been
devoted to creating better realizations of the basic primitive, and to extending
it in many interesting ways. With the notable exception of Cocks’ basic IBE
scheme [9], virtually all IBE-like constructions known to date make more or less
extensive use of bilinear pairings on elliptic curves.

The many extensions that have been proposed in the recent years have the
common goal to extend the notion of identity from its original atomic mean-
ing, to complex constructs of identity components on which certain operations
can be performed. In particular, we mention hierarchical identities [13], fuzzy
identities [16], and identities as attributes [12] among the most significant of
these extensions. Fortunately, and unlike the original idea of IBE [19] which re-
mained without construction for many years, most of the IBE extensions that
have been suggested also have a known construction. However, to temper this
optimism, we should note that for many of these extensions, the only realiza-
tions we know of all derive from the same basic IBE paradigm, despite the
availability of alternatives. In particular, an entire family of very efficient IBE
constructions does not seem to support any of the extensions afforded by other
families.

Our current knowledge of pairing-based IBE schemes can be partitioned in
three broad families: (1) full-domain hash, (2) exponent inversion, and (3) com-
mutative blinding—with little doubt that others will be invented in the future.
The connotations behind this taxonomy shall be explicited later on. Each of these

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 394–411, 2007.
c© International Association for Cryptology Research 2007



General Ad Hoc Encryption from Exponent Inversion IBE 395

categories defines a general construction template, by which encryption and key
derivation are matched in an identity-based manner using a bilinear pairing.
The one thing that these families have in common is their use of a pairing—but
not how they use it. Indeed, the shape of the template greatly affects how the
schemes can be extended, and their security proved.

Among the three families, the commutative blinding method originated with
BB1-IBE [2] has distinguished itself as the most fertile ground for generalizing
IBE, based on the number of extensions that it currently supports, such as for-
ward secure hierarchies [3], partial-match or fuzzy identities [16], and complex
attribute-based policies [12]. It is followed rather distantly by the full-domain
hash family, defined by BF-IBE [4], which contains fewer but nevertheless inter-
esting extensions, including hierarchies [11] also with forward security [21]. In
stark contrast, based on our current state of knowledge, the exponent inversion
family does not seem to have any useful extension, despite the fact that the ba-
sic IBE functionality performs more efficiently in this family, based on BB2-IBE
[2] and SK-IBE [7,17], than in the other two. This situation strikes us as odd,
as there is no obvious reason why the exponent inversion family should be less
accommodating than the other two.

The aim of this paper is to show that the exponent inversion paradigm is
more flexible than has been previously recognized. To this end, we first give an
abstraction of exponent inversion schemes such as BB2-IBE and SK-IBE, that
captures functional properties such as linearity in the exponent, and which we
call Linear IBE. We also define certain security properties that such schemes
should satisfy depending on the final goal of the construction; these properties
have to do with simultaneous or parallel instances of the IBE running at once,
which is a general technique we use in all our constructions. We then apply the
method to transform any black-box Linear IBE with suitable security properties
into a hierarchical, fuzzy, attribute-based, or distributed system, under generic
security reductions to the underlying base IBE abstraction.

The transformations are syntactically black-box, but their security requires
the parallel simulation of several base instances, hence our requirement that
the underlying scheme be secure in such conditions. In general, the transfor-
mations preserve the gist of the security properties of the underlying scheme,
e.g., in the random oracle or standard model, and under selective or adaptive
security, but keeping in mind that it requires (and consumes) the supplemental
notion of parallel IBE security already mentioned. The method is quite simple
and preserves the efficiency of the underlying scheme, with a multiplier that
depends on the particulars of what the transformation seeks to achieve. In prac-
tice, this new approach seems appealing, as it allows the very efficient but bare-
bones SK and BB2 schemes to become more flexible and thus we hope more
useful.

We call ad hoc cryptosystem any such public-key system that supports pri-
vate sub-keys with designated restricted capabilities. This includes IBE and its
extensions.



396 X. Boyen

2 A Classification of IBE Schemes

The following is a rough classification of the known identity-based encryption
schemes. All of them support at least a basic security reduction to a well-
formulated complexity assumption, either in the standard model or in the ran-
dom oracle model.

“Quadratic Residuosity” IBE (without pairings). We mention Cocks’ [9] scheme
as the only known example of IBE based on quadratic residuosity in RSA groups;
it is inefficient in terms of bandwidth and has no known extension.

“Full Domain Hash” IBE. This is the class of the Boneh-Franklin identity-based
encryption [4], and to which the earlier Sakai-Ohgishi-Kasahara identity-based
key exchange [18] also belongs.

In BF encryption and the constructions that are based on it, such as [11,21],
the session keys are of the form e(H(Id), ĝα)s where Id is the recipient identity,
α is the master secret, and H is a full-domain hash function into the bilin-
ear group, viewed as a random oracle. In SOK key exchange, the session key
e(H(IdA), H(IdB)α)s is computed interactively from the identities of both par-
ties, but also involves the master key α and a random oracle as in BF encryption.

“Exponent Inversion” IBE. This approach to IBE can be traced to an idea of
Mitsunary, Sakai, and Kasahara in the context of traitor tracing [14]. For IBE,
the principle is to obtain a session key of the form e(g, ĝ)s based on a ciphertext
(gf(Id))s and a private key g1/f(Id), where f(Id) is a secret function of the recipient
identity but gf(Id) is computable publicly. A benefit of this type of construction
is that there is no need to hash directly on the curve. Notice also that the master
key cancels out completely from the session key.

This category includes the Sakai-Kasahara scheme originally described in [17]
and later proven secure in [7] in the random oracle model. The category also in-
cludes the second of two IBE schemes proposed by Boneh and Boyen [2], which
has a selective-identity proof of security in the standard model. All these schemes
rely on the fairly strong BDHI complexity assumption [2], which was first used in
another context by Mitsunary, Sakai, and Kasahara [14]. This assumption, called
Bilnear Diffie-Hellman Inversion (BDHI), has been further analyzed in [8].

Recently, Gentry [10] proposed another construction that has superficial simi-
larities to the others in this category, but with a proof of security in the adaptive-
identity model (based on an even stronger assumption). Gentry’s IBE scheme
appears to belong in the exponent inversion category, although the case is not
clear-cut because the session key is not of the form e(g, ĝ)s, but of the form
e(g, ĥ)s, where ĥ is created by the initial setup procedure. Although ĥ remains
statistically independent of the secret key, it is not intended to be constant from
one instance of the system to the next, and Gentry’s security proof no longer
applies if ĥ and thus e(g, ĥ) is fixed.

“Commutative Blinding” IBE. The last category of IBE systems descends from
BB1, the first scheme given in the Boneh-Boyen paper [2]. These systems are



General Ad Hoc Encryption from Exponent Inversion IBE 397

based on the same BDH assumption as the Boneh-Franklin scheme [4], but use
a mechanism that avoids random oracles. Very roughly, the general principle is
to create blinding factors from two secret coefficients in a way that makes them
“commute” (i.e., not depend on the application order), thanks to the pairing.

The algebraic versatility exhibited by the BB1 approach has given rise to a
fair number of extensions to the original scheme; see for example [3,16,20,15,1].
Virtually all constructions in the commutative blinding paradigm have session
keys of the form e(g, ĝα)s, where α is part of the master key, and s is chosen by
the sender.

It is likely that the coming years will see the emergence of additional families
of schemes. In this paper, we are concerned with the Exponent Inversion family,
which tends to be the most computationally efficient and arguably requires the
least bandwidth, but currently lacks the flexibility of the other pairing-based
families (such as Commutative Blinding especially).

3 Exponent Inversion Abstractions

We now describe an abstraction of IBE that captures the properties of the expo-
nent inversion paradigm that we need. Our abstraction is sufficiently powerful
to support a wide variety of generic constructions, and sufficiently general to
encompass all IBE schemes known to date that do not “obviously” fall outside
of the exponent inversion paradigm.

3.1 Linear IBE Schemes

Based on the properties that our semi-generic construction will require, we de-
fine the following abstraction of IBE schemes that use the exponent inversion
principle. Two basic schemes mentioned earlier (BB2 and SK) fit particularly
nicely within this abstraction.

Intuitively, we exploit two facets of the “linearity” exhibited by exponent
inversion IBE. All such schemes construct their identity-based trapdoor from
a secret polynomial θ(Id), and publish enough information to allow anyone to
compute gθ(Id) but not ĝ1/θ(Id). The latter can serve as private key for Id, and
the trapdoor arises from the cancellation of the exponents on both sides of the
pairing: e(gθ(Id), ĝ1/θ(Id)) = e(g, ĝ). To get an IBE scheme, the encryptor needs
to pick a randomization exponent s; the ciphertext becomes gθ(Id) s and the
session key e(g, ĝ)s. Because session keys constructed this way are linear in both
the private key and the ciphertext, it will be easy to construct secret sharing
schemes in the exponent either in the ciphertext or on the private key side. This
is the first property we need (we shall precise and generalize it momentarily).

Our second property is the independence of session keys with respect to the
master secret. As in any IBE scheme, the master secret is needed to construct
the private keys, but here it need not affect the choice of session keys. Indeed,
if the generators g and ĝ are imposed externally, the only degree of freedom
in the session key e(g, ĝ)s is the exponent s chosen by the encryptor. (This is



398 X. Boyen

very much unlike full-domain hash and commutative blinding IBE schemes, in
which session keys are respectively of the form e(H(Id), ĝα)s and e(g, ĝα)s and
necessarily involve the master key α.)

As already mentioned, Gentry’s IBE scheme uses session keys of the form
e(g, ĥ)s rather than e(g, ĝ)s, where ĥ is created at random by the initial setup
procedure. Although our template requires ĥ to be fixed, the current proof of
Gentry’s IBE does not tolerate it, and so we provisionally include Gentry-IBE
as a “syntactic” Linear IBE scheme until the question can be settled.

A Template for Exponent Inversion IBE. Toward formalizing the requirements
above, we first define the particular template that candidate IBE schemes must
obey.

Setup(e, g, ĝ, v, ω) on input a pairing e : G × Ĝ → Gt, generators g ∈ G, ĝ ∈ Ĝ,
v ∈ Gt, and a random seed ω, outputs a master key pair (Msk, Pub) where
Pub = (e, g, ĝ, v, ...).
We require key pairs generated from independent random seeds ω1, ω2, ... to
be mutually independent. We allow key pairs generated from the same inputs
e, g, ĝ, v, ω to be mutually independent, as the setup algorithm is permitted
to use its own source of randomness.

Extract(Msk, Id) on input Msk and an identity Id, outputs a private key PvkId =
(Id, R, d), which can be deterministic or randomized.
Here, Id ∈ Id , the domain of identities; R ∈ Rd , some non-empty auxiliary
domain; and d = (d1, ..., dn) ∈ D, a vector space of n coordinates, each a
copy of one of Fp, G, Ĝ, Gt.

Encrypt(Pub, Id, Msg, s) on input Pub, a recipient Id, a plaintext Msg, and a
randomization exponent s ∈ Fp, outputs a ciphertext Ctx = (Id, S, c0, c).
Here we require that Msg ∈ Gt, that c0 = Msg · vs, and that c = (c1, ..., cm) ∈
C, where C is a vector space of m coordinates, each being a copy of Fp, G, Ĝ,
or Gt. Finally, we assume that S ∈ Sd , with Sd some non-empty auxiliary
domain.

Decrypt(Pub, PvkId, Ctx) on input Pub, a private key PvkId = (Id, R, d), and a
ciphertext Ctx = (Id, S, Msg · vs, c), outputs Msg provided the inputs are
well-formed and the identities match.

The purpose of ω given to setup is to allow the creation of multiple instances of
a single scheme with related keys; this may enable certain schemes (potentially
Gentry’s) to fit the template, provided that other security conditions are met. Nor-
mally, ω is ignored by the underlying scheme and all key pairs are independent.

Based on this template, we define the notion of Linear IBE to capture the
intuitive linearity properties of the session keys that we discussed.

Definition 1. A Linear IBE scheme, (Setup, Extract, Encrypt, Decrypt), is a
quadruple of algorithms that follows the template above, and further satisfies the
two properties below.



General Ad Hoc Encryption from Exponent Inversion IBE 399

1. There exists a (publicly) efficiently computable function, fPub : Id × Rd ×
Sd × C × D → Gt, linear in each of its last two arguments, such that, for all
well-formed PvkId = (Id, R, d) and Ctx = (Id, S, c0, c),

fPub (Id, R, S, c, d) = v−s ,

where we recall that v is the generator of Gt given as input to the Setup
function, and thus independent of the choice of Msk.
Note that the decryption algorithm reduces to: Decrypt(PvkId, Ctx) ← c0 ·
fPub(Id, R, S, c, d).

2. For any two possibly identical public keys Pub1 and Pub2 derived from the
same parameters (e, g, ĝ, v, ω), for any auxiliary values R′1 and R′2, and for
any identities Id1 and Id2 such that Pub1 �= Pub2∨Id1 �= Id2, one can publicly
and efficiently find two “reciprocal private keys” d′1 = (d̂′1,1, ..., d̂

′
1,n) and

d′2 = (d̂′2,1, ..., d̂
′
2,n) such that:

(a) For i, j = 1, 2, let [dij : (Idj , R , dij) ← Extract(Mskj , Idj) | R = Ri] be
the conditional distribution induced by sampling the extraction algorithm
and retaining outcomes with the stated auxiliary value Ri. There must
exist a non-trivial linear combination with coefficients tij ∈ Fp, allowed
to depend on the Ri and R′j, that renders these random variables statis-
tically indistinguishable,

[d′1] ∼ [(d11)t11 (d12)t12 ] ,

[d′2] ∼ [(d21)t21 (d22)t22 ] .

(b) For any two well-formed ciphertexts Ctx1 = (Id1, S1, Msg1 · vs, c1) and
Ctx2 = (Id2, S2, Msg2 · vs, c2), for identities Id1 and Id2, and built with
the same randomization exponent s, we have,

fPub(Id1, R′1, S1, c1, d′1) · fPub(Id2, R′2, S2, c2, d′2) = v0 = 1 .

Property 1 expresses our two earlier requirements: first, that the session keys be
bilinear functions of both the private keys and the ciphertexts (represented by
c and d); and second, that session keys be of the form v−s for externally fixed
v, and thus independent of the master key.

Property 2 asks that anyone be able to produce d′1 and d′2 that cancel out
when used as private keys. The private keys Pvk1 and Pvk2 and the linear co-
efficients t11, ..., t22 must provably exist, but they need not and should not be
efficiently computable from public information (as this would be incompatible
with IBE security). Requirement 2a serves to ensures that d′1 and d′2 are prop-
erly randomized and compatible with the function fPub. Requirement 2b implies
a generalization to arbitrary linear combinations of keys d′1, ...,d′k for any num-
ber k of identities (and auxiliary values): cancellation would then occur in a
k-wise product under the chosen linear combination. We shall see this in action
in the HIBE scheme of Section 5.1.



400 X. Boyen

3.2 Parallel IBE Security

The preceding notion of Linear IBE must be strengthened slightly in order to
be useful. What we need is a weak notion of parallelism for the IBE scheme
that extends to the simulation proofs, but that does not necessarily entail full
concurrency.

Essentially, we want the ability to run multiple instances of the IBE at once,
in a way that the session keys be all the same (though the identities might
be different). For this, we need all the instances to use the same target group
generator v ∈ Gt (which need not be specified externally), and allow them to
use the same random exponent s to create the common session key vs.

We define the notion of parallel semantic security under selective-identity
chosen plaintext attack using the following game played against an attacker A.

Target: A announces the identities Id∗1, ..., Id
∗
� it intends to attack.

Setup: The challenger generates a set of public bilinear parameters
(e, g, ĝ, v) and a secret random seed ω, and makes � independent
calls to the IBE setup algorithm (Mski, Pubi) ← Setup(e, g, ĝ, v, ω)
using these inputs, but with different internal randomness if Setup
uses any. A is given (e, g, ĝ, v) and the � public keys Pub1, ...,Pub�,
which may or may not be the same.

Queries I: A adaptively submits private key extraction queries on each
IBE scheme. For any query Id made with respect to the i-th IBE
public key Pubi, we require that Id �= Id∗i . The challenger answers
such a query with PvkId,i ← Extract(Mski, Id), recalling PvkId,i from
storage if it has been computed already.

Challenge: A then outputs two messages Msg1 and Msg2 on which it
wishes to be challenged. The challenger selects b ∈ {1, 2} at ran-
dom, draws a random exponent s ∈ Fp, and creates � ciphertexts
Ctxi ← Encrypt(Pubi, Id∗i , Msgb, s) using the same message Msgb. The
challenge given to A is the � ciphertexts Ctx1, ...,Ctx�.

Queries II: A makes additional queries under the same constraints as
before, to which the challenger responds as before. The total number
of queries to each IBE subsystem in phases I and II may not exceed
q.

Guess: A eventually outputs a guess b′ ∈ {1, 2}, and wins the game if
b′ = b.

Definition 2. We say that an IBE scheme is (q, �, τ, ε)-Par-IND-sID-CPA secure
if there is no adversary A that and wins the preceding game in time τ with
probability at least 1

2 + ε.
We say that an IBE scheme is (q, �, τ, ε)-Par-IND-ID-CPA secure in the same

conditions, if the Target phase is moved to the beginning of the Challenge phase.

We further strengthen the security notion by offering an additional type of key
extraction query, which captures the intuition that the challenger is able to
create linear relations between arbitrary private keys, including the ones on



General Ad Hoc Encryption from Exponent Inversion IBE 401

the target identities (albeit without revealing what those are). We define this
security property separately because it is not needed for all generic constructions.
In Query phases I and II, we add a “parallel simulation” query, which goes as
follows:

Queries I’ & II’: A can make adaptive “parallel simulation” queries
across all IBE instances. To query, A outputs k + 1 pairs (ij , Idij )
where {i0, ..., ik} ⊆ {1, ..., �}. We require Idij �= Id∗ij

for j = 1, ..., k

but allow Idi0 = Id∗i0 . To respond, B picks a random γ ∈$ F
×
p ; for j =

0, ..., k, it computes Pvkij = (Idij , Ri,j , di,j) ← Extract(Mskij , Idij ),
or recalls it from storage if is was computed before; it then outputs
(Idij , Ri,j , (di,j)γ) for j = 0, ..., k.
Each new needed call to Extract counts toward the quota of q private
key queries; no PvkId,i is ever recomputed under different random-
izations.

The above game augmented with the “parallel simulation” query defines the
following security notion.

Definition 3. We say that an IBE scheme is (q, �, τ, ε)-ParSim-IND-sID-CPA
secure if there is no adversary A that and wins the augmented game in time τ
with probability at least 1

2 + ε.
We similarly define adaptive-identity (q, �, τ, ε)-ParSim-IND-ID-CPA security,

if the Target phase is postponed to the beginning of the Challenge phase.

We short-handedly say that an IBE scheme is Exponent Inversion Compliant
(or EI-compliant) if it satisfies Definitions 1 and 3, and thus 2 (with parameters
that are understood from context).

4 Concrete Instantiations

In this section, we prove that the canonical examples of IBE schemes that in-
tuitively fall under the exponent inversion umbrella are, indeed, Linear IBE
schemes per our formal definition, and also fulfil the Parallel Simulation IBE
security property (albeit in different ways). For completeness, we briefly review
the workings of each scheme, and refer to the literature for the details.

4.1 BB2-IBE

Our first example is the second of two IBE constructions given by Boneh and
Boyen in [2], or BB2. It was originally proven secure against selective-identity
attacks from the BDHI assumption [14,2] in the standard model.

– BB2.Setup outputs the master key Msk ← (a, b) and the public parameters
Pub ←

(
g, ga = ga, gb = gb, v = e(g, ĝ)

)
where a, b ∈$ Fp.

– BB2.Extract(Msk, Id) outputs PvkId ←
(
rId = r, d̂Id = ĝ

−1
a+Id+b r

)
for r ∈$ Fp.



402 X. Boyen

– BB2.Encrypt(Pub, Id, Msg, s) outputs Ctx ← (c0, c1, c2) where c0 = Msg · vs,
c1 = (ga gId)s, c2 = gs

b for the given s.
– BB2.Decrypt(Pub, PvkId, Ctx) outputs Msg′ ← c0 · e(c1 crId

2 , d̂Id) ∈ Gt.

Note that the setup seed ω is not used; the master key (a, b) is generated from
internal randomness.

Lemma 1. BB2-IBE is a Linear IBE scheme.1

Proof. For key and ciphertext with matching identities, we find that Msg′ =
(Msg · vs) · v−s = Msg. Towards Property 1, if follows that,

fPub

(
Id, R = (rId), S = ⊥, c = (c1, c2), d = (d̂Id)

)
= e(c1 crId

2 , d̂Id) = v−s .

Linearity in the last two arguments is then easy to show. In particular,

fPub

(
Id, R = (rId), ⊥, cα = (cα

1 , cα
2 ), dβ = (d̂Id)β

)
= v−s α β .

For Property 2, given Id1, Id2, and any r′1, r
′
2 ∈ Fp, set d′1 = (ĝa2 ĝ

r′
2

b2
ĝId2) and

d′2 = (ĝa1 ĝ
r′
1

b1
ĝ−Id1)−1, taking (ga1 , gb1) from Pub1 and (ga2 , gb2) from Pub2,

which are not necessarily distinct. Then, for actual private keys PvkId1 = (r1, d1)
and PvkId2 = (r2, d2), we have,

d′1 = (d1)(a1+b1 r1+Id1) (a2+b2 r′
2+Id2) · (d2)0 ,

d′2 = (d1)0 · (d2)−(a2+b2 r2+Id2) (a1+b1 r′
1+Id1) ,

and, for any c1 =
(
(ga1 gId1)s, gs

b1

)
and c2 =

(
(ga2 gId2)s, gs

b2

)
, we have that,

fPub (Id1, r′1, ⊥, c1, d′1) · fPub (Id2, r′2, ⊥, c2, d′2) = 1, ∀s, as required.

The following lemma generalizes the BB2 security theorem from [2] to the notion
of parallel IBE semantic security defined in Section 3.2.

Lemma 2. BB2-IBE is (q, �, τ, ε)-ParSim-IND-sID-CPA secure in any bilinear
context that satisfies the Decision (q′, τ ′, ε)-BDHI assumption with q′ > q � and
τ ′ < τ − Θ(q2 �2).

In other words, BB2 is secure under a selective-identity, parallel simulation at-
tack, in the standard model, provided that the BDHI assumption holds in the
relevant bilinear context.

4.2 SK-IBE

The second scheme we describe is adapted from the identity-based key encapsu-
lation mechanism (IBKEM) given in [7] and attributed to Sakai and Kasahara
[17]. Its security proof is set in the random oracle model. For consistency with
our definitions, we present an IBE version of the scheme, and call it SK.
1 See Remark 1 concerning implementations in asymmetric bilinear groups.



General Ad Hoc Encryption from Exponent Inversion IBE 403

– SK.Setup outputs the master key Msk ← a ∈$ Fp and the public key Pub ←
(g, ga = ga, v = e(g, ĝ), H : {0, 1}∗ → Fp).

– SK.Extract(Msk, Id) outputs the private key PvkId ← ĝ
1

a+H(Id) .
– SK.Encrypt(Pub, Id, Msg, s) outputs Ctx ←

(
c0 = Msg · vs, c1 = (ga gH(Id))s

)
.

– SK.Decrypt(Pub, PvkId, Ctx) outputs Msg′ ← c0 / e(c1, PvkId) ∈ Gt.

As in BB2, the setup seed ω is not used; the master key a is generated from
internal randomness.

Lemma 3. SK-IBE is a Linear IBE scheme.1

Proof. SK-IBE clearly fits the Linear IBE template with v = e(g, ĝ). Property 1
is easily verified; in particular, for cα = (cα

1 ) and dβ = (Pvkβ
Id),

fPub (Id, ⊥, ⊥, c, d) = e(c1, PvkId)−α β = e(g, ĝ)−s α β = v−s α β .

For Property 2, given Id1 and Id2 anyone can pick d′1 = (ĝa2 ĝH(Id2)) and d′2 =
(ĝ−1

a1
ĝ−H(Id1)), so,

d′1 = (PvkId1)
t11 · (PvkId2)

t12 t11 = (a1 + H(Id1)) (a2 + H(Id2)), t12 = 0 ,

d′2 = (PvkId1)
t21 · (PvkId2)

t22 t21 = 0, t22 = −t11 ,

and ∀s, fPub
(
Id1, ⊥, ⊥, (ga1 gH(Id1))s, d′1

)
·fPub

(
Id2, ⊥, ⊥, (ga2 gH(Id2))s, d′2

)
=

e(g(a1+H(Id1)) s, ĝa2+H(Id2)) · e(g(a2+H(Id2)) s, ĝ−a1−H(Id1)) = e(g, ĝ)0 = 1, as
required.

Lemma 4. SK-IBE is (q, �, τ, ε)-ParSim-IND-ID-CPA secure in any bilinear con-
text that satisfies the Decision (q′, τ ′, ε′)-BDHI assumption with q′ > q � and
τ ′ < τ − Θ(q2 �2), in the random oracle model, where ε′/ε ≥

∏�
i=1 Qi, where

Qi is the number of adversarial queries to the random oracle that hashes the
identities in the i-th IBE subsystem.

Notice that the above lemma pertains to a full adaptive-identity, parallel simu-
lation attack. The security is not tight, however, and the security losses mount
exponentially with the number of IBE subsystems in the experiment.

Proof. The security proof is similar to (and a simpler version of) the proof of
Lemma 2.

4.3 The Case of the Gentry IBE

The ambiguity of Gentry’s IBE as an exponent inversion candidate presents an
intriguing open problem. Recall from [10] that it uses a powerful security reduc-
tion that gives it tight security under adaptive-identity attacks, albeit under a
strong assumption. On the one hand, the Gentry IBE has much in common with
the exponent inversion family, such as the use of session keys e(g, ĥ)s that do not
involve the master secret. On the other hand, the scheme uses two generators, g



404 X. Boyen

and ĥ, chosen at random by the master key generator. The security proof breaks
when both g and ĥ are fixed externally, or even when chosen randomly but reused
across parallel instances in the sense of Section 3.2. Thus, Gentry-IBE currently
fails the exponent inversion litmus test that session keys be of the form vs for
fixed v; it remains open whether this can be remedied using a different proof.

Since the HIBE transformation we describe next preserves adaptive-identity
security, extending Gentry’s proof to work in the exponent inversion setting
would resolve the long-standing problem of realizing fully secure HIBE for broad
and deep hierarchies. Meanwhile, the very existence of such schemes remains an
open problem.

Remark 1 (Asymmetric Implementations)
Lemmas 1 and 3 tacitly assume that for each element g, ga = ga, gb = gb ∈ G

published in Pub, the corresponding element ĝ, ĝa = ĝa, ĝb = ĝb ∈ Ĝ is made
available for the creation of d′1 and d′2. This is automatically true if we assume
that G = Ĝ, as was the case in the original descriptions of BB2 [2] and SK [7,17].
Otherwise, the relevant elements will need to be published explicitly, e.g., in the
public key, which is harmless to the security of any scheme that was already
secure under the assumption that G = Ĝ.

5 Generic Constructions

Let an abstract scheme IBE = (IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt)
with “parallel” semantic security against selective-identity chosen-plaintext at-
tacks, that has an appropriate linear structure as above. We show how to turn it
into generalizations of IBE that are semantically secure against (the appropriate
notion of) selective-identity chosen-plaintext attacks.

5.1 Hierarchical Identities

In the HIBE primitive [13,11], identities are arranged in a hierarchy, and the
private keys can be derived per the hierarchy without involving the global master
secret. HIBE is essentially a delegation mechanism with a single root (the private
key generator). We construct such a scheme generically as follows.

HIBE.Setup(L). Given a security parameter and the desired number L of levels
in the hierarchy:
1. Create bilinear group parameters, e, g, ĝ, v, at the desired level of secu-

rity. Also pick an ephemeral shared random seed ω which is kept secret.
2. Generate L sets of IBE master key pairs with common bilinear para-

meters, e, g, ĝ, v, by making L calls to setup (IBE.Mski, IBE.Pubi) ←
IBE.Setup(e, g, ĝ, v, ω) for i = 1, ..., L.

3. Select L collision-resistant hash functions (or UOWHFs) from vectors of
IBE identities to single identities, Hi : Ii → I for i = 1, ..., L, where I
is the domain of IBE identities.



General Ad Hoc Encryption from Exponent Inversion IBE 405

4. Output the HIBE master key pair:

HIBE.Msk = (IBE.Msk1, ..., IBE.MskL) ,

HIBE.Pub = (IBE.Pub1, ..., IBE.PubL, H1, ..., HL) .

HIBE.Extract(Msk, Id). Given HIBE.Msk and a target identity Id = (I1, ..., I�) at
level � ≤ L:
1. ∀i = 1, ..., �, let hi = Hi(I1, ..., Ii) be the hash of the first i components.
2. ∀i = 1, ..., �, extract an IBE key (hi, Ri, di) ← Extract(IBE.Mski, hi).
3. Select r1, ..., r� ∈ Fp under the constraint that

∑�
i=1 ri = 1 (mod p).

4. Output the HIBE private key:

HIBE.PvkId = ((I1, R1, d
r1
1 ), ..., (I�, R�, d

r�

� )) .

Observe that all the components of the private key are bound to each other
via the constraint

∑�
i=1 ri = 1 (mod p). Without it, the key would be utterly

random and therefore useless. The mutual binding of the components also
ensures that private keys given to different users are impervious to collusion
attacks.

HIBE.Derive(PvkId, I
′). Given HIBE.PvkId for an �-level HIBE “parent” identity

Id with � < L, and an IBE identity I ′ to act as the (� + 1)-th component of
the HIBE “child” identity:
1. Decompose HIBE.PvkId as a list of triples (Ii, Ri, di) for i = 1, ..., �. Let

also I�+1 = I ′.
2. For each i = 1, ..., � + 1, let hi = Hi(I1, ..., Ii) be the hash of the first i

components.
3. For each i = 1, ..., �:

(a) Find two vectors d′1,i and d′2,i that satisfy Property 2 for Id1 = hi

and Id2 = hi+1 (and the auxiliary Ri and Ri+1) relative to the public
keys IBE.Pubi and IBE.Pubi+1.

(b) Select ri ∈ F
×
p and observe that (d′1,i)

ri and (d′2,i)
ri also satisfy

Property 2.

4. For i = 1, ..., � + 1, define d′′i =

⎧
⎪⎨

⎪⎩

(d′1,1)
r1 if i = 1

(d′2,i−1)
ri−1 (d′1,i)

ri if 2 ≤ i ≤ �

(d′2,�)
r� if i = � + 1

.

5. Output the HIBE private key:

HIBE.PvkId′ =
(
(I1, R1, d1 · d′′1 ), ..., (I�, R�, d� · d′′� ), (I�+1, R�+1, d

′′
�+1)

)

Notice that the derived private key is fully randomized (its distribution is
the same as if it had been created by HIBE.Extract), it will decrypt correctly
(because of Property 2), and its creation required only the parent private
key and not the master key.

HIBE.Encrypt(Pub, Id, Msg). Given HIBE.Pub, an �-level identity Id = (I1, ..., I�)
where � ≤ L, and a message Msg ∈ Gt:
1. Pick a random exponent s ∈ Fp.



406 X. Boyen

2. ∀i = 1, ..., �, let hi = Hi(I1, ..., Ii) be the hash of the first i components.
3. ∀i = 1, ..., �, use s to construct an IBE ciphertext Ctxi = (hi, Si, c0, ci) ←

Encrypt(IBE.Pubi, hi, Msg, s).
4. Output the HIBE ciphertext:

HIBE.Ctx = ((h1, ..., h�), c0, (S1, ..., S�), (c1, ..., c�)) .

Notice that c0 = Msg · vs is the same in all the IBE ciphertexts.
HIBE.Decrypt(Pub, PvkId, Ctx). Given the public key HIBE.Pub, a private key

PvkId = (Pvk1, ...,Pvk�) for some hierarchical identity, and a ciphertext Ctx =
((h1, ..., h�), c0, (S1, ..., S�), (c1, ..., c�)) for the same identity:
1. ∀i = 1, ..., �, assemble Ctxi = (hi, 1, Si, ci), using 1 ∈ Gt in lieu of c0.
2. ∀i = 1, ..., �, IBE-decrypt vi ← IBE.Decrypt(IBE.Pubi, Pvki, Ctxi).
3. Output the decrypted plaintext:

Msg = c0 ·
�∏

i=1

vi .

By Property 1, we know that vi = v−s ri provided that the algorithm inputs
are as expected. Since

∑
i ri = 1, we obtain the desired result.

The collision-resistant hash functions H1, ..., HL serve to enforce the “inheri-
tance” requirement that identity components of higher index be dependent on
the components of lower index. The hash functions do this by creating a prece-
dence ordering over the indices in a construction that would otherwise be indif-
ferent to it. The schemes we build next have no such requirement.

The above construction is quite efficient. If we instantiate it using BB2 or SK,
we respectively obtain two HIBE systems that only require � pairings for de-
cryption at level �, which is marginally faster than most previously known HIBE
systems [11,2,3]. The specialized construction from [3] offers faster decryption
for identities of depth � ≥ 3.

We can prove selective-identity security of the scheme if the underlying scheme
meets the weaker version of “parallel” selective-identity IBE security (from
Definition 2).

Theorem 1. The generic HIBE scheme is (q, �, τ, ε)-IND-sHID-CPA secure [5]
provided that the underlying IBE scheme is a Linear IBE that satisfies (q, �, τ ′, ε)-
Par-IND-sID-CPA security for some τ ′ ≈ τ .

We have essentially the same result in the adaptive-identity models.

Corollary 1. The generic HIBE scheme is (q, �, τ, ε)-IND-HID-CPA secure [11]
provided that the underlying IBE scheme is a Linear IBE that satisfies (q, �, τ ′, ε)-
Par-IND-ID-CPA security for some τ ′ ≈ τ .



General Ad Hoc Encryption from Exponent Inversion IBE 407

5.2 Fuzzy Identities

In the Fuzzy IBE primitive [16], private keys and ciphertexts pertain to multiple
identities (or attributes) at once, and decryption is predicated on meeting certain
threshold of matching attributes. The collusion resistance property stipulates
that private keys containing different sets of attributes cannot be combined to
obtain a larger set than any of them provided by itself.

Two versions of the primitive are defined in [16]: a “small universe” version
which supports an enumerated set of possible attributes, and a “large universe”
version, where exponentially many attributes are representable but only a con-
stant number at a time. In both versions the attributes are boolean (either
present or absent), which we call “small domain”.

Here, we give a “large domain” generalization of “small universe” Fuzzy IBE,
where the enumerated attributes are now key/value pairs that range in all of Fp.
This could be useful in applications of Fuzzy IBE that require non-boolean at-
tributes, such as a biometric system with attributes such as the height of a person.

The small-universe, large-domain, generic Fuzzy IBE construction is as
follows.

FuzzyIBE.Setup(n). Given a security parameter, and the number n of attribute
types to support:
1. Create bilinear group parameters, e, g, ĝ, v, at the desired level of secu-

rity, and a secret random string ω.
2. Generate n independent IBE master key pairs with shared bilinear pa-

rameters, e, g, ĝ, v, by executing setup n times, (IBE.Mski, IBE.Pubi) ←
IBE.Setup(e, g, ĝ, v, ω) for i = 1, ..., n.

3. Output the Fuzzy IBE master key pair:

FuzzyIBE.Msk = (IBE.Msk1, ..., IBE.Mskn) ,

FuzzyIBE.Pub = (IBE.Pub1, ..., IBE.Pubn) .

FuzzyIBE.Extract(Msk, Id, t). On input a master key FuzzyIBE.Msk, a vector Id =
(I1, ..., In) of (positionally sensitive) attributes Ii ∈ Fp, and a threshold
parameter t with 1 ≤ t ≤ n:
1. Pick f1, ..., ft−1 ∈ Fp and let f(x) = 1 +

∑t−1
i=1 fi xi of degree t − 1. Note

that f(0) = 1.
2. ∀i = 1, ..., n, extract an IBE key (Ii, Ri, di) ← Extract(IBE.Mski, Ii),
3. Output the Fuzzy IBE private key:

FuzzyIBE.PvkId =
(
t, (I1, R1, d

f(1)
1 ), ..., (In, Rn, df(n)

n )
)

.

FuzzyIBE.Encrypt(Pub, Id, Msg). On input a public key FuzzyIBE.Pub, a vector
Id = (I1, ..., In) of (positionally sensitive) attributes Ii ∈ Fp, and a message
Msg ∈ Gt:
1. Pick a random exponent s ∈ Fp.
2. For all i = 1, ..., n, build an IBE ciphertext Ctxi = (Ii, Si, c0, ci) ←

Encrypt(IBE.Pubi, Ii, Msg, s).



408 X. Boyen

3. Output the Fuzzy IBE ciphertext (using c0 = Msg · vs common to all
IBE ciphertexts):

FuzzyIBE.Ctx = (Id, c0, (S1, ..., Sn), (c1, ..., cn)) .

FuzzyIBE.Decrypt(Pub, PvkId, Ctx). Given FuzzyIBE.Pub, a private key PvkId, and
a ciphertext Ctx:
1. Determine t attributes Ii1 , ..., Iit that appear in both PvkId and Ctx in

matching positions.
(a) If there are fewer than t “key/value” matches, then output ⊥ and

halt.
(b) Else, select any t matching attributes Ii1 , ..., Iit and define T =

{i1, ..., it}.
2. For j = 1, ..., t:

(a) Extract the IBE private key (Iij , Rij , dij ) from PvkId and call it Pvkj .
(b) Assemble the IBE ciphertext (Iij , 1, Sij , cij ) from Ctx and call it

Ctxj .
(c) Let ΛT,i(x) =

∏
i′∈T\{i}

x−i′

i−i′ be the Lagrange interpolation coeffi-
cients from T to x.

(d) Perform the IBE decryption vj ← IBE.Decrypt(IBE.Pubj , Pvkj , Ctxj).
3. Output the plaintext:

Msg = c0 ·
t∏

j=1

vj
ΛT,ij

(0) .

By Property 1, we know that vj = v−s f(ij) if the inputs to the algorithm are
as expected. The result follows by using Lagrange polynomial interpolation,∑

j f(ij)ΛT,ij (0) = f(0) = 1, “in the exponent”.

The efficiency of the scheme is comparable to that of (the “small universe”
version of) [16] when instantiated with BB2 or SK, even though this is a “large
domain” construction.

Theorem 2. The generic FuzzyIBE scheme is (q, n, τ, ε)-IND-sFuzID-CPA se-
cure [16] provided that the base IBE scheme is a Linear IBE with (q, n, τ ′, ε)-
ParSim-IND-sID-CPA security for τ ′ ≈ τ .

5.3 Attribute-Based Encryption

Attribute-based encryption (ABE) is a powerful generalization of Fuzzy IBE that
was recently proposed in [12]. Instead of allowing decryption conditionally on the
satisfaction of a single threshold gate (whose inputs are the matching attributes
in the ciphertext and the key), ABE allows the condition to be defined by a
tree of threshold gates. The construction given in [12] generalizes the Fuzzy IBE
construction of [16] in the commutative blinding approach, and is based on the
use of not one but multiple interpolation polynomials f(x), each of which applies
to a subset of the input attributes. The degrees of the random polynomials and



General Ad Hoc Encryption from Exponent Inversion IBE 409

their inputs determine the access structure in the ABE scheme; in Key-Policy
(KP) ABE, they are chosen by the authority.

Our generic framework can mirror the KP-ABEconstruction of [12], in the same
way that our Fuzzy IBE construction retains the structure of the construction
in [16]. The main difference is that, since our method is to build an independent
instance of the underlying IBE for each attribute, we obtain a “large domain”
generalization of ABE, with attributes as key/value pairs instead of booleans.

5.4 Multiple Independent Key Generators

Our generic construction immediately generalizes to the case of multiple inde-
pendent key generators, which can be useful in many applications. For example,
when using Fuzzy IBE for encrypting under someone’s biometric readings, one
may wish to use one set of attributes constructed from fingerprints and another
from iris scans, and require a combination of both to decrypt. It is quite possible
in this scenario that the authority issuing fingerprint-based private keys would
be different than the one issuing keys based on iris scans.

Depending on the nature of the underlying IBE system, it is possible to base
our generic Fuzzy IBE construction on independent subsystems that share only
the bilinear groups and generators, thereby facilitating their setup. Whether in-
dependent setup is allowed (in a commonly agreed upon bilinear group), depends
on the use that the IBE.Setup function makes of the common random ω. For in-
stance, since the BB2 and SK schemes achieve our notion of parallel simulation
security without using ω, they are suitable for building a multi-authority system
without shared secret.

The only remaining difficulty lies in the final assembly of private keys given to
the users, because the separate authorities will have to agree on a suitable ran-
dom polynomial f(x) in order to create a new key. Some amount of coordination
between the servers will be required (possibly mediated by the key recipient),
but since the polynomial to be agreed upon is ephemeral and decoupled from
the master keys, this is an orthogonal problem that can be solved in many stan-
dard ways. In particular, Chase [6] showed how to construct a multi-authority
attribute-based scheme, in the commutative blinding framework, where multi-
ple authorities can vouch for separate attributes under the auspices of a central
authority that handles the sharing of ephemerals.

6 Conclusion

We have shown that the family of identity-based encryption schemes based on the
exponent inversionprinciple can be leveraged into building more powerful systems.
We first presented an abstraction to capture a number of useful properties shared
by such schemes. We then showed how to use this abstraction to construct gener-
alizions of IBE. We described Hierarchical and Fuzzy IBE as concrete examples, as
each of them illustrates a specific feature of exponent inversion schemes, but many
other generalizations are possible based on the same abstraction. Our approach is
fairly lightweight and is also compatible with decentralized authorities.



410 X. Boyen

These results have practical implications, since the few known exponent inver-
sion IBE schemes tend to be marginally more efficient than competing construc-
tions, although they require stronger complexity assumptions. Our formalism
has no effect on these benefits and drawbacks, but it extends the range of ap-
plicability of the relevant schemes.

Acknowledgements

The author thanks Michel Abdalla and Brent Waters for discussions on some of
these ideas, and anonymous referees for valuable comments.

References

1. Michel Abdalla, Dario Catalano, Alexander W. Dent, John Malone-Lee, Gregory
Neven, and Nigel P. Smart. Identity-based encryption gone wild. In Proceedings
of ICALP 2006, volume 4051 of Lecture Notes in Computer Science, pages 300–11.
Springer-Verlag, 2006.

2. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Advances in Cryptology—EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 223–38. Springer-Verlag,
2004.

3. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Advances in Cryptology—EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 440–56. Springer-Verlag,
2005.

4. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pair-
ing. SIAM Journal of Computing, 32(3):586–615, 2003. Extended abstract in
Advances in Cryptology—CRYPTO 2001.

5. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Advances in Cryptology—EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 207–22. Springer-Verlag,
2004.

6. Melissa Chase. Multi-authority attribute based encryption. In Proceedings of TCC
2007, Lecture Notes in Computer Science. Springer-Verlag, 2007.

7. Liqun Chen, Zhaohui Cheng, John Malone-Lee, and Nigel P. Smart. An efficient ID-
KEM based on the Sakai-Kasahara key construction. Cryptology ePrint Archive,
Report 2005/224, 2005. http://eprint.iacr.org/2005/224/.

8. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Ad-
vances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in Com-
puter Science, pages 1–13. Springer-Verlag, 2006.

9. Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Proceedings of the 8th IMA International Conference on Cryptography and Cod-
ing, 2001.

10. Craig Gentry. Practical identity-based encryption without random oracles. In
Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Computer Science.
Springer-Verlag, 2006.

11. Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Proceed-
ings of ASIACRYPT 2002, Lecture Notes in Computer Science. Springer-Verlag,
2002.

http://eprint.iacr.org/2005/224/


General Ad Hoc Encryption from Exponent Inversion IBE 411

12. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security—CCS 2006, 2006.

13. Jeremy Horwitz and Ben Lynn. Towards hierarchical identity-based encryption. In
Advances in Cryptology—EUROCRYPT 2002, Lecture Notes in Computer Science,
pages 466–81. Springer-Verlag, 2002.

14. Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing.
IEICE Transactions on Fundamentals, E85-A(2):481–4, 2002.

15. David Naccache. Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369, 2005. http://eprint.iacr.org/2005/369/.

16. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances
in Cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

17. Ryuichi Sakai and Masao Kasahara. ID based cryptosystems with pairing over
elliptic curve. Cryptology ePrint Archive, Report 2003/054, 2003.
http://eprint.iacr.org/2003/054/ .

18. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystem based on
pairing. In Symposium on Cryptography and Information Security—SCIS 2000,
Okinawa, Japan, 2000.

19. Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology—CRYPTO 1984, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer-Verlag, 1984.

20. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

21. Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-based en-
cryption for complex hierarchies with applications to forward security and broad-
cast encryption. In ACM Conference on Computer and Communications Security—
CCS 2004, pages 354–63, 2004.

http://eprint.iacr.org/2005/369/
http://eprint.iacr.org/2003/054/


Non-interactive Proofs for Integer Multiplication

Ivan Damg̊ard and Rune Thorbek

BRICS, Dept. of Computer Science, University of Aarhus

Abstract. We present two universally composable and practical proto-
cols by which a dealer can, verifiably and non-interactively, secret-share
an integer among a set of players. Moreover, at small extra cost and using
a distributed verifier proof, it can be shown in zero-knowledge that three
shared integers a, b, c satisfy ab = c. This implies by known reductions
non-interactive zero-knowledge proofs that a shared integer is in a given
interval, or that one secret integer is larger than another. Such primi-
tives are useful, e.g., for supplying inputs to a multiparty computation
protocol, such as an auction or an election. The protocols use various
set-up assumptions, but do not require the random oracle model.

1 Introduction

Applications such as auctions, elections or benchmarking analysis all involve
computing on confidential data from several parties who do not trust each other
a priori. This means that solutions involving a single trusted party are typically
unsatisfactory. In principle, all such problems can be solved using general secure
multiparty computation [18,2,8], where all parties take part in computing the
desired results. But in practice, this is often not realistic: in auctions or elections,
for instance, the number of parties holding inputs can be very large, they cannot
be assumed to be expert users nor can their machines be assumed to be on-line
at particular times. Hence assuming that all such parties can reliably take part
in a multi-round protocol is unrealistic.

It is therefore often suggested that a smaller number of servers are assigned
to do the computation, acting effectively as representatives for the clients sup-
plying inputs. Of course, this makes sense only if the complexity of supplying
inputs is much smaller than the complexity of taking part in the actual computa-
tion. In particular, we would want that supplying inputs is non-interactive. This
problem can be solved using a non-interactive verifiable secret sharing (VSS)
scheme. Having done the VSS’s, the servers hold shares of all inputs and can do
the computation using any of the (numerous) known multiparty computation
techniques. Several non-interactive VSS protocols are known see, e.g., [22].

However, many applications require that the inputs supplied satisfy certain
constraints. These constraints are typically phrased in a natural way as relations
over the integers, because the underlying application is a computation on inte-
gers. This is the case for auctions, elections and many statistical applications
such as benchmarking. For instance, an auction might specify that bids have to

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 412–429, 2007.
c© International Association for Cryptology Research 2007



Non-interactive Proofs for Integer Multiplication 413

be in a certain interval. In other types of auctions (so called double auctions[4]),
a bid consists of a sequence of numbers that must be monotonely increasing.

Standard efficient techniques for handling this would have a client commit
to his input and prove in zero-knowledge that his numbers satisfy the required
relations. But this solution requires interaction in its basic form. The interaction
can typically be removed following the Fiat-Shamir heuristic if we are willing to
assume the random oracle model. However, it is well known that the security
guarantee provided by a proof in the random oracle model leaves something to
be desired: we cannot instantiate the oracle with a concrete function and be sure
that this always works. Hence, our goal is to avoid random oracles and still have
an efficient solution.

In [5], Boudot presents an efficient technique to prove relations, as outlined
above, given a primitive to prove that a committed integer is a square. Fur-
thermore, in [1], Abe, Cramer and Fehr propose efficient and non-interactive
techniques for proving multiplicative relations on secret-shared values, using
distributed-verifier proofs. Unfortunately, the protocols and definition from [1]
are not directly useful in the scenarios outlined above, for several reasons: First,
the relations that can be proved only hold modulo some (public) prime number,
and not necessarily over the integers. Second, for the case of honest majority, the
protocols in [1] are only “non-interactive with complaints”, that is, if a server is
unhappy with the data he received privately from the dealer, he will complain,
and the dealer must intervene in a second round to resolve these conflicts. It
is clear that we have to avoid this in our scenario. Third, the definition of dis-
tributed verifier proofs used in [1] works with only one prover. In our scenario,
we will have many provers, some of which may be corrupted. In contrast to the
single-prover case, a corrupt prover may now try to exploit the information sent
by honest provers in order to cheat.

In this paper, we propose two protocols that allow a client to non-interactively
VSS integers among the servers, and prove in zero-knowledge, by a distributed
verifier proof, that shared integers a, b, c satisfy ab = c. Using known reductions
[5], this implies non-interactive proofs that a shared integer is in a given interval,
or that shared numbers a, b satisfy a ≥ b. Both protocols require one broadcast
from the prover and one round of messages between the verifiers (servers), which
is a minimal amount of interaction for a distributed verifier proof. Details on the
communication complexity of the protocols follow below. We prove our proto-
cols secure in the Universal Composability model (with static adversary), this
automatically gives us a definition handling the multiple prover case.

For the first solution, we take the protocol of [1] as the point of departure, in-
troducing new techniques to solve the problems mentioned above. We obtain our
solution by replacing in the protocol from [1] Shamir secret-sharing by Linear In-
teger Secret Sharing (LISS) [13] – which exists for any access structure [13]. LISS
schemes are basically secret sharing schemes where the secret is reconstructed
by taking a integral linear combination of the shares. Also, we replace Pedersen
commitments [22] by the integer commitments from [15].



414 I. Damg̊ard and R. Thorbek

While this is quite straightforward, it is not so trivial to solve the problem
of handling complaints without interaction. We first observe that the reason
why the dealer must resolve conflicts in the protocol by Abe et al. is that only
point-to-point channels between dealer and each server are assumed, and hence
servers are not a priori committed to what they received. On the other hand, a
typical implementation would realize the channels using public-key encryption,
so we propose to include this encryption explicitly in the protocol. One might
now hope that a server can prove it received bad data by “opening” the cipher-
texts it received. However, while the sender of a ciphertext can always “open”
it convincingly (simply by revealing the coins used to create it), we need that
the receiver can do so. Since ciphertexts can be adversarially generated, and un-
opened ciphertexts must remain secure, it is not immediately clear how this can
be done in a non-interactive and efficient way. We propose an efficient solution to
the problem based on Identity-Based Encryption (IBE). To our knowledge, this
is a new application of IBE, and we believe the idea is of independent interest, as
the possibility of “complaining convincingly” is often useful in protocol design.

For the case of honest majority, the VSS we obtain requires the dealer to send
a total of O(n log n(κ+ l+k+n)) bits, where κ is the security parameter for the
public-key and commitment schemes used, n is the number of players, l is the
bit length of the numbers we share and k is an “information theoretic” security
parameter, controlling the statistical leakage of information.

The protocol can handle any Q2 adversary structure (honest majority in the
threshold case), which is optimal in terms of the number of corruptions that can
be handled at all. However, for realistic values of the parameters, the efficiency is
not what we might hope for. This is because the numbers we will be computing on
will be numbers specifying bids, prices, productions costs, etc., that is, numbers
that are typically much smaller than those used for public-key cryptography.
Realistic parameter values might be n = 7, l = 32, k = 60 and κ = 1024. In such
a case, each 32 bit number we share is expanded to about 25.000 bits, which
hardly seems desirable.

We therefore propose another solution, where we make the stronger assump-
tion that the adversary structure is Q3 (less than n/3 corruptions in the threshold
case). We build a solution using a generalization of the pseudorandom secret-
sharing technique from [10] to the case of linear integer secret sharing. In the
threshold case, the protocol requires the dealer to send, once and for all, O(T (κ+
nk)) bits to the servers, where T is the number of maximal unqualified sets in
the adversary structure. After this, any number of VSS’s can be done by sending
O(l+k) bits to the servers for each value to be shared. Each multiplication proof
requires 3 VSS invocations and in addition O((l + k + n)n) bits should be sent.

The initial step is not always efficient as a function of n because T may be
exponential in n, depending on the adversary structure. In the typical threshold
case, T would be about

(
n

n/3

)
. But for a small number of servers, T is moderate.

On the other hand, for fixed n and for a large number of VSS invocations we
come very close to sending only l+k bits for every l-bit number we share - where
of course sending l bits is necessary. It is therefore ideally suited for cases, where



Non-interactive Proofs for Integer Multiplication 415

a large number of clients need to supply large amounts of data to a small number
of servers. For the example parameter values above and assuming we share, say
200 numbers, the dealer needs to send about 230 bits per number to share.

Both our protocols use a common reference string, and assume that the veri-
fiers have public/secret key pairs set up in advance. Note that if we do not assume
random oracles, we cannot get non-interactive protocols without some sort of set-
up assumption. Of course, using set-up assumptions, our problem could also be
solved using standard techniques for non-interactive zero-knowledge. But with
current state of the art, this approach can only prove the type of statements
we are after using generic techniques. This would give non-interactive proofs of
size Ω(lκ|C|) where |C| is the size of a Boolean circuit C checking the relation
in question. For realistic parameter values, this will be several orders of magni-
tude larger than our complexity. To our knowledge, our solutions are the first
non-interactive protocols for integer relations that do not use random oracles,
and have communication complexity independent of the circuit complexity of
the relation.

2 Preliminaries

In a Linear Integer Secret Sharing (LISS) Scheme there are n players, which are
denoted by P1, . . . , Pn. Let P = {P1, . . . , Pn} be the set of all the players, and
let the power set of P be denoted by P (P). Let s ∈ [−2l..2l] be the secret which
a dealer D wants to secret share between the players in P over a LISS. Then the
sets in P (P) which are allowed to reconstruct the secret s are called qualified
and the sets which should not be able to obtain any information about the secret
s are called forbidden.

Definition 1. The collection of qualified sets, Γ ⊆ P (P), is called a monotone
access structure, if for all A ∈ Γ and A ⊂ B ⊆ P it holds that B ∈ Γ .

We also need the notion of an adversary structure [19].

Definition 2. An adversary structure is a monotone collection of sets, Δ ⊆
P (P), for which the adversary may corrupt the players of one set in the adversary
structure. It is monotone in the sense that for every A ∈ Δ it holds that for every
B ⊂ A that B ∈ Δ.

Definition 3. An adversary structure Δ is Q2 (Q3) if no two (three) sets in
the structure cover the full player set P.

If Γ is the collection of all qualified sets of players in P and Γ is a monotone
access structure, then the corresponding adversary structure, Δ, is the collection
of all the forbidden sets. Note that, Δ is monotone as required by an adversary
structure, and that Γ ∪ Δ = P (P) and Γ ∩ Δ = ∅. That is, an adversary
structure can be seen as a complement of a monotone access structure. Since
the structures, Γ and Δ, are monotone, they can be uniquely represented by
their minimal and maximal sets denoted by Γ− and Δ+, respectively. |Δ+| will
denote the number of sets in Δ+. In this paper we use Γ and Δ interchangeably.
We proceed to define what is meant by a correct and private LISS.



416 I. Damg̊ard and R. Thorbek

Definition 4. A LISS scheme is correct, if the secret can be reconstructed from
shares of any qualified set in A ∈ Γ , by taking an integer linear combination of
the shares with coefficient that depends only on the index set A.

Definition 5. A LISS scheme is private, if for any forbidden set B ∈ Δ, any
two secret s, s′ ∈ [−2l..2l], and independent random coins r and r′, the statis-
tical distance between the distributions of the shares {si(s, r, k) | i ∈ B} and
{si(s′, r′, k) | i ∈ B} is negligible in the security parameter k.

A labeled matrix consists of a d × e matrix M and a corresponding surjective
function ψ : {1, . . . , d} → {1, . . . , n}. We say that the i-th row is labeled by ψ(i)
or owned by player Pψ(i). For any subset A ⊂ P , we let MA denote the restriction
of M to the rows labeled by some Pψ(i) ∈ A. For any d-vector x, we similarly
denote xA to be the restriction of entries i with Pψ(i) ∈ A. For any two vectors
a and b, let 〈a, b〉 denote the inner product.

Definition 6. An Integer Span Program (ISP) for a monotone access structure
Γ consists of a tuple M = (M, ψ, ε), where M ∈ Zd,e is a labeled matrix with
a surjective function ψ : {1, . . . , d} → {1, . . . , n}, and the target vector ε =
(1, 0, . . . , 0)T ∈ Ze. Furthermore, for every A ⊆ P the following holds,

- for every A ∈ Γ there exists a reconstruction vector λ ∈ Zd such that
MT

Aλ = ε.
- for every A /∈ Γ there exists a sweeping vector κ ∈ Ze such that MAκ = 0

and 〈κ, ε〉 = 1.

The size of M is defined to be d.

In [13] it was shown how to construct a correct and private LISS scheme from
any ISP. For a given ISP we define l0 = l + �log2(κmax(e − 1)), where κmax =
max{|a| | a is an entry in some sweeping vector }. To share a secret s ∈
[−2l..2l], we use a distribution vector ρ which is a uniformly random vector
in [−2l0+k..2l0+k]e with the restriction that 〈ρ, ε〉 = s. The share vector is com-
puted by Mρ = s = (s1, . . . , sd)T , where the share component si is given to
player Pψ(i) for 1 ≤ i ≤ n. The share of player Pj is the subset of share compo-
nents s{Pj}.

See [13] for a proof of correctness and privacy. There, it was also shown that
LISSs exist for any adversary structure, and in particular they can be constructed
for threshold structures where a player’s share is O((l+k+n2) log n) bits long. It
follows from results and conjectures in [11] that this can probably be improved
to O((l + k + n) log n) bits.

3 Verifiable Secret Sharing (VSS) and Distributed
Verifier Proofs

3.1 Model and Definition

We have a set of dealers {D1, . . . , Dm} and a set of n players or verifiers P =
{P1, . . . , Pn}. We assume an active and static adversary who may corrupt any



Non-interactive Proofs for Integer Multiplication 417

number of dealers and a set of players in a given adversary structure. All players,
dealers and the adversary are polynomially bounded. We assume (for simplicity)
synchronous communication. We use the Universal Composability framework [6]
and define ideal functionalities as follows:

Functionality FV SS

– On input s from Dj, send (“Dj, input”) to all players and the adversary.
Wait one round (this models the fact that our implementation takes one
round to finish, after the prover has spoken). Then, if s = ⊥ (which may be
the case if Dj is corrupt), send (“Dj, Fail”) to all players, else send (“Dj ,
OK”) to all players.

Functionality Fab=c

– On input a, b, c from Dj, send (“Dj, input”) to all players and the adversary.
Wait one round. Then, if a, b, c are integers satisfying ab = c, send (“Dj ,
OK”) to all players, else send (“Dj , Fail”) to all players.

Both functionalities need to model that a successfully shared secret can be re-
constructed. To simulate this we add a command to the functionalities, where it
will send the requested shared value to everyone if asked by all honest players.

For our protocols, we will need a set-up assumption, namely D1, . . . , Dm and
P1, . . . , Pn get common input k, pk, pk1, . . . , pkn, where k is the security para-
meter, pki is the public key of Pi, and pk is a common reference string. As
private input, Pi has a secret key ski corresponding to pki. For simplicity, we
assume here that the public and secret keys are generated and given to players
initially by an ideal functionality T . But we stress that T can be implemented
by a once-and-for-all preprocessing among the players (it is well known that any
UC functionality can be securely implemented if we have honest majority, or in
general Q2). In Section 3.4, it is even sufficient that players generate their own
key pairs and broadcast the public keys. We also assume a functionality FBC ,
allowing any dealer to broadcast information to the verifiers.1 Communication
between verifiers uses standard authenticated but non-secret channels. Note that
the UC framework incorporates, in addition to the adversary Adv attacking the
protocol, an environment Z that chooses inputs for and receives outputs from
honest players. We will only consider environments that give integers (and not
⊥) as input to honest players. This models the assumption that honest players
would only attempt to VSS valid integers.

3.2 An Integer Commitment Scheme

A commitment scheme for domain S is given by a family of functions compk :
S × Rpk → Cpk, indexed by a public key pk. One commits by publishing C =

1 Note, that even if we implement the broadcast via a subprotocol, this can be done
such that we maintain the non-interactive nature of our proofs, namely the dealer
sends a single (signed) message to all players, who then internally agree on what he
said.



418 I. Damg̊ard and R. Thorbek

compk(s, r), where s ∈ S is the committed value and r ∈ Rpk is a random value.
A homomorphic commitment scheme is a scheme where we assume that S is an
additive group and that for any two commitments C and C′ and any number
λ, anyone can compute commitments S and P such that being able to open C
and C′ to s and s′, respectively, allows to open S to the sum s+ s′ and P to the
product λs.

We use a modified version of the Pedersen commitment scheme [22], based
on a multiplicative group G of order unknown to the players. This commitment
scheme first appeared in [16] and later in [15]. We will need primes p, q where
p = 2p′ + 1 and q = 2q′ + 1 and p′, q′ are also prime. The computations are
done in Z∗n, where n = pq, and the public key is pk = (n, g, h) where g, h are
chosen at random in Qn, the set of squares modulo n. Then we use compk :
(s, r) �→ gshr mod n. The scheme is homomorphic, since given commitments
C = compk(s, r) and C′ = compk(s′, r′) then CC′ = compk(s+s′, r+r′) and Cλ =
compk(λs, λr). Note that if we choose r uniformly random from [0..n2k], then
r mod ord(h) is statistically close to being uniformly random in [0..ord(h) − 1].

An important advantage of this scheme is that it allows commitment to in-
tegers. This follows since the commitment is done in a group G of unknown
order. More specifically, the following proposition holds for the above commit-
ment scheme.

Proposition 1 ([16]). compk(s, r) is a statistically hiding and computationally
binding commitment scheme, i.e.:

– If factoring is infeasible, then given pk = (n, g, h) it is infeasible to compute
s, s′, r, r′ ∈ Z where s �= s′ such that compk(s, r) = compk(s′, r′).

– For any two values s, s′, the distributions (pk, compk(s, r)), (pk, compk(s′, r′))
are statistically indistinguishable.

3.3 Public-Key Encryption with Verifiable Opening

We introduce here a tool that we will need later. Suppose a player P has a pub-
lic/secret key pair (pk, sk), and receives ciphertext from various senders, some
of whom may be corrupt. We want that the cryptosystem is chosen ciphertext
(CCA) secure and has the additional property that for any received ciphertext c,
P can reveal the decryption result x = Dsk(c) and prove non-interactively and
efficiently that x is correct. We want, of course, that “unopened” ciphertexts
remain secure, which excludes the trivial solution of revealing the secret key.

Note that if c is a valid ciphertext, the random coins used to generate c can
serve as proof of what the plaintext was. But even if the receiver could compute
these coins efficiently, there is still a problem if the sender is corrupt. Then c
may be invalid, and “the coins used to generate c” is not even a well-defined
notion.

A formal definition of the notion we are after can be phrased as a variant of the
standard chosen ciphertext security game, where the oracle answers decryption
queries with the result as well as the proof of correctness. We do not give it here
for lack of space. Instead, we give our solution in a form tailored for direct use



Non-interactive Proofs for Integer Multiplication 419

in our protocol below. The proof that it works is then incorporated in the proof
for the overall protocol2.

The key pair (pk, sk) for P will be the master secret and public key for an
identity-based cryptosystem (IBE)[3]. Note that, under reasonable assumptions,
efficient IBE’s exist that do not use random oracles[24]. For the IBE we use, we
need that given identity t and pk, one can easily verify if a secret key skt is the
secret key for identity t. This can indeed be done for all known efficient IBE’s,
we call this IBE with verifiable secret keys (IBE-VSK). We assume that the
system is used in a protocol that assigns a unique tag to each ciphertext to be
sent to P . To encrypt message m, the sender treats the tag t for this ciphertext
as an identity and encrypts the message to this id, i.e., he sends c = Et(m).
The receiver decrypts by computing the secret key skt and then m = Dskt(c).
To reveal the result of decrypting c, P reveals skt. Everyone can now compute
Dskt(c). One must also verify that skt is indeed the secret key corresponding
to t. From the assumption that tags are not reused and standard properties of
IBE, it follows that unopened ciphertexts remain secure. A somewhat similar
idea was used for a different purpose in [7].

3.4 VSS Using Integer Commitments

In this section we construct a non-interactive verifiable secret sharing [9] (VSS)
scheme based on LISS. We use the model described in the previous sections.
Specifically, the common reference string will be a public key pk = (g, h, n) for
the integer commitment scheme described above. Moreover, each player Pj has
a key pair (pkj , skj) for an IBE-VSK as described above.

Protocol VSSpk(s)
On input s ∈ [−2l..2l], the dealer D makes a commitment C = compk(s, r)
to s, and then executes the following protocol to prove that he knows how
to open C to value s, and to secret share s:
Protocol Proofg,h(C)

1. Given an ISP M = (M, ψ, ε), the dealer D chooses a random vector
ρ ∈ [−2l0+k..2l0+k]e with 〈ρ, ε〉 = s, and commits to this sharing
vector ρ = (ρ1, . . . , ρe)T by commitments R1, . . . , Re to ρ1, . . . , ρe,
respectively, where R1 = C and all commitments use (g, h) as pub-
lic parameter. The commitments R2, .., Re to the additional ran-
domness are included in the proof π. D computes the shares of s:
s = (s1, . . . , sd)T = Mρ, and computes the opening information oi

for the corresponding commitment

Ci =
e∏

j=1

R
mij

j

2 The problem could also be solved using non-interactive zero-knowledge, but this will
be much too inefficient for our purposes. Using OAEP might work as well, but only
assuming random oracles which we want to avoid.



420 I. Damg̊ard and R. Thorbek

using the homomorphic property, where mij is defined by M = [mij ].
Finally, he includes ci = Epkψ(i) (oi) in his proof π, where all these
ciphertexts are assigned a tag consisting of C concatenated with the
name of D (see Section 3.3). Finally, D broadcasts C, π.

2. For each i, Pψ(i) decrypts ci. If he finds that the resulting opening
information oi is incorrect w.r.t. Ci, then he sends oi to all other
players, along with a proof that oi is indeed the result of decrypt-
ing ci, this counts as an accusation against D. Otherwise he sends
“accept”.

3. For any accusation from Pψ(i), each player verifies that any oi re-
ceived is indeed the value that ci decrypts to. If this is not the case
this oi is discarded.

4. Each player looks at all (non-discarded) oi-values he knows. If any
such oi is inconsistent with Ci, then he rejects. Otherwise he accepts.

A successfully shared value s can be reconstructed by simply having every
player Pi open every commitment Cj where ψ(j) = i. For some qualified set
of successfully opened shares the players can then use the corresponding recon-
struction vector λ to reconstruct the secret. We have

Theorem 1. Given a secure IBE-VSK, the protocol VSSpk(s) securely imple-
ments FV SS, assuming any Q2 adversary structure Γ .

Proof. To show that VSSpk(s) securely implements FV SS , we are given an ad-
versary Adv and an environment Z, and we need to construct a simulator S. The
simulator interacts with Adv to simulate its view of attacking the protocol, and
on the other hand interacts with FV SS on behalf of corrupt players. This game
is called the ideal process. This is compared to the real process, where Z, Adv
are interacting with a real instance of the protocol. In both processes, Z and
Adv may communicate at any time. The goal is now to show that Z cannot
distinguish the real from the ideal process. Our simulator works as follows:

1. The simulator generates the keys pk, {(pkj, skj)} following T ’s algorithm,
and sends all public keys to Adv, along with secret keys for corrupted players.

2. The simulator S now acts whenever required, as follows:
– If Adv sends C and a proof π to the broadcast functionality on behalf of

corrupt dealer Dj , the simulator does the following: using its secret keys,
it can decrypt ciphertext in π intended for honest players and follow their
algorithm to compute what they would send in the second round. This
also lets it decide if the proof would be accepted. If not, the simulator
sends ⊥ to FV SS . If the proof is acceptable, observe first that since Γ
is Q2, the set of honest players, A, is qualified, and that every honest
player can open his commitment to si. Let λ be a reconstruction vector
for A, that is, 〈s, λ〉 = s and λAC = 0, i.e., if λ = (λ1, . . . , λd)T then

d∑

i=1

siλi =
d∑

i=1

λi

e∑

j=1

mijρj = ρ1 = s,



Non-interactive Proofs for Integer Multiplication 421

where λj = 0 for ψ(j) /∈ A. Hence, the above equation implies that∑d
i=1 λimij = δ1j , where δij = 1 if i = j and 0 otherwise. Therefore, by

the homomorphic property, the simulator can open commitment C′ =∏d
i=1 Cλi

i to s′ =
∑d

i=1 λisi. Now, since

C′ =
d∏

i=1

Cλi

i =
d∏

i=1

⎛

⎝
e∏

j=1

R
mij

j

⎞

⎠
λi

=
e∏

j=1

R
�

i λimij

j = R1 = C,

we see that the simulator can extract from the proof a way to open
commitment C to a value s. The simulator sends s to FV SS .

– On input (“Dj , input”) from FV SS , where Dj is honest, the simulator
simulates what Dj would send in the protocol, as follows: First, create
a commitment C to an arbitrary value. By the statistical hiding prop-
erty, there exists a way to open C to the correct value s used by Dj ,
except with negligible probability – although s is unknown to S. We
therefore proceed, assuming implicitly that C “contains” s. Now, let A
be the set of corrupted players. Then there exists a sweeping vector κ
such that MAκ = 0 and 〈κ, ε〉 = 1. Let ρ0 = (r1, . . . , re)T be a random
distribution vector such that 〈ρ0, ε〉 = 0, i.e., a distribution vector to
a random sharing of 0. Construct R′1, . . . , R

′
e as random commitments

of r1, . . . , re, respectively, with the exception that R′1 = 1 (or the com-
mitment of r1 = 0 using randomness 0). Then, by the homomorphic
property of the commitment scheme, compute commitments

C′i =
e∏

j=1

R′j
mij ,

to shares si which determines the secret 0. Now, given the commitment
C for the secret s, we modify the commitments so they become con-
sistent with s: Compute the public commitments Ri = R′iC

κi where
κ = (κ1, . . . , κe)T is the sweeping vector for A. Note that R1 = R′1Cκ1 =
1C1 = C as required, since 〈κ, ε〉 = 1 (i.e., κ1 = 1). The commitments
to the shares in s will be as follows:

Ci =
e∏

j=1

R
mij

j =
e∏

j=1

(R′jC
κj )mij =

e∏

j=1

R′j
mij Cκjmij .

For the players in A we have that,

e∏

j=1

Cκjmij = C
�

j κjmij = C0 = 1,

since the inner product of κ and a row in M which is owned by a player
in A is 0. So for a corrupt Pψ(i) we have C′i = Ci, and we know how to
open these commitments. The simulated proof therefore consists of the



422 I. Damg̊ard and R. Thorbek

commitments R1, . . . , Re, encryptions of correct opening information for
Ci when Pψ(i) is corrupt, and encryptions of random values for honest
players.

To see that this simulation works, note the following: First, the simulation of
the initial set-up stage and of the case where a corrupt dealer gives a proof is
perfect. In particular, when a corrupt dealer does a VSS that would be accepted
in the real protocol, the simulator can always extract the correct secret, and
honest players will therefore output accept also in the ideal process.

In the case where an honest dealer does a VSS, this will in the ideal process
simply mean that it sends integer s to FV SS . The functionality will send accept
to everyone, so all honest players output accept. This is also the case in the
real protocol: correct opening information for each Ci is uniquely determined
from the ciphertext ci, hence no honest player will accuse D and every other
accusation will be rejected by the honest players.

Hence the only possible difference between the ideal and real process is in the
simulated commitment C and proof π that is shown to Adv. By the statistical
hiding property of the commitment scheme and privacy of the LISS scheme,
it follows that the opening information sent to corrupt players, as well as the
commitments R1, . . . , Re have distribution statistically close the one seen in the
real protocol. So the only difference is the fact that the ciphertexts intended
for honest players are random in the simulation, and contain valid openings of
commitments in the real protocol.

We cannot argue that the two sets of encryptions are indistinguishable based
directly on the ideal process because S knows all secret keys. Instead, we con-
struct a machine S′ that acts as an adversary breaking the underlying IBE-VSK.
S′ will run the algorithms of Z, Adv and S, with the following modifications to
S: S′ receives public keys for the honest players from an oracle. Whenever S
needs to decrypt a ciphertext sent to an honest player with tag t (see Section
3.3), S′ will ask the oracle for the secret key for that tag, and can then decrypt.
When S wants to create ciphertext for honest players in a simulated proof, S′

will ask the oracle to encrypt either 1) random data or 2) genuine opening in-
formation for the relevant commitments. The latter is possible because S′ also
runs Z and therefore knows each secret that is shared, this allows it to create
the commitment C as a genuine commitment containing the right value, and
from this it can compute how to open all the other commitments in that VSS. In
the case 1), we produce exactly what we get in the ideal process, in case 2) we
produce something statistically close to what we get in the real process. Hence,
if Z could distinguish the two processes, S′ can use the output from Z to break
the underlying IBE-VSK. ��

For lack of space, we do not prove formally here that the protocol for recon-
struction of the committed secret works. It is quite straightforward based on the
binding property of the commitment scheme.



Non-interactive Proofs for Integer Multiplication 423

3.5 Verifiable Commitment Multiplication Proof

We now show a (distributed verifier) proof that VSS’ed integers s, s′, s′′ satisfy
that s′′ = ss′:

Protocol MultProofpk(s, s′, s′′)
1. The prover makes commitments C, C′, C′′ to s, s′, s′′ and then executes

Proofg,h(C), Proofg,h(C′), and Proofg,h(C′′).
2. The prover executes ProofC′,h(C′′) using the same distribution vector

ρs as in step 1 (but with new independent randomness for the commit-
ments).

3. Every player verifies whether his shares obtained from Proofg,h(C) (from
step 1.) and ProofC′,h(C′′) (from step 2.) coincide. If this does not hold, he
accuses the dealer by opening the ciphertexts he received in Proofg,h(C)
and ProofC′,h(C′′). Each player verifies any accusation made.

4. The proof is accepted if all subproofs were accepted, and no valid accusa-
tions were made.

Note that the four executions of the Proof protocol can be run in parallel. A
similar protocol appeared in [1], but we have here added Proofg,h(C′).3

Theorem 2. Assuming the integer commitment scheme is binding and given a
secure IBE-VSK, MultProofpk(s, s′, s′′) securely implements Fab=c assuming any
Q2 adversary structure Γ .

Proof. Note that making commitments C, C′, C′′ and then executing the first
3 instances of Proof is equivalent to executing 3 instances of VSSpk. Therefore,
to simulate this, we run the simulator from the previous theorem 3 times (in
parallel). To simulate the execution of ProofC′,h(C′′), we run the same simulator
again, with the following changes: when simulating the actions of an honest
dealer, the simulator will not create its own commitment to play the role of
the commitment to the secret, instead it will use C′′. Also, it will use the same
distribution vector that was used in the simulation of Proofg,h(C).

To show that this simulation works, we only need to check that when we
extract opening information from an acceptable proof given by a corrupt prover,
we will get values s, s′, s′′ such that ss′ = s′′. Note, that if the proof is accepted,
it follows from the proof of Theorem 1 that we can extract from step 1. pairs
(s, r), (s′, r′) and (s′′, r′′) such that C = comg,h(s, r), C′ = comg,h(s′, r′) and
C′′ = comg,h(s′′, r′′). Furthermore, steps 2. and 3. ensure that we can extract
(s, r∗) such that C′′ = comC′,h(s, r∗) = C′shr∗ 4. Combining this with the
expression for C′ = comg,h(s′, r′) = gs′

hr′
we get C′′ = C′shr∗

= (gs′
hr′

)shr∗
=

gss′
hr′s+r∗

In other words, we can now open C′′ to both s′′ and ss′, which
contradicts the binding property unless s′′ = ss′. ��

3 This is necessary since the order of the group of the commitments is unknown and
we can therefore not prove soundness the same way as in [1] (Lemma 1).

4 Note that the proof in step 2. uses C′, which might have been adversarially generated,
in place of g which comes from the common reference string. However, this is not a
problem since the extraction will work for any set of values.



424 I. Damg̊ard and R. Thorbek

4 Verifiable Multiplication Proof Based on
Pseudo-Random Sharing

4.1 Replicated Integer Secret-Sharing and Share Conversion

In this section we first introduce RISS, an integer version of Replicated Secret-
Sharing [20], where we share an integer over a monotone access structure. Then
we define share conversion, and show that shares generated by a RISS scheme
can be locally converted to shares in the same secret generated by LISS schemes.

Scheme Replicated Integer Secret-Sharing (RISS)
Let Δ be an adversary structure. For each set B ∈ Δ+ choose a uniformly
random rB integer from the interval [−2l+k..2l+k] and send privately rB to
each player Pi /∈ B. Furthermore, publish r = s+

∑
B∈Δ+ rB , where s is the

secret from the interval [−2l..2l].

Lemma 1. The RISS scheme is correct and (statistically) private.

Definition 7. Let S and S′ be two secret-sharing schemes. We say that S is
locally convertible to S ′ if there exist local conversion functions g1, . . . , gn such
that the following holds. If (s1, . . . , sn) are valid shares of a secret s in S, then
(g1(s1), . . . , gn(sn)) are valid shares of the same secret s in S′. We denote by
g the concatenation of all gi, namely g(s1, . . . , sn) = (g1(s1), . . . , gn(sn)), and
refer to g as a share conversion function.

Note by the locality feature of the conversion, that converted shares cannot
reveal more information about s than the original shares.

The following theorem is proved in the full version of the paper [14], using
ideas similar to what was used in [10]

Theorem 3. The RISS scheme RΓ , realizing Γ , is locally convertible to any
LISS realizing an access structure Γ ′ ⊆ Γ .

Clearly, for any prime p, a RISS sharing of integer s can be thought of as a
replicated sharing over Zp of s mod p, by reducing all shares modulo p. Further-
more, in [10] it was shown how to locally convert a replicated sharing over Zp

to any linear secret sharing (LSS) scheme over Zp (such as Shamir’s scheme).
From these two observations, we immediately get

Proposition 2. The RISS scheme RΓ , realizing Γ , is locally convertible to any
LSS over Zp realizing an access structure Γ ′ ⊆ Γ , where the original secret s
after conversion will be s mod p.

4.2 Application to VSS

We now show how the results from the previous subsection can be used to
generate a series of verifiably shared secrets by broadcasting only two values per
secret, at the initial cost of distributing a set of random seeds to the players. We
use the model defined earlier, where each player Pi has a public and a secret key.



Non-interactive Proofs for Integer Multiplication 425

In this case, we assume that there is a public key pkB defined for each B ∈ Δ+,
and Pi’s public key consists of all pkB for those B in which Pi is not a member.
The secret key consists of all secret keys corresponding to relevant pkB’s. As
before, we assume these are keys for an IBE-VSK.

The following protocol does the intial distribution of seeds.

Protocol Random{rB}(Δ
+)

1. For each B ∈ Δ+ the dealer D choose an uniformly random rB from
[0..2k[.

2. For each B ∈ Δ+ D broadcasts rB encrypted under pkB . The dealer’s
name is used as tag for this ciphertext. Each player decrypts all the
ciphertexts for which he has the secret key.

The protocol clearly ensures that players have mutually consistent shares, i.e.,
all honest players not in B agree on the value of rB, for any B ∈ Δ+.

Given a pseudorandom function (PRF) ϕ·(·) with k-bit keys and inputs, and
outputs in [−2l+k..2l+k], the following protocol is realizable.

Protocol VSS{rB}(s)
It is assumed that the dealer D has run Random{rB}(Δ

+) on some adversary
structure, Δ.
1. D broadcasts a value a, to serve as a “label” for this instance of the

protocol. The only demand is that a can be used as input to ϕ, and that
D never reuses an a-value. D computes, with his knowledge of {rB},
r = s +

∑
B ϕrB (a) and broadcasts r.

2. Each player Pi checks that r ∈ [−(|Δ+| + 1)2l+k..(|Δ+| + 1)2l+k], and
rejects if this is not the case. Otherwise, he computes ϕrB (a), for every
B where Pi �∈ B.

This lemma follows easily by inspection of the protocol:

Lemma 2. If D is honest, no honest player will reject in VSS{rB}(s). No matter
what the dealer does, if honest players accept, the set of values r, {ϕrB (a)| B ∈
Δ+} form a RISS sharing of some value s′. If D is honest, s′ = s, otherwise
s′ ∈ [−(2|Δ+| + 2)2l+k..(2|Δ+| + 2)2l+k].

It is also quite straightforward to see that if D is honest, and the PRF is secure,
a polynomially bounded adversary does not learn anything about the secret
involved. A proof of this is implicit in the proof of Theorem 4 below. We discuss
in the full version of this paper [14] how a secret can be reconstructed, once it
has been VSS’ed as above.

4.3 Multiplication Proof

In this section we describe a protocol which non-interactively proves that a
shared value is the product of two other shared values. For simplicity, we will only
consider the case of a threshold adversary who corrupts t < n/3 of the players,
so the adversary structure Δ will in this section consist of all set of cardinality



426 I. Damg̊ard and R. Thorbek

at most t. The full version of this paper [14] will describe a generalization to all
Q3 adversary structures.

We will need a tool from [10], called Pseudorandom Zero Sharing (PRZS).
This protocol assumes that for all B ∈ Δ+, players not in B have been given t
random seeds r1

B, . . . , rt
B and a prime p > n is agreed in advance. Based on this,

the protocol generates (by local computation only) a pseudorandom polynomial
f over Zp of degree at most 2t such that f(0) = 0 and each player Pi knows
f(i). The protocol is a simple generalization of the share conversion technique.

In the following Random{rB ,r1
B ,...,rt

B}(Δ
+) will denote the protocol where the

dealer distributes the seeds rB , r1
B, . . . , rt

B to all players not in B using encryption
under pkB. We will choose a fixed prime p, such p > 2(4|Δ+| + 2)222(l+k).

Protocol MultProof{rB ,r1
B ,...,rt

B}(a, b, c)

1. The dealer D executes Random{rB ,r1
B ,...,rt

B}(Δ
+).

2. D executes VSS{rB}(a), VSS{rB}(b) and VSS{rB}(c).
3. The players use Proposition 2 to locally convert the RISS sharings we

now have of a, b, c to Shamir sharings of a mod p,b mod p and c mod p,
consistent with polynomials fa, fb and fc of degree at most t, t and 2t
respectively. The players use PRZS to generate shares in a polynomial
f of degree at most 2t with f(0) = 0.

4. D uses his knowledge of all seeds to compute the polynomial h = f +
fafb − fc and broadcasts h.

5. Each player Pi verifies that h(i) = f(i) + fa(i)fb(i) − fc(i). If the ver-
ification fails then Pi broadcast “Accusation” and opens all encrypted
values rB , r1

B, .., rt
B known by him.

6. The proof is rejected if one of the following situations happen: one of
the VSS protocols in Step 2 was rejected, the broadcasted polynomial
h is not of degree at most 2t, h(0) �= 0, or broadcasted values by a
player are consistent with the encrypted values but inconsistent with
the broadcasted values by D.

Theorem 4. When based on a secure IBE-VSK and PRF, then the protocol
MultProof{rB ,r1

B ,...,rt
B}(a, b, c) securely implements Fab=c, for any threshold-t ad-

versary structure where t < n/3.

Proof. We construct a simulator S that works as follows:
1. S generates the keys pk, {(pkB, skB)} following T ’s algorithm, and sends all

public keys to Adv, along with secret keys for corrupted players.
2. S now acts whenever required, as follows:

– When Adv does a proof on behalf of a corrupt dealer, S can simply
decrypt everything sent by the adversary, and decide if the proof would
be accepted in the real process. If so, it reconstructs values a, b and c
and sends them to the ideal functionality. Otherwise, it sends ⊥ to the
ideal functionality and uses the honest players’ algorithm to compute
the messages (complaints) they would send to corrupt players, and sends
these to Adv.



Non-interactive Proofs for Integer Multiplication 427

– When an honest dealer does a proof, S will generate a simulated proof
by simply following the prover’s algorithm, using a = b = c = 0.

To see that this simulation works as required, note first that the simulation
of the set-up phase and proofs by corrupt dealers is perfect. This is because
the simulator follows the honest players algorithm to compute their reaction
to the proof, so we just need to check that when the proof is accepted, the
simulator can send a correct witness to the functionality. By Lemma 2, the
values a, b, c that the simulator reconstructs from the proof will be in the interval
[−(2|Δ+| + 2)2l+k . . . (2|Δ+| + 2)2l+k], so we know that |ab|, |c| are less than
p/2. Now, from Step 5, we know that h agrees with f + fafb − fc in all points
owned by honest players, of which there are at least 2t + 1. This implies that
h = f + fafb − fc, and therefore that ab = c mod p. But if ab �= c, it would have
to be the case that |ab − c| ≥ p, while on the other hand we already know that
|ab − c| ≤ |ab| + |c| < p. So indeed ab = c.

It remains to show that the simulation of an honest dealer’s proof shown to the
adversary is indistinguishable from a real proof. For this, consider the real process
Real, and assume the worst case where the adversary has corrupted a maximal
set B of players. This means that when an honest dealer does a proof, the key skB

is the only secret key the adversary does not know. We then define a new “hybrid”
process Hyb1, where we replace the broadcasted encryptions of rB, r1

B , . . . , rt
B

(under pkB) by encryptions of independent random values. By an argument
similar to the proof of Theorem 1, Real is indistinguishable from Hyb1 if the
underlying IBE-VSK is secure. Note that in Hyb1, we can replace evaluations of
the PRF using seeds rB, r1

B , . . . , rt
B by oracle access to the PRF with the same

seeds, and all messages sent will remain unchanged. We define Hyb2 by replacing
the PRF oracles by oracles for truly random functions. By security of the PRF,
Hyb2 is indistinguishable from Hyb1. Finally, we define Hyb3 as follows: we first
replace the dealer’s inputs (a, b, c) to the VSS{rB}(·)-protocols by random values
in the legal interval, and second, we choose the polynomial h to broadcast as a
uniformly random polynomial, subject to h(0) = 0, deg(h) ≤ 2t, and that h(i)
agrees with the adversary’s information for all corrupt players Pi. Now, Hyb3 is
statistically indistinguishable from Hyb2: consider, for instance, the execution of
VSS{rB}(a) in Hyb2. If we subtract the randomness that the adversary already
knows, we see that he can compute R + a, where R is a truly random value in
Ir = [−2l+k..2l+k]. This is statistically indistinguishable from R + r where r is a
random value in Is = [−2l..2l], which is what the adversary would see in Hyb3.
The polynomial h is easily seen to have exactly the same distribution in Hyb2
and Hyb3. It follows that Real is indistinguishable from Hyb3.

To finish the proof, note that in the argument we just gave, we did not use
anything special about the inputs a, b, c, other than ab = c. Therefore, essentially
the same argument shows that the ideal process is also indistinguishable from
Hyb3 since the simulator uses a = b = c = 0 and otherwise follows the protocol.
The theorem now follows from transitivity of indistinguishability. ��



428 I. Damg̊ard and R. Thorbek

5 Interval Proofs and Application to Secure Computing

Boudot [5] observes that to prove that a number x lies in an interval [a, b] it
is sufficient to prove that x − a ≥ 0 and b − x ≥ 0. By using a homomorphic
commitments scheme and a primitive to prove that a committed integer is a
square, he constructs an efficient proof that a committed number is non-negative.
Only a small constant number of calls to the primitive is required.

Boudot’s protocols can be run in our settings by using one of the VSS protocols
we have presented to play the role of commitments in Boudot’s protocols. Note
that both types of VSS’s we construct are linear and so we have the homomorphic
properties needed. In this way, we get a non-interactive proof that a shared
number is in a given interval, using a constant number of invocations of our VSS
protocol.

Furthermore, each number x we prove something about is verifiably shared
among the players, using a LISS scheme (a RISS scheme in case of the second
protocol). If we consider the shares as numbers mod q for any prime q, we obtain
a linear sharing over Zq of x mod q. We can now, possibly after local conversion
using [10], do secure computing on such numbers using, e.g., the protocols from
[17,4,12]. If what we really want is secure addition and multiplication over the
integers, we can use the initial interval proofs to make sure the numbers are
small enough to avoid modular reductions.

Acknowledgements

We thank Matthias Fitzi, Jørgen Brandt, Mikkel Krøig̊ard, Martin Geisler, and
the anonymous referees for insightful comments.

References

1. Masayuki Abe, Ronald Cramer and Serge Fehr. Non-interactive Distributed-
Verifier Proofs and Proving Relations among Commitments. ASIACRYPT 2002,
LNCS 2501. Springer 2002.

2. M. Ben-Or, S. Goldwasser, A. Wigderson: Completeness theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proc. ACM STOC ’88, pp.
1–10.

3. Dan Boneh, Matthew K. Franklin: Identity-Based Encryption from the Weil Pair-
ing. SIAM J. Comput. 32(3): 586-615 (2003).

4. Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter
and Tomas Toft: A Practical Implementation of Secure Auctions based on Multi-
party Integer Computation. Proc. of Financial Cryptography 2006, Springer Verlag
LNCS.

5. F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval. EURO-
CRYPT’00, LNCS 1807, pp 431-444, 2000.

6. Ran Canetti: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Proc. of FOCS 2001: pp.136-145. See also updated version on the Eprint
archive, www.iacr.org.



Non-interactive Proofs for Integer Multiplication 429

7. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from
Identity-Based Encryption. Advances in Cryptology - EUROCRYPT 2004, LNCS
3027, pp 207-222, 2004.

8. D. Chaum, C. Crépeau, I. Damg̊ard: Multi-Party Unconditionally Secure Protocols,
Proc. of ACM STOC ’88, pp. 11–19.

9. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of Faults (extended
abstract). In 26th Annual Symposium on Foundations of Computer Science. IEEE,
1985.

10. Ronald Cramer, Ivan Damg̊ard, Yuval Ishai: Share Conversion, Pseudorandom
Secret-Sharing and Applications to Secure Computation. Proc. of TCC 2005, pp.
342-362, Springer Verlag LNCS

11. Ronald Cramer, Serge Fehr and Martijn Stam: Black-Box Secret Sharing from
Primitve Sets in Algebraic Number Fields, Proc. of Crypto 05, Springer Verlag
LNCS.

12. Ivan Damgrd, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, Tomas Toft: Uncon-
ditionally Secure Constant-Rounds Multi-party Computation for Equality, Compar-
ison, Bits and Exponentiation. Proc. of TCC 2006, pp. 285-304, Springer Verlag
LNCS.

13. Ivan Damg̊ard and Rune Thorbek. Linear Integer Secret-Sharing and Distributed
Exponentiation. PKC’06, LNCS 3958, pp 75-90 (2006).

14. Ivan Damg̊ard and Rune Thorbek. Non-Interactive Proofs for Integer Multiplica-
tion (full version), the Eprint archive, www.iacr.org (eprint.iacr.org/2007/086).

15. Eiichiro Fujisaki and Tatsuaki Okamoto. A Practical and Provably Secure Scheme
for Publicly Verifiable Secret Sharing and Its Applications. EUROCRYPT’98,
LNCS 1403,pp 32-46, 1998.

16. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical Zero Knowledge Protocols to
Prove Modular Polynomial Relations. CRYPTO’97, LNCS 1294,pp 16-30, 1997.

17. R. Gennaro, M. Rabin, T. Rabin, Simplified VSS and Fast-Track Multiparty Com-
putations with Applications to Threshold Cryptography, Proc of ACM PODC’98.

18. O. Goldreich, S. Micali and A. Wigderson: How to Play Any Mental Game or a
Completeness Theorem for Protocols with Honest Majority, Proc. of ACM STOC
’87, pp. 218–229.

19. Martin Hirt and Ueli Maurer Player Simulation and General Adversary Structures
in Perfect Multiparty Computation. Journal of Cryptology: the journal of the In-
ternational Association for Cryptologic Research, volume 13, pages 31-60 (2000).

20. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. Proc. IEEE Global Telecommunication Conf., Globecom 87: 99-102
(1987).

21. M. Karchmer and A. Wigderson. On Span Programs. In Proc. of 8th IEEE Struc-
ture in Complexity Theory, pages 102-111, 1993.

22. Torben P. Pedersen. Non-interactive and Information-theoretic Secure Verifiable
Secret Sharing. In Advances in Cryptology - CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science. Springer, 1991.

23. Adi Shamir. How to share a secret. Communication of the Association for Com-
puting Machinery, 22(11), 1979.

24. Brent Waters: Efficient Identity-Based Encryption Without Random Oracles. Proc.
of Eurocrypt 2005: pp.114-127, Springer Verlag LNCS.



Ate Pairing on Hyperelliptic Curves

R. Granger1,�, F. Hess2, R. Oyono3, N. Thériault4,��, and F. Vercauteren5,� � �

1 Dept. Computer Science, University of Bristol
MVB, Woodland Road, Bristol, BS8 1UB, United Kingdom

granger@cs.bris.ac.uk
2 Technische Universität Berlin,

Fakultät II, Institut für Mathematik Sekr. MA 8-1,
Strasse des 17. Juni 136, D-10623 Berlin, Germany

hess@math.tu-berlin.de
3 University of Waterloo,

Department of Combinatorics and Optimization,
Waterloo, Ontario, N2L 3G1, Canada

royono@uwaterloo.ca
4 Instituto de Matemática y F́ısica,

Universidad de Talca, Casilla 747, Talca, Chile
ntheriau@inst-mat.utalca.cl

5 Department of Electrical Engineering, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

frederik.vercauteren@esat.kuleuven.be

Abstract. In this paper we show that the Ate pairing, originally de-
fined for elliptic curves, generalises to hyperelliptic curves and in fact
to arbitrary algebraic curves. It has the following surprising properties:
The loop length in Miller’s algorithm can be up to g times shorter than
for the Tate pairing, with g the genus of the curve, and the pairing is
automatically reduced, i.e. no final exponentiation is needed.

Keywords: Tate pairing, Ate pairing, hyperelliptic curves, finite fields.

1 Introduction

Pairings in cryptography have received a fast growing interest in the past six
years and are currently a major topic in cryptologic research. Investigations are
carried out regarding the use of pairings in cryptographic protocols on one side
and regarding mathematical, algorithmic foundations of pairings on the other
side.

The present paper conducts investigations of the latter type. Building on and
generalising ideas from [5,7,4,10,17] into a common framework, the main result

� Funded by the EPSRC.
�� This work was done in part while the author was at the Fields Institute, Toronto,

Canada.
� � � Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 430–447, 2007.
c© International Association for Cryptology Research 2007



Ate Pairing on Hyperelliptic Curves 431

of the paper consists in providing new classes of efficient non-degenerate pair-
ings on higher genus algebraic curves, called Ate pairings and superspecial Ate
pairings, which feature some surprising properties. These pairings are different
from the well known Weil and Tate pairings in that they are defined by much
simpler algebraic expressions. Of course, for prime order groups any pairing can
be obtained as a suitable power of any fixed non-degenerate pairing, and we also
exhibit these powers for our pairings in relation to the Tate pairing.

The surprising properties of the Ate and superspecial Ate pairings are the
following: Firstly, the loop length in Miller’s algorithm for evaluating the pairing
function is up to g times shorter than for the corresponding Tate pairing, where
g is the genus of the underlying curve C. Secondly, the pairing is automatically
reduced, that is, the final exponentiation required by the Tate pairing can be
omitted.

There are constructive and destructive aspects regarding the relevance of our
pairings to cryptography. A discussion of constructive aspects of the Tate pairing
in higher genus has been carried out in [8]. The main point here is that pairings
in higher genus can make use of degenerate divisors D2 = (Q), leading to more
efficient evaluation and possibly some bandwidth savings due to compression.
While this gives an improvement of a factor of up to g in comparison with
general D2 of degree g, the efficiency comparison with the Ate pairing in genus
one is less favourable as indicated in Appendix A.

The destructive aspects of our pairings concern pairing inversion and the
difficulty of the computational Diffie-Hellman problem in finite fields. In [24] it
was shown that the computational Diffie-Hellman problem in the two domains of
the pairing as well as in the codomain can be efficiently reduced to the problem of
computing preimages of pairing values for each argument, given a fixed opposite
argument. The absence of the final powering in our pairings and the fact that
the degree of the pairing function is independent of the prime group order, and
can hence be very small, raises questions about the hardness of pairing inversion.
What can be stated at the moment is that Ate and thus Tate pairing inversion
for small q, solving for degenerate divisors D2 = (Q) in the second argument, is
actually efficient and straightforward (roughly as hard as computing the roots
of a polynomial of degree qg over an extension of degree about gk of Fq where k
is the embedding degree). In protocols it is hence prudent to restrict to public
degenerate divisors. As of now, the precise security implications of our pairings
are unknown and much more research is needed for an assessment.

Although we state most results for hyperelliptic curves only, the theory and
proofs do actually not require the hyperellipticity and readily apply to general
non-singular curves with a distinguished point P∞, once the definition of “re-
duced divisor” has been adopted accordingly (see for example [15]). We leave
these details to the interested reader.

The remainder of this paper is organised as follows: Section 2 recalls basic
properties of hyperelliptic curves and the Tate-Lichtenbaum pairing. Section 3
defines the Ate pairing on all curves and proves that it is well-defined. This is



432 R. Granger et al.

then adapted in Section 4 to superspecial curves. Finally, Section 5 concludes
the paper and Appendix A provides detailed performance estimates.

2 Mathematical Background

In this section, we briefly recall arithmetic on hyperelliptic curves, the definition
of the Tate-Lichtenbaum pairing and Miller’s algorithm to compute it.

2.1 Hyperelliptic Curves

Let C be a nonsingular hyperelliptic curve of genus g defined over a finite field
Fq with q = pn elements. In the remainder of the paper, we will assume that C
is an imaginary hyperelliptic curve and thus has only one point P∞ at infinity
and its affine part is given by

y2 + h(x)y = f(x) ,

with h, f ∈ Fq[x], deg h ≤ g, f monic and deg f = 2g + 1.
For any algebraic extension K of Fq consider the set

C(K) := {(x, y) ∈ K × K | y2 + h(x)y = f(x)} ∪ {P∞} ,

called the set of K-rational points on C. The hyperelliptic involution ι defined
by ι(x, y) = (x, −y −h(x)) acts on the set C(K). However, unlike elliptic curves,
the set C(K) for g ≥ 2 does not form a group, but we can embed C into an
abelian variety of dimension g called the Jacobian of C and denoted by JC . As
usual, we will represent elements of JC(K) by elements of the divisor class group
of degree 0 divisors Div0

C(K)/PrinC(K), the definition of which is recalled in the
following paragraphs.

A divisor D on C is a formal sum of points over the algebraic closure Fq

D =
∑

P∈C(Fq)

cP (P )

with only finitely many non-zero coefficients cP ∈ Z. The set of all divisors on
C is denoted DivC and clearly forms a group under formal addition. The degree
of D is defined as deg(D) =

∑
P∈C(Fq) cP and the subgroup of degree 0 divisors

is denoted by Div0
C . The support supp(D) of a divisor D is the set of points P

with cP �= 0 and we define ordP (D) = cP .
Let ϕ be the Frobenius morphism ϕ : C → C given by ϕ(x, y) = (xq , yq) and

define
ϕ(D) =

∑

P∈C(Fq)

cP (ϕ(P )),

then D is called Fqk -rational if and only if ϕk(D) = D. The set of Fqk -rational
divisors is denoted by DivC(Fqk) and similarly for the degree 0 divisors. To



Ate Pairing on Hyperelliptic Curves 433

each non-constant rational function f ∈ Fq(C)∗, we can associate the divisor
div(f) =

∑
P∈C(Fq) ordP (f)(P ), where ordP (f) denotes the order of vanishing

of f at P , i.e. ordP (f) �= 0 if and only if f has either a zero or pole at P and
ordP (f) then equals the multiplicity of f at P . One can prove that only finitely
many ordP (f) are non-zero and furthermore, that deg(div(f)) = 0. Any divisor
of the form div(f) with f ∈ Fq(C)∗ is called a principal divisor and the set of
all these divisors is denoted PrinC . By definition we have JC = Div0

C/PrinC

and JC(Fqk) = Div0
C(Fqk)/PrinC(Fqk), where PrinC(Fqk) = PrinC ∩ Div0

C(Fqk).
Given a degree 0 divisor D, we will denote by D the corresponding divisor class
in JC .

Each divisor class D can be uniquely represented by a so called reduced divi-
sor, i.e. a divisor of the form

∑m

i=1
(Pi) − m(P∞) , m ≤ g

with Pi = (xi, yi) ∈ C(Fq), Pi �= P∞ and Pi �= ι(Pj) for i �= j. For notational
convenience, we introduce two maps on JC : given a divisor class D, we define
ρ(D) the unique reduced divisor in D and ε(D) the effective part of ρ(D), i.e.
ρ(D) = ε(D) − deg(ε(D))(P∞). Note that the sets ρ(JC) and ε(JC) can be
endowed with a group law ⊕ by defining: ρ(D1) ⊕ ρ(D2) := ρ(D1 + D2) and
similarly, ε(D1) ⊕ ε(D2) := ε(D1 + D2). Furthermore, the notion of rationality
is well defined since P∞ ∈ C(Fq).

It is not difficult to show that any reduced Fq-rational divisor admits a Mum-
ford representation [u(x), v(x)], i.e. a pair of polynomials u, v ∈ Fq[x], with
u =

∏m
i=1(x − xi), deg v < deg u ≤ g and u|v2 + vh − f . Cantor’s algorithm [6]

can be used to compute the Mumford representation of the sum of two reduced
divisors or for small genera, explicit formulae exist [3,14,18].

Given a divisor D representing a divisor class D in JC and an integer n,
we denote [n]D := ρ(nD), i.e. the unique reduced divisor equivalent with nD.
Finally, for D an Fqk -rational divisor, we denote by fn,D ∈ Fqk(C) any function
(determined up to non-zero constant multiple) for which div(fn,D) = nD− [n]D.

2.2 Tate-Lichtenbaum Pairing

In this section, we briefly recall the definition of the Tate-Lichtenbaum pairing
as it is usually stated in the literature and discuss the various alternatives for
the domain of the pairing.

Let r be a prime with r | #JC(Fq) and gcd(r, q) = 1 and let k be the smallest
integer such that r | (qk − 1), then k is called the embedding degree (dependent
on r). Note that this implies that the r-th roots of unity μr are contained in Fqk

and in no strictly smaller extension of Fq. Note that r > k, since k is the order
of q modulo r and hence k | r − 1 holds. Denote with JC(Fqk)[r] the r-torsion
points on JC defined over Fqk . The Tate-Lichtenbaum pairing is a well defined,
non-degenerate, bilinear pairing [9,16]

〈·, ·〉r : JC(Fqk)[r] × JC(Fqk)/rJC(Fqk) → F
∗
qk/(F∗qk)r ,



434 R. Granger et al.

which is defined as follows: let D1 ∈ JC(Fqk)[r] and D2 ∈ JC(Fqk) and let
D1 be represented by a divisor D1 and D2 by a divisor D2 with supp(D1) ∩
supp(D2) = ∅. Since D1 has order r, the function fr,D1 ∈ Fqk(C)∗ has divisor
div(fr,D1) = rD1 − [r]D1 = rD1. The Tate-Lichtenbaum pairing of the divisor
classes D1 and D2 is then defined by

〈D1, D2〉r ≡ fr,D1(D2) =
∏

P∈C(Fq)

fr,D1(P )ordP (D2) ,

where ≡ means equality up to r-th powers. Note that since D2 has degree 0,
multiplying fr,D1 by a non-zero constant will give the same result.

In implementations, one works with the Mumford representation, i.e. with
reduced divisors D1 and D2, but the Tate pairing cannot be computed as
fr,D1(D2), since P∞ ∈ supp(D1) ∩ supp(D2). The following lemma shows that
if the function fr,D1 is properly normalised, the Tate pairing can simply be
computed as fr,D1(ε(D2)). To state the lemma, we need the notion of leading
coefficient: let u∞ be a fixed Fq-rational uniformizer at P∞, then for any func-
tion f ∈ Fq(C)∗ we define lc∞(f) to be the leading coefficient of f as a Laurent
series in u∞. Note that when f is defined at P∞ we simply have f(P∞) = lc∞(f)
independent of the uniformizer chosen.

Lemma 1. Let D1 ∈ JC(Fqk)[r], D1 = ρ(D1) and D2 ∈ JC(Fqk) and assume
that supp(D1) ∩ supp(ε(D2)) = ∅, then

〈D1, D2〉r ≡ fr,D1(ε(D2))

if and only if lc∞(fr,D1) ∈ (F∗qk)r. Furthermore, lc∞(fr,D1) being an r-th power
is independent of the uniformizer chosen.

Proof: Let D2 = ρ(D2) and choose h ∈ Fqk(C) such that D′1 = D1 + div(h)
satisfies supp(D′1) ∩ supp(D2) = ∅, then by definition we have

〈D1, D2〉r ≡ fr,D′
1
(D2) .

Since D′1 = D1 + div(h), we can take fr,D′
1

= fr,D1h
r (in fact we could multiply

fr,D′
1

with a constant c, but this would give the same result as remarked before)
and thus

〈D1, D2〉r ≡ (fr,D1h
r)(D2) ≡ (fr,D1h

r)(ε(D2))
lc∞(fr,D1h

r)m2
≡ fr,D1(ε(D2))

lc∞(fr,D1)m2
,

with m2 = deg(ε(D2)). Finally, gcd(m2, r) = 1 implies that lc∞(fr,D1)
m2 is

an r-th power if and only if lc∞(fr,D1) is an r-th power. Furthermore, since
ordP∞(fr,D1) = − deg(ε(D1))r, i.e. a multiple of r, the property of lc∞(fr,D1)
being an r-th power does not depend on the uniformizer chosen. �

In practice, one often requires a unique pairing value instead of a whole coset;
therefore one defines the reduced Tate-Lichtenbaum pairing as

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r ∈ μr ⊂ F
∗
qk .



Ate Pairing on Hyperelliptic Curves 435

It is easy to see that for any positive integer N with r|N and N |qk − 1 we have

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = 〈D1, D2〉(q
k−1)/N

N . (1)

For k > 1 and D1 ∈ JC(Fq), the reduced Tate-Lichtenbaum pairing can be
computed as in Lemma 1, but without the need for normalisation. Indeed, since
ρ(D1) is Fq-rational, we conclude that fr,D1 ∈ Fq(C) and thus lc∞(fr,D1) ∈
F∗q ⊂ (F∗qk)r. For elliptic curves, this simplification was first noticed in [5] using
a more direct proof than that of Lemma 1.

For efficiency reasons, one restricts the domain of the Tate-Lichtenbaum pair-
ing to the groups G1 = JC [r]∩Ker(ϕ− [1]) and the group G2 = JC [r]∩Ker(ϕ−
[q]), i.e. the eigenspaces of the Frobenius endomorphism on JC [r]. Note that
G1 ⊂ JC(Fq) and G2 ⊂ JC(Fqk), since for D ∈ G2 we have ϕk(D) = [qk]D = D,
because D ∈ JC [r] and qk ≡ 1 mod r. This also shows that k is the smallest
integer such that the q-eigenspace of the Frobenius in JC [r] is Fqk -rational.

Remark 1. In the remainder of the paper we will assume that any representative
D1 of D1 ∈ G1 (resp. D2 of D2 ∈ G2) is chosen to be Fq-rational (resp. Fqk -
rational).

Remark 2. In general, the smallest extension degree d such that the whole r-
torsion JC [r] is Fqd-rational is larger than k [9]. This is obvious for g ≥ 2, since
JC [r] � (Z/rZ)2g , but even for elliptic curves, this phenomenon occurs: consider
an elliptic curve E/Fq with r | #E(Fq) and r | q − 1, but such that r2 � #E(Fq).
In this case E(Fq)[r] is both the 1-eigenspace and q-eigenspace and the minimal
d such that E[r] ⊂ E(Fqd) is equal to r.

Finally, we note that the group G2 already occurs in the original paper [9]
disguised as a Galois cohomology group H1(G, JC)[r], with G the absolute Galois
group of Fq. In fact, in [2][Section 6.3.1] one finds that the Tate-Lichtenbaum
pairing has as domain G2 × JC(Fq)/rJC(Fq), which is yet another choice of
subgroups.

2.3 Miller’s Algorithm

In [20] (see also [21]), Miller described a fast algorithm to compute evalua-
tions of the form fr,D1(D2) for divisors on elliptic curves. The algorithm eas-
ily generalises to hyperelliptic curves as follows: by definition of the group
law ⊕ on JC , there exists a function GDa,Db

∈ Fqk(C)∗ with div(GDa,Db
) =

Da + Db − (Da ⊕ Db) where Da ⊕ Db is reduced. As such we can take the
function

fi+j,D = fi,Dfj,DG[i]D,[j]D .

This immediately leads to Algorithm 1 and the more detailed version given in
Algorithm 2.



436 R. Granger et al.

Algorithm 1. Miller’s algorithm for hyperelliptic curves
Inputs: n ∈ N and Da, Db ∈ JC with disjoint support
Outputs: fn,Da(Db)

Write n as
�s

j=0 nj2j , with nj ∈ {0, 1} and ns = 1.
D ← Da, c ← 1.
for j = s − 1 down to 0 do

Compute D ← [2]D and extract GD,D.
c ← c2 · GD,D(Db).
if nj = 1 then

Compute D ← D ⊕ Da and extract GD,Da .
c ← c · GD,Da(Db).

end if
end for
Return c.

3 Ate Pairing on Hyperelliptic Curves

In this section, we first recall the Ate pairing for elliptic curves and then show that
with a minor, but important change, it can be extended to hyperelliptic curves.

The two main ideas of the Ate pairing are that the domain of the pairing is
G2 × G1 and that the loop length in Miller’s algorithm is much shorter than
for the Tate-Lichtenbaum pairing. The result is summarised in the following
theorem from [17].

Theorem 1. Let E be an elliptic curve over Fq, r a large prime with r | #E(Fq)
and denote the trace of Frobenius with t, i.e. #E(Fq) = q +1− t. For T = t− 1,
Q ∈ G2 = E[r] ∩ Ker(ϕ − [q]) and P ∈ G1 = E[r] ∩ Ker(ϕ − [1]), we have the
following:

1. fT,Q(P ) defines a bilinear pairing, called the Ate pairing
2. let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding degree,

then
e(Q, P )L = fT,Q(P )c(qk−1)/N

where c =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r
3. for r � L, the Ate pairing is non-degenerate

The reason why this construction works is the compatibility of the scalar T = t−1
and the action of the Frobenius on G2. Indeed, by definition of G2 we have
ϕ(Q) = [q]Q, and since r|#E(Fq) = q + 1 − t it follows that ϕ(Q) = [T ]Q. This
last equality also determines the loop length in Miller’s algorithm, i.e. �log2 |T |�.

For a hyperelliptic curve C with g > 1, the situation is somewhat different.
Indeed, in this case r|#JC(Fq) = qg + a1(qg−1 + 1) + a2(qg−2 + 1) + · · · + ag,
so in general q cannot be replaced by a smaller equivalent. However, note that
for g > 1 and r ≈ #JC(Fq), the bit length of q itself is already g times shorter
than the bit length of r, again resulting in a shorter loop in Miller’s algorithm.
The possibility of using T = q is already present in [7], but for a very restricted
family of curves. This observation leads to the following theorem.



Ate Pairing on Hyperelliptic Curves 437

Theorem 2. Let C be a hyperelliptic curve over Fq and r | #JC(Fq) a large
prime. Let G2 = JC [r] ∩ Ker(ϕ − [q]) and G1 = JC [r] ∩ Ker(ϕ − [1]), then

a(·, ·) : G2 × G1 → μr : (D2, D1) �→ fq,D2(D1)

with D2 = ρ(D2) and D1 ∈ D1 such that supp(D1) ∩ supp(D2) = ∅, defines a
non-degenerate, bilinear pairing called the hyperelliptic Ate pairing. Furthermore,
the relation with the reduced Tate-Lichtenbaum pairing is as follows:

e(D2, D1) = a(D2, D1)kqk−1
. (2)

Note that in Theorem 2, the divisor D2 is assumed to be reduced and the function
fq,D2 is evaluated at the divisor D1 and not only at ε(D1) (but see Lemma 6).
Furthermore, the image of the hyperelliptic Ate pairing already is μr so no final
exponentiation is required. The proof of Theorem 2 follows from the following
four lemmata. The first lemma shows that the Ate pairing indeed maps into μr.

Lemma 2. Let D2 ∈ G2, D2 = ρ(D2) and D1 ∈ G1, D1 ∈ D1 with supp(D1) ∩
supp(D2) = ∅, then we have fq,D2(D1) ∈ μr.

Proof: Let h ∈ Fq(C)∗ with supp(div(h)) ∩ supp(div(fq,D2)) = ∅, then using
Weil reciprocity we obtain

fq,D2(div(h)) = h(div(fq,D2))
= h(qD2 − [q]D2) = h(qD2 − ϕ(D2))

=
h(qD2)

h(ϕ(D2))
=

h(D2)q

h(D2)q
= 1 ,

therefore

fq,D2(D + div(h)) = fq,D2(D)fq,D2(div(h)) = fq,D2(D) . (3)

As D1 is defined over Fq and D1 ∈ G1, we obtain

fq,D2(D1)r = fq,D2(rD1) = fq,D2(0) = 1

since rD1 ∼ 0. Using (3) again, we conclude that fq,D2(D1) only depends on D1
and not on the representative chosen. �

The following three lemmata show that the Ate pairing can indeed be related to
the reduced Tate pairing.

Lemma 3. Given D1, D2 ∈ JC(Fqk)[r], D2 = ρ(D2) and D1 ∈ D1 such that
supp(D1) ∩ supp(D2) = ∅, we have

e(D2, D1) = fqk,D2(D1) .

Proof: By definition of the reduced Tate-Lichtenbaum pairing, we have to
compute



438 R. Granger et al.

e(D2, D1) = fr,D2(D1)(q
k−1)/r = fqk−1,D2(D1) ,

where the last equality follows from (1) with N = qk − 1. Up to this point the
divisor D2 does not even have to be reduced: indeed, take D′2 = D2 + div(h)
for some h ∈ Fqk(C), then fqk−1,D′

2
= cfqk−1,D2h

qk−1 for some constant factor
c ∈ Fqk . Since D1 has degree 0, the constant c is irrelevant and the factor
hqk−1(D1) clearly equals 1 since h(D1) ∈ F∗qk .

When D2 is reduced, we have that div(fqk,D2) = qkD2 − [qk]D2 = (qk − 1)D2
and div(fqk−1,D2) = (qk − 1)D2 − [qk − 1]D2 = (qk − 1)D2 since D2 ∈ JC [r], so
without loss of generality we can take fqk−1,D2 = fqk,D2 , which ends the proof.

�
An easy calculation [4, Lemma 2] proves the following lemma.

Lemma 4. For any divisor D we can choose fqk,D such that

fqk,D =
∏k−1

i=0

(
fq,[qi]D

)qk−i−1

. (4)

For D2 = ρ(D2) with D2 ∈ G2, each of the factors in the right hand side of (4)
can be expressed in terms of fq,D2 . To see this, note that ϕ(D2) = [q]D2 and
ϕi(D2) = [qi]D2, so it suffices to relate fq,ϕi(D2) with fq,D2 as in the following
lemma.

Lemma 5. Let D be a reduced divisor and ψ a purely inseparable map on C
with ψ(P∞) = P∞. Then ψ(D) is also reduced and we can take

fn,ψ(D) ◦ ψ = f
deg(ψ)
n,D .

Proof: Let D =
∑m

i=1(Pi) − m(P∞) be reduced then ψ(D) =
∑m

i=1(ψ(Pi)) −
m(P∞), where we used the fact that ψ(P∞) = P∞. Since ψ is assumed to be
purely inseparable we have ψ(Pi) �= P∞ and ψ(Pi) �= ι(ψ(Pj)) for i �= j, i.e. ψ(D)
is again reduced. By definition we have div(fn,ψ(D)) = n(ψ(D)) − ([n]ψ(D)).
Since ψ is purely inseparable we have

ψ∗
(
div(fn,ψ(D))

)
= nψ∗(ψ(D)) − ψ∗([n]ψ(D)) = n(deg ψ)D − ψ∗(ψ([n]D))

= n(deg ψ)D − (deg ψ)([n]D) = div(fdeg(ψ)
n,D ) .

The non-trivial part is the equality [n]ψ(D) = ψ([n]D), which follows from the
fact that both sides are reduced divisors (since ψ maps a reduced divisor to a
reduced divisor) and that they are linearly equivalent. Indeed,

[n]ψ(D) = nψ(D) + div(hn) = ψ(nD) + div(hn)
= ψ([n]D + div(gn)) + div(hn) = ψ([n]D) + div(ψ∗gn) + div(hn) ,

for suitable functions hn, gn ∈ Fq(C). Furthermore,

ψ∗
(
div(fn,ψ(D))

)
= div

(
ψ∗(fn,ψ(D))

)
= div(fn,ψ(D) ◦ ψ) ,

so we can take fn,ψ(D) ◦ ψ = f
deg(ψ)
n,D . �



Ate Pairing on Hyperelliptic Curves 439

Proof of Theorem 2: Since D1 ∈ G1 and fixed under ϕ, and D2 ∈ G2 is
reduced (so ϕ(D2) = [q]D2), Lemma 5 implies

fq,[qi]D2(D1) = fq,ϕi(D2)(D1) = fq,ϕi(D2)(ϕi(D1)) = (fq,D2(D1))qi

,

and using Lemma 4, we obtain

fqk,D2(D1) =
∏k−1

i=0

(
fq,[qi]D2(D1)

)qk−i−1

= (fq,D2(D1))
kqk−1

. (5)

Substituting the above in Lemma 3, we recover Equation (2)

e(D2, D1) = (fq,D2(D1))
kqk−1

This equation shows that fq,D2(D1) defines a non-degenerate bilinear pairing,
since e(D2, D1) is non-degenerate and bilinear. Furthermore, since fq,D2(D1) ∈
μr by Lemma 2, the hyperelliptic Ate pairing is automatically reduced, i.e. no
final exponentiation is needed. �

An important remark is that all optimisations that rely on the final powering,
such as denominator elimination and ignoring the point at infinity in the evalu-
ation, should be reexamined. It is not hard to see that the first simply no longer
holds, whereas the second can be salvaged if the function fq,D2 is properly nor-
malised as in the following lemma.

Lemma 6. Let D2 ∈ G2 and D1 ∈ G1 with supp(ε(D1)) ∩ supp(ε(D2)) = ∅
and let D2 = ρ(D2), then if lc∞(fq,D2) = 1 with respect to any Fq-rational
uniformizer u∞ then

a(D2, D1) = fq,D2(ε(D1)) . (6)

Proof: By definition we have div(fq,D2) = qD2 − [q]D2 = qD2 − ϕ(D2) since
D2 ∈ G2 is reduced and thus ordP∞(fq,D2) = −m2(q−1), with m2 = deg(ε(D2)).
This implies that lc∞(fq,D2) = 1 is independent of the choice of Fq-rational
uniformizer. Indeed, let u′∞ be any other Fq-rational uniformizer, then

lc′∞(fq,D2) = lc∞(u′∞)m2(q−1)lc∞(fq,D2) = lc∞(fq,D2) .

Let D′1 ∈ D1 such that supp(D′1) ∩ (supp(div(fq,D2)) ∪ supp(div(u∞))) and
define f̃q,D2 = fq,D2 · u

m2(q−1)
∞ . The divisor of f̃q,D2 is

div(f̃q,D2) = qε(D2) − ε(ϕ(D2)) + m2(q − 1) · (div(u∞) − P∞)

which does not contain P∞, and it is easy to adapt the proof of Lemma 2 to
show that f̃q,D2(D1) does not depend on the choice of representative of D1.

By construction of D′1, both fq,D2(D′1) and f̃q,D2(D′1) are well defined and

f̃q,D2(D
′
1) = fq,D2(D

′
1) · (u∞(D′1))

m2(q−1) = fq,D2(D
′
1)



440 R. Granger et al.

since u∞(D′1) is in Fq. From this, we obtain

a(D2, D1) = fq,D2(D
′
1) = f̃q,D2(D

′
1) = f̃q,D2(D1)

=
fq,D2(ε(D1)) · (um2∞ (ε(D1)))q−1

lc∞(f̃q,D2)deg(ε(D1))
= fq,D2(ε(D1))

since lc∞(f̃q,D2) = lc∞(fq,D2) = 1 by construction of f̃q,D2 . �

4 Ate Pairing on Superspecial Curves

In this section, we investigate whether the hyperelliptic Ate pairing can also
be defined on G1 × G2. Recall that a curve C is said to have p-rank zero if
JC [p] = {0}, i.e. the p-torsion is trivial. An immediate consequence of the absence
of p-torsion is that the dual of Frobenius ϕ̂ (also called Verschiebung) is purely
inseparable. Indeed, Ker(ϕ̂) ⊂ JC [q] since ϕ̂ has degree q and thus Ker(ϕ̂) = {0}.
Since ϕ̂ ◦ ϕ = [q], we conclude that ϕ̂ acts as ϕ̂(D1) = [q]D1 for D1 ∈ G1 and
ϕ̂(D2) = D2 for D2 ∈ G2.

However, p-rank zero is not restrictive enough for our purposes, since Lemma 5
holds for a purely inseparable map on the curve C, whereas Verschiebung is
defined on the Jacobian. A curve C is called superspecial when its Jacobian JC

is isomorphic to Eg with E a supersingular elliptic curve. Note that this is more
restrictive than supersingularity, since this only requires JC to be isogenous to
Eg. As an example of superspecial curves we mention the family described by
Duursma-Lee [7].

For a superspecial curve, we can write ϕ̂ = ϕ ◦ α for an automorphism α ∈
Aut(C). Note that this automorphism is necessarily defined over Fq, since ϕ =
̂̂ϕ = α̂ ◦ ϕ̂ and thus α ◦ ϕ = ϕ ◦ α.

Analysing the various lemmata used in proving Theorem 2, we immediately
run into a problem since Lemma 2 is no longer valid. Indeed, let D1 = ρ(D1)
with D1 ∈ D1 and let h ∈ Fqk(C)∗, then

fq,D1(div(h)) = h(qD1 − [q]D1) = h(qD1 − ϕ̂(D1)) =
h(D1)q

h(α(D1))
.

This shows that even if h would be Fq-rational, fq,D1(div(h)) still is not 1, so
fq,D1(D2) with D2 ∈ D2 is not independent of the representative chosen.

On the other hand, it is easy to verify that Lemma 3 and 4 remain valid when
D1 and D2 are swapped. Furthermore, since ϕ̂ is given by purely inseparable map
on C, Lemma 5 still applies. As a result we can prove the following theorem,
circumventing the fact that Lemma 2 no longer holds.

Theorem 3. Let C be a superspecial curve over Fq and r a large prime with
r | #JC(Fq). Let G1 = JC [r] ∩ Ker(ϕ − [1]) and G2 = JC [r] ∩ Ker(ϕ − [q]), then

â(·, ·) : G1 × G2 → μr : (D1, D2) �→ fq,D1(ε(D2))d



Ate Pairing on Hyperelliptic Curves 441

with D1 = ρ(D1), d = gcd(k, qk − 1), lc∞(fq,D1) = 1 and assuming that
supp(D1) ∩ supp(ε(D2)) = ∅, defines a non-degenerate, bilinear pairing called
the superspecial Ate pairing. Furthermore, the relation with the reduced Tate-
Lichtenbaum pairing is as follows:

e(D1, D2) = â(D1, D2)(k/d)qk−1
. (7)

Proof: Combining Lemma 1, Lemma 3 and Lemma 4 it suffices to compute

e(D1, D2) = fqk,D1(ε(D2)) =
k−1∏

i=0

(
fq,[qi]D1(ε(D2))

)qk−i−1

, (8)

where D1 = ρ(D1). Applying Lemma 5 to ϕ̂i we conclude that fq,ϕ̂i(D1) ◦ ϕ̂i =

f qi

q,D1
. Since D1 is reduced and D1 ∈ G1, we have ϕ̂i(D1) = [qi]D1. Furthermore,

let D2 = ρ(D2), then since D2 is reduced and D2 ∈ G2, we have ϕ̂(D2) = D2.
Combined with ϕ̂(P∞) = P∞, we conclude that ϕ̂(ε(D2)) = ε(D2). Substituting
this in (8) leads to

e(D1, D2) = fq,D1(ε(D2))kqk−1
= fq,D1(ε(D2))d·(k/d)qk−1

.

Since the left hand side is an r-th root of unity and gcd((k/d)qk−1, qk−1) = 1, we
conclude that fq,D1(ε(D2))d also is an r-th root of unity. Furthermore, e(D1, D2)
is non-degenerate and bilinear, so we finally conclude that the superspecial Ate
pairing also defines a non-degenerate bilinear pairing. �

The above theorem has been proved by Galbraith et al. [10] in the special case of
supersingular elliptic curves in characteristic 2 and 3 using explicit computations.

5 Conclusion

In this paper we have introduced two new pairings on hyperelliptic curves, by
generalising the Ate pairing on elliptic curves. The first version applies to all
algebraic curves, whereas the second requires the curve to be superspecial, e.g.
the Duursma-Lee curves. To prove that both versions are well-defined, we intro-
duced a proper theoretical framework explaining several simpler results in the
literature which were proved using ad hoc methods.

The most important property of the Ate pairings is that no final exponentia-
tion is necessary. This raises security questions with respect to pairing inversion
and Verheul’s results on the computational Diffie-Hellman problem, especially
when so-called degenerate divisors are used. The precise security implications of
the Ate pairings are currently unknown and much more research is needed.

Acknowledgements

The authors would like to thank Bas Edixhoven and Ben Moonen for their
expertise on superspecial curves. Robert Granger would like to thank Alfred



442 R. Granger et al.

Menezes for his invitation to visit the Centre for Applied Cryptographic Research
at the University of Waterloo in May 2006, where this work was initiated.

References

1. R. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementation. In M. Joye and J.-J. Quisquater, editor, CHES, volume 3156 of
Lecture Notes in Computer Science, pages 133–147. Springer, 2004.

2. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics
and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

3. R. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hyperelliptic jacobian
arithmetic over binary fields: Interplay of field arithmetic and explicit formulae.
Technical report, CACR, 2006. CACR 2006-07.

4. P. S. L. M. Barreto, S. Galbraith, C. O hEigeartaigh, and M. Scott. Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptography,
to be published, 2005.

5. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Moti Yung, editor, CRYPTO, volume 2442 of
Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

6. D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,
48(177):95–101, 1987.

7. I. M. Duursma and Hyang-Sook Lee. Tate Pairing Implementation for Hyperelliptic
Curves y2 = xp −x+d. In C.-S. Laih, editor, ASIACRYPT, volume 2894 of Lecture
Notes in Computer Science, pages 111–123. Springer, 2003.

8. G. Frey and T. Lange. Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on
Hyperelliptic Curves. In F. Hess, S. Pauli, M. Pohst, editors, ANTS VII, volume
4076 of Lecture Notes in Computer Science, pages 466–479. Springer, 2006.

9. G. Frey and H-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
1994.

10. S. Galbraith, C. O hEigeartaigh, and C. Sheedy. Simplified pairing computation
and security implications. To appear in J. Math. Crypt., 2007.

11. P. Gaudry, F. Hess and N. P. Smart. Constructive and Destructive Facets of Weil
Descent on Elliptic Curves. J. Cryptology., 15(1):19–46, 2002.

12. P. Gaudry, E. Thomé, N. Thériault and C. Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp., 76(257), 475–492, 2007.

13. R. Granger, D. Page, and N. Smart. High security pairing-based cryptography
revisited. In F. Hess, S. Pauli, M. Pohst, editors, ANTS-VII, volume 4076 of
Lecture Notes in Computer Science, pages 480–494. Springer, 2006.

14. C. Guyot, K. Kaveh, and V. M. Patankar. Explicit algorithm for the arithmetic
on the hyperelliptic Jacobians of genus 3. J. Ramanujan Math. Soc., 19(2):75–115,
2004.

15. F. Hess. Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symb. Comp., 33(4):425-445, 2002.

16. F. Hess. A Note on the Tate Pairing of Curves over Finite Fields. Arch. Math.,
82:28-32, 2004.

17. F. Hess, N. Smart, and F. Vercauteren. The Eta-pairing revisited. IEEE Transac-
tions on Information Theory, 52(10):4595–4602, 2006.



Ate Pairing on Hyperelliptic Curves 443

18. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Engrg. Comm. Comput., 15(5):295–328, 2005.

19. N. Koblitz and A. Menezes. Pairing-Based Cryptography at High Security Levels.
In Nigel Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer
Science, pages 13–36. Springer, 2005.

20. V. S. Miller. Short programs for functions on curves. Unpublished manuscript
1986. Available at http://crypto.stanford.edu/miller/miller.pdf.

21. V. S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

22. J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1986.

23. H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag,
Berlin, 1993.

24. E. Verheul. Evidence that XTR is more Secure than Supersingular Elliptic Curve
Cryptosystems. In B. Pfitzmann, editor, EUROCRYPT, volume of 2045 Lecture
Notes in Computer Science, pages 195–210. Springer, 2001.

25. N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic
p > 2. J. Algebra, 52(2):378–410, 1978.

A Performance Estimates

A.1 Miller’s Algorithm

We here give an expanded version of Algorithm 1, tailored for the Ate pairing.
From the point of view of computational efficiency, a good choice of uniformizer
is u∞ = xg/y. Let p(x) be a polynomial in x, then with this choice of u∞ we
have:

lc∞(p(x)) = lc(p(x))

lc∞(y − p(x)) =
{

1 if deg(p(x)) ≤ g
−lc(p(x)) if deg(p(x)) > g

where lc(p(x)) is the leading coefficient (in the variable x) of p(x). It is then easy
to obtain lc∞(fq,D2) from the computations in Miller’s algorithm.

A more detailed description of Algorithm 1 is given in Algorithm 2. The com-
putations coming from Cantor’s algorithm can be replaced by explicit formulae,
with some minor changes as ṽ1(x) must be computed completely, both in the
addition and the doubling formulae (in explicit formulae, the computation of
ṽ1(x) is avoided to reduce costs).

Remark 3. For genus 2, computing res(ci(x), ub(x)) is relatively inexpensive
compared with polynomial operations, and it is more efficient to compute the
resultant every time we accumulate on ci rather than working with polynomials
(squaring ci in the doubling step will then become a single field operation). For
all other genera, it is more efficient to accumulate c1 and c2 as polynomials and
to compute resultants only in the final step of Algorithm 2.

http://crypto.stanford.edu/miller/miller.pdf


444 R. Granger et al.

Algorithm 2. Miller’s algorithm for hyperelliptic curves (detailed)
Inputs: n ∈ N and Da, Db ∈ JC reduced with disjoint affine support, Da =

[ua(x), va(x)], Db = [ub(x), vb(x)]
Outputs: fn,Da(Db)

Write n as
�s

j=0 nj2j , with nj ∈ {0, 1} and ns = 1.
D = [u(x), v(x)] ← Da, c1(x) ← 1, c2(x) ← 1, c3 ← 1.
for j = s − 1 down to 0 do

c1(x) ← c1(x)2 mod ub(x)
c2(x) ← c2(x)2 mod ub(x)
c3 ← c2

3

d(x) ← gcd(u(x), 2v(x) + h(x))
[ũ1(x), ṽ1(x)] ← 2D − div(d(x))
c1(x) ← c1(x) · d(x) mod ub(x)
j ← 1
while deg(ũj) > g do

ũj+1(x) = Monic
�

ṽj(x)2+h(x)ṽj(x)−f(x)
ũj(x)

�
.

ṽj+1(x) = −ṽj(x) − h(x) mod ũj+1(x).
c1(x) ← c1(x) · (vb(x) − ṽj(x)) mod ub(x)
c2(x) ← c2(x) · ũj+1(x) mod ub(x)
c3 ← c3 · lc∞(y − ṽj)
j ← j + 1

end while
D = [u(x), v(x)] ← [ũj(x), ṽj(x)]
if nj = 1 then

d(x) ← gcd(u(x), ua(x), v(x) + va(x) + h(x))
[ũ1(x), ṽ1(x)] ← D + Da − div(d(x))
c1(x) ← c1(x) · d(x) mod ub(x)
j ← 1
while deg(ũj) > g do

ũj+1(x) = Monic
�

ṽj(x)2+h(x)ṽj(x)−f(x)
ũj(x)

�
.

ṽj+1(x) = −ṽj(x) − h(x) mod ũj+1(x).
c1(x) ← c1(x) · (vb(x) − ṽj(x)) mod ub(x)
c2(x) ← c2(x) · ũj+1(x) mod ub(x)
c3 ← c3 · lc∞(y − ṽj)
j ← j + 1

end while
D = [u(x), v(x)] ← [ũj(x), ṽj(x)]

end if
end for
c ← res(c1(x),ub(x))

c3·res(c2(x),ub(x))
Return c.

A.2 Operation Count

In general, one cannot assume that fq,D2 obtained from the computations of
Algorithm 1 is normalised to have lc∞(fq,D2) = 1. The evaluation of a(D2, D1)
in Lemma 6 is then computed as



Ate Pairing on Hyperelliptic Curves 445

a(D2, D1) =
fq,D2

(
ε(D1)

)

lc∞(fq,D2)m1
. (9)

Tables 1 and 2 give the cost in field operations for the doubling and addition
steps of Algorithm 2, for general divisors. The row “first & last” takes into
account the cost of the resultants and final multiplications and inversion, as well
as the operations saved by having c1 = c2 = c3 = 1 in the first doubling step.

Table 1. Costs involved in Miller’s algorithm to compute a(D2, D1) using general
divisors

genus 2 genus 3
Fq 7kM 32kMaddition
Fqk 1I + 29M + 5S 1I + 91M + 6S

Fq 7kM 42kMdoubling
Fqk 1I + 29M + 9S 1I + 88M + 22S

Fq 0 −8kMfirst & last
Fqk 1I − 1M − 2S 1I + 7M − 13S

Table 2. Costs involved in Miller’s algorithm to compute â(D1, D2) for superspecial
curves using general divisors

genus 2 genus 3
Fq 1I + (25 + 3k)M + 3S 1I + (67 + 12k)M + 6Saddition
Fqk 8M + 2S 44M

Fq 1I + (25 + 3k)M + 6S 1I + (64 + 12k)M + 10Sdoubling
Fqk 8M + 4S 54M + 12S

Fq (k − 1)M − 1S (k − 1)M − 1Sfirst & last
Fqk 1I − 1M − 2S 1I − 1M − 12S

Table 3. Costs involved in Miller’s algorithm to compute a(D2, D1) using degenerate
divisors

genus 2 genus 3
Fq 4kM 13kMaddition
Fqk 1I + 27M + 3S 1I + 69M + 6S

Fq 4kM 13kMdoubling
Fqk 1I + 27M + 7S 1I + 66M + 11S

Fq 1M + 1S 2M + 2Sfirst & last
Fqk 1I − 1M − 2S 1I − 1M − 2S

Tables 3 and 4 give the cost in field operations for the doubling and addition
steps of Algorithm 2, for degenerate divisors, i.e. for divisors whose support is a
single point (together with the point at infinity).



446 R. Granger et al.

Table 4. Costs involved in Miller’s algorithm to compute â(D1, D2) for superspecial
curves using degenerate divisors

genus 2 genus 3
Fq 1I + (25 + 4k)M + 3S 1I + (67 + 13k)M + 6Saddition
Fqk 2M 2M

Fq 1I + (25 + 4k)M + 6S 1I + (64 + 13k)M + 6Sdoubling
Fqk 2M + 2S 2M + 2S

Fq (k − 1)M − 1S (k − 1)M − 1Sfirst & last
Fqk 1I − 1S 1I + 1M

Each addition (respectively doubling) step uses the fastest known explicit for-
mulae in affine coordinates, adapted to include the computation of ṽ1(x). For the
genus three addition, we use the formulae of [14] with the resultant replaced by
Cramer’s rule (as was done for characteristic 2 in [3]). For the final computations
with the resultants, we go back to the resultant computation of [14].

A.3 Performance Comparison

In this section we provide precise operation counts for three security levels: 80,
128 and 192-bit security. The sizes of the finite fields and the security parameters
k are chosen such that both the DLP in the Jacobian of the curve JC(Fq) and
the DLP in the embedding field Fqk are infeasible.

Following [13] we restrict to the use of so-called pairing friendly finite fields,
i.e. Fq is a prime field with q ≡ 1 mod 12 and k of the form 2i3j . For these fields,
the cost of the required operations of multiplication, squaring, and inversion
can each be expressed simply in terms of base field operations [13], where m,
s and i denote the cost of a multiplication, squaring and inversion respectively
in Fq.

Bearing in mind that for the same security, the base field will be smaller for
higher genus, we must account for this in our cost estimates. We therefore express
all costs in terms of the number of Fq3 multiplications we need to perform, where
qi is the base field cardinality of the genus i curve. Using basic Karatsuba, we
thus have Mqi = (qi/q3)1.585 · Mq3 for i = 1, 2. This estimate is likely to be
slightly smaller than what is recorded in practice [1] and so will lead our results
to underestimate the genus one operation counts slightly; however we believe
they are sufficient for comparison purposes.

For simplicity we assume that a squaring costs the same as a multiplication,
and that one inversion is equivalent to ten multiplications. We also assume half
as many additions as doublings in Algorithm 2.

Table 6 gives the results of our performance estimates. Of the right-most five
columns, the left two are based on the formulae given in Table 1 and 2 and
Algorithm 2, while the third and fourth are based on Table 3 and 4. The final
column we computed using the estimates in [17], together with the final powering
cost estimates from [13], taking the minimum over the choice of Ate or twisted
Ate, average or small trace, and quadratic or sextic twist.



Ate Pairing on Hyperelliptic Curves 447

Table 5. Cost of Fqk operations in terms of Fq operations

k Mul Sqr Inv
6 15m 15s 21m + 13s + i
12 45m 45s 51m + 43s + i
16 81m 81s 90m + 90s + i
24 135m 135s 141m + 133s + i
32 243m 243s 252m + 252s + i
48 405m 405s 411m + 403s + i
54 375m 375s 591m + 343s + i

Table 6. Number of Fq3 multiplications to compute the Ate pairing

Security g q k MOV number of Fq3 muls

ordinary superspecial
ordinary

degenerate
superspecial
degenerate

fastest Ate

1 172 6 1032 3.12 × 104

80 2 86 12 1032 3.79 × 105 1.21 × 105 3.34 × 105 4.92 × 104

3 64 16 1024 8.89 × 105 4.82 × 105 6.30 × 105 5.39 × 104

1 256 12 3072 8.63 × 104

128 2 128 24 3072 1.64 × 106 4.97 × 105 1.45 × 106 1.78 × 105

3 96 32 3072 3.91 × 106 2.12 × 106 2.80 × 106 1.89 × 105

1 384 24 9216 3.87 × 105

192 2 192 48 9216 6.68 × 106 1.99 × 106 5.94 × 106 6.60 × 105

3 152 54 8208 9.64 × 106 5.18 × 106 6.90 × 106 4.65 × 105

The table indicates that the Ate pairing for elliptic curves, can be an order
of magnitude faster than the basic version of the Ate pairing described in this
paper. The reason for the Ate pairing being particularly fast in the elliptic case
is the availability of twists, as well as very short traces. Whether high degree
twists can be utilised for the hyperelliptic Ate pairing remains open. When using
degenerate divisors however, the Ate pairing for superspecial curves with genus
two and three is certainly comparable to the genus one case.



Ideal Multipartite Secret Sharing Schemes�

Oriol Farràs, Jaume Mart́ı-Farré, and Carles Padró

Dept. of Applied Maths. IV, Technical University of Catalonia, Barcelona
{ofarras,jaumem,cpadro}@ma4.upc.edu

Abstract. Multipartite secret sharing schemes are those having a mul-
tipartite access structure, in which the set of participants is divided into
several parts and all participants in the same part play an equivalent role.
Several particular families of multipartite schemes, such as the weighted
threshold schemes, the hierarchical and the compartmented schemes, and
the ones with bipartite or tripartite access structure have been consid-
ered in the literature. The characterization of the access structures of
ideal secret sharing schemes is one of the main open problems in secret
sharing. In this work, the characterization of ideal multipartite access
structures is studied with all generality. Our results are based on the
well-known connections between ideal secret sharing schemes and ma-
troids. One of the main contributions of this paper is the application of
discrete polymatroids to secret sharing. They are proved to be a pow-
erful tool to study the properties of multipartite matroids. In this way,
we obtain some necessary conditions and some sufficient conditions for
a multipartite access structure to be ideal.

Our results can be summarized as follows. First, we present a char-
acterization of matroid-related multipartite access structures in terms
of discrete polymatroids. As a consequence of this characterization, a
necessary condition for a multipartite access structure to be ideal is ob-
tained. Second, we use linear representations of discrete polymatroids
to characterize the linearly representable multipartite matroids. In this
way we obtain a sufficient condition for a multipartite access structure
to be ideal. Finally, we apply our general results to obtain a complete
characterization of ideal tripartite access structures, which was until now
an open problem.

Keywords: Secret sharing, Ideal secret sharing schemes, Ideal access
structures, Multipartite secret sharing, Multipartite matroids, Discrete
polymatroids.

1 Introduction

In a secret sharing scheme, every participant receives a share of a secret value.
Only the qualified sets of participants, which form the access structure of the
� This work was partially supported by the Spanish Ministry of Education and Science

under projects TIC 2003-00866 and TSI2006-02731. This work was done partly while
the third author was in a sabbatical stay at CWI, Amsterdam. This stay was funded
by the Secretaŕıa de Estado de Educación y Universidades of the Spanish Ministry
of Education.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 448–465, 2007.
c© International Association for Cryptology Research 2007



Ideal Multipartite Secret Sharing Schemes 449

scheme, can recover the secret value from their shares. This paper deals exclu-
sively with unconditionally secure perfect secret sharing schemes, that is, the
shares of the participants in an unqualified set do not provide any information
about the secret value. The reader will find in [34] an excellent introduction to
secret sharing. Observe that the access structure of a secret sharing scheme on
a set P of participants is a monotone increasing family Γ ⊆ P(P ), where P(P )
is the power set of P . That is, every subset of P containing a qualified subset is
itself qualified.

Secret sharing was introduced in 1979 by Shamir [31] and Blakley [4], who in-
dependently presented two different methods to construct threshold secret shar-
ing schemes. Their qualified subsets are those having at least a given number
of participants. The threshold schemes proposed in [4,31] are ideal , that is, the
share of every participant has the same length as the secret, which is the best
possible situation in a perfect scheme [16].

Dealing only with threshold access structures can be a serious limitation in
some applications of secret sharing. In his seminal paper [31], Shamir made the
first attempt to overcome this by proposing a construction of weighted threshold
schemes . In such a scheme, every participant has a weight (a positive integer)
and the sets whose weight sum is greater than a given threshold are qualified.
The proposed construction is very simple: take a threshold scheme and give to
every participant as many shares as its weight. Nevertheless, the obtained scheme
is not ideal anymore. Ito, Saito, and Nishizeki [14] proved, in a constructive way,
that there exists a secret sharing scheme for every access structure, but the
schemes that are obtained by this method are very far from ideal. Benaloh and
Leichter [3] proved that there exist access structures that do not admit any
ideal scheme and, as a consequence of the results in [9,11] and other works, in
some cases the shares must be much larger than the secret. Actually, very little
is known about the construction of efficient secret sharing schemes for general
access structures and, in particular, there is a wide gap between the best known
lower and upper bounds on the length of the shares.

Due to the difficulty of finding efficient secret sharing schemes for general
access structures, it is worthwhile to find families of access structures that ad-
mit ideal schemes and have other useful properties for the applications of secret
sharing. Brickell [7] proposed a method to construct ideal secret sharing schemes
for access structures other than the threshold ones. This method provides ideal
schemes for multilevel and compartmented access structures, two families that
were proposed by Simmons [32] because of their interesting applications. These
access structures are multipartite, that is, the set of participants is divided into
several parts and all participants in the same part play an equivalent role. Multi-
partite access structures are useful in scenarios in which the participants can be
divided into different classes, such as hierarchical organizations, or actions that
require the agreement of different parties. Other constructions of ideal secret
sharing schemes for different classes of multipartite access structures have been
presented in [25,35,36].



450 O. Farràs, J. Mart́ı-Farré, and C. Padró

The natural step beyond the construction of ideal schemes for particular struc-
tures is the search of a characterization of the ideal access structures , that is,
the access structures of ideal secret sharing schemes. This is one of the most
important open problems in secret sharing. As a consequence of the results by
Brickell [7], and Brickell and Davenport [8], this open problem has important
connections with matroid theory. Some basic concepts about matroids and their
connection to secret sharing are recalled in Section 4.1.

Brickell and Davenport [8] proved that every ideal secret sharing scheme on
a set P of participants determines a matroid M with ground set Q = P ∪ {p0}.
This matroid determines the access structure of the scheme. Namely, A ⊆ P is a
minimal qualified subset if and only if A∪{p0} is a circuit of M. In this situation,
we say that this access structure is matroid-related or, more specifically, related
to the matroid M. Therefore, a necessary condition for an access structure to
be ideal is obtained.

Theorem 1. (Brickell and Davenport [8]) The access structure of every ideal
secret sharing scheme is matroid-related.

The method to construct ideal schemes proposed by Brickell [7], which is based
on linear algebra, provides a sufficient condition for an access structure to be
ideal.

Theorem 2. (Brickell [7]) There exists an ideal secret sharing scheme for every
access structure that is related to a linearly representable matroid.

The minimal qualified subsets of a matroid-related access structure form a ma-
troid port , a combinatorial object introduced by Lehman [17] in 1964, much
before secret sharing was invented. Seymour [29] presented in 1976 a forbidden
minor characterization of matroid ports, which has been used recently to obtain
new results on the characterization of matroid-related access structures [21]. The
information rate of a secret sharing scheme is the ratio between the length of
the secret and the maximum length of the shares. The main result in [21] is a
generalization of Theorem 1.

Theorem 3. (Mart́ı-Farré and Padró [21]) The access structure of every secret
sharing scheme with information rate greater than 2/3 is matroid-related.

2 Related Work

Due to the difficulty of finding general results, the characterization of ideal access
structures has been studied for several particular classes of access structures:
the access structures on sets of four [34] and five [15] participants, the ones
defined by graphs [6,8,9], the bipartite access structures [28], those with three or
four minimal qualified subsets [18], the ones with intersection number equal to
one [19], the access structures with rank three [20], and the weighted threshold
access structures [2]. In most of these families, all the matroids that are related
to access structures in the family are representable, and then the matroid-related



Ideal Multipartite Secret Sharing Schemes 451

access structures coincide with the ideal ones. This, combined with Theorem 3,
implies that the optimal information rate of every non-ideal access structure in
those families is at most 2/3.

Multipartite access structures were first introduced by Shamir [31] in his in-
troductory work, in which weighted threshold access structures were considered.
These structures have been studied also in [23,28] and a characterization of
the ideal weighted access structures has been presented in [2]. Brickell [7] con-
structed ideal secret sharing schemes for several different kinds of multipartite
access structures that had been previously considered by Simmons [32]. Other
constructions of ideal schemes for these and other multipartite structures have
been presented in [12,25,35,36]. A complete characterization of ideal bipartite
access structures was given in [28] and, independently, in [24,26]. Partial re-
sults on the characterization of tripartite access structures have been presented
in [2,10,12]. The first attempt to provide general results on the characteriza-
tion of ideal multipartite access structures has been made recently by Herranz
and Sáez [12]. They present some necessary conditions for a multipartite access
structure to be ideal, which generalize the ones given in [10] for the tripartite
case. In addition, they present a wide family of ideal tripartite access structures.

3 Our Results

In this paper, we study the characterization of the ideal multipartite access struc-
tures . Since we can always consider as many parts as participants, every access
structure is multipartite, and hence we are not dealing here with a particular
family of structures, but with the general problem of the characterization of
the ideal access structures. Of course, we do not solve this long-standing open
problem. Nevertheless, we present some new results by looking at it under a dif-
ferent point of view. Namely, we investigate the conditions given in Theorems 1
and 2 by taking into account that the set of participants can be divided into
several parts formed by participants playing an equivalent role in the structure.
We introduce the natural concept of multipartite matroid , which applies to the
matroids that are defined from ideal multipartite secret sharing schemes. The
study of multipartite matroids leads to discrete polymatroids, which appear to
be a very powerful tool to characterize the matroid-related multipartite access
structures. Even though our results can be applied to the general case, their most
meaningful consequences are obtained when applied to some particular families
of multipartite access structures. Specifically, in the case that the number of
parts is significantly smaller than the number of participants, or in situations
in which the parts are distributed in some special way as, for instance, in hier-
archical access structures. In particular, we present a complete characterization
of the ideal tripartite access structures, which was an open question until now.
Our main contributions are described with more detail in the following.

First, we investigate how the necessary condition in Theorem 1 can be ap-
plied to multipartite access structures. Consequently, we study the properties
of matroid-related multipartite access structures. The partition in the set of



452 O. Farràs, J. Mart́ı-Farré, and C. Padró

participants of a matroid-related access structure extends to the set of points
of the corresponding matroid. This leads us to introduce the natural concept
of multipartite matroid . We point out that every multipartite matroid with m
parts defines a discrete polymatroid on a set of m points. Discrete polymatroids
are a particular class of polymatroids. In the same way as matroids abstract
the combinatorial properties of a collection of vectors in a vector space, discrete
polymatroids abstract the combinatorial properties of a collection of subspaces
in a vector space. Discrete polymatroids have been thoroughly studied by Her-
zog and Hibi [13], and some of the results in that paper are used here. By using
discrete polymatroids, we present in Theorem 8 a characterization of matroid-
related multipartite access structures, which implies a necessary condition for
a multipartite access structure to be ideal. We present some examples showing
that this necessary condition is a useful tool to prove that a given multipartite
structure is not ideal.

Second, we study the application of Theorem 2 to multipartite access struc-
tures. Therefore, we study the existence of linear representations for multipartite
matroids, and we relate them to linear representations of discrete polymatroids.
In the same way as in a linear representation of a matroid a vector is assigned
to each point in the ground set, a subspace is assigned to each point in a lin-
ear representation of a discrete polymatroid. We prove in Theorem 13 that a
multipartite matroid is linearly representable if and only if the corresponding
discrete polymatroid is linearly representable. This implies a sufficient condition
for a multipartite access structure to be ideal. We think that Theorem 13 is
interesting not only for its implications in secret sharing, but also as a result
about representability of matroids. This result is specially useful if the number
of parts is small. For instance, a tripartite matroid can have many points, but,
as a consequence of our result, we only have to find three suitable subspaces of
a vector space to prove that it is linearly representable.

And third, we apply our general results to the tripartite case, and we present
a complete characterization of the ideal tripartite access structures. By using
Theorem 8, we characterize the matroid-related tripartite access structures. The-
orem 13 is used to prove that all matroids related to these structures are linearly
representable, and hence that all matroid-related tripartite access structures are
ideal. Moreover, as a consequence of Theorem 3, the optimal information rate of
every non-ideal tripartite access structure is at most 2/3. The application of our
general results to the tripartite case requires to solve some non-trivial problems.
Therefore, our characterization of the ideal tripartite access structures is not a
simple corollary of the main theorems in this paper.

We observe that the last result above cannot be extended to m-partite access
structures with m ≥ 4, because there does not exist any ideal secret sharing
scheme defining the Vamos matroid [1,30,33], which is quadripartite. Hence,
there exist matroid-related quadripartite access structures that are not ideal.
Nevertheless, this does not mean that our general results are not useful for m-
partite access structures with m ≥ 4, as it is demonstrated with some examples.



Ideal Multipartite Secret Sharing Schemes 453

After the results in this paper, the open problems about the characterization
of ideal multipartite access structures are as difficult as the open problems in
the general case. That is, closing the gap between the necessary and the suffi-
cient conditions requires to solve very difficult problems about representations
of matroids and polymatroids.

4 Multipartite Access Structures, Multipartite Matroids,
and Discrete Polymatroids

4.1 Ideal Secret Sharing Schemes and Matroids

As a consequence of the results by Brickell [7], and Brickell and Davenport [8],
the characterization of the ideal access structures, that is the access structures
of ideal schemes, has important connections with matroid theory.

To illustrate these connections, we describe the construction of ideal secret
sharing schemes due to Brickell [7]. Given a set P of participants, consider a
special participant p0 /∈ P , which is usually called dealer , and Q = P ∪ {p0}.
Every mapping ψ : Q → E, where E is a vector space over some finite field K,
determines an ideal secret sharing scheme Σψ on the set P of participants. Given
a secret value s0 ∈ K, a random vector x ∈ E such that the dot product x ·ψ(p0)
is equal to s0 is chosen uniformly at random. The share of the participant i ∈ P
is the value si = x · ψ(i) ∈ K. A subset A ⊆ P is in the access structure Γ
of the scheme Σψ if and only if the vector ψ(p0) is a linear combination of the
vectors in {ψ(i) : i ∈ A}. The ideal schemes of this form are called K -vector
space secret sharing schemes , and their access structures are called K -vector
space access structures .

The access structure of Σψ is determined by the rank function r : P(Q) → Z,
where P(Q) is the power set of Q and, for every X ⊆ Q, the value r(X) is the
dimension of the subspace of E spanned by the set {ψ(i) : i ∈ X}. Actually, a
subset A ⊆ P is qualified if and only if r(A ∪ {p0}) = r(A). It is easy to check
that the function r satisfies

1. 0 ≤ r(X) ≤ |X | for every X ⊆ Q, and
2. r is monotone increasing: if X ⊆ Y ⊆ Q, then r(X) ≤ r(Y ), and
3. r is submodular : r(X ∪Y )+r(X ∩Y ) ≤ r(X)+r(Y ) for every pair of subsets

X, Y of Q.

Matroids are combinatorial objects that abstract and generalize many concepts
from linear algebra, including ranks, independent sets, bases, and subspaces.
The reader is referred to [27,37] for general references on matroid theory. One
of the many possible equivalent definitions for this concept says that a matroid
is a pair (Q, r) formed by a finite set Q, the ground set , and a rank function
r : P(Q) → Z satisfying the properties above. A matroid M = (Q, r) is said to
be K-linearly representable if there exists a K-vector space E and a mapping
ψ : Q → E assigning a vector to each element in Q such that the rank function r
can be defined from ψ as before.



454 O. Farràs, J. Mart́ı-Farré, and C. Padró

For a matroid M = (Q, r) and a point p0 ∈ Q, we define the access struc-
ture Γp0(M) on the set of participants P = Q − {p0} by Γp0(M) = {A ⊆ P :
r(A∪{p0}) = r(A)}. The access structures of this form are called matroid-related
(the definition we gave in the Introduction for this concept is equivalent to this
one). If the access structure Γp0(M) is connected , that is, if every participant
is in a minimal qualified subset, then the matroid M is univocally determined
by Γp0(M). Observe that Γ is a K-vector space access structure if and only if
Γ = Γp0(M) for some K-linearly representable matroid M. Therefore, as a con-
sequence of the construction by Brickell [7], we obtain Theorem 2, a sufficient
condition for an access structure to be ideal.

Brickell and Davenport [8] proved that this sufficient condition is not very far
from being necessary. Specifically, they proved that every ideal secret sharing
scheme on a set P of participants determines a matroid M with ground set
Q = P ∪{p0} such that the access structure of the scheme is Γp0(M). Therefore,
a necessary condition for an access structure to be ideal is obtained (Theorem 1).

Matroids that are obtained from ideal secret sharing schemes are said to be
secret sharing representable (or ss-representable for short). Therefore, an ac-
cess structure is ideal if and only if it is related to a ss-representable matroid.
Since there exist non-ss-representable matroids, the necessary condition in The-
orem 1 is not sufficient. The first example, the Vamos matroid, was found by
Seymour [30]. Other proofs of this fact were presented in [1,33]. Many other ex-
amples non-ss-representable matroids were given by Matúš [22]. In addition, the
sufficient condition in Theorem 2 is not necessary because of the non-Pappus ma-
troid, which is not linearly representable but was proved to be ss-representable
by Simonis and Ashikhmin [33].

At this point, two open problems arise that are central in the characterization
of ideal access structures. First, the characterization of matroid-related access
structures and, second, the characterization of ss-representable matroids.

A number of important results and interesting ideas for future research on
the characterization of ss-representable matroids can be found in the works
by Simonis and Ashikhmin [33] and Matúš [22]. The first one deals with the
geometric structure that lies behind ss-representations of matroids. The sec-
ond one analyzes the algebraic properties that the matroid induces in all its
ss-representations. These properties make it possible to find some restrictions
on the ss-representations of a given matroid and, in some cases, to exclude the
existence of such representations. By using these tools, Matúš [22] presented an
infinite family of non-ss-representable matroids with rank three.

4.2 Matroids, Integer Polymatroids, and Discrete Polymatroids

Matroids have been defined in Section 4.1 by using the rank function. There
exist many other definitions. We present in the following the ones based on
independent sets and on bases. The equivalence between them, which is proved
in [27], will be useful to obtain our results.



Ideal Multipartite Secret Sharing Schemes 455

Let M = (Q, r) be a matroid. The subsets X ⊆ Q with r(X) = |X | are said
to be independent . The family I ⊆ P(Q) of the independent sets of M is a
nonempty family of subsets characterized by the following two properties.

1. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I, and
2. if I1 and I2 are in I and |I1| < |I2|, then there exists x ∈ I2 − I1 such that

I1 ∪ {x} ∈ I.

The bases of the matroid M are the maximally independent sets. Similarly
to the independent sets, the nonempty family B of the bases determines the
matroid. Moreover, a nonempty subset B ⊆ P(Q) is the family of bases of a
matroid on Q if and only if the following exchange condition is satisfied.

– For every B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} is in B.

All bases have the same number of elements, which is the rank of M and is
denoted r(M). Actually, r(M) = r(Q). The dependent sets are those that are
not independent, and a circuit is a minimally dependent set. A matroid is said
to be connected if, for every two points x, y ∈ Q, there exists a circuit C with
x, y ∈ C.

If E is a K-vector space and ψ : Q → E is a K-linear representation of the
matroid M = (Q, r), then a subset X ⊆ Q is independent (respectively, a basis)
if and only if the multiset {ψ(i) : i ∈ X}, where some values may be repeated,
is a linearly independent set of vectors in E (respectively, a basis of the subspace
of E spanned by ψ(Q)).

A polymatroid is a pair Z = (J, h) formed by a finite set J , the ground set ,
and a rank function h : P(J) → R satisfying

1. h(∅) = 0, and
2. h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ), and
3. h is submodular : if X, Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

If the rank function h is integer-valued, we say that Z is an integral polymatroid .
The reader is referred to [37] for more information about polymatroids.

The following example of an integral polymatroid illustrates the similarity
with matroids. In the same way as matroids abstract some properties of collec-
tions of vectors, integral polymatroids do the same with collections of subspaces.
Let E be a K -vector space, and V1, . . . , Vm subspaces of E. It is not difficult to
check that the mapping h : P({1, . . . , m}) → Z defined by h(X) = dim(

∑
i∈X Vi)

is the rank function of an integral polymatroid Z = ({1, . . . , m}, h). The inte-
gral polymatroids that can be defined in this way are said to be K -linearly
representable.

Discrete polymatroids were introduced by Herzog and Hibi [13]. They are
closely related to integral polymatroids. In addition, we show in the following
that discrete polymatroids are extremely useful to study multipartite matroids,
and hence they are a very important tool in the characterization of ideal multi-
partite access structures.



456 O. Farràs, J. Mart́ı-Farré, and C. Padró

We need to introduce some notation. For every integer m ≥ 1, we consider the
set Jm = {1, . . . , m}. Let Zm

+ denote the set of vectors u = (u1, . . . , um) ∈ Zm

with ui ≥ 0 for every i ∈ Jm. If u, v ∈ Zm
+ , we write u ≤ v if ui ≤ vi for every

i ∈ Jm, and we write u < v if u ≤ v and u 
= v. The vector w = u ∨ v is defined
by wi = max{ui, vi}. The modulus of a vector u ∈ Zm

+ is |u| = u1 + · · ·+um. For
every subset X ⊆ Jm, we write u(X) = (ui)i∈X ∈ Z

|X|
+ and |u(X)| =

∑
i∈X ui.

A discrete polymatroid with ground set Jm is a nonempty finite set of vectors
D ⊂ Zm

+ satisfying

1. if u ∈ D and v ∈ Z
m
+ is such that v ≤ u, then v ∈ D, and

2. for every pair of vectors u, v ∈ D with |u| < |v|, there exists w ∈ D with
u < w ≤ u ∨ v.

A basis of a discrete polymatroid D is a maximal element in D, that is, a
vector u ∈ D such that there does not exist any v ∈ D with u < v. Similarly to
matroids, all bases have the same modulus. In addition, a discrete polymatroid
is determined by its bases. Specifically, in [13, Theorem 2.3] it is proved that a
nonempty subset B ⊂ Zm

+ is the family of bases of a discrete polymatroid if and
only if it satisfies the following exchange condition.

– For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ Jm such that uj < vj

and u − ei + ej ∈ B, where ei denotes the i-th vector of the canonical basis
of Rm.

The mapping h : P(Jm) → Z defined by h(X) = max{|u(X)| : u ∈ D} is
called the rank function of the discrete polymatroid D. As a consequence of a
result by Herzog and Hibi [13, Theorem 3.4], there is a one-to-one correspon-
dence between discrete polymatroids and integral polymatroids, as it is stated
in the following proposition. Because of that, from now on we will deal only with
discrete polymatroids.

Proposition 4. A mapping h : P(Jm) → Z is the rank function of a discrete
polymatroid D ⊂ Z

m
+ with ground set Jm if and only if (Jm, h) is an integral

polymatroid. In addition, a discrete polymatroid D is univocally determined from
its rank function h because D = {u ∈ Zm

+ : |u(X)| ≤ h(X) for every X ⊆ Jm}.

4.3 Multipartite Access Structures and Multipartite Matroids

An m-partition Π = (X1, . . . , Xm) of a set X is a disjoint family of m nonempty
subsets of X with X = X1 ∪ · · · ∪ Xm. Let Λ ⊆ P(X) be a family of subsets
of X . For a permutation σ on X , we define σ(Λ) = {σ(A) : A ∈ Λ} ⊆ P(X).
A family of subsets Λ ⊆ P(X) is said to be Π-partite if σ(Λ) = Λ for every
permutation σ such that σ(Xi) = Xi for every Xi ∈ Π . We say that Λ is
m-partite if it is Π-partite for some m-partition Π .

These concepts can be applied to access structures Γ , which are actually
families of subsets of the set of participants P , and they can be applied as well
to the family of independent sets of a matroid. A matroid M = (Q, r) is Π-
partite if its family of independent subsets I ⊆ P(Q) is Π-partite.



Ideal Multipartite Secret Sharing Schemes 457

If a multipartite access structure is matroid-related, then the corresponding
matroid is multipartite for a similar partition. Specifically, we have the following
result.

Lemma 5. Let M = (Q, r) be a connected matroid and, for a point p0 ∈ Q,
consider the partitions Π = (P1, . . . , Pm) and Π0 = ({p0}, P1, . . . , Pm) of the
sets P = Q−{p0} and Q, respectively. Then the matroid-related connected access
structure Γ = Γp0(M) on P is Π-partite if and only if the matroid M = (Q, r)
is Π0-partite.

The members of a Π-partite family of subsets are determined by the number
of elements they have in each part. We formalize this in the following and we
obtain a compact way to represent a multipartite family of subsets. Let Π =
(X1, . . . , Xm) be a partition of a set X . For every A ⊆ X and i ∈ Jm, we
define Πi(A) = |A ∩ Xi|. The partition Π defines a mapping Π : P(X) → Z

m
+

by considering Π(A) = (Π1(A), . . . , Πm(A)). If a family Λ ⊆ P(X) of subsets
is Π-partite, then A ∈ Λ if and only if Π(A) ∈ Π(Λ). That is, Λ is completely
determined by the set of vectors Π(Λ) ⊂ Zm

+ , and hence we can describe an m-
partite family of subsets by using vectors in Zm

+ . The following result shows the
close connection between multipartite matroids and discrete polymatroids. It can
be easily proved by using Proposition 4 and the properties of the independent
sets of a matroid.

Proposition 6. Let Π = (Q1, . . . , Qm) be an m-partition of a set Q and let
I ⊆ P(Q) be a Π-partite family of subsets. Then I is the family of independent
sets of a Π-partite matroid M = (Q, r) if and only if Π(I) ⊂ Zm

+ is a discrete
polymatroid. In addition, if M = (Q, r) is a Π-partite matroid and h : P(Jm) →
Z is the rank function of the discrete polymatroid Π(I) ⊂ Zm

+ , then h(X) =
r(

⋃
i∈X Qi) for every X ⊆ Jm.

For a Π-partite matroid M = (Q, I), we say that Π(I) ⊂ Zm
+ is the discrete

polymatroid associated with M. Clearly, a Π-partite matroid is univocally de-
termined from its associated discrete polymatroid and the partition Π .

5 Matroid-Related Multipartite Access Structures

By using the connection between multipartite matroids and discrete polyma-
troids we discussed in the previous section, we present a characterization of
matroid-related multipartite access structures based on discrete polymatroids.
This characterization provides a necessary condition for a multipartite access
structure to be ideal.

For every integer m ≥ 1, we consider the sets Jm = {1, . . . , m} and J ′m =
{0, 1, . . . , m}. Let D ⊂ Z

m
+ be a discrete polymatroid with ground set Jm and

rank function h : P(Jm) → Z. We say that a discrete polymatroid D′ ⊂ Z
m+1
+

with ground set J ′m completes D if its rank function h′ : P(J ′m) → Z is such
that h′(X) = h(X) for every X ⊆ Jm while h′({0}) = 1 and h′(J ′m) = h(Jm).



458 O. Farràs, J. Mart́ı-Farré, and C. Padró

Since the rank function of D′ is an extension of the one of D, both will be
usually denoted by h. For a polymatroid D′ that completes D, consider the
family Δ(D′) = {X ⊆ Jm : h(X ∪ {0}) = h(X)} ⊆ P(Jm). Given a discrete
polymatroid D with ground set Jm, every completion D′ of D is determined by
Δ(D′). The next proposition characterizes the families of subsets Δ ⊆ P(Jm)
for which there exists D′ with Δ = Δ(D′). This result will be very useful in the
characterization of ideal tripartite access structures.

Proposition 7. Let D be a discrete polymatroid with ground set Jm and rank
function h. Consider Δ ⊆ P(Jm). Then there exists a completion D′ of D with
Δ = Δ(D′) if and only if the following conditions are satisfied.

1. The family Δ is monotone increasing, ∅ /∈ Δ, and Jm ∈ Δ.
2. If X ⊂ Y ⊆ Jm and X /∈ Δ while Y ∈ Δ, then h(X) < h(Y ).
3. If X, Y ∈ Δ and X ∩ Y /∈ Δ, then h(X ∪ Y ) + h(X ∩ Y ) < h(X) + h(Y ).

We say that Δ ⊆ P(Jm) is D-compatible if it satisfies the conditions in Proposi-
tion 7. For every X ⊆ Jm, we define the discrete polymatroid D(X) with ground
set X by D(X) = {u(X) : u ∈ D} ⊂ Z

|X|
+ , and we consider the set of vec-

tors B(X) ⊂ Zm
+ such that u ∈ B(X) if and only if u(X) is a basis of D(X)

and ui = 0 for every i ∈ Jm − X . Finally, for a family Δ ⊆ P(Jm), we define
G(Δ) =

⋃
X∈Δ B(X) ⊂ Zm

+ . Our characterization of matroid-related multipar-
tite access structures is given in the following theorem. Since every ideal access
structure must be matroid-related, this result provides a necessary condition for
a multipartite access structure to be ideal. Moreover, by Theorem 3, this a a
necessary condition for a multipartite access structure to admit a secret sharing
scheme with information rate greater than 2/3.

Theorem 8. Let Π be an m-partition of P and let Γ be a connected Π-partite
access structure on P . Then Γ is matroid-related if and only if there exist a
discrete polymatroid D with ground set Jm and a D-compatible family Δ ⊆
P(Jm) such that

Γ = {A ⊆ P : Π(A) ≥ u for some vector u ∈ G(Δ)},

or, equivalently, the family min Γ of the minimal qualified subsets of Γ is deter-
mined by

Π(minΓ ) =
⋃

X∈Δ

{u ∈ B(X) : |u(Y )| < h(Y ) for every Y ∈ Δ with Y � X},

where h is the rank function of the discrete polymatroid D.

Proof. Let Π = (P1, . . . , Pm) and Π0 = ({p0}, P1, . . . , Pm) be partitions of the
sets P and Q = P ∪{p0}, respectively. Let M = (Q, r) be a connected Π0-partite
matroid and let D′ = Π0(I) ⊂ Z

m+1
+ be the discrete polymatroid with ground

set J ′m associated with M. Observe that, since M is connected, D′ completes
the discrete polymatroid D = D′(Jm). Consider the matroid-related Π-partite



Ideal Multipartite Secret Sharing Schemes 459

access structure Γp0(M). We only have to prove that a subset A ⊆ P is in
Γp0(M) if and only if Π(A) ≥ u for some vector u ∈ G(Δ(D′)).

Consider a vector u = (u1, . . . , um) ∈ G(Δ(D′)) and A ⊆ P with Π(A) ≥ u.
Then there exists X ⊆ Jm such that X ∈ Δ(D′) and u(X) is a basis of D(X). We
can suppose that X = {1, . . . , r}, and hence u = (u1, . . . , ur, 0, . . . , 0). Consider a
subset B ⊆ A with Π(B) = u. Since Π0(B) = ũ = (0, u1, . . . , ur, 0, . . . , 0) ∈ D′,
we deduce that B is an independent set of the matroid M. On the other hand,
Π0(B ∪ {p0}) = (1, u1, . . . , ur, 0, . . . , 0) /∈ D′ because ũ(X) is a basis of D′(X)
and h(X ∪ {0}) = h(X). Therefore, B ∪ {p0} is a dependent set of M. This,
together with the independence of B, implies that B ∈ Γp0(M) and, hence,
A ∈ Γp0(M).

Let A ⊆ P be a minimal qualified subset of Γp0(M) and let X = {i ∈ Jm :
A ∩ Pi 
= ∅}. We can suppose that X = {1, . . . , r}. Consider u = Π0(A) =
(0, u1, . . . , ur, 0, . . . , 0). Observe that u ∈ D′ because A is an independent set
of M. The proof is concluded by checking that X ∈ Δ(D′) and that u(X) is
a basis of D′(X). If, on the contrary, u(X) is not a basis of D′(X), we can
suppose without loss of generality that v = (0, u1 + 1, u2, . . . , ur, 0, . . . , 0) ∈ D′.
Since A is a minimal qualified subset of Γp0(M), the set A ∪ {p0} is a circuit
of M and, hence, B = (A ∪ {p0}) − {p1} is an independent set of M for every
p1 ∈ A ∩ P1. Therefore, w = Π0(B) = (1, u1 − 1, u2, . . . , ur, 0, . . . , 0) ∈ D′.
Since |v| > |w|, there exists x ∈ D′ with w < x ≤ w ∨ v. This implies that
x = (1, u1, u2, . . . , ur, 0, . . . , 0) = Π0(A ∪ {p0}) ∈ D′, a contradiction. There-
fore, u(X) is a basis of D′(X), and this implies h(X ∪ {0}) = h(X) because
(1, u1, u2, . . . , ur, 0, . . . , 0) /∈ D′. Hence, X ∈ Δ(D′). �

The condition in Theorem 8 seems very involved and difficult to check. Never-
theless, as we see in the following corollaries and examples, it provides useful
tools to check that a given multipartite access structure is not ideal. An impor-
tant point to be taken into account is that, given a connected matroid-related
multipartite access structure Γ , the discrete polymatroid D and the family of
subsets Δ whose existence is proved in Theorem 8 are univocally determined.
Effectively, since Γ is connected and matroid-related, there exists a unique ma-
troid M with Γ = Γp0(M), which determines D and Δ. Therefore, we can write
D(Γ ) and Δ(Γ ) to represent these objects. For a partition Π = (P1, . . . , Pm) of a
set P , the support of a subset A ⊆ P is supp(A) = {i ∈ Jm : A∩Pi 
= ∅} ⊆ Jm.
Observe that, if Γ is a matroid-related Π-partite access structure, then Δ(Γ ) =
supp(Γ ) = {supp(A) : A ∈ Γ}.

Corollary 9. Let Γ be a matroid-related m-partite access structure. For every
X ⊆ Jm, all minimal qualified subsets A ∈ min Γ with supp(A) = X have the
same cardinality.

Example 10. Let Γ be a 4-partite access structure with Π(minΓ ) = {(2, 2, 1, 1),
(1, 3, 1, 2), (2, 1, 2, 1), (1, 1, 2, 2)}. From Corollary 9, Γ is not matroid-related, and
hence it is not ideal. Moreover, by Theorem 3, its optimal information rate is at
most 2/3.



460 O. Farràs, J. Mart́ı-Farré, and C. Padró

Corollary 11. Let Γ be a connected matroid-related m-partite access structure
and consider the discrete polymatroid D = D(Γ ) and the D-compatible family
Δ = Δ(Γ ). Let h be the rank function of D. For every X ∈ Δ and A ⊆

⋃
i∈X Pi,

if |A| = h(X) and |A ∩ (
⋃

i∈Y Pi)| ≤ h(Y ) for all Y ⊆ X, then A ∈ Γ .

Example 12. Let Γ be a quadripartite access structure such that

Π(minΓ ) = {u ∈ Z
4
+ : (1, 1, 1, 1) ≤ u ≤ (3, 4, 4, 4) and |u| = 8} ∪ {(4, 0, 0, 0)}.

We claim that Γ is not matroid-related. Assume the Γ is matroid-related and
consider D = D(Γ ) and Δ = Δ(Γ ). Observe that min Δ = {{1}}. In addition,
from Theorem 8, if u ∈ B(J4), then u ∈ Π(min Γ ) or there exist Y � J4 and
v ∈ B(Y ) such that v < u and v ∈ Π(min Γ ). Therefore, the family of bases of D
is B = B(J4) = {u ∈ Z4

+ : (1, 1, 1, 1) ≤ u ≤ (4, 4, 4, 4) and |u| = 8}. Moreover,
h(X) = max{|u(X)| : u ∈ D} = max{|u(X)| : u ∈ B} for every X ⊆ J4.
Therefore, h(X) = 4 if |X | = 1, and h(X) = 6 if |X | = 2, and h(X) = 7 if
|X | = 3, and h(J4) = 8. Since {1, 2} ∈ Δ, by Corollary 11, (3, 3, 0, 0) ∈ Π(Γ ), a
contradiction.

6 Representable Multipartite Matroids

Let K be a field, E a K -vector space, and V1, . . . , Vm subspaces of E. It is
not difficult to check that the mapping h : P(Jm) → Z defined by h(X) =
dim(

∑
i∈X Vi) is the rank function of a discrete polymatroid D ⊂ Zm

+ . In this
situation, we say that D is K -linearly representable and the subspaces V1, . . . , Vm

are a K-linear representation of D. The main result of this section is the following
theorem.

Theorem 13. Let M = (Q, r) be a Π-partite matroid such that |Q| = n and
r(M) = k. Let D = Π(I) be its associated discrete polymatroid. If M is K-
linearly representable, then so is D. In addition, if D is K -representable, then M
is L-linearly representable for every field extension L of K such that |L| >

(
n
k

)
·k.

The first claim in the statement is not difficult to prove. Let Π = (Q1, . . . , Qr)
be a partition of Q and let M = (Q, r) be a Π-partite matroid with r(M) = k
and |Q| = n. Consider the discrete polymatroid D = Π(I) ⊂ Z

m
+ and its rank

function h : P(Jm) → Z. Suppose that M is represented over the field K by a
matrix M . For every i ∈ Jm, consider the subspace Vi spanned by the columns of
M corresponding to the points in Qi. Then h(X) = r(∪i∈XQi) = dim(

∑
i∈X Vi)

for every X ⊆ Jm. Therefore, the subspaces V1, . . . , Vm are a K-representation
of the discrete polymatroid D.

The proof for the second claim in the theorem is much more involved and
needs several partial results. Clearly, it is enough to prove that, for every finite
field with |K| >

(
n
k

)
·k, the matroid M is K-linearly representable if the discrete

polymatroid D = Π(I) is K-linearly representable.
Assume that |K| >

(
n
k

)
· k and that D is K -linearly representable. Then there

exists a K -linear representation of D consisting of subspaces V1, . . . , Vm of the



Ideal Multipartite Secret Sharing Schemes 461

K -vector space E = Kk, where k = h(Jm) = r(M). The proof of the following
lemma is not given here due to space limitations. It will be included in the full
version of the paper.

Lemma 14. For every basis u of D, there exists a basis B = B1 ∪ · · · ∪ Bm

of the vector space E such that Bi ⊂ Vi and |Bi| = ui for every i ∈ Jm, and
Bi ∩ Bj = ∅ if i 
= j.

For every i ∈ Jm, take ki = dim Vi and ni = |Qi|. Then n = n1 + · · · + nm.
Consider the space M of all k×n matrices over K of the form (M1|M2| · · · |Mm),
where Mi is a k × ni matrix whose columns are vectors in Vi. Observe that
the columns of every matrix M ∈ M can be indexed by the elements in Q,
corresponding the columns of Mi to the points in Qi. The proof of Theorem 13
is concluded by proving that there exists a matrix M ∈ M whose columns are a
K-linear representation of the matroid M.

Lemma 15. If A ⊆ Q is a dependent subset of the matroid M, then, for every
M ∈ M, the columns of M corresponding to the elements in A are linearly
dependent.

Proof. Since u = Π(A) /∈ D, there exists X ⊆ Jm such that |u(X)| > h(X) =
dim(

∑
j∈X Vj). Then the columns of M corresponding to the elements in A ∩

(∪j∈XQj) must be linearly dependent. �

Therefore, Lemma 17 concludes the proof of Theorem 13. The following technical
lemma is needed to prove it. Recall that, over a finite field K, there exist nonzero
polynomials p ∈ K[X1, . . . , XN ] on N variables such that p(x1, . . . , xN ) = 0 for
every (x1, . . . , xN ) ∈ KN .

Lemma 16. Let p ∈ K[X1, . . . , XN ] be a nonzero polynomial on N variables
of degree d < |K|. Then, there exists a point (x1, . . . , xN ) in KN such that
p(x1, . . . , xN ) 
= 0.

Lemma 17. There exists a matrix M ∈ M such that, for every basis B ⊆ Q of
the matroid M, the corresponding columns of M are linearly independent.

Proof. By fixing a basis of Vi for every i ∈ Jm, we obtain one-to-one mappings
φi : Kki → Vi ⊆ Kk. Let N =

∑m
i=1 kini. By using the mappings φi, we can

construct a one-to-one mapping Ψ : KN = (Kk1)n1 × · · · × (Kkm)nm → M. That
is, by choosing an element in KN , we obtain ni vectors in Vi for every i ∈ Jm.
For every basis B ⊆ Q of the matroid M, we consider the mapping fB : KN → K

defined by fB(x) = det(Ψ(x)B), where Ψ(x)B is the square submatrix of Ψ(x)
formed by the k columns corresponding to the elements in B. Clearly, fB is a
polynomial on at most N variables and of degree k, because every entry of the
matrix Ψ(x)B is linear, that is, an homogeneous polynomial of degree 1. Let B
be a basis of M and u = Π(B) ∈ Zm

+ . From Lemma 14, there exists a basis of
K

k of the form B̃ = B1 ∪ · · · ∪ Bm with Bi ⊂ Vi and |Bi| = ui for every i ∈ Jm.
By placing the vectors in B̃ in the suitable positions in a matrix M ∈ M, we



462 O. Farràs, J. Mart́ı-Farré, and C. Padró

can find a vector xB ∈ KN such that fB(xB) 
= 0, and hence the polynomial fB

is nonzero for every basis B of M. Therefore, if B(M) is the family of bases of
the matroid M, the polynomial f =

∏
B∈B(M) fB is a nonzero polynomial on N

variables of degree at most
(
n
k

)
·k < |K|, because |B(M)| ≤

(
n
k

)
. From Lemma 16,

there exists a point x0 ∈ KN such that f(x0) 
= 0, and hence fB(x0) 
= 0 for
every basis B of M. Clearly, the matrix Ψ(x0) is the one we are looking for. �

7 Tripartite Access Structures

In this section, we apply our general results on ideal multipartite access struc-
tures to completely characterize the ideal tripartite access structures. The char-
acterization of ideal bipartite access structures was done previously in [28], but
only partial results [2,10,12] were known about the tripartite case.

We begin by characterizing the matroid-related tripartite access structures.
Afterwards, we prove that all matroids related to those access structures are rep-
resentable. Therefore, all matroid-related tripartite access structures are vector
space access structures, and hence ideal. We obtain in this way a characteri-
zation of the ideal tripartite access structures. In addition, as a consequence
of Theorem 3, the optimal information rate of every non-ideal tripartite access
structure is at most 2/3.

7.1 Characterizing Matroid-Related Tripartite Access Structures

The values of a rank function h : P(J3) → Z of a discrete polymatroid D with
ground set J3 will be denoted by ri = h({i}), where i ∈ J3, and si = h({j, k}) if
{i, j, k} = J3, and s = h(J3). Given integer values ri, si, and s, they univocally
determine a discrete polymatroid with ground set J3 if and only if, for every
i, j, k with {i, j, k} = J3,

1. s > 0, and 0 ≤ ri ≤ sj ≤ s, and
2. si ≤ rj + rk, and s ≤ si + ri, and s + ri ≤ sj + sk.

Let D be a discrete polymatroid with ground set J3. From Proposition 7, a family
Δ ⊆ P(J3) is D-compatible if and only if the following conditions are satisfied
for every i, j, k with {i, j, k} = J3.

1. Δ is monotone increasing, ∅ /∈ Δ, and J3 ∈ Δ.
2. ri > 0 if {i} ∈ Δ, and ri < sj if {i} /∈ Δ and {i, k} ∈ Δ, and si < s if

{j, k} /∈ Δ.
3. si < rj + rk if {{j}, {k}} ⊂ Δ.
4. s + ri < sj + sk if {i} /∈ Δ and {{i, j}, {i, k}} ⊂ Δ.
5. s < si + ri if {{i}, {j, k}} ⊂ Δ.

From Theorem 8, a tripartite access structure Γ is matroid-related if and only
if there exist integers ri, si, s and a family Δ ⊆ J3 in the above conditions such
that a subset A ⊆ P is in Γ if and only if Π(A) ≥ u for some u ∈

⋃
X∈Δ B(X),

where



Ideal Multipartite Secret Sharing Schemes 463

– B(J3) = {v ∈ Zm
+ : (s − s1, s − s2, s − s3) ≤ v ≤ (r1, r2, r3) and |v| = s},

– B({1, 2}) = {v ∈ Zm
+ : (s3 − r2, s3 − r1, 0) ≤ v ≤ (r1, r2, 0) and |v| = s3},

– B({1}) = {(r1, 0, 0)},

and the other sets B(X) are defined symmetrically.

7.2 All Matroid-Related Tripartite Access Structures Are Ideal

Let D be a discrete polymatroid with ground set J3 that is represented over the
field K by three subspaces V1, V2, V3 of a vector space E. If ri, si and s are the
integer values of the rank function of D, then ri = dimVi for every i ∈ J3, and
si = dim(Vj + Vk) if {i, j, k} = J3, and s = dim(V1 + V2 + V3). If {i, j, k} = J3,
consider ti = rj + rk − si = dim(Vj ∩ Vk). Observe that t = dim(V1 ∩ V2 ∩ V3) is
not determined in general by D. That is, there can exist different representations
of D with different values of t. Nevertheless, there exist some restrictions on this
value. Of course, t ≤ ti for every i ∈ J3. In addition, since (V1 ∩V3)+(V2 ∩V3) ⊆
(V1 + V2) ∩ V3, we have that dim((V1 + V2) ∩ V3) − dim((V1 ∩ V3) + (V2 ∩ V3)) =∑

si−
∑

ri−(s−t) ≥ 0. Therefore, max{0, s−
∑

si+
∑

ri} ≤ t ≤ min{t1, t2, t3}.
The proof of the following result will appear in the full version of the paper.

Proposition 18. Let D be a discrete polymatroid with ground set J3. Consider
an integer t such that max{0, s −

∑
si +

∑
ri} ≤ t ≤ min{t1, t2, t3} and take

� =
∑

si −
∑

ri − (s − t). Let K be a field with |K| > s3 + �. Then there
exists a K-representation of D given by subspaces V1, V2, V3 ⊆ E = Ks with
dim(V1 ∩ V2 ∩ V3) = t.

As a consequence of Proposition 18, every discrete polymatroid with ground
set Jm with m ≤ 3 is representable over fields of all characteristics. This and
Theorem 13 implies that every m-partite matroid with m ≤ 3 is representable
over fields of all characteristics.

Theorem 19 concludes the characterization of ideal tripartite access struc-
tures. This result is not a direct consequence of Proposition 18, because the
matroids that define tripartite access structures are in general quadripartite, be-
ing one of the parts formed by a single point. Therefore, Theorem 19 is proved by
showing that every discrete polymatroid D′ with ground set J ′3 and h({p0}) = 1
is linearly representable over finite fields of every characteristic. We sketch in
the following the proof of this fact. First, a linear representation of the discrete
polymatroid D = D′(J3), whose existence is given by Proposition 18, is consid-
ered. Afterwards, we have to check that it is possible to find a vector x0 such
that the subspace V0 = 〈x0〉, together with the subspaces V1, V2, V3 representing
D = D′(J3), form a linear representation of D′. This is done by a case-by-case
analysis depending on the family Δ(D′), and in every case a suitable represen-
tation of D has to be chosen.

Theorem 19. Every matroid-related tripartite access structure is ideal. More
specifically, every matroid-related tripartite access structure is a vector space
access structure over finite fields of all positive characteristics.



464 O. Farràs, J. Mart́ı-Farré, and C. Padró

Example 20. We prove that the tripartite access structure Γ with

Π(minΓ ) = {(3, 0, 0), (2, 0, 4), (2, 4, 2), (2, 3, 3), (1, 4, 3), (1, 3, 4)}.

is ideal. Assuming that this is so, we determine D = D(Γ ) and Δ = Δ(Γ ).
Observe that Δ = supp(Γ ) = {{1}, {1, 2}, {1, 3}, J3}, and hence Π(min Γ ) ⊆
B({1})∪ B({1, 2})∪ B({1, 3})∪ B(J3). It is easy to see that r1 = 3, r2 = r3 = 4,
s2 = 6 and s = 8. Since there is not any minimal subset in B({1, 2}), it follows
that B({1, 2}) has only one element (s3 − r2, r2, 0) = (r1, s3 − r1, 0), which does
not correspond to any minimal qualified subset, and hence s3 = 7. All subsets
in B(J3) have at least one participant in the first partition, so s − s1 = 1 and
s1 = 7. Since the parameters satisfy the above restrictions and Γ coincides with
the access structure determined by these parameters, Γ is a matroid-related
access structure. Therefore, it is a vector space access structure by Theorem 19.

References

1. A. Beimel, N. Livne. On Matroids and Non-ideal Secret Sharing. Third Theory of
Cryptography Conference, TCC 2006. Lecture Notes in Comput. Sci. 3876 (2006)
482–501.

2. A. Beimel, T. Tassa, E. Weinreb. Characterizing Ideal Weighted Threshold Secret
Sharing. Second Theory of Cryptography Conference, TCC 2005. Lecture Notes in
Comput. Sci. 3378 (2005) 600–619.

3. J. Benaloh, J. Leichter. Generalized secret sharing and monotone functions. Ad-
vances in Cryptology, CRYPTO’88. Lecture Notes in Comput. Sci. 403 (1990)
27–35.

4. G.R. Blakley. Safeguarding cryptographic keys. AFIPS Conference Proceedings. 48
(1979) 313–317.

5. C. Blundo, A. De Santis, R. De Simone, U. Vaccaro. Tight bounds on the infor-
mation rate of secret sharing schemes. Des. Codes Cryptogr. 11 (1997) 107–122.

6. C. Blundo, A. De Santis, L. Gargano, U. Vaccaro. On the information rate of secret
sharing schemes. Advances in Cryptology, CRYPTO’92. Lecture Notes in Comput.
Sci. 740 (1993) 148–167.

7. E.F. Brickell. Some ideal secret sharing schemes. J. Combin. Math. and Combin.
Comput. 9 (1989) 105–113.

8. E.F. Brickell, D.M. Davenport. On the classification of ideal secret sharing schemes.
J. Cryptology 4 (1991) 123–134.

9. R.M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro. On the size of shares of
secret sharing schemes. J. Cryptology 6 (1993) 157–168.

10. M.J. Collins. A Note on Ideal Tripartite Access Structures. Cryptology ePrint
Archive, Report 2002/193, http://eprint.iacr.org/2002/193.

11. L. Csirmaz. The size of a share must be large. J. Cryptology 10 (1997) 223–231.
12. J. Herranz, G. Sáez. New Results on Multipartite Access Structures. IEE Proceed-

ings on Information Security 153 (2006) 153–162.
13. J. Herzog, T. Hibi. Discrete polymatroids. J. Algebraic Combin. 16 (2002) 239–268.
14. M. Ito, A. Saito, T. Nishizeki. Secret sharing scheme realizing any access structure.

Proc. IEEE Globecom’87. (1987) 99–102.
15. W.-A. Jackson, K.M. Martin. Perfect secret sharing schemes on five participants.

Des. Codes Cryptogr. 9 (1996) 267–286.

http://eprint.iacr.org/2002/193


Ideal Multipartite Secret Sharing Schemes 465

16. E.D. Karnin, J.W. Greene, M.E. Hellman. On secret sharing systems. IEEE Trans.
Inform. Theory 29 (1983) 35–41.

17. A. Lehman. A solution of the Shannon switching game. J. Soc. Indust. Appl. Math.
12 (1964) 687–725.

18. J. Mart́ı-Farré, C. Padró. Secret sharing schemes with three or four minimal qual-
ified subsets. Des. Codes Cryptogr. 34 (2005) 17–34.

19. J. Mart́ı-Farré, C. Padró. Secret sharing schemes on access structures with inter-
section number equal to one. Discrete Applied Mathematics 154 (2006) 552–563.

20. J.Mart́ı-Farré, C. Padró. Ideal secret sharing schemes whose minimal qualified sub-
sets have at most three participants. Fifth Conference on Security and Cryptogra-
phy for Networks, SCN 2006, Lecture Notes in Comput. Sci., 4116 (2006) 201–215.

21. J. Mart́ı-Farré, C. Padró. On Secret Sharing Schemes, Matroids and Polymatroids.
Fourth IACR Theory of Cryptography Conference TCC 2007, Lecture Notes in
Comput. Sci. 4392 (2007) 273–290.

22. F. Matúš. Matroid representations by partitions. Discrete Math. 203 (1999)
169–194.

23. P. Morillo, C. Padró, G. Sáez, J. L. Villar. Weighted Threshold Secret Sharing
Schemes. Inf. Process. Lett. 70 (1999) 211–216.

24. S.-L. Ng. A Representation of a Family of Secret Sharing Matroids. Des. Codes
Cryptogr. 30 (2003) 5–19.

25. S.-L. Ng. Ideal secret sharing schemes with multipartite access structures. IEE
Proc.-Commun. 153 (2006) 165–168.

26. S.-L. Ng, M. Walker. On the composition of matroids and ideal secret sharing
schemes. Des. Codes Cryptogr. 24 (2001) 49–67.

27. J.G. Oxley. Matroid theory . Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York, 1992.

28. C. Padró, G. Sáez. Secret sharing schemes with bipartite access structure. IEEE
Trans. Inform. Theory 46 (2000) 2596–2604.

29. P.D. Seymour. A forbidden minor characterization of matroid ports. Quart. J.
Math. Oxford Ser. 27 (1976) 407–413.

30. P.D. Seymour. On secret-sharing matroids. J. Combin. Theory Ser. B , 56 (1992)
pp. 69–73.

31. A. Shamir. How to share a secret. Commun. of the ACM , 22 (1979) pp. 612–613.
32. G. J. Simmons. How to (Really) Share a Secret. Advances in Cryptology –

CRYPTO’88, Lecture Notes in Comput. Sci. 403 (1990) 390–448.
33. J. Simonis, A. Ashikhmin. Almost affine codes. Des. Codes Cryptogr. 14 (1998)

pp. 179–197.
34. D.R. Stinson. An explication of secret sharing schemes. Des. Codes Cryptogr. 2

(1992) 357–390.
35. T. Tassa. Hierarchical Threshold Secret Sharing. Theory of Cryptography, First

Theory of Cryptography Conference, TCC 2004. Lecture Notes in Comput. Sci.
2951 (2004) 473–490.

36. T. Tassa, N. Dyn. Multipartite Secret Sharing by Bivariate Interpolation. 33rd
International Colloquium on Automata, Languages and Programming, ICALP 2006
– Lecture Notes in Comput. Sci. 4052 (2006) 288–299.

37. D.J.A. Welsh. Matroid Theory . Academic Press, London, 1976.



Non-wafer-Scale Sieving Hardware for the NFS:
Another Attempt to Cope with 1024-Bit

Willi Geiselmann1 and Rainer Steinwandt2

1 IAKS, Fakultät für Informatik, Universität Karlsruhe (TH), Am Fasanengarten 5,
76128 Karlsruhe, Germany
geiselma@ira.uka.de

2 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA

rsteinwa@fau.edu

Abstract. Significant progress in the design of special purpose hardware
for supporting the Number Field Sieve (NFS) has been made. From a
practical cryptanalytic point of view, however, none of the published
proposals for coping with the sieving step is satisfying. Even for the
best known designs, the technological obstacles faced for the parameters
expected for a 1024-bit RSA modulus are significant.

Below we present a new hardware design for implementing the sieving
step. The suggested chips are of moderate size and the inter-chip commu-
nication does not seem unrealistic. According to our preliminary analy-
sis of the 1024-bit case, we expect the new design to be about 2 to 3.5
times slower than TWIRL (a wafer-scale design). Due to the more mod-
erate technological requirements, however, from a practical cryptanalytic
point of view the new design seems to be no less attractive than TWIRL.

Keywords: RSA, cryptanalytic hardware, factoring integers, NFS.

1 Introduction

Even for the best known factoring algorithms, coping with the complexity of a
factorization of a 1024-bit RSA modulus looks extraordinary challenging. In an
attempt to bring such a record factorization closer to what is currently feasible,
various hardware designs to support implementations of the Number Field Sieve
(NFS) have been devised. While theoretical advances in the design of factoring
algorithms are more desirable, at the moment these special purpose designs
for speeding up time-critical computations in the NFS seem to be the most
promising approach for practically challenging a 1024-bit RSA modulus. After a
series of works on the linear algebra step of the NFS [1,13,8,5,6], one may adopt
the position that the linear algebra step expected for a 1024-bit factorization is
by now close to or in reach of current technology.

On the other hand, none of the suggested designs implementing the sieving
step of the NFS is really satisfying:

– TWINKLE [15,12] builds on an opto-electronic hybrid design where no
promising parameter set for the 1024-bit case has been proposed.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 466–481, 2007.
c© International Association for Cryptology Research 2007



Non-wafer-Scale Sieving Hardware for the NFS 467

– For designs building on a mesh architecture, no promising specification for
the 1024-bit case is known (cf. [1,7,9,10]).

– SHARK [3] imposes the use of an elaborate butterfly transport system, whose
implementation is far from trivial.

– TWIRL [16,14] seems to be the currently best-explored design. Unfortu-
nately, it is a wafer-scale design building on a quite complex layout.

In an attempt to reduce the layout complexity, Geiselmann et al. [4] recently
proposed to combine a modified TWIRL with an “ECM engine”: For 1024-bit
parameters of interest, [4] argues that an optimized implementation of the El-
liptic Curve Method (ECM) is capable of efficiently computing all factorizations
of (semi-)smooth norms occurring in the sieving step. The idea is that in this
way the circuitry for TWIRL’s “diary part”, which stores large prime factors of
norms, can be removed. The design we present below also relies on this idea:
We do not store any prime factors encountered during relation collection and
assume a postprocessing of the sieving output with an ECM engine as described
in [4]. However, unlike TWIRL, the device proposed below is a non-wafer-scale
design.

After having recalled some facts on the sieving step in the NFS in Section 2,
in Section 3 we describe our design that builds on ideas of several published
proposals: Like the mesh-based proposals, we implement a version of line sieving
where each sieving line is split into consecutive subintervals. To overcome the
need of a wafer-scale design, we distribute (the majority of) the factor bases on
moderately sized chips. The circuitry on these chips produces the arithmetic pro-
gressions needed for sieving and is inspired by TWIRL. Eventually, to combine
the sieving contributions of the different factor base elements, we use a central
unit whose structure reminds of the linear algebra design proposed in [6]. In our
preliminary analysis of the 1024-bit case, for the ease of comparability we adopt
the technological parameters and the NFS parameters from [16]. Summarizing,
we expect our device to be about 2 to 3.5 times slower than TWIRL. On the
other hand, the maximal chip size involved is 493 mm2 and also the intercon-
nection circuitry among these chips does not seem utopian. From a practical
point of view, this new design appears to be no less attractive than the existing
hardware designs for implementing the sieving step.

2 Preliminaries: Sieving in the NFS

For the purposes of this paper, it is sufficient to recall the basic set-up of so-
called line sieving in the NFS. For a more thorough discussion of the NFS we
refer to the standard reference [11].

2.1 Line Sieving

In a precomputation phase of the NFS two univariate polynomials f1(x), f2(x) ∈
Z[x] with integer coefficients are determined that have a root m modulo n in
common:

f1(m) ≡ f2(m) ≡ 0 (mod n)



468 W. Geiselmann and R. Steinwandt

b ← 0
repeat

b ← b + 1
for i ← [1, 2]

si(a) ← 0 (∀a : −A ≤ a < A)
for (p, r) ← Pi

si(br + kp) ← si(br + kp) + log√
2(p) (∀k : −A ≤ br + kp < A)

for a ← {−A ≤ a < A : gcd(a, b) = 1, s1(a) > T1, and s2(a) > T2}
check if both F1(a, b) and F2(a, b) are smooth

until enough pairs (a, b) with both F1(a, b) and F2(a, b) smooth are found

Fig. 1. Line sieving

A typical choice is to have f1(x) of degree d ≥ 5 and f2(x) to be monic and
linear, i. e., f2(x) = x − m. By setting F1(x, y) := yd · f1(x/y) resp. F2(x, y) :=
y ·f2(x/y), two homogeneous polynomials F1(x, y), F2(x, y) ∈ Z[x, y] are derived.
Now everything related to the polynomial f1(x) resp. F1(x, y) is said to belong
to the algebraic side, whereas everything related to the polynomial f2(x) resp.
F2(x, y) is referred to as belonging to the rational side. In particular, for given
smoothness bounds B1, B2 ∈ N0 the sets

Pi := {(p, r) : fi(r) ≡ 0 (mod p), p prime, p < Bi, 0 ≤ r < p} ⊆ N
2 (i = 1, 2)

are known as algebraic and rational factor base, respectively.
Throughout the relation collection step, pairs of integers (a, b) ∈ Z × N with

gcd(a, b) = 1 are to be found, so that the values F1(a, b) and F2(a, b) are smooth.
This means that the values F1(a, b) and F2(a, b) both factor over the primes
< B1 resp. < B2, except for a small number of prime factors. At this, the precise
number of ‘extra’ prime factors on the rational and algebraic side is not neces-
sarily identical. The actual computation of (a, b)-pairs where both F1(a, b) and
F2(a, b) are smooth can be performed by means of a sieving process, e. g., over
a rectangular region −A ≤ a < A, 0 < b ≤ B with A, B ∈ N. For organizing
this sieving process, different techniques are known, and for our purposes we
focus on simple line sieving as outlined in Figure 1. At this, the thresholds Ti

correspond to the bitlength of the remaining cofactor on the algebraic and ratio-
nal side, respectively. The Ti-values are to be updated several times throughout
the sieving. For the sake of efficiency, in an actual implementation the values
log√2(p) are usually replaced by an integer approximation. Also the use of base√

2-logarithms is certainly not mandatory. In analogy to [16], in the sequel we
will use a 10-bit counter for summing up approximations �log√2(p)	. It is worth
noting that testing the norms F1(a, b), F2(a, b) for smoothness and in case of
smoothness recovering their prime factors is computationally non-trivial. For
the device proposed below, we rely on a design as presented in [4], which uses
an optimized ECM implementation to perform the required norm factorizations
in connection with a TWIRL-based realization of the sieving step.



Non-wafer-Scale Sieving Hardware for the NFS 469

2.2 Choice of 1024-Bit Parameters

Deducing a reliable estimate for the NFS parameters suitable for a factorization
of a 1024-bit RSA modulus is a non-trivial problem in its own and outside the
scope of this paper. Already for the sake of comparability, here we adopt para-
meters from [16]. Summarizing, for the sequel the following parameter choices
are of interest:

– On the algebraic side, the smoothness bound B1 = 2.6 · 1010 is used.
– On the rational side, the smoothness bound B2 = 3.5 · 109 is used.
– The sieving region −A < a ≤ A, 0 < b ≤ B uses A = 5.5 · 1014 and

B = 2.7 · 108.
– The algebraic and rational polynomials are chosen of degree 5 and 1, respec-

tively, as specified in [16, Appendix B.2].

For further details and a discussion on how to identify suitable NFS parameters,
we refer to [14]. With the mentioned parameters, the factor bases are of size
|P1| ≈ 1.134 · 109 and |P2| ≈ 1.673 · 108, respectively.

3 The Proposed Design: Main Components

For the sake of clarity, in this section we only discuss the basic structure of our
design. Parameter choices we made for the case of a 1024-bit factorization are
indicated in double brackets 〈〈·〉〉, but a discussion of implementation details is
postponed to Section 4. The basic organization of the sieving process is anal-
ogous to [7,9]. Namely, we divide each sieving line in subintervals of S〈〈= 226〉〉
consecutive sieve locations. Switching to the next subinterval within one sieving
line can be done with local operations only. However, to switch to a different
sieving line, i. e., to increase the b-value, new data is to be loaded into the device,
and our running time analysis has to take this into account.

At a high level, the architecture of our design relies on two types of compo-
nents, which we detail in the sequel: a) a collection unit that is in charge of
updating the rational and algebraic sieving counters and b) stations that com-
pute the arithmetic progressions needed for updating the counters.

3.1 Collection Unit

For each value in the current sieving interval, this part of our device hosts an
algebraic and a rational DRAM counter for summing up the respective log√2(p)-
values. Each of these counters has a size of b〈〈= 10〉〉 bit, and the counters are
distributed onto a number c〈〈= 214〉〉 of identical processors. We refer to these
processors as counting units, and each counting unit is in charge of S/c〈〈= 212〉〉
consecutive sieve locations. It is not necessary to place all counting units on a
single chip, and we distribute them onto a small number γ〈〈= 4〉〉 of chips.

These γ chips are all organized in the same manner: we arrange the respective
counting units in two-dimensional arrays of size σ×σ〈〈= 25 × 25〉〉, yielding a to-
tal number of c/(γσ2)〈〈= 4〉〉 arrays per chip. Each array is organized as depicted



470 W. Geiselmann and R. Steinwandt

. . .

. . .

. . .

. . .

. . .

. . .

counting

unit

counting

unit
counting

unit

counting

unit
counting

unit

counting

unit

counting

unit

counting

unit
counting

unit

counting

unit
counting

unit

counting

unit

input

part

input

part
input

part

input

part
input

part

input

part

Fig. 2. Organization of one array of counting units

in Figure 2: The counting units in each row are connected through a circular
bus, whereas the counting units within a column are connected through a uni-
directional bus, originating in an input part. This structure is reminiscent of the
linear algebra design in [6].

The input parts receive (log√2(p), r)-values from external stations (see below)
with the r-value indicating to which of the counters in the array the respective
log√2(p)-value is to be added. In each clock cycle, a received (log√2(p), r)-values
passes (along with an algebraic/rational flag) on to the next row over the vertical
bus. Then each counting unit checks whether the pair received on the vertical
bus is to be handled in that row. If yes, the packet is removed from the vertical
bus and via the circular horizontal bus transported to the correct counting unit.
The latter then removes the received packet from the horizontal bus and adds
the log√2(p)-value to the appropriate counter.

3.2 Computing the Arithmetic Progressions

Similarly, as in [16], to handle the arithmetic progressions for the (log√2(p), r)-
pairs we use different types of circuits, and refer to these as stations. In depen-
dence on the size of the prime number p, we distinguish four types of stations,
whose structure is reminiscent of the stations in TWIRL.

Largish stations. These are in charge of primes p greater than some bound
Blargish〈〈= 1.5 · 108〉〉, where Blargish > S. The majority of primes in the factor
base is handled in this way. They “hit” no more than once per sieving interval,
and the design of largish stations reflects this. Each such station handles a certain
number nlargish〈〈= 105〉〉 of factor base elements, which are stored in a sequence
of DRAM banks as sketched in Figure 3. Each of the memory banks is operated
as a stack, random access is not needed.

First, we initialize the sieving line defined through a specific b-value (starting
with b = 1): For each factor base element (p, r) we replace r with br mod p
(see Figure 1). This precomputation is performed on an external PC and the
modified (p, r)-pairs are then loaded in the mentioned series of DRAM banks.
The first DRAM bank holds all (p, r)-pairs that “hit” in the first sieving interval



Non-wafer-Scale Sieving Hardware for the NFS 471

. . .

DRAM for (p, r)-pairs

A r < A + S

DRAM for (p, r)-pairs

A r < A + S

DRAM for (p, r)-pairs

A + S r < A+ 2S

DRAM for (p, r)-pairs

A + S r < A+ 2S

DRAM for (p, r)-pairsDRAM for (p, r)-pairs

control logic & addercontrol logic & adder control logic & addercontrol logic & adder control logic & addercontrol logic & adder

Fig. 3. Largish station

of size S, the second DRAM all those with an r-value indicating a hit in the
second subinterval of size S, etc. The number nbanks of DRAM banks we need
is nbanks = �pmax/S	 + 1〈〈≤ 389〉〉 with pmax being the maximal prime handled
by the station.1 The number of entries nentries〈〈≤ 105〉〉 per DRAM bank has to
suffice for holding all “hits” that can occur in a single subinterval of size S.

Now, for sieving the first subinterval, the first DRAM bank is read sequen-
tially (or in small blocks of �largish〈〈= 2〉〉 values). The log√2(p)-approximations
are constant within one unit, as the prime numbers handled in a unit are of ap-
proximately equal size. Along with the r-values (and a rational/algebraic flag),
the approximation for log√2(p) is sent over a unidirectional2 bus to the appropri-
ate array of the collection unit. Further on, an updated entry is written into the
DRAM bank that handles the subinterval where the next “hit” for this progres-
sion occurs. More specifically, we proceed as follows: With the adder residing
next to each DRAM bank, we compute the new r-value as r ← r + p. Now,
choosing S〈〈= 226〉〉 as power of 2, the most significant bits of the new r-value
can serve as counter indicating the number of “hops”, that the updated (p, r)-
pair has to travel among the cyclically connected DRAM banks. Once the pair
has arrived at its destination DRAM, which handles the subinterval for the next
“hit”, the control logic associated to that DRAM bank removes the packet from
the cyclic bus and appends it at the end of the entries currently stored in that
DRAM. If there is no space left in this DRAM, the pair is deleted and lost for
the entire sieving line. This never happened in our simulations.

Once a complete subinterval (i. e., a DRAM bank) has been processed, the
unit proceeds to the (cyclic) successor of that DRAM and processes it in the
same manner. In this way, the complete sieving line is processed.

Medium stations. For prime numbers that are smaller than the sieving inter-
val size S, the respective arithmetic progressions may encounter several hits
within one subinterval. For some bound Bmedium〈〈= 213〉〉, we handle the primes
Bmedium < p < Blargish as follows.

In one station nmedium〈〈≈ 105〉〉 pairs (p, r) are stored in a DRAM bank. As
for the largish stations, to start a new sieving line, the r-value is to be initialized
according to Figure 1. Unlike for largish primes, now we have only one DRAM
bank in the station, and in order to save memory—or rather chip area—we sort
1 Using one more DRAM bank than �pmax/S� avoids the problem of having to read

and write from one DRAM bank at the same time.
2 Only for initializing a new sieving line this bus is operated in the opposite direction.



472 W. Geiselmann and R. Steinwandt

DRAM storing (p, r)-

values along with p·bS/pc
DRAM storing (p, r)-

values along with p·bS/pc

control logic  adder unitcontrol logic  adder unit

Fig. 4. Medium station

the (p, r)-pairs according to p: In this way, storing the difference between primes
is sufficient to recover the next p-value. As sketched in Figure 4, next to the
DRAM bank and control logic, we also have an adder unit. The latter consists
of an array of �medium〈〈= 128〉〉 adders.

The DRAM will be processed sequentially in blocks of �medium〈〈= 128〉〉 en-
tries. After reading such a block of (p, r)-values, it is forwarded to the addition
unit, where the needed primes p are reconstructed from the stored differences.
Also, similarly as in the largish stations, the needed log√2(p)-approximations are
determined here. The adders now compute all values r + k · p that are relevant
for the current subinterval, i. e., p is added as long as the obtained value is still
smaller than S〈〈= 226〉〉, which for S being a power of 2 can be tested by observ-
ing a single bit. The respective r+k ·p-values are transmitted to the appropriate
array of the collection unit—together with the log√2(p)-approximation and a
rational/algebraic flag. In parallel to the computation of these �medium〈〈= 128〉〉
arithmetic progressions, the r-values stored in the DRAM are updated for the
next subinterval. To this aim, along with each (p, r)-entry we also store the
(precomputed) value p · �S/p� in the DRAM. Knowing this value, updating an
r-value for the next sieving interval reduces to computing r ← r + �S/p� · p. If
this value does not exceed S yet, p has to be added. Eventually, we subtract S
from the obtained new r-value.

To keep the number of pins of the chips holding the collection unit within
acceptable boundaries, the medium stations will be hosted on the same chips as
the collection unit. If the collection unit is distributed over several chips, we have
to duplicate the medium stations accordingly. Also, as the medium stations are
expected to produce relations at a very high rate, we equip the (unidirectional)
buses into the collection unit’s arrays with a “panic feedback flag”. This allows
the collection unit to put a medium station on hold until the buses and buffers
can cope with new (log√2(p), r)-pairs again.

Smallish stations. We refer to factor base elements (p, r) with p ≤ Bmedium
as smallish, and handle them in basically the same type of stations as just dis-
cussed. However, we do without a difference coding here. Progressions computed
by smallish stations produce several hits within a subinterval, even within one
array of the collection unit. Consequently we duplicate the smallish stations,
so that on each chip of the collection unit all smallish primes can be handled
locally.



Non-wafer-Scale Sieving Hardware for the NFS 473

4 Performance and Parameters for the 1024-Bit Case

In this section we discuss more details of our design, when dealing with NFS
parameters for a 1024-bit factorization as described in Section 2.2. For choosing
and optimizing the design parameters specified below, we relied on simulations
by means of a computer algebra system [2] and a heuristic approach. We did
not invoke a rigorous mathematical optimization and do not claim that our
parameter choices are “the best possible”.

In addition to the NFS parameter choices mentioned in Section 2.2, we fix
the subinterval size S := 226 that specifies the number of consecutive sieve
locations processed by our device at once. As outlined in the previous section,
the progressions corresponding to the different types of primes are generated in
different types of stations. Below we first describe the structure of the stations
and their placement within the device. Section 4.2 details the structure of the
collection unit.

4.1 Stations for the 1024-Bit Case

To keep the amount of inter-chip communication at a reasonable level, we subdi-
vide the stations for largish primes into three types. While the first type describes
stations that are placed on a chip different from the chips hosting the collection
unit, the other two types reside on the same chips as the collection unit. Simi-
larly, we use two different types of medium stations, both residing on the same
chips as the collection unit. For the sake of comparability with [16], for esti-
mating the space complexities we assume a 0.13 μm process with a DRAM bit
occupying about 0.2 μm2 and a transistor occupying about 2.8 μm2 of silicon.

Largish Stations

Type I. We use this type of stations for largish primes > 1.5 · 108. As described
before, the factor base elements are distributed onto different DRAMs, so that
all primes of this station relevant for the processed size S = 226 subinterval are
stored in one DRAM. For the chosen subinterval size S = 226, we choose the
DRAM bank large enough to store up to 100, 000 (p, r)-pairs. For each such pair
(p, r) the respective prime p < 235 and r-value (mod 226) are stored, yielding a
total of 34+26 bit per DRAM entry.3

The DRAM is read sequentially, on average reading two pairs per clock cycle.
Each r-value is sent—together with the 4-bit value �log√2(p)	−55 that is chosen
to be constant for the whole station—to a small routing network on the same
chip (see below). An adder (with input widths 35 and 26 bit) calculates the next
hit for p in the current sieving line. As described in Section 3.2, the pair (p, r+p)
is forwarded—through one of the two cyclic buses connecting all DRAM banks
of the station—to the DRAM bank in charge of the subinterval where p hits
next. More specifically, we send the value (p, (r + p) mod 226) to the DRAM

3 The least significant bit of p is known to be 1.



474 W. Geiselmann and R. Steinwandt

bank that is (r + p) div 226 “hops” away. To implement this routing operation,
adjacent to each DRAM two adders (shared among four DRAMs), a decrement
and compare unit, and the memory cells for the two buses of width up to 69
each4 are needed.

All in all, we estimate that this logic can be realized with 4000 transistors
per DRAM bank. Together with 6,000,000 bits of storage space, the size of
one DRAM bank with update logic is estimated to be 1.2 mm2. To handle
both the algebraic and the rational factor base elements with p > 1.5 · 108, we
use 256 largish stations of Type I (156 algebraic and 99 rational ones). The
number of DRAM banks per station varies from 4 up to 389, yielding a total
of 13, 440 DRAM banks. We distribute the Type I stations on 32 chips, each
holding 8 stations with ≈ 420 DRAM banks.

On each chip one routing network collects the 16 outputs of the 8 stations
and distributes them to the correct array of size 222 on the collection unit. This
routing network is realized through a butterfly network with 16 inputs. Each of
the four stages of the butterfly network has 16 buffers to store up to 30 pairs
(r, �log√2(p)	 − 55). If one of the buffers is full, a panic flag informs the parent
nodes to stop sending data. The panic flags of the input nodes of the network
stop the corresponding station from producing further pairs. According to our
simulations, one station outputs on average 98,000 (r, �log√2(p)	− 55)-pairs per
subinterval and all the pairs of the 8 stations on one chip are routed to the correct
destination within about 52, 000 clock cycles. The butterfly network requires 4×
16×30 buffers for 30-bit values (realized as latches) and the routing and control
logic. We estimate that 300,000 transistors with an area of less than 1 mm2

should be sufficient. The output of the butterfly network—16 pairs comprised of
r mod 222 and the 4-bit encoding of the corresponding �log√2(p)	-value—is sent
(across chip borders) to the correct array of size 222 of the collection unit.

Summarizing, the largish stations of Type I can produce the needed progres-
sions for the primes p > 1.5 · 108 in approximately 52, 000 clock cycles. For
this, we need 32 chips, each having a size of ≈ 472 mm2 and each outputting
16 ·28 = 448 bit per clock cycle. Each of the outputs has a fixed destination—an
array of size 222 in the collection unit where the hit is processed.

Type II. To keep the amount of inter-chip communication at a reasonable level,
we introduce a slightly different type of largish stations, which are in charge
of all factor base elements with primes 4 · 107 < p < 1.5 · 108. These Type II
stations are placed on the chips holding the collection unit: Our collection unit
will be distributed onto 4 chips, so we need 4 copies of each of these Type II
largish stations. As one chip of the collection unit handles only one quarter of
the total subinterval of size S = 226, the Type II largish stations are designed for
a sieving interval size of 224. The overall structure is identical to the Type I case
just discussed. However, reflecting the reduced subinterval size 224, the number
of (p, r)-pairs per DRAM is reduced to 50, 000. Finally, the calculation of the
next hit has to be modified, so that the subsequent three subintervals of size 224

are skipped.
4 We need up to 9 bit for the “hop counter”.



Non-wafer-Scale Sieving Hardware for the NFS 475

With this strategy, the needed arithmetic progressions for the primes 4 ·107 <
p < 1.5 · 108 can be generated by 4 · 44 stations with a total of 4 · 290 DRAMs of
size 0.6 mm2 each. To route the outputs of these 44 stations on the same chip
to the correct array of the collection unit, four truncated butterfly networks are
used. In each of the two stages of the 16 input network, buffers of size two are
sufficient to cope with the 11 inputs per clock cycle on average.

Type III. To handle the primes in the range 1.5 · 107 < p < 4 · 107, we use a
third type of largish stations. The overall structure is the same as for Type I and
II. As for the Type II station, the number of factor base elements per DRAM
is 50,000 and Type III stations are placed on the same chips as the collection
unit. However, the size of the sieving subinterval handled by Type III stations
is reduced to 223. Consequently, we need in total 8 copies (i. e., 2 per chip) of
each Type III largish station, and each of these largish stations is in charge of
two arrays of the collection unit.

To process all the primes 1.5 · 107 < p < 4 · 107, we use 8 · 16 largish stations
of Type III with 8 · 76 DRAMs of size 0.6 mm2 each. The outputs of these 16
stations are sent to the correct one of the two related arrays of the collection
unit. A switching unit (butterfly network with depth 1) with 16 inputs and 16 ·8
buffers can handle this.

Medium Stations

Type I. This type of medium stations is in charge of primes in the range 220 <
p < 1.5 · 107. In analogy to the largish stations of Type II, each medium station
of Type I handles a sieving subinterval of size 224. Consequently, there are four
copies of each medium station of Type I—one on each chip of the collection unit.
In total, each chip of the collection unit hosts 20 medium stations of Type I,
where each station is equipped with 4.0·106 bit of DRAM. The first prime hitting
the respective subinterval is stored in full, and for the remaining primes a simple
difference coding is used. Storing the difference between successive primes instead
of the primes itself allows us to reduce the memory required for a factor base
element to 44 bit. On average, from each DRAM, two factor base elements are
read per clock cycle.

For each of the respective primes, all relations within the subinterval of the
chip (of size 224) are calculated using several adders, and the hits are reported
to the relevant array of the collection unit. Additionally, the corresponding hit
in the next subinterval of the device (of size S = 226) is produced and written
back into the DRAM. To perform this operation, along with a (p, r)-pair the
value p · �S/p� is stored in the DRAM. Applying a difference coding as for the
p-values, 12 bit suffice for encoding p · �S/p�—this includes a flag to indicate a
new “starting value”. To implement the arithmetic for updating the r-values,
two adders (with inputs of (7/24) and (11/24) bit) are used that derive the p-
and p · �S/p�-value from the difference encoding, and two 24-bit adders are used
to update the r-value for the subsequent sieving interval of size S = 226. As we
want to process the factor base elements at a rate of two pairs per clock cycle, for
each station, we need two quadruples with the mentioned adders. They perform



476 W. Geiselmann and R. Steinwandt

the necessary update within one clock cycle (in a pipeline structure). In total, we
estimate the logic for the updating to require no more than 10, 000 transistors
per DRAM bank. Together with the 4.0 · 106 bit of DRAM, this amounts to a
silicon area of ≈ 0.83mm2.

The adders mentioned so far are only in charge of updating the DRAM entries.
To determine the hits within the subinterval of size 224 handled by a station,
the (p, r)-pairs of each station travel, through two cyclic buses, along a chain of
8 adders (of width 24 bit). The first free adder removes the pair from the bus
and calculates all the hits of p in the current subinterval of size 224. The buses
of two adjacent chains of 8 adders are connected; if the workload of the two
adder chains is not balanced, (p, r)-pairs will change the station. On average, we
expect medium stations of Type I to emit 32 pairs (�log√2(p)	, r) per clock cycle
(and a maximum of 40). The outputs of two adjacent stations (at a maximum
16 per clock cycle, on average 12) are sent not only to the correct array of
the collection unit, but even to the correct quarter of it. This is performed by
a butterfly network with 16 inputs; in each node of the network 6 buffers are
enough to cope with the inputs.

Type II. The arithmetic progressions for the factor base elements (p, r) with
213 < p < 220 are stored in a similar way as in the medium stations of Type I.
However, for the medium stations of Type II, two DRAM banks of the same
size as before are used to store the ≈ 162, 000 pairs representing the first hit
within each subinterval of size 224. The update into the next sieving interval (of
size S) is realized in the same way as for the Type I stations. Differing from the
handling of the primes > 220, however, only the pair (p, r) for the first hit in
each array of the collection unit is sent to the collection unit. The other hits are
calculated there, i. e., within the collection unit.

Smallish Stations

For each array of the collection unit, the pairs (p, r) with primes p < 213 are
stored in a separate DRAM together with the value �·p, so that r+�·p or r+�·p+p
is the first hit in the next subinterval of size S = 226, and two more numbers
for an update to the next row of the array (interval size 217) and to the next
processor (interval size 212). The update to the next sieving interval is performed
with one adder within 3 clock cycles and the first hit for the subinterval is sent
to the array of the collection unit for further processing in the same way as the
primes 213 < p < 220 handled by the medium stations of Type II. We have four
smallish stations on each chip, and they easily fit on a silicon area of 0.4 mm2;
there are some 2050 smallish primes. In total, one smallish station requires no
more than 1,500 transistors and 2.9 · 106 bit of DRAM. It fits on a silicon area
of ≈ 0.06 mm2.

4.2 Collection Unit for the 1024-Bit Case

The main part of the collection unit consists of 128 × 128 processors, each in
charge of a subinterval of the sieving region of size 212. This set of processors is



Non-wafer-Scale Sieving Hardware for the NFS 477

split into 16 arrays of 32×32 processors, and distributing the collection unit onto
four chips means to place four of these arrays on each chip. The processors within
an array are connected through horizontal and vertical buses to transport the
log√2(p)-approximations and the index r to the processor in charge. In addition,
an algebraic/rational flag is needed, so that we know which of the two counters
per sieving location is to be be updated. Each processor stores the algebraic and
rational counters in a DRAM holding 212 words of 20 bit each—10 bit for the
algebraic and 10 bit for the rational counter.

Array Structure
As in Section 3.1, we refer to the individual processors within an array as counting
units. The counting units within one array are connected through vertical and
cyclic horizontal buses, basically as indicated in Figure 2. More specifically, in
each column of the array, we place one vertical bus, that is running top to bottom
for columns with an even number and bottom to top otherwise.

Handling data of largish stations. At the top of each of the 32 columns we have
an input unit that is connected to one of the 32 chips holding largish stations of
Type I. The input unit translates received (r, �log√2(p)	 − 55)-values into pairs
(r, �log√2(p)	). Moreover, the two pairs at top of column 2 · i and 2 · i + 1 (for
0 ≤ i < 16) are exchanged if the distances of both pairs to their target row are
larger than 15. The resulting values are put onto the vertical buses.

The outputs of the largish stations on the same chip (Type II and III) are
put onto the vertical buses after/before row 16. These outputs (on average 20
per clock cycle; 24 as a maximum) are put onto a bus, so that the distance
to the target row is at most 16. The pairs are stored in a buffer of size 4 if
the appropriate bus is not free. If the buffer is full, a “panic flag” stops the
corresponding node of the butterfly network to produce outputs. According to
simulations, a panic flag is set in some 2000 cases and delays the output of the
largish stations of Type II and III by a few hundred clock cycles.

The target address of the packets on the vertical bus are compared with the
actual row number and removed from the vertical bus if they are equal. The
(r, �log√2(p)	)-values are then transferred to one of the two cyclic horizontal
buses running in opposite directions. Using a buffer of size 4 here seems to be
sufficient (in our simulations, less than 0.4 pairs were lost in a sieving interval of
size S = 226). The counting unit reads the addresses on both horizontal buses,
transfers the pair to its own buffer and removes it from the bus, if a packet has
reached its target processor, i. e., the correct counting unit. If there is no space
left in the buffers of the processor, it is possible to leave the entry on the bus—it
will return to the same position after 32 clock cycles.

Handling data of medium stations. The progressions of the medium stations are
input at the left and right side of the array, directly into the correct row. The
routing to the correct row is performed by an extra structure, adjacent to the array.

– Progressions output by the medium stations of Type I are sent to the correct
quarter of the array by the station. In each quarter of the array (8 rows) at



478 W. Geiselmann and R. Steinwandt

most 10 inputs arrive (8 on average) per clock cycle. On either side of the
array, an 8 input/8 output butterfly network distributes 5 inputs to the
correct row.

– Progressions that are output by medium stations of Type II are stored in
two DRAMs, one on the left and one on the right side of the array. On either
side, two 48 bit buses transport (p, r, �log√2(p)	)-values to the correct rows.
Along each of theses buses, in each row, the data is forwarded unchanged to
the next row if the target of the r-value is not in this row.

If the data has reached a suitable row, it is checked if p > 217 (then, there
is only one hit per row). In this case, (r, �log√2(p)	) is sent to its destination
via one of two horizontal “medium prime buses”, and (p, r + p, �log√2(p)	)
is forwarded to the next row. The pairs for primes p < 217 are transferred to
the adder unit of this row to produce all hits within this row and feed them
into the array. When the adder unit has finished with the prime p, the data
is forwarded to the next row through one of the two vertical buses.

Handling data of smallish stations. The hits for smallish primes are counted
in a separate array of processors and DRAMs: The slow access time of DRAM
(6 clock cycles) does not allow to store all hits of a subinterval of size 212 in one
DRAM. Therefore we double all DRAM counters, so that while processing the
smallish progressions for the current sieving interval, the medium and largish
progressions of the next sieving interval can already be processed in the other
DRAM bank. We switch the role of the two DRAM banks for each sieving
interval, so that effectively the smallish progressions are always “one sieving
interval ahead”. More specifically, instead of one array of 32 × 32 processors,
we now have two such arrays, which are merged so that each processor in one
array is adjacent to one of the other array. One of these arrays contains the
logic needed for handling the smallish primes. In each row of this array, the 16
processors on the left side of the array are connected through one cyclic bus with
one input node at the left side. The same connection is established for the right
half of the processors of this row.

The smallish primes are split into two types (Type I: 1024 ≤ p < 213 and Type
II: p < 1024). Both types are stored together in one DRAM as described in Sec-
tion 4.1. For each p, we also store the value �log√2(p)	. The data is distributed to
the left and right half of the array and sent on either side of the array through a
vertical (56 bit) bus to 32 progression generators. All but the first of these progres-
sion generators calculate r0 := r+�217/p�·p. If r0 > 217, then (r0 (mod 217), p) is
the first pair to be reported in the row of this progression generator, otherwise p is
added to r0 to obtain the first element to be reported in this row. This value is used
within the actual row and in addition forwarded to the progression generator of the
subsequent row. For smallish primes of Type I, each progression generator calcu-
lates the first hit in each processor (using a 12 bit adder and the value �212/p� · p)
and sends the triple (p, r, �log√2(p)	), along with an algebraic/rational flag and a
1-bit flag indicating the type of the smallish prime, through a cyclic 36 bit bus to
the processors of its half of its row. All the progressions of primes of Type II within
each half of one line are generated by the corresponding progression generator, and



Non-wafer-Scale Sieving Hardware for the NFS 479

the value (r, �log√2(p)	) along with the algebraic/rational flag is sent to the target
processor through the horizontal 36 bit bus.

Each target processor stores the reported (r, �log√2(p)	)-pairs of Type II in
one of its 4 buffers and adds the �log√2(p)	-values into its DRAM. For smallish
primes of of Type I, on average every 16 clock cycles a hit can be reported, and
these �log√2(p)	-values are added to the DRAM with higher priority than for
the smallish primes of Type II. Therefore a buffer of size 2 is sufficient for the
smallish primes of Type I.

Area Estimate

Each of the counting units requires ≈ 2800 transistors for the largish and
medium sized primes and ≈ 1500 transistors for the smallish primes plus two
times 82,000 bit of DRAM. The input units for the largish primes require some
1250 transistors per column of one array, and the units for the input of the
medium primes 8750 transistors per row. To generate the smallish primes, in
addition, some 4400 transistors per row are necessary. Thus, the total area of
one array of 32 × 32 counting units is approximately 26 mm2 for the medium
and largish primes and 22 mm2 for the smallish primes. Summarizing, each of
the four chips holding collection units has a size of 493 mm2 and consists of:

– 44 largish stations of Type II (180 mm2),
– 2 · 16 largish stations of Type III (2 · 46 mm2),
– 20 medium stations of Type I (20 mm2),
– 4 · 2 medium stations of Type II (4 · 2 mm2),
– 4 · 1 smallish stations (4 · 0.06 mm2),
– 4 arrays of collection units (4 · 48 mm2).

One subinterval of size S = 226 is processed within 53,000 clock cycles.

4.3 Combination of the Chips for the 1024-Bit Case

One complete sieving device is comprised of 36 chips: 32 chips (each of size
472 mm2) holding the largish stations of Type I plus 4 chips (each of size
493 mm2) hosting the collection unit. Each chip holding largish stations of
Type I, per clock cycle sends 16 pairs (with 28 bit each) to one of the 16 ar-
rays of counting units distributed over the four chips holding the collection unit.
The collection unit as a whole, i. e., totaling all four chips, receives 4 · 32 pairs
(3584 bit) per clock cycle. The 36 chips can be placed in a regular, grid-like
structure, so that the maximum distance any pair has to travel is 5 times the
distance between adjacent chips. Implementing this communication across chip
borders is non-trivial, but does not appear utopian. The necessary wiring still
seems significantly easier to realize than SHARK’s transport system [3]. Finally,
as we do not store factors found during sieving, the sieving reports output by our
device are fed into an ECM engine as described in [4]. In this way, the needed
norm factorizations can be obtained without affecting the sieving time in a rel-
evant manner. Including one ECM chip for computing and factoring the norms,
the silicon area needed for one complete device is about 172 cm2.



480 W. Geiselmann and R. Steinwandt

One sieving line is split into 16.4 ·106 subintervals of size 226 and at a clocking
rate of 600 MHz can be processed in less than 25 minutes. The time needed for
switching to the next sieving line, i. e., loading new pairs into the DRAMs,
requires some 0.035 seconds and is negligible. Similarly, the time needed for
outputting the (candidate) relations identified in the completed sieving line is
not significant. Using the same 33% saving as in TWIRL [16, Appendix A.5],
with 8300 of the above devices, the sieving step for a 1024 bit number can be
expected to be completed within one year. Comparing the sieving time/chip
area of our design and TWIRL, we see that our device requires by a factor of
3.5 more silicon area than TWIRL. Unlike TWIRL, however, our design is not
wafer-scale.

Optimizing parameters. More research is needed for finding optimal parameters
for our design: For instance, after a simple modification, the largish units of
Type I can output the pairs of two DRAM banks (two consecutive subintervals of
size 226) within 52, 000 clock cycles. If the four chips holding the collection units
are doubled, the silicon area for this modified device increases by roughly 20 cm2

and halves the processing time. Using this simple modification, the sieving for
a 1024 bit number can be expected to be completed within one year using only
2.0 times the silicon area of TWIRL.

5 Conclusion and Future Work

The hardware design proposed above uses only chips of moderate size (493 mm2

and 472 mm2) without paying for this in a drastic loss of performance: Compared
to TWIRL, only a factor 2–3.5 in performance is lost. The inter-chip communi-
cation required is non-trivial, but still seems doable and easier to realize than
the transport system for SHARK. Thus, from a practical cryptanalytic point of
view, the new design seems to deserve a more detailed exploration.

So far we did not explore the cost of a prototype for, say, 512 bit or 768 bit
numbers, which seems a worthwhile next step. Not only for this, the inclusion
of fault detection and fault recovery mechanisms deserves further exploration.
Finally, the results achieved so far seem to justify a closer look at our design
when allowing more advanced fab technology, say involving a 90 nm process.

References

1. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time
of writing available electronically at http://cr.yp.to/papers/nfscircuit.pdf,
2001.

2. Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System
I: The User Language. Journal of Symbolic Computation, 24:235–265, 1997.

3. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and
Colin Stahlke. SHARK: A Realizable Special Hardware Sieving Device for Factor-
ing 1024-Bit Integers. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 119–130. Springer, 2005.



Non-wafer-Scale Sieving Hardware for the NFS 481

4. Willi Geiselmann, Fabian Januszewski, Hubert Köpfer, Jan Pelzl, and Rainer Stein-
wandt. A Simpler Sieving Device: Combining ECM and TWIRL. In Min Surp Rhee
and Byoungcheon Lee, editors, Information Security and Cryptology; ICISC 2006
Proceedings, volume 4296 of Lecture Notes in Computer Science, pages 118–135.
Springer, 2006.

5. Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, and Eran Tromer. Improved
Routing-Based Linear Algebra for the Number Field Sieve. In Proceedings of ITCC
’05 – Track on Embedded Cryptographic Systems. IEEE Computer Society, 2005.

6. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, and Eran Tromer. Scalable
Hardware for Sparse Systems of Linear Equations, with Applications to Integer
Factorization. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2005.

7. Willi Geiselmann and Rainer Steinwandt. A Dedicated Sieving Hardware. In
Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of
Lecture Notes in Computer Science, pages 254–266. Springer, 2003.

8. Willi Geiselmann and Rainer Steinwandt. Hardware for Solving Sparse Systems of
Linear Equations over GF(2). In Colin D. Walter, Çetin K. Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems; CHES 2003 Proceedings,
volume 2779 of Lecture Notes in Computer Science, pages 51–61. Springer, 2003.

9. Willi Geiselmann and Rainer Steinwandt. Yet Another Sieving Device. In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 278–291. Springer, 2004.

10. Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, and Takeshi Shimoyama. Analysis on
the Clockwise Transposition Routing for Dedicated Factoring Devices. In Jooseok
Song, Taekyoung Kwon, and Moti Yung, editors, Information Security Applica-
tions: 6th International Workshop, WISA 2005, volume 3786 of Lecture Notes in
Computer Science, pages 232–242. Springer, 2006.

11. Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The development of the
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, 1993.

12. Arjen K. Lenstra and Adi Shamir. Analysis and Optimization of the TWINKLE
Factoring Device. In Bart Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 35–52.
Springer, 2000.

13. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of
Bernstein’s Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology
— ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
1–26. Springer, 2002.

14. Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James
Hughes, and Paul C. Leyland. Factoring Estimates for a 1024-Bit RSA Modulus.
In Chi-Sung Laih, editor, Advances in Cryptology — ASIACRYPT 2003, volume
2894 of Lecture Notes in Computer Science, pages 55–74. Springer, 2003.

15. Adi Shamir. Factoring Large Numbers with the TWINKLE Device. In Çetin K.
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems.
First International Workshop, CHES’99, volume 1717 of Lecture Notes in Com-
puter Science, pages 2–12. Springer, 1999.

16. Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device.
In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 1–26. Springer, 2003.



Divisible E-Cash Systems Can Be Truly
Anonymous�

Sébastien Canard1 and Aline Gouget2

1 France Télécom R&D, 42 rue des Coutures, F-14066 Caen, France
2 Gemalto, 6, rue de la Verrerie, F-92190 Meudon, France

Abstract. This paper presents an off-line divisible e-cash scheme where
a user can withdraw a divisible coin of monetary value 2L that he can
parceled and spend anonymously and unlinkably. We present the con-
struction of a security tag that allows to protect the anonymity of honest
users and to revoke anonymity only in case of cheat for protocols based
on a binary tree structure without using a trusted third party. This is
the first divisible e-cash scheme that provides both full unlinkability and
anonymity without requiring a trusted third party.

1 Introduction

Electronic cash systems allow users to withdraw electronic coins from a bank, and
then to pay a merchant using electronic coins preferably without communicating
with the bank or a trusted party during the payment. Finally, the merchant
deposits the spent coins to the bank.

Electronic cash provides user anonymity against both the bank and the mer-
chant during a purchase in order to emulate the perceived anonymity of regular
cash transaction. It must be impossible to link two spending protocols and a
spending protocol to a withdrawal protocol.

As it is easy to duplicate electronic data, an e-cash system must prevent
a user from double-spending. Ideally, the anonymity of honest users must be
protected and the identity of cheaters must be recovered without using a trusted
third party. An electronic payment system must also prevent a merchant from
depositing the same coin twice.

To be practical, an e-cash system must be based on efficient protocols. The
most critical protocol is the spending phase between the user and the merchant
that must be reasonably efficient. It should also be possible to withdraw or spend
several coins more efficiently than repeating several times a single withdrawal or
spending protocol.

1.1 Related Works

The compact E-cash scheme [4] allows to withdraw efficiently a wallet containing
2L coins and provides all the security properties mentioned above. One solution
� This work has been partially financially supported by the European Commission

through the IST Program under Contract IST-2002-507932 ECRYPT and by the
French Ministry of Research RNRT Project “CRYPTO++” .

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 482–497, 2007.
c© International Association for Cryptology Research 2007



Divisible E-Cash Systems Can Be Truly Anonymous 483

to improve the efficiency of the spending phase is to manage a wallet that con-
tains coins with several monetary values as it was done in [8]; the main drawback
is that the user must choose during the withdrawal protocol how many coins he
wants for each monetary value.

Divisible e-cash schemes allow a user to withdraw a coin of monetary value
2L and then to spend this coin in several times by dividing the value of the
coin. The aim is to allow a user to efficiently spend a coin of monetary value
2�, 0 ≤ � ≤ L, (i.e. more efficiently than repeating 2� times a spending pro-
tocol). Many off-line divisible e-cash systems have been proposed in the litera-
ture [22,23,13,14,21,9,20,19] providing part of the security properties mentioned
above. The first practical divisible e-cash system was proposed by Okamoto [21]
and improved by Chan et al. in [9]. Both schemes provide anonymity of users
but not unlinkability since it is still possible to link several spends from a single
divisible coin.

The first unlinkable divisible e-cash system that fulfills the usual properties of
anonymity and unlinkability was proposed in [20] and improved in [19]. The main
drawback of these two systems is that they require a trusted third party to get the
identity of the user in case of double-spend detection: this is consequently what
we can call a fair divisible e-cash system. Moreover, the unlinkability provided
by [20,19] is not strong since the merchant and the bank know which part of the
withdrawn divisible coin the user is spending which is an information leak on
the user.

None of the divisible e-cash schemes of the state of the art provides simulta-
neously strong unlinkability and truly anonymity of users.

1.2 Our Contribution

We present a strong unlinkable and anonymous divisible off-line e-cash system
without trusted third party. We first provide a generic construction and next
apply it to the construction of Nakanishi and Sugiyama [20]. Our system is the
first that provides the user anonymity such that it is impossible for anybody
to make any link between spends and withdraws. Furthermore, our construction
does not require a trusted third party to revoke the anonymity of a user that has
spent twice the same coin. From a theoretical point of view, the identity of the
user can only be revealed when such a case happens. This is the first divisible
e-cash system providing this security property.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 describes the security model and
requirements for a divisible e-cash system. In Section 3, we present the general
principle of the construction. Section 4 is the main one: it contains the new
divisible e-cash called DCS. Finally, in Section 5, we give the security proofs of
our construction.



484 S. Canard and A. Gouget

2 Security Model

We adopt the model of divisible e-cash system without trusted third party. The
three usual players are the user U , the bank B and the merchant M. The security
parameter is denoted by k.

2.1 Algorithms

– ParamKeyGen(k): a probabilistic algorithm outputting the parameters of the
system Params (Params contains the parameter k).

– BKeyGen(Params): a probabilistic algorithm executed by B outputting the
key pair (skB, pkB).

– KeyGen(Params): a probabilistic algorithm executed by U (resp. M) out-
putting (skU , pkU ) (resp. (skM, pkM)).

– Withdraw(B(skB, pkB, pkU , Params), U(skU , pkU , pkB, Params)): an inter-
active protocol between B and U . At the end, either U gets a divisible coin
C of monetary value 2L (L belongs to Params) and outputs OK, or U out-
puts ⊥. The output of B is either its view VWithdraw

B of the protocol (including
pkU ), or ⊥.

– Spend(U(2�, pkM, C, Params), M(skM, pkB, Params)): an interactive pro-
tocol between U and M. At the end, either M obtains a master serial num-
ber S and a proof of validity Π and outputs (S, Π) or M outputs ⊥. Either
U updates C by saving the part of the divisible coin he spent (i.e. the value
S) and outputs OK, or U outputs ⊥.

– Deposit (M((S, Π), skM, pkM, pkB, Params), B(pkM, Params)): an inter-
active protocol between M and B. During the deposit, B receives (S, Π)
from M, checks that it is fresh and that Π is correct. If not, B outputs ⊥1.
Else B computes 2� serial numbers S̃1, . . . , S̃2� from (S, Π) and Params. If
one of the serial number (S̃i, S

′, Π ′) already belongs to L, then the bank
outputs (⊥2, S, Π, S′, Π ′). Otherwise, B adds (S̃i, S, Π), 1 ≤ i ≤ 2�, to its
list L of spent coins, credits M’s account, and returns L. M’s output is OK
or ⊥.

– Identify((S1, Π1), (S2, Π2), Params): a deterministic algorithm executed
by B that outputs a public key pkU and a proof ΠG. If Ms who had submitted
Π1 and Π2 are not malicious, then ΠG is evidence that pkU is the registered
public key of a user that double-spent a coin.

– VerifyGuilt(pkU, ΠG, Params): a deterministic algorithm executed by any
actor that outputs 1 if the proof is correct and 0 otherwise. This verification
permits anyone to be sure that the user with public key pkU is guilty of
double-spending a coin.

2.2 Notions of Security

In the following, it is assumed that the overlying experiment has run the algo-
rithm ParamKeyGen on input k to obtain the parameters Params.



Divisible E-Cash Systems Can Be Truly Anonymous 485

– Unforgeability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the public key pkB and Params. Suppose that A interacts K times
with an honest bank during withdrawal protocols, then the probability that
the number of valid coins that has been spent is at least 2LK+1 is negligible.

– Unlinkability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the key pair (pkB, skB) and Params. At the end, A chooses two
honest users 0 and 1. A bit b is secretly and randomly chosen. Then, a
spending protocol is played by A with user b (it is assumed that both honest
users still have unspent coins). Finally, A outputs a bit b′. We require that
for every A playing this game, the probability that b = b′ differs from 1/2
by a fraction that is at most negligible.

– Identification of double-spenders. Let A be a p.p.t. Turing Machine.
At the start of the game, A is given the public key pkB and Params. The
probability that a Deposit protocol between an honest merchant and an
honest bank outputs (⊥2, S, Π, S′, Π ′) such that the output of Identify
algorithm on inputs (S, Π, S′, Π ′) is not the public key pkU of a corrupted
user is negligible.

– Exculpability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the key pair (pkB, skB) and Params. During the game, A inter-
acts with honest users to supply them coins. At the end, A constructs two
spent coins (S1, Π1) and (S2, Π2). The probability that the outputs of the
Identify algorithm on inputs (S1, Π1) and (S2, Π2) is the public key pkU
of an honest user together with a valid proof ΠG is negligible.

Remark 1. Notice that the exculpability property implies that the bank cannot
create withdrawals for which the user has not participated. We don’t need any
extra security property, such as the proposal in [28].

3 General Description

In an anonymous e-cash system without a trusted third party, spending a sin-
gle coin consists in generating a valid serial number S to allow double-spending
detection and a valid security tag T masking the identity of the spender. The
spender has to prove that S and T are well-formed without giving any infor-
mation about his identity. In particular, the identity of the spender must be
recovered only in case of double-spending by using the security tag T .

The main motivation of divisible e-cash is to provide a method to withdraw
or spend several coins more efficiently than repeating several times a single
withdrawal or spending protocol. We provide a general approach to construct
divisible e-cash systems strongly unlinkable and truly anonymous (the user iden-
tity can be recovered only in case of fraud). This construction can be applied
using several basic cryptographic tools.

3.1 Truly Anonymous E-Cash Scheme Based on Binary Trees

The general principle of our construction is derived from the classical binary tree
approach [21,9,20] with slight modifications. Each divisible coin of monetary



486 S. Canard and A. Gouget

value 2L is assigned to a binary tree of L + 2 levels. The tree root (level 0) with
monetary value 2L is assigned to a serial number denoted by N0,0. Any other
node has a monetary value corresponding to half of the amount of its parent
node, except for the leaves that have no monetary value: they are “dead” leaves.
For every level i, 0 ≤ i ≤ L, the 2i nodes are assigned serial numbers denoted
by Ni,j with 1 ≤ j ≤ 2i, except for the “dead” leaves that are not related to any
serial number. Any divisible e-cash system should verify the divisibility rule.

Definition 1. When a node N is used, none of descendant and ancestor nodes
of N can be used, and no node can be used more than once.

This rule is satisfied if, and only if, over-spending is protected. The general
principle of our proposal consists in using a single master serial number from
which several serial numbers can be derived. Thus, each node of the tree, which
includes the leaves, is also related to a particular value called a tag key. During
the spending protocol, the identity of the spender is encrypted with a tag key
in such a way that the decryption key can be derived only in case of a double-
spending. Using the binary tree approach, each node of the tree is related to a
tag key with the following properties.

– The root tag key and the identity of the user are signed (in a blind manner)
by the bank during the withdrawal protocol.

– From the tag key of a node N , it is possible for everyone to compute the tag
keys related to the descendant nodes of N . It consequently exists a public
deterministic function F that takes as input a tag key Ki,b0 (where i is the
level of the targeted node in the tree and b0 ∈ {0, 1} depends on the position
of K in the tree1), a bit b (0 for left and 1 for right) and possibly some public
parameters Params and that outputs a new tag key Ki+1,b.

F : (Ki,b0 , b, Params) −→ Ki+1,b = F(Ki,b0 , b, Params).

– From the tag key of a node, it is impossible (without the knowledge of the
root tag key) to compute a tag key which is not related to a descendant of
the targeted node.

– The serial number of a particular node is the concatenation of the two chil-
dren tag keys. Notation is given in Figure 1.

During the spending protocol, the user computes the tag key of the node he wants
to spend. This tag key is used to compute the security tag, i.e. the encryption
of the spender identity. This encryption should be verifiable and should include
randomness. This randomness should be provided by the merchant to ensure
the freshness of the spending, i.e., to prevent merchant from sending twice the
same coin to the bank. The user also computes the tag keys related to the two
direct descendants of the spent node. The concatenation of these two keys is the
serial number of the spent coin. This serial number is transmitted during the
spend protocol. Later, the bank will compute all the serial numbers of the leaves

1 b0 = 0 if and only if the targeted node belongs to the left subtree of its ancestor.



Divisible E-Cash Systems Can Be Truly Anonymous 487

K2,0

K4,8 K4,9K4,10 K4,11 K4,15K4,0 K4,1K4,2 K4,3 K4,4 K4,5 K4,7

K0,0

K4,6 K4,13K4,14K4,12

K1,1

K2,1 K2,2 K2,3

K3,7K3,6K3,5K3,4K3,3K3,2K3,1K3,0

K1,0

Fig. 1. General principle - Tree of keys

of the tree in order to detect a possible double-spending. If a double-spending
is detected, then the bank has access to the encryption of the identity (from
one spending) and the corresponding decryption key (from the other spending).
Then, the bank can easily find the identity of the cheater.

Example 1. Assume U wants to spend four coins. Then, U selects four unitary
coins, e.g. those associated to the node K1,0. The user U sends to M the values
T = EK1,0(Id, R), LK = K2,0, RK = K2,1, and S = LK‖RK. The random
value R used in the encryption scheme is computed using values sent by the
merchant. The user must also prove that the coins are signed by the bank and
that it will be possible to identify a double-spender. Consequently, the spending
protocol consists also in computing a zero-knowledge proof of knowledge Φ that
corresponds to the predicates:

– T is well-formed, i.e. EK1,0(Id, R) has been computed using:
• the tag key K1,0 derived using F on inputs the root tag key K0,0 signed

by the bank,
• the random R that has been chosen by the merchant,
• the identity Id signed by the bank.

– LK and RK are well-formed, i.e., K2,0 and K2,1 are both derived from K1,0
using F .

– If LK and RK are well-formed, this implies that the serial number S is also
well-formed.

To construct a truly anonymous divisible e-cash system, it is then necessary to
provide a function F , a verifiable encryption scheme E and a proof Φ. We give
an example in Section 4.

3.2 Useful Tools

Proofs of Knowledge. We use zero-knowledge proofs of knowledge constructed
over a cyclic group G either of prime order q or of unknown order: proof of



488 S. Canard and A. Gouget

equality of two known representations [10,6], proofs of knowledge of a discrete
logarithm [26,17], of a representation, of a double discrete logarithm PK(α/z =
gα ∧ y = g

gα
2

1 ) [27,20], proof of the “or” statement PK(α/T1 = hα
1 ∨ T2 =

hα
2 ) [11,25]. We also need a proof of knowledge of one out of two double discrete

logarithm PK(α/T1 = ghα
1 ∨ y = ghα

2 ) which is a combination of the two above
proofs. These proofs can also be used non interactively by using the Fiat-Shamir
heuristic [16].

Camenisch-Lysyanskaya Signature Schemes. These signature schemes are
proposed in [5] with in addition some specific protocols:

– an efficient protocol between a user U and a signer S that permits U to
obtain from S a signature σ of some commitment C on values (x1, . . . , xl)
unknown from S. S computes CLSign(C) and U gets σ = Sign(x1, . . . , xl)
that can be verified by Verif(σ, (x1, . . . , xl)) = 1.

– an efficient proof of knowledge of a signature on committed values, denoted
by PK(α1, . . . , αl, β/β = Sign(α1, . . . , αl)).

These constructions are quite close to group signature schemes. This is the case
of the two following examples, one based on the ACJT signature scheme [1],
secure under the Flexible RSA assumption [15], and the other based on the BBS
one [2], secure under the q-SDH assumption [2].

4 Divisible E-Cash System DCS

We apply the general construction presented in Section 3.1 to the binary tree
used in the system described in [20]. The function F is chosen to be the mod-
ular exponentiation. For each level i, there are three linked generators gi,0 for
“left”, gi,1 for “right” and gi,2 to compute the security tag. For a node at level
i − 1 represented by the tag key denoted by Ki−1,b0 , the tag key of, e.g. the left
children, is Ki,0 = g

Ki−1,b0
i,0 . For the tag key Ki,b and a random value R comput-

ing using merchant data, the encryption of the user identity pkU is defined to
be pkUg

Ki,b·R
i+1,2 . In the following, we assume that H is a collision-resistant hash

function.

4.1 Setup

We consider a group G of order oG . The elements h0,h1, h2 are random generators
of G. G1 = 〈g1〉 is a subgroup of Z

∗
oG and each group Gi = 〈gi〉 must be a subgroup

of Z
∗
oi+1

where oi+1 is the order of Gi+1. For example [20], it is possible to take Gi

as a subgroup of Z
∗
oi+1 for the prime oi+1 = 2oi +1 with all i. As a consequence,

the group Gi is related to the level i of the tree. The following generators are
randomly chosen: g in G, g1,0, g1,1, g1,2 in G1, g2,0, g2,1, g2,2 in G2, . . . , gL+1,0,
gL+1,1, gL+1,2 in GL+1 whose discrete logarithms to the base g1, g2, . . . , gL+1 are
unknown, respectively. All these data compose the public parameters Params



Divisible E-Cash Systems Can Be Truly Anonymous 489

of the system and can be computed by the bank. The bank B computes the key
pair (skB, pkB) of a Camenisch-Lysyanskaya signature scheme that will permit
it to sign a divisible coin, using the CLSign algorithm.

A user U (resp. a merchant M) can compute its key pair (skU , pkU ) (resp.
(skM, pkM)) by choosing randomly u ∈ [0, oG [ (resp. m ∈ [0, oG [) and computing
gu (resp. gm). The value u (resp m) is the private key skU (resp. skM) and gu

(resp. gm) is equal to the public key pkU (resp. pkM).

4.2 Withdrawal Protocol

During a withdrawal protocol, U interacts with B. U ’s inputs are pkB, skU , pkU
and Params, and B’s inputs are pkU , skB, pkB and Params.

s = s′ + r′ (mod p)

U = PK(α, β, γ/pkU = gα ∧ C′ = hβ
0 hα

1 hγ
2 )

Verif(σ, (s, u, r)) ?= 1
C = (s, u, r, σ)

VWithdraw
B = (C, pkU , U, r′, σ)

r′, σ

C′, U, pkU

Verify U
r′ ∈ Z

∗
oG

U B

C′ = hs′
0 hu

1 hr
2

s′, r ∈ Z
∗
oG

C = C′hr′
0

σ = CLSign(C)

Fig. 2. Withdrawal protocol

The withdrawal protocol permits U to obtain a new divisible coin by inter-
acting with B as described in Figure 2. A divisible coin corresponds to a (blind)
CL signature done by B on a secret s and the secret key u of U . Both U and
B participate to the randomness of the secret s. At the end of the Withdraw
protocol, U gets a divisible coin C = (s, u, r, σ = Sign(s, u, r)).

4.3 Spending Protocol

When U wants to spend to M a sub-coin of value 2� (� = L−i) from his divisible
coin C, he chooses an unspent node of the level i, e.g. the node Ni,j . A spending
protocol of the node Ni,j consists in the following.

1. M sends to U a random value rand and U computes R = H(pkM‖rand).
2. U randomly chooses g̃, h̃ ∈ G, g̃1 ∈ G1, g̃2 ∈ G2, . . . , g̃i+1 ∈ Gi+1.
3. U executes the algorithm presented in Figure 3 (in pseudo-code) for the

node Ni,j , outputting the values2 (Ṽ0, . . . , Ṽi, V ), using the path from the

2 The values �V0, . . . , �Vi are computed to prove that the value V is well computed. See
proof Φ below and [20].



490 S. Canard and A. Gouget

Input: i, j

Output: (V0, . . . , Vi, V )
r̃ ← Rand(), V ← gs, V0 ← gsh̃r̃, CurrentNode ← root

If i = 0, then return (V0, V )
a ← 1, b ← 2i

For k = 1 to i

Vk ← gV
k

If a ≤ j ≤ a + (b − a − 1)/2, then \\ Ni,jbelongs to leftSubTree(CurrentNode)
V ← (gk,0)V , b ← a + (b − a − 1)/2 \\ CurrentNode ← leftSon(CurrentNode)

Else \\ Ni,j belongs to rightSubTree(CurrentNode)
V ← (gk,1)V , a = a + (b − a + 1)/2 \\ CurrentNode ← rightSon(CurrentNode)

return (V0, . . . , Vi, V )

Fig. 3. Spending protocol - Computation of V

root tree to the node Ni,j . Next, U computes the security tag: LK = gV
i+1,0,

RK = gV
i+1,1, T = pkUgV ·R

i+1,2 and S = LK‖RK.

Example 2. Assume U wants to spend four coins (the same as in Example 1.

The user U sends to the merchant M the values LK = g
ggs

1,0
2,0 , RK = g

ggs

1,0
2,1 ,

T = pkU(g
R·ggs

1,0
2,2 ) and S = LK‖RK since V = ggs

1,0.

4. U proves to M the validity of LK, RK, T (and thus the validity of S) using a
non-interactive zero-knowledge proof of knowledge of a signature of B on the
values (s, u, r) and that the value LK, RK, T are correctly computed. This
proof of knowledge is constructed from a zero-knowledge proof of knowledge
using the Fiat-Shamir heuristic. This proof is as follows:

Φ = PK
(
σ, s, u, r, r̃, α1, . . . , αi+1, β /

σ = Sign(s, u, r) ∧ Ṽ0 = g̃sh̃r̃ ∧ Ṽ1 = g̃gs

1 ∧ Ṽ1 = g̃α1
1 ∧

(Ṽ2 = g̃
g

α1
1,0

2 ∨ Ṽ2 = g̃
g

α1
1,1

2 ) ∧ Ṽ2 = g̃α2
2 ∧ . . . ∧

(Ṽi+1 = g̃
g

αi
i,0

i+1 ∨ Ṽi+1 = g̃
g

αi
i,1

i+1) ∧ Ṽi+1 = g̃
αi+1
i+1 ∧

LK = g
αi+1
i+1,0 ∧ RK = g

αi+1
i+1,1 ∧ T = pkUg

R·αi+1
i+1,2

)

5. U sends the spent coins (S, Π) to M, with Π = {2�, T, Φ, R, Ṽ0, . . . , Ṽi}.

4.4 Deposit Protocol

When M wants to deposit a coin (S, Π) to B, M just sends the coin (S, Π) to
B. The proof Π should include the monetary value 2� of the divisible coin, the
security tag T , the proof of knowledge Φ and the random data R provided by
the merchant. B checks the validity of Φ and the consistency with S. If (S, Π)
is not a valid coin, B rejects the deposit. Else, B computes, from S, 2� serial
numbers S̃k1 , . . . S̃k2�

corresponding to the 2�+1 dead leaves of the sub-tree. This



Divisible E-Cash Systems Can Be Truly Anonymous 491

is done by applying several modular exponentiation functions to S, using the
right generators. B has to deal with 2� unitary coins (S̃kj , S, Π), 1 ≤ j ≤ 2�.

For every unitary coin (S̃kj , S, Π), B checks if there is already an entry
(S̃kj , S

′, Π ′) in the database. If there is no entry in the database for the ser-
ial number S̃kj , then B accepts the deposit of the coin (S̃kj , S, Π), credits the
pkM’s account and add (S̃kj , S, Π) to the database of spent coins. Else, there is
an entry (S̃kj , S

′, Π ′) in the database. Then, B checks the freshness of merchant
randomness R in Π compared to Π ′. If it not fresh, M is a cheat and B refused
the deposit. If R is fresh, B accepts the deposit of the coin (S̃kj , S, Π), credits
the pkM’s account and add (S̃kj , S, Π, S′, Π ′, ) to the list of double-spenders. For
every entry of the database of double-spenders, B will executes the Identify
algorithm.

4.5 Identify

Assume that a double detection has been done. Then B knows two accepted
spending (2I1 , S1 = LK1‖RK1, T1, R1, Φ1) with I1 = L − i1 and (2I2 , S2 =
LK2‖RK2, T2, R2, Φ2) with I2 = L − i2 such that e.g. S1 is an ancestor of S2
or S1 = S2. If S1 = S2 then the bank can directly get the public key pkU by

computing
(
T R2

1 /T R1
2

)1/(R2−R1)
= pkU . If S1 is an ancestor of S2, then the bank

computes the masking value gV2
I2+1,2 (s.t. T2 = pkUgR2·V2

I2+1,2) from the knowledge
of LK1 and RK1 and the path3 from N j1

i1
up to N j2

i2
as described in Figure 4.

Then, B computes the public key pkU as follows: (T2)
1

R2 /gV2
I2+1,2 = pkU .

Input: i1, j1, i2, j2
Output: V2

CurrentNode ← Nj1
i1

If Nj2
i2

belongs to leftSubTree(CurrentNode), then
V2 ← LK1; CurrentNode ← leftSon(CurrentNode);

Else
V2 ← RK1; CurrentNode ← rightSon(CurrentNode);

For k = i1 + 2 to i2 do
If Nj2

i2
belongs to leftSubTree(CurrentNode) , then

V2 ← (gk,0)V2 ; CurrentNode ← leftSon(CurrentNode)
Else

V2 ← (gk,1)V2 ; CurrentNode ← rightSon(CurrentNode)
k = k + 1

return V2

Fig. 4. Identify protocol - Computation of V2

3 The values Nj1
i1

and Nj2
i2

are not know by B but B knows the path from Nj1
i1

up to
Nj2

i2
since it knows the path used to compute the colliding serial numbers.



492 S. Canard and A. Gouget

4.6 Verify Guilt

The algorithm VerifyGuilt can be executed by any actor from the parame-
ters of the system Params and a proof ΠG. One can parse the proof ΠG as(
(2�1 , S1, R1, T1, Π1), (2�2 , S2, R2, T2, Π2)

)
and next run Identify on these val-

ues. If the algorithm Identify returns a public key pkU , then one can check if Π1
is consistent with (2�1 , S1, R1, T1) and if Π2 is consistent with (2�2 , S2, R2, T2).
If both are consistent then accept, else reject.

5 Security Arguments

In this section, we provide the Theorem that stipulates that the DCS scheme is
a secure divisible e-cash system.

Theorem 1. In the random oracle model, the DCS scheme is secure:

– If the CL signature scheme is unforgeable, then DCS is unforgeable.
– Under the DDH assumption, DCS is unlinkable.
– If the CL signature scheme is unforgeable, then DCS permits the identifica-

tion of double-spenders.
– Under the DL assumption (and the Flexible RSA assumption if DCS relies

on the ACJT scheme), DCS has the exculpability property.

Proof. We have to show that DCS verifies all security properties.

Unforgeability. We want to show that if an adversary A is able to break the
unforgeability of our construction, then it is possible to break the unforgeability
of the CL signature scheme under adaptive chosen message attack.

We can interact with A during the withdrawal protocol by playing the role of
an honest bank with access to the signature oracle. After each successful spend-
ing executed by A, we extract, using standard technique, the values (u, s, r, σ)
satisfying the relation embedded into the valid proof of knowledge Π . Since there
are more spent coins than A can legitimely own, and since there is no detection of
double-spending (by assumption), then it is necessary that, among all extracted
values (uj , sj, rj , σj), one signature σ on a message m = (s, u, r) is unknown
and does not come from the signature oracle. Thus, this one more signature is a
signature (forgery) in the CL’s scheme on the message m = (u, s, r).

As the CL signature scheme is proven secure against adaptive chosen message
attacks under the Flexible RSA assumption (if the scheme relies on the ACJT
scheme) or the q-SDH (if the scheme relies on the BBS scheme), it follows that
A cannot succeed with non negligible probability.
Because our proof requires rewinding to extract s′ and r from an adversary A,
our proof is valid only against sequential attacks. Indeed, in a concurrent setting
where the attacker is allowed to interact with the bank in an arbitrarily inter-
leaving manner, our machine may be forced to rewind an exponential number
of times. This drawback can be overcome by using for instance well-know tech-
niques [12] which would require from the user to encrypt s′ and r in a verifiable
manner [7].



Divisible E-Cash Systems Can Be Truly Anonymous 493

Unlinkability. We want to show that if an adversary A is able to break the
unlinkability of our construction, then it is possible to break an instance of the
Diffie-Hellman problem. In fact, we use a variant of the Diffie-Hellman problem,
called Matching Multi Diffie-Hellman (MMDH) problem, and we prove in Ap-
pendix A that if someone is able to solve the MMDH problem, then it is possible
to solve a given instance of the DDH problem.

We can interact with A during the withdraw protocol by playing the role of
an honest user except for the two first interactions where we use the MMDH
instance. During spending protocols, we can interact with A by playing the role
on an honest user, except when the divisible coin corresponds to one of the two
divisible coins associated with the MMDH instance to be solved.

We can win the game when A chooses the two first users (corresponding to
the MMDH instance) and thus use the MMDH instance during the execution of
the final spend. If A does not choose users i0 and i1 for the challenge we need
to play again the game.

We denote by qU the average number of users created by A. Our success
probability is ε′ = 1 − (1 − (1/2 + ε/2))qU ≡ 1/2 + qUε/2 within polynomial
T ′ = qUT + τ , where τ is polynomial.

Remark 2. In the simulation, we use the instance of the MMDH problem to
interact with A. We also need to choose a value for the bit b. If our choice of
b is correct, then there is no problem and we will be able to conclude with the
advantage ε of A. If this choice is uncorrect, A has a probability exactly equal to
1/2 as ours. Repeating the game many times, our success probability of solving
the MMDH instance is greater than 1/2.

Identification of Double-spenders. We want to show that if an adversary A
is able to break the identification of double-spenders property, then it is possible
to break the unforgeability of the CL signature scheme.

We have access to a signature oracle taking as input a commitment and out-
putting a signature on committed values. We interact with A during withdrawal
protocols by playing the role of an honest bank. We also interact with A during
spending protocols playing the role of the merchant. Note that there is no honest
users in the game. After each successful spending executed by A, we extract the
values (u, s, r, σ) satisfying the relation embedded into the valid proof of knowl-
edge Π . When there is a double-spending, i.e. (⊥1, S1, Π1), (S2, Π2), that means
that there exist a valid serial number S̃ which can be computed from both S1
and S2. Furthermore, the proof Π1 is consistent with S1 and the proof Π2 is
consistent with S2 and R1 �= R2 where R1 is the random chosen by the mer-
chant in Π1 and R2 is the random chosen by the merchant in Π2. Both Π1 and
Π2 contains a proof of knowledge of a signature of the bank on the master serial
number seed s used to generate S1, S2 and S̃. Thus, these two signatures σ1 and
σ2 are such that at least one of the two is different from the signatures obtained
during the execution of the Withdrawal protocols submitted to the signature



494 S. Canard and A. Gouget

oracle. This signature (σ1 or σ2) is thus a forgery on CL signature scheme. As the
CL signature scheme is proven secure against adaptive chosen message attacks,
it follows that A cannot succeed with non-negligible probability.

Exculpability. The adversary A wins the game if he can falsely accuse an
honest user of a double-spending. This means that the adversary can interact
with honest users to obtain spending from them and he wins if he can produce
one spend (S′, T ′, Π ′) related to a valid one (S′, T ′, Π ′) and such that the output
of Identify((S, T, Π), (S′, T ′, Π ′)) is a public key pkU of a honest user (with
non negligible probability).

The security proof of the exculpability involves forking lemma-like technique
for an attacker that exploits both valid spending played by honest users and
valid withdrawals played by honest users when the extractability of the RO
proofs-of-knowledge relies on the DL assumption in order to falsely accuse an
honest user. If the Camenisch-Lysysanskaya scheme of the withdrawal protocol
uses a group of unknown order, then the exculpability relies on both the DL
assumption for an attacker that exploits valid spendings played by honest users
in order to falsely accuse an honest user, and on the factorization assumption
to ensure the non-malleability and the soundness of the proof of knowledge Φ
(see [3]).

6 Conclusion

In this paper, we present the first off-line divisible e-cash scheme that provides
strong unlinkability and truly anonymity. We introduced the idea of using a
security tag in a divisible e-cash scheme. The anonymity of users is achieved
without impacting the performance of the spending protocol and without using
a trusted third party. The spending protocol exploits the binary structure under-
lying the divisible coin in order to get an efficient spending protocol. However,
even if the new scheme permits the spending of multiple coins at a time, it uses
double-exponentiation proofs for the spending phase which is still a little expen-
sive. Thus, for a small number of coins at a time, the spending is still expensive.
Another possible improvement for the scheme could be to find a method to de-
tect double spending without computing 2L serial numbers for a divisible coin
of monetary value 2L.

Acknowledgements

We are grateful to Pascal Paillier and Jacques Traoré for their suggestions of
improvement, and to Serge Fehr and anonymous referees for their valuable
comments. We also wish to mention that a similar work has been indepen-
dently done by Jan Camenisch, Markulf Kohlweiss, Anna Lysyanskaya and Maria
Meyerovich.



Divisible E-Cash Systems Can Be Truly Anonymous 495

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably
Secure Coalition-resistant Group Signature Scheme. Advances in Cryptology -
Crypto’00, volume 1880 of LNCS, pages 255-270, 2000.

2. D. Boneh, X. Boyen and H. Shacham. Short Group Signatures using Strong Diffie
Hellman. Advances in Cryptology - Crypto’04, volume 3152 of LNCS, pages 41-55,
2004.

3. F. Boudot and J. Traoré. Efficient Publicly Verifiable Secret Sharing Schemes with
Fast or Delayed Recovery. ICISC’99, volume 1726 of LNCS, pages 87-102, 1999.

4. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-cash. Advances in
Cryptology - Eurocrypt’05, volume 3494 of LNCS, pages 302-321, 2005.

5. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. Advances in Cryptology - Crypto’04, volume 3152 of LNCS,
pages 56-72, 2004.

6. J. Camenisch and M. Michels. Proving in Zero-knowledge that a Number is the
Product of Two Safe Primes. Advances in Cryptology - Eurocrypt’99, volume 1592
of LNCS, pages 107-122, 1999.

7. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In D. Boneh, editor, Advances in Cryptology - Crypto ’03,
volume 2729 of LNCS, pages 126-144. Springer, 2003.

8. S. Canard, A. Gouget, and E. Hufschmitt. A Handy Multi-coupon System. Applied
Cryptography and Network Security - ACNS 2006, volume 3989 of LNCS, pages
66-81, 2006.

9. A.H. Chan, Y. Frankel, and Y. Tsiounis. Easy Come - Easy Go Divisible Cash.
Advances in Cryptology - Eurocrypt’98, volume 1403 of LNCS, pages 561-575,
1998.

10. D. Chaum and T. Pedersen. Transferred Cash Grows in Size. Advances in Cryp-
tology - Eurocrypt’92, volume 658 of LNCS, pages 390-407, 1993.

11. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. Advances in Cryptology -
Crypto’94, volume 839 of LNCS, pages 174-187, 1994.

12. I. Damgard. Efficient Concurrent Zero-knowledge in the Auxiliary String Model.
Advances in Cryptology - Eurocrypt ’00, volume 1807 of LNCS, pages 418-430,
2000.

13. S. D’Amingo, and G. Di Crescenzo. Methodology for Digital Money based on Gen-
eral Cryptographic Tools. Advances in Cryptology - Eurocrypt’94, volume 950 of
LNCS, pages 156-170, 1994.

14. T. Eng, and T. Okamoto. Single-term Divisible Coins. Advances in Cryptology -
Eurocrypt’94, volume 950 of LNCS, pages 306-319, 1994.

15. E. Fujisaki and T. Okamoto. Statistical Zero-knowledge Protocols to Prove Mod-
ular Polynomial Relations. Advances in Cryptology - Crypto’97, volume 1294 of
LNCS, pages 16-30, 1997.

16. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. Advances in Cryptology - Crypto’86, volume 263 of LNCS,
pages 186-194, 1986.

17. M. Girault, G. Poupard and J. Stern. On the Fly Authentication and Signature
Schemes Based on Groups of Unknown Order. Advances in Cryptology - Journal
of Cryptology, Volume 19, Number 4. Pages 463-487, Springer-Verlag, 2006.



496 S. Canard and A. Gouget

18. H. Handschuh, Y. Tsiounis, and M. Yung. Decision Oracles are Equivalent to
Matching Oracles. Public Key Cryptography PKC ’99, volume 1560 of LNCS,
pages 276-289. Springer, 1999.

19. T. Nakanishi, M. Shiota, and Y. Sugiyama. An Unlinkable Divisible Electronic
Cash with User’s Less Computations using Active Trustees. ISITA 2002, 2002.

20. T. Nakanishi and Y. Sugiyama. Unlinkable Divisible Electronic Cash. ISW’00,
pages 121-134, 2000.

21. T. Okamoto. An Efficient Divisible Electronic Cash Scheme. Advances in Cryptol-
ogy - Crypto’95, volume 963 of LNCS, pages 438-451, 1995.

22. T. Okamoto, K. Ohta. Universal Electronic Cash. Advances in Cryptology -
Crypto’91, volume 576 of LNCS, pages 324-337, 1992.

23. J.C. Pailles. New Protocols for Electronic Money. Advances in Cryptology - Asi-
acrypt’92, volume 718 of LNCS, pages 263-274, 1993.

24. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, Volume 13 - Number 3. Pages 361-396, Springer-
Verlag, 2000.

25. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On Monotone Formula
Closure of SZK. FOCS 1994, pages 454-465, 1994.

26. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. Advances
in Cryptology - Crypto’89, volume 435 of LNCS, pages 239-252, 1990.

27. M. Stadler. Publicly Verifiable Secret Sharing. Advances in Cryptology - Crypto’96,
volume 1070 of LNCS, pages 190-199, 1996.

28. M. Trolin. A stronger definition for anonymous electronic cash. Cryptology ePrint
Archive: Report 2006/241. 2006.

A Matching Multi Diffie-Hellman problem

The problem underlying the property of unlinkability for DCS is the Matching
Multi Diffie-Hellman problem (MMDH). We show that MMDH can be used to
solve the Decisional Diffie-Hellman problem (DDH).

Decisional Diffie-Hellman (DDH) problem: given a random generator g ∈
G where G has prime order and the values hx, hy, hz, the problem consists in
deciding if xy = z or not.

Matching Multi Diffie-Hellman (MMDH) problem: let H, H1 and H2 be
groups of prime order such that H1 is a subgroup of Z

∗
o where o is the order

of H2. Given three random generators h ∈ H, h1 ∈ H1 and h2 ∈ H2 and the

values hα0 , hα1 , h
h

αb
1

2 and h
h

α
b̄

1
2 where b ∈ {0, 1}, the problem consists in deciding

if b = 0 or 1.

Decisional Multi Diffie-Hellman (DMDH) problem: let H, H1 and H2
be groups of prime order such that H1 is a subgroup of Z

∗
o where o is the order

of H2. Given three random generators h ∈ H, h1 ∈ H1 and h2 ∈ H2 and the

values hα, h
hβ
1

2 , the problem consists in deciding if α = β or not.



Divisible E-Cash Systems Can Be Truly Anonymous 497

Derived Decisional Diffie-Hellman (DDDH) problem: given random gen-
erators g1, g2 ∈ G where G has prime order and the values ga

1 , gb
2, the problem

consists in deciding if a = b or not.

The problem MMDH is at least as difficult as DMDH. In fact, the MMDH
is the matching problem related to the decisional one DMDH. Therefore, Hand-
schuh, Tsiounis and Yung show [18] that decision oracles are equivalent to match-
ing oracles, which can be applied to our context.

The problem DMDH is at least as difficult as DDDH. Indeed, given an instance
(g1, g2, g

a
1 , gb

2) of the DDDH problem, we can transform it into an instance (h =

g1, h1, h2 = g2, h
α = ga

1 , h
hβ
2

1 = h
gb
2

1 ) where h1 is taken at random, of the DMDH
problem. Thus, a = b if and only if α = β.

The problem DDDH is at least as difficult as DDH. Indeed, given an instance
(g, gx, gy, gz) of the DDH problem, we can transform is into an instance (g1 =
g, g2 = gx, g1 = gx, g2 = gz) of the DDDH problem. Thus, we have z = xy if and
only if a = b.

We deduce that MMDH is at least as difficult as DDH.



A Fast and Key-Efficient Reduction of
Chosen-Ciphertext to Known-Plaintext

Security�

Ueli Maurer and Johan Sjödin

Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
{maurer,sjoedin}@inf.ethz.ch

Abstract. Motivated by the quest for reducing assumptions in security
proofs in cryptography, this paper is concerned with designing efficient
symmetric encryption and authentication schemes based on any weak
pseudorandom function (PRF) which can be much more efficiently im-
plemented than PRFs. Damg̊ard and Nielsen (CRYPTO ’02) have shown
how to construct an efficient symmetric encryption scheme based on any
weak PRF that is provably secure against chosen-plaintext attacks. The
main ingredient is a range-extension construction for weak PRFs. By
using well-known techniques, they also showed how their scheme can be
made secure against the stronger chosen-ciphertext attacks.

The results of our paper are three-fold. First, we give a range-extension
construction for weak PRFs that is optimal within a large and nat-
ural class of reductions (especially all known today). Second, we pro-
pose a construction of a regular PRF from any weak PRF. Third, these
two results imply a (for long messages) much more efficient chosen-
ciphertext secure encryption scheme than the one proposed by Damg̊ard
and Nielsen. The results also give answers to open questions posed by
Naor and Reingold (CRYPTO ’98) and by Damg̊ard and Nielsen.

1 Introduction

1.1 Weakening of Cryptographic Assumptions

A general goal in cryptography is to prove the security of cryptographic systems
under assumptions that are as weak as possible. Provably secure encryption and
authentication schemes based on a pseudorandom function (PRF) [11] have been
studied extensively [10]. Informally, a PRF is an efficient function with a secret
key that cannot be efficiently distinguished from a uniform random function even
when it can be queried adaptively (i.e., under a chosen-plaintext attack (CPA)).

The notion of a PRF is very strong and, indeed, it is unclear whether functions
such as block ciphers proposed in the literature have this very strong security

� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 498–516, 2007.
c© International Association for Cryptology Research 2007



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 499

property.1 When designing cryptographic schemes, it is prudent to postulate
weaker properties as this makes it more likely that a certain function has such
properties or, equivalently, there are potentially more efficient implementations
for the weaker requirement compared to the stronger.

A very promising weaker notion of pseudorandomness, proposed by Naor and
Reingold [18] (see also [19,1,8,20,22]), is the weak PRF (WPRF). Informally, a
WPRF is a function with a secret key that cannot be efficiently distinguished
from a uniform random function when given a sequence of random inputs and
the corresponding outputs (i.e., under a known-plaintext attack (KPA)). Highly
efficient candidates for WPRFs are described in [7] (cf. [19]), although these are
not targeted at this particular security notion explicitly. It is an interesting open
problem for further research how much block-cipher design can benefit from this
weakening of the desired security goal.

While the design of WPRFs has not been studied as extensively as for PRFs,
a concrete argument showing that WPRFs are substantially weaker than PRFs
is that WPRFs can have rather strong structural properties which are known to
be devastating for PRFs. For instance, if G is a group of prime order p in which
the Decisional Diffie-Hellman (DDH) [9] assumption holds, then

F : Zp × G → G defined by Fk(x) def= F (k, x) = xk, (1)

where k denotes the secret key, is a WPRF that commutes (i.e., Fk(Fk′ (x)) =
Fk′ (Fk(x))) [17]. A WPRF can also be self inverse (i.e., Fk(Fk(x)) = x), have
a small fraction of bad points (e.g. Fk(x) = x or Fk(x) = k), and have related
outputs (e.g. Fk(x‖1) = Fk(x‖0) for all x). Due to such structural flaws, most
encryption and authentication schemes based on a PRF become insecure if the
PRF is simply replaced by a WPRF (for examples see [8]).

In this paper, we propose provably secure encryption and authentication
schemes, for the strongest security notion, under the sole assumption of a WPRF.
Of course, the security could be based on even weaker assumptions like the one-
wayness of certain functions (as PRFs can be obtained from any one-way function
[12,11]), but these schemes are not of practical interest due to their inefficiency.

1.2 Contributions and Related Work

The main motivation for this paper is Damg̊ard and Nielsen’s elegant work on
WPRFs [8]. In their paper, the Pseudorandom Tree (PRT) construction was
introduced for transforming any WPRF F :{0, 1}n×{0, 1}n →{0, 1}n (where the
first argument is the key input) into a variable-output-length2 (VOL) WPRF

PRTF : {0, 1}3n × {0, 1}n × N → {0, 1}∗.
1 For example, the design criteria for AES did not include a requirement that a can-

didate proposal be a PRF, only that it be secure as a block cipher in certain modes
of operation, against certain types of attacks.

2 For a VOL function family V : K×{0, 1}n×N → {0, 1}∗, |Vk(x, l)| = l for all k, x, l.



500 U. Maurer and J. Sjödin

They also proposed an efficient CPA-secure3 symmetric encryption scheme based
on PRTF , that is defined by encrypting a message m ∈ {0, 1}∗ under a key
k ∈ {0, 1}3n and some auxiliary uniform randomness r ∈ {0, 1}n, as

(k, r, m) �→
(
r, PRTF

k (r, |m|) ⊕ m
)
. (2)

To point out the efficiency of this encryption scheme (and also as a reference for
the schemes presented in this work), let us compare it with standard modes of
operation such as CBC and CTR. Whereas CBC and CTR invoke the underlying
block cipher once per message block to encrypt/decrypt, this scheme invokes the
underlying function F once per message block to encrypt/decrypt and roughly
2 · log2(b) times (where b is the number of message blocks) for generating more
key material from the initial key (see below). The key generation can be done
offline, so that the throughput is exactly the same as for CBC and CTR. However,
whereas CBC and CTR are CPA-secure if the underlying block cipher is a PRF,
the Damg̊ard-Nielsen scheme is CPA-secure even when the underlying function is
a WPRF, and as WPRFs can be more efficiently implementable than PRFs, their
scheme can also be the overall most efficient one. Unfortunately, these modes of
operations are not secure against the stronger chosen-ciphertext attack (CCA)4.
In [18, p. 279], Naor and Reingold posed an open problem of how to construct
an efficient CCA-secure encryption scheme based on any WPRF. Damg̊ard and
Nielsen showed (using well-known techniques) how their CPA-secure scheme can
be transformed to a CCA-secure one. Their open question [8, p. 464] whether
this can be done more efficiently has been the main motivation for this work.

Before we present our results, let us briefly describe the underlying idea of
the PRT-construction (illustrated in Fig. 1(a) on page 506). In a first step, some
key material k1, . . . , kd is generated from the initial key k by invoking F in
an iterative manner, and then the output blocks are derived by applying Fki ,
for i ∈ {1, . . . , d}, iteratively to the input or a previously derived output block.
For constructions of this type it is crucial for the security and the efficiency (in
terms of the number of applications of F relative to the output length) that
this is scheduled in the right way. Recently, two more constructions of this type,
the Expanded PRT (ERT) (see Fig. 1(a)) and the Factorial Tree (FCT), were
proposed in [16]. However, as we point out in Sect. 3.2, the latter and more
efficient construction of the two turns out to be flawed. A natural problem that
arises is to find the most efficient VOL-WPRF construction (of this type).

The contributions of this paper are the following:

1. The ICT-Construction – A VOL-WPRF from any WPRF: Our
Increasing Chain Tree (ICT) construction (see Fig. 1(b)) is more efficient
than PRT and ERT (with d generated keys ICT expands the input by a factor
of 2d −1, whereas PRT and ERT expand by roughly 1.44d −1 and 1.73d −1,
respectively), and ICT also uses a shorter initial key (by a factor of 3).

3 Here, CPA formalizes an adversary’s inability, given access to an encryption oracle,
to distinguish between two plaintexts given the encryption of one of them.

4 In a CCA, the adversary has access to an encryption and decryption oracle.



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 501

Interestingly, the generated key sequence k1, . . . , kd is not pseudorandom as
opposed to the case for PRT and ERT. Indeed, we give strong arguments that
ICT is optimal within the large and natural class of constructions described
above, and hence also that it is optimal to use ICT instead of PRT in (2).

2. The IC-Construction – A PRF from any WPRF: Our Increas-
ing Chain (IC) construction is similar in nature to Goldreich, Goldwasser,
and Micali’s (GGM) [11] construction of a PRF from any PRG, but it
is more than twice as efficient than first transforming the WPRF into a
PRG and then applying the GGM-construction. It is also more efficient
than the strengthening of a WPRF to a PRF given in [19]5. This solves
their open problem [18, p. 278] whether a more efficient strengthening ex-
ists positively. Interestingly, if we instantiate the IC-construction with the
DDH-based WPRF F defined in (1), we get Naor and Reingold’s [20] highly
efficient PRF based on the DDH assumption but with a non-trivial6 reduc-
tion of the key-material by a factor of roughly the input length of the PRF.

3. CCA-Secure Encryption based on any WPRF: The above results
combined with a Wegman-Carter [25] based message authentication code
(MAC) and the well-known encrypt-then-MAC method [15,5], yield a CCA-
secure encryption scheme from any WPRF that is substantially more effi-
cient than the CCA-secure encryption scheme proposed by Damg̊ard-Nielsen
(their number of applications to the WPRF for the MACing is linear in the
message length whereas ours is constant). We observe that for our purposes
a much weaker primitive than the MAC, namely a weak MAC (WMAC)7,
is sufficient (encrypt-then-WMAC actually does the job). This raises the
question of constructing possibly efficient WMACs from any WPRF.

4. Non-adaptive
8

CCA-Secure Encryption based on any WPRF and

WMAC: Although this type of security may (like CPA-security) be unsat-
isfactory in practice, the exact requirements for achieving standard security
notions are interesting in their own right. It might also motivate further
research on basing strong primitives on weak assumptions. Non-adaptive
CCA-security has been studied under stronger assumptions in [18].

2 Preliminaries

2.1 Notation and Definitions

Let s
$← S denote that s is selected uniformly at random from the set S. If D is

a probability distributions over S then s ← D denotes the operation of select-
ing s at random according to D. If x and y are two bitstrings, x‖y denotes their
concatenation, x[i] the i-th bit of x, x[i, j] def= x[i]‖x[i + 1]‖ · · · ‖x[j] for i < j,
and x[i, i] def= x[i]. For two functions f and g, f ◦ g (x) def= f(g(x)). A function

5 In that work, the PRF is reduced – via a pseudorandom synthesizer – to a WPRF.
6 The key is not replaced by a pseudorandom sequence based on F .
7 A WMAC is unforgeable under a known-plaintext attack (see [18]).
8 Here the adversary has no oracle access after the challenge (ciphertext) is presented.



502 U. Maurer and J. Sjödin

has variable-input-length (VIL) if the domain is {0, 1}≤N def= ∪N
i=1{0, 1}i (for

some N > 1), and a function f : {0, 1}n × N → {0, 1}∗ has variable-output-
length (VOL) if for all all x and l, |f(x, l)| = l and f(x, l + 1) = f(x, l)‖b
for some bit b. Let RN,n and R≤N,n denote uniform random functions with
range {0, 1}n, and domain {0, 1}N and {0, 1}≤N , respectively. Let Rn,∗ denote
a VOL-function {0, 1}n × N → {0, 1}∗ for which Rn,∗(·, l) is a uniform random
function {0, 1}n → {0, 1}l for all l. Abusing notation, we refer to Rn,∗ as a uni-
form random VOL-function. We let Pr[Π : E ] denote the probability of event E
in random experiment Π . AO denotes an algorithm A with access to an oracle O.

2.2 Cryptographic Functions

Concrete Security. We state our results in the concrete security frame-
work, which was formalized for the following primitives by Bellare, Kilian, and
Rogaway [4]. Let Of denote the oracle which, if invoked, returns (r, f(r)) for a
uniform random input r of the function f . The w-advantage of adversary A for
F : K × {0, 1}N → {0, 1}n with w ∈ {prf ,wprf ,mac,wmac} is defined as:

Advprf
F, A

def=
∣∣∣Pr

[
k

$← K, b ← AFk : b = 1
]
−Pr

[
R ← RN,n, b ← AR : b = 1

]∣∣∣

Advwprf
F, A

def=
∣∣∣Pr

[
k

$← K, b ← AO
Fk : b = 1

]
−Pr

[
R ← RN,n, b ← AO

R
: b = 1

]∣∣∣

Advmac
F, A

def=
∣∣∣∣Pr

[
k

$← K, (m, τ) ← AFk, b =
{

1 if τ = Fk(m), m “new”
0 otherwise

: b = 1
]∣∣∣∣

Advwmac
F, A

def=
∣∣∣∣Pr

[
k

$← K, (m, τ) ← AO
Fk

, b =
{

1 if τ = Fk(m), m “new”
0 otherwise

: b = 1
]∣∣∣∣

where “m new” stands for the event that m is distinct from the inputs to Fk. The
maximal w-advantages are defined as Advw

F (t, q) def= maxA{Advw
F, A}, where the

maximum is taken over all A restricted to time-complexity9 t and q (respec-
tively q − 1 if w ∈ {mac,wmac}) invocations of its oracle.

VIL-Function Families. For a VIL-function family F : K × {0, 1}≤N →
{0, 1}n, the vil-mac-advantage Advvil-mac

F, A is defined like the mac-advantage,
except that the adversary A may query inputs of any length (≤ N). Let Of

vil
(for some VIL-function f) denote an oracle that on input l ≤ N generates
a uniform random input r ∈ {0, 1}l and outputs (r, fk(r)). The vil-wmac-
advantage Advvil-wmac

F, A is defined like the wmac-advantage except that the
oracle O is replaced by Ovil. For w ∈ {mac,wmac}, the maximal advantage is
defined as Advvil-w

F (t, q, μ) def= maxA{Advvil-w
F, A }, where the maximum is taken

over all A with time-complexity t, making at most q − 1 oracle invocations such
that the total length of the inputs to F (including the forgery message) is at
most μ bits.
9 I.e., t is the worst-case total running time (including the length of A) of the experi-

ment in which A interacts with its oracle (in some fixed RAM model of computation).



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 503

VOL-Function Families. Let Of
vol denote the oracle that on input l ∈ N

outputs (r, f(r, l)) for a uniform random r ∈ {0, 1}n. For a VOL-function family
F : K × {0, 1}n × N → {0, 1}∗, the vol-wprf -advantage of A for F is

Advvol-wprf
F, A

def= Pr
[
k← K, b ←AO

Fk
vol :b = 1

]
−Pr

[
R ← Rn,∗, b ←AO

R
vol :b = 1

]
,

and by maximizing over all A, restricted to time-complexity t and at most q ora-
cle queries whose sum totals at most μ, we get the maximal vol-wprf -advantage
Advvol-wprf

F (t, q, μ) def= maxA{Advvol-wprf
F, A }.

3 The IC- and ICT-Construction

In this section, we propose the IC-construction, for transforming a WPRF into a
PRF, and the ICT-construction, for transforming a WPRF into a VOL-WPRF.
Throughout, let F : {0, 1}n × {0, 1}n → {0, 1}n denote a function family.10

3.1 A PRF from Any WPRF

The IC-construction transforms F : {0, 1}n × {0, 1}n → {0, 1}n into

ICF : ({0, 1}n × {0, 1}n × {0, 1}n) × {0, 1}N → {0, 1}n,

for some fixed N , where ICF
k1,r,τ1

(x) is defined by the following algorithm:

if |x| > 1 then
for i = 2 to |x| do ki = Fki−1 (r)

for i = 1 to |x| do
if x[i] = 1 then

τi+1 = Fki(τi)
else

τi+1 = τi

return τ|x|

The following theorem states that ICF is a PRF if F is a WPRF, even if the
r-value of the initial key is not kept secret. Note that F is invoked at most 2N −1
times. However, the first N −1 invocations can be pre-processed and cached, and
hence at most N invocations are necessary or, to be precise, as many invocations
as there are ones in the input.

Theorem 1. For any t, q, and input length N of ICF

Advprf
ICF (t, q) ≤ N ·

(
Advwprf

F (t, q) +
q(q + 1)

2n+1

)
.

10 For simplicity, we choose the key-length to be the same as the input length. We refer
to [8] for constructing such a WPRF from any WPRF.



504 U. Maurer and J. Sjödin

Proof. Let Π0 denote the following random experiment for an adversary A with
time-complexity t which makes at most q queries to its oracle:

(k1, r, τ1)
$←{0, 1}n × {0, 1}n × {0, 1}n, b ← AICF

k1,r,τ1 .

Note that for any query x issued by A and any s ∈ {1, . . . , N}, the sequence
(τ1, . . . , τs) (resulting from the second for-loop) does not depend on x[s, N ].
Hence, (τ1, . . . , τs) can be reused for any other query x′ for which x′[1, s − 1] =
x[1, s − 1]. We assume that ICF

k1,r,τ1
reuses previously computed τ -values (for

saving calls to F ) whenever possible, by maintaining a look-up table with all
the entries (x[1, s], τs+1) for which x is a query to ICF

k1,r,τ1
, s ∈ {1, . . . , N},

and x[s] = 1. We also assume that the calls to F in the first for-loop are pre-
processed and cached. For j = 1, . . . , N , let Π2j−1 be the same experiment
as Π2j−2 except that Fkj is replaced by a random function Rj , and let Π2j

be the same experiment as Π2j−1 except that for each query x issued by A,
for which x[j] = 1 and x[1, j] is not in the look-up table, the output of Rj is
replaced by a uniform random R ∈ {0, 1}n and (x[1, j], R) is inserted into the
table. Let Si be the event that b = 1 in Πi, for i = 0, . . . , 2N . Now, as Π2N is
equivalent to [R ← RN,n, b ← AR], we get

Advprf
ICF,A

def=
∣∣Pr[S0]−Pr[S2N ]

∣∣

≤
N∑

j=1

∣∣Pr[S2j−2]−Pr[S2j−1]
∣∣ +

N∑

j=1

∣∣Pr[S2j−1]−Pr[S2j ]
∣∣

≤
N∑

j=1

Advwprf
F

(
t, min{q+1, 2j−1+1}

)
+

N∑

j=1

min
{

(q+1)q
2n+1 ,

(2j−1+1)2j−1

2n+1

}

≤ N ·
(
Advwprf

F (t, q + 1) +
(q + 1)q

2n+1

)
,

due to the triangle inequality and the following two facts. First, for j = 1, . . . , N ,
A can be transformed to a WPRF distinguisher A′ for F with time-complexity t,
making at most min(q +1, 2j−1 +1) oracle invocations, and having advantage at
least |Pr[S2j−2] − Pr[S2j−1]|. A′ with oracle T , simulates the experiment Π2j−2
if T is an instance of F and Π2j−1 if T is a random function R (which is
possible as all queries to Fkj in Π2j−2 and to Rj in Π2j−1 are distributed uni-
formly at random). Finally, A′ decides as A does. Second, Π2j−1 and Π2j are
equivalent experiments as long as no collision among the inputs on which Rj

is invoked occurs. As Rj is invoked on at most min{q + 1, 2j−1 + 1} inputs
and these are all random, the probability of this event is upper bounded by
min

{
(q+1)q/2n+1, (2j−1+1)2j−1/2n+1

}
. ��

Key Reduction of Naor-Reingold’s DDH-Based PRF. In [20], Naor and
Reingold presented an efficient construction of a PRF based on the DDH as-
sumption. It is easy to verify, that ICF with F as defined in (1) is the same PRF
but with a significantly shorter key by a factor of roughly N (recall that N is the



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 505

input length of ICF ). To be more precise, the first for-loop generates a sequence
k1, . . . , kN of keys from the initial key (k1, r, τ1) and the second for-loop exactly
corresponds to the Naor-Reingold construction with k1, . . . , kN as its key. Note
that the reduction is non-trivial in the sense that k1, . . . , kN is not generated
from a PRG based on F . For instance F−1

k1
(k2) = F−1

k2
(k3) holds which can

easily be verified given k1, k2, and k3.
The GGM-Approach. An alternative (but less efficient) approach to obtain a
PRF from any WPRF F is to first transform F into a pseudorandom generator
(PRG) and then apply the so-called GGM-construction [11] (which transforms a
PRG into a PRF). Informally, a PRG is an efficient deterministic function map-
ping a truly random string (or seed) to a longer string which is computationally
indistinguishable from random. Let us briefly describe the GGM-construction.
It transforms a length-doubling PRG G into a PRF (say with N -bits input) as

GGMk(x) def= Gx[1] ◦ . . . ◦ Gx[N ](k),

where G0(k) and G1(k) denote the left and right half of G(k), respectively. The
most efficient construction of a length doubling PRG G from F , that we are
aware of, uses 3 and 4 invocations to F , respectively, for computing G0 and G1:

G(k1‖r‖x) def= x‖Fk1(x)‖Fk2(x)‖Fk2 ◦ Fk1(x)‖Fk3 (x)‖r,

where k2 = Fk1 (r) and k3 = Fk2(r). The proof that G is a PRG if F is a WPRF
follows directly from Theorem 2 (see next section) and the fact that G(k1‖r‖x) =
x‖ ICTF

k,r(x, 4n)‖r. Hence, to get a PRF with N -bits input and n-bits output,
we roughly need 4N invocations of F per call in the worst case (cf. the efficiency
of ICF above).

Remark 1. Let us briefly point out a method for improving the computation
time of ICF , at the cost of generating and storing more keys (say N ′ keys instead
of N). On input x (of length N), x is first injectively mapped to a N ′-bit string x′

of Hamming weight at most some (fixed) c, satisfying

c∑

i=0

(
N ′

i

)
≥ 2N .

Then ICF is invoked on x′ and the result is output. Here, F is invoked at most c
(as opposed to N) times, as there are at most c ones in the input.

3.2 A VOL-WPRF from Any WPRF

The ICT-construction is illustrated in Fig. 1(b) and is defined as

ICTF : ({0, 1}n × {0, 1}n) × {0, 1}n × N → {0, 1}∗

((k, r), x, l) �→
(
ICF

k,r,x(〈1〉)
∥∥ ICF

k,r,x(〈2〉)
∥∥ · · ·

∥∥ ICF
k,r,x(〈�l/n�〉)

)
[1, l],



506 U. Maurer and J. Sjödin

Gi

Fk2i−1 Fk2i

FF

r r′

k′
1

k′
2, . . . , k

′
6

k′
1, . . . , k

′
6

k1, . . . , k6

x x

G1G1

G2G2 G2G2G2

G3G3G3G3 G3G3G3G3G3G3G3G3G3

(a) Computation of PRTF
k′
1,r,r′(x, 14n) (bottom left) and ERTF

k′
1,r,r′(x, 26n)

(bottom right), i.e., the maximal sized output using 6 generated keys k1, . . . , k6

(upper left). Here every output of Gi (defined upper right) for i = 1, 2, 3 is part
of the global output.

Fk1

Fk2 Fk2

Fk3 Fk3Fk3
Fk3

Fk4 Fk4
Fk4 Fk4 Fk4 Fk4

Fk4Fk4

Fk5Fk5Fk5Fk5Fk5Fk5Fk5Fk5
Fk5Fk5 Fk5Fk5Fk5Fk5Fk5Fk5

F k1

r

k2, k3, k4, k5

x

(b) Computation of ICTF
k1,r(x, 31n), i.e., the output of maximal size using 5

generated keys k1, . . . , k5 (upper right). Here every output of F – except for the
generated keys (upper right) – is part of the global output. We stress that the
order of the output blocks are not the same as presented in the text.

Fig. 1. Illustration of (a) PRT [8], ERT [16], and (b) ICT (of this paper). The generated
key sequence k1, k2, . . . is not pseudorandom in (b) as opposed to in (a) (see Sect. 3.1).



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 507

where 〈i〉 denotes the reversed standard bit encoding of the integer i (e.g. 〈0〉 =
0, 〈1〉 = 1, 〈2〉 = 01, 〈3〉 = 11, 〈4〉 = 001). Note that ICF

k,r,x(〈0〉) = x can not
be part of the output, as x is the input. It is easy to verify, see Fig. 1(b),
that ICTF

k,r(x, l) needs d − 1 = �log2(�l/n�)� calls to F for computing (or pre-
computing) the needed keys k1, . . . , kd and further �l/n� calls for computing the
output (i.e., one call per output block). The next theorem states that ICTF is
a VOL-WPRF if F is a WPRF. As for IC, the r-value of the key need not be
kept secret.

Theorem 2. For any t, q, and μ

Advvol-wprf
ICTF (t, q, μ) ≤ dmax · Advwprf

F (t, q(2dmax−1+1)) +
4dmax · q2

2n
,

where dmax = �log2(�lmax/n�)�+1 and lmax ≤ μ is the maximum allowed output
length of ICTF .

Proof. Let Π0 denote the following random experiment for an adversary A with
time-complexity t that make at most q queries whose sum is at most μ:

(k, r) $←{0, 1}n × {0, 1}n, b ← AO
ICTF

k,r
vol .

Let d denote the maximal number of generated keys (for F ), needed for answering
the queries to ICTF

k,r issued by A. Note that the j-th instantiation of F , i.e., Fkj ,
for j ∈ {1, . . . , d}, is queried at most qj = q · (2j−1 + 1) times. For j = 1, . . . , d,
let Π2j−1 denote the same random experiment as Π2j−2 except that Fkj is
replaced by a random function Rj , and let Π2j be the same experiment as Π2j−1
except that the outputs of Rj are replaced by uniform random n-bit strings.

Furthermore, let Π2d+1 denote the random experiment [R $← Rn,∗, b ← AO
R
vol ].

Now, for i = 0, . . . , 2d + 1, let Si denote the event that b = 1 in Πi. We get

Advvol-wprf
A, ICTF =

∣∣Pr[S0] − Pr[S2d+1]
∣∣

≤
d∑

j=1

∣∣Pr[S2j−2]−Pr[S2j−1]
∣∣ +

d∑

j=1

∣∣Pr[S2j−1]−Pr[S2j ]
∣∣ +

∣∣∣∣Pr[S2d] − Pr[S2d+1]
∣∣∣∣

≤
d∑

j=1

Advwprf
F (t, qj) +

d∑

j=1

q2
j

2n+1 +
q2

2n+1 ≤ d · Advwprf
F

(
t, q(2d−1+1)

)
+

q24d

2n
,

using the triangle inequality and the following facts. As Π2d and Π2d+1 are
equivalent experiments as long as the input part of the samples returned by the
oracle are distinct, we get |Pr[S2d]−Pr[S2d+1]| ≤ q2/2n+1. Furthermore, as Π2j−1
and Π2j are equivalent as long as the random inputs to Rj are all distinct, it
holds that |Pr[S2j−1] − Pr[S2j ]| ≤ q2

j /2n+1. Finally, A can be transformed into
a WPRF distinguisher A′ for F with time-complexity t, that makes qj oracle
queries and has advantage |Pr[S2j−2] − Pr[S2j−1]|. A′ with oracle OT simply
simulates the random experiment that is equivalent to Π2j−2 if T is an instance



508 U. Maurer and J. Sjödin

of F and to Π2j−1 if T is a random function R (this is possible as the inputs
to Fkj in Π2j−2 and to Rj in Π2j−1 are distributed uniformly at random).
Finally, A′ decides as A does. ��

The FCT-Construction is Flawed. Let us point out that the security proof
of FCT (in [16]) is flawed. The maximal sized output of FCTF for two generated
keys k1 and k2 is defined as

x �→ Fk1(x)‖Fk2 (x)‖Fk2 ◦ Fk1(x)‖Fk1 ◦ Fk2 (x). (3)

Clearly, the construction is insecure for any WPRF F that commutes (i.e., for
which Fk2 ◦ Fk1 (x) = Fk1 ◦ Fk2 (x) for all k1, k2, and x). As such WPRFs exist
under the DDH assumption (see (1)), a fix of the security proof would contradict
the assumption and thus be a major breakthrough in number theory.11

Comparing ICT with other Constructions. The idea behind PRT of [8],
ERT of [16], and ICT is to first generate keys k1, . . . , kd from the initial key
(and F ) and then to derive the output blocks sequentially by invoking Fki ,
with i ∈ {1, . . . , d}, to the input or a previously computed output block (see
Fig. 1). ICT is superior to PRT and ERT for three reasons. First, the initial
key of ICT is n bits (plus n bits that may be publicly known) versus 3n bits
for PRT and ERT. Second, ICT needs d − 1 invocations of F to generate the d
keys k1, . . . , kd whereas PRT and ERT needs 2d− 1. Third, the maximal output
size using k1, . . . , kd is (2d−1)n for ICT, roughly (3

d
2−1)n for ERT, and roughly

(2
d
2 +1−2)n for PRT.12 For all constructions, the keys needed for computing

outputs of length bounded by some fixed value (say lmax) can be pre-processed,
such that one call of F is needed per output block. But whereas ICT needs to
store say s

def= �log2(�lmax/n�)�+1 keys, ERT and PRT store about �1.26s� and
2s keys, respectively. The factor in front of the wprf -advantage in the security
reduction reduces correspondingly, i.e., for s as defined above we roughly have

Advvol-wprf
ICTF (t, q) ≤ s ·Advwprf

F (t, 2s−1q) + 4sq2/2n

Advvol-wprf
ERTF (t, q) ≤ 1.26s ·Advwprf

F (t, 2s−1q/3) + 4sq2/(2n · 9)

Advvol-wprf
PRTF (t, q) ≤ 2s ·Advwprf

F (t, 2s−1q/4) + 4sq2/(2n · 16).

Optimality of the ICT-Construction. In [22], it is shown that there is no
black-box proof of the security for constructions that expands more than ICT
(for any fixed number of generated keys). Here, we show something stronger
for the constructions with log-time random access to output blocks, i.e., for
the rather balanced constructions where the maximal length of the composition
chains are in O(log(l)) for output length l, namely that ICT is optimal within
that class of constructions under the inverse DDH (IDDH) assumption [2].

11 However, information theoreticly (and even in Minicrypt, i.e., under the assumption
that one-way functions exist but no public-key cryptography) (3) is secure [21,22].

12 The latter two values are exact if d is even. Otherwise (2·3
d−1
2 −1)n and (3·2

d−1
2 −2)n

are exact, respectively.



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 509

To be more precise, note that – for l = 3n – the value ICTF
k1,r(x, l) is derived

by first computing k2 = Fk1(r) and then returning

y := Fk1(x)‖Fk2 (x)‖Fk2 ◦ Fk1(x).

For l = 7n, an extra key k3 = Fk2(r) is derived and

y‖Fk3(x)‖Fk3 ◦ Fk1(x)‖Fk3 ◦ Fk2(x)‖Fk3 ◦ Fk2 ◦ Fk1(x)

is returned. A natural question is whether more can be output before a new key
needs to be generated, i.e., for a fixed number of generated keys (say k1, k2,
and k3), can we output more than ICTF maximally can (i.e., more than 7n bits)
by invoking the instantiations (i.e., Fk1 , Fk2 , Fk3) one more time than ICTF does
(i.e., 8 times instead of 7). The answer turns out to be “no” unless the IDDH
assumption is false, since otherwise there is a WPRF F , described in (4), which
with high probability both commutes and is self inverse, i.e., for all k �= k′

Pr
x

[Fk ◦ Fk′ (x) = Fk′ ◦ Fk(x)] ≈ 1/4 and Pr
x

[Fk ◦ Fk(x) = x] ≈ 1/2.

If F is used and more is output at least two output blocks will (by the pigeonhole
principle) have the same value with high probability (which is unlikely for a
uniform random VOL-function). F is defined for a group G of prime order ρ as

F : Zρ × G → G and Fk(x) def=
{

xk if x ∈ P1
xk−1

if x ∈ P2
, (4)

where k ·k−1 = 1 (mod ρ) and {P1, P2} is a partition of G in roughly equal sized
sets (where we assume that it is efficient to decide whether x ∈ P1 or not). A
proof that F is a WPRF if the IDDH assumption holds in G is given in [14].

4 Applications

In this section, we optimize Damg̊ard and Nielsen’s CPA-secure encryption
scheme (2) by using ICT instead of PRT. Then, we first make the scheme CCA-
secure by applying IC and the well-known encrypt-then-MAC technique (actu-
ally we prove that what we call encrypt-then-WMAC does the job here), and,
second, we make it non-adaptive CCA-secure by using a (fixed-input-length)
WMAC for authenticating the auxiliary uniform randomness.

4.1 Symmetric Encryption

A symmetric encryption scheme SE = (E, D) consists of two efficient algorithms.
The (randomized) encryption algorithm E maps a key k and a message m to
a ciphertext c = Ek(m), and the deterministic decryption algorithm D maps a
key k and a ciphertext c = Ek(m) to the message m = Dk(c). There are several
notions for privacy and integrity of SE (for an overview, we refer to [5,13,3]).
We consider the IND-PX-CY notion (for X,Y ∈ {0, 1, 2}), introduced in [13].



510 U. Maurer and J. Sjödin

Definition 1 (IND-PX-CY). For an encryption scheme SE = (E, D) (with
message space M and keyspace K), the ind-px-cy-advantage of an adversary A
(with x, y ∈ {0, 1, 2}) is defined as follows (where ⊥ denotes no oracle):

Advind-px-cy
SE, A

def= 2·Pr
[
k

$←K,(m0,m1)←AO1,O2, b
$←{0, 1}, c ← Ek(mb), b̂ ←AO

′
1,O′

2(c) : b̂=b
]
−1,

where (O1, O′1) =

⎧
⎨

⎩
(⊥, ⊥) if x = 0
(Ek, ⊥) if x = 1
(Ek, Ek) if x = 2

, (O2, O′2) =

⎧
⎨

⎩
(⊥, ⊥) if y = 0
(Dk, ⊥) if y = 1
(Dk, Dk) if y = 2

,

m0, m1 ∈ M with |m0| = |m1|, and A does not query O′2 with c. By maximizing
over all A restricted to time-complexity t, at most q−1 encryption queries of
total length at most (μ−|m0|) bits, and q′ decryption queries of total length at
most μ′ bits, we let Advind-px-cy

SE (t, q, μ, q′, μ′) def= maxA{Advind-px-cy
SE,A } (where

one typically drops the parameters (q′, μ′) if y = 0).

The IND-P2-C0, IND-P2-C2, and IND-P1-C1 notions are often referred to as
IND-CPA, (adaptive) IND-CCA, and non-adaptive IND-CCA, respectively.

The integrity of ciphertext (INT-CTXT) [5] notion formalizes an adversary’s
inability – given access to an encryption oracle – to create a new valid ciphertext:

Definition 2 (INT-CTXT). For SE = (E, D) (with message space M and
key space K), let D∗k denote an algorithm that on input c outputs 1 iff c is a
valid ciphertext under the key k, i.e., there exists m ∈ M such that Dk(c) = m.

Advint-ctxt
SE, A

def=Pr
[
k

$←K,AEk,D∗
k , b

def=
{

1 If ∃i ∀j : D∗k(yi) = 1 ∧ yi �= cj

0 otherwise : b = 1
]
,

where c1, . . . , cq denote the outputs from Ek and y1, . . . , yq′ denote A’s queries
to D∗k. By maximizing over all A with time-complexity t, that makes at most q
queries to Ek of total length at most μ bits, and at most q′ queries to D∗k of total
length at most μ′ bits, we let Advint-ctxt

SE (t, q, μ, q′, μ′) def= maxA{Advint-ctxt
SE, A }.

4.2 A CPA-Secure Encryption Scheme

In [8], Damg̊ard and Nielsen introduced an IND-P2-C0-secure encryption scheme
based on any VOL-WPRF V : {0, 1}κ × {0, 1}n × N → {0, 1}∗. To be precise,
their encryption scheme SE1 is defined by encrypting a message m ∈ {0, 1}∗,
under the key k ∈ {0, 1}κ and some auxiliary uniform randomness r ∈ {0, 1}n as

(k, r, m) �→
(
r, Vk(r, |m|) ⊕ m

)
. (SE1) (5)

The following proposition originates from [8]. We give the proof for completeness.

Proposition 1. For any t, q, and μ

Advind-p2-c0
SE1

(t, q, μ) ≤ 2 · Advvol-wprf
V (t, q, μ) +

q − 1
2n−1 .



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 511

Proof. For SE1 = (E, D), let Π0 denote the IND-P2-C0 random experiment

k
$←{0, 1}κ, (x0, x1) ← AEk , b

$←{0, 1}, y ← Ek(xb), b̂ ← AEk(y),

where A is any adversary with resources (t, q, μ). Furthermore, let Π1 be the
same experiment as Π0, except that Vk is replaced by a uniform random VOL-
function Rn,∗. Let Π2 be the same experiment as Π1, except that the input y
to the adversary is replaced by a truly random string y′ (of length |y|). For
i = 0, 1, 2, let Si denote the event that b̂ = b in experiment Πi. Then

Advind-p2-c0
SE1,A

def= 2 · Pr[S0] − 1 = 2 · Pr[S2] − 1 + 2 ·
1∑

i=0

(Pr[Si] − Pr[Si+1])

≤ 2 · 1
2

− 1 + 2 · Advvol-wprf
V (t, q, μ) + 2 · q − 1

2n
,

where the inequality follows from the following three facts. First, A can be trans-
formed into VOL-WPRF distinguisher A′ for V with advantage Pr[S0] − Pr[S1]
and resources (t, q, μ). A′ with oracle T simply simulates the experiment Π0 if T
is an instance of V and Π1 if T is a uniform random VOL-function R (this is
possible as the inputs to Vk in Π0 and to Rn,∗ in Π1 are distributed uniformly at
random), and then A′ returns whatever A does. Second, Π1 and Π2 are equiv-
alent experiments as long as the random input to Rn,∗ in the computation of y
is different from the other random inputs to Rn,∗, an event upper bounded by
(q − 1)/2n. Third, Pr[S2] = 1/2 since b is independent of y. ��

Remark 2. Given the strong optimality arguments for ICT, it is clear that (2)
is optimal when ICT is used (instead of PRT) unless a significantly different
approach for range extension of WPRFs is invented.

4.3 A CCA-Secure Encryption Scheme

The well-known encrypt-then-MAC method is a general technique for construct-
ing an INT-CTXT- and IND-P2-C2-secure encryption scheme from any IND-
P2-C0-secure encryption scheme SE = (Enc, Dec) and any VIL-MAC W . The
idea is to simply encrypt with Enc and then authenticate the ciphertext us-
ing W [15,5]. Here, we note that for the IND-P2-C0-secure scheme SE1 based
on any VOL-WPRF V : {0, 1}κ1 × {0, 1}n × N → {0, 1}∗, it is sufficient if
W : {0, 1}κ2 ×{0, 1}∗ → {0, 1}� is a VIL-WMAC (as the ciphertexts of SE1
are pseudorandom). To be precise, the scheme SE2, defined by encrypting m ∈
{0, 1}∗ under a key (k1, k2) ∈ {0, 1}κ1×{0, 1}κ2 and auxiliary uniform random-
ness r ∈ {0, 1}n as

(
(k1, k2), r, m

)
�→

(
r, Vk1(r, |m|) ⊕ m︸ ︷︷ ︸

c

, Wk2 (r‖c)
)
, (SE2) (6)

is IND-P2-C2 secure if V is a VIL-WPRF and W is a VIL-WMAC:



512 U. Maurer and J. Sjödin

Theorem 3. For any t, q, μ, q′, and μ′

Advint-ctxt
SE2

(t, q, μ, q′, μ′) ≤ min
{

q′ · Advvil-mac
W (t, q, μ+qn+μ′),

Advvol-wprf
V (t, q, μ) +

q2

2n+1 + q′ · Advvil-wmac
W (t, q, μ+qn+μ′)

}

Advind-p2-c2
SE2

(t, q, μ, q′, μ′) ≤ 2Advint-ctxt
SE2

(t, q, μ, q′, μ′) + Advind-p2-c0
SE1 (t, q, μ).

Proof. The proof of the first inequality consists of two parts. For the first part,
i.e., Advint-ctxt

SE2 (t, q, μ, q′, μ′) ≤ q′ · Advvil-mac
W (t, q, μ + qn + μ′), we refer to [5].

For the second part, let Π0 denote the INT-CTXT random experiment

(k1, k2)
$←{0, 1}κ1 × {0, 1}κ2, AEk1,k2 ,D∗

k1,k2

for SE2 = (E, D) and any adversary A with resources (t, q, μ, q′, μ′). Further-
more, let Π1 be defined as Π0 except that Vk1 has been replaced by a uniform
random VOL-function Rn,∗ and let Π2 be defined as Π1 except that the out-
put of Rn,∗ is replaced by a truly random string (no matter of the input).
For i = 0, 1, 2, let E i denote the event that D∗k1,k2

outputs 1 in Πi. Then

Advint-ctxt
SE2,A

def= Pr[E0] =
(
Pr[E0] − Pr[E1]

)
+

(
Pr[E1] − Pr[E2]

)
+ Pr[E2]

≤ Advvol-wprf
V (t, q, μ) +

(q − 1)q
2n+1 + q′ · Advvil-wmac

W (t, q, μ + qn + μ′),

due to the following three facts. First, A implies a VOL-WPRF distinguisher A′

for V with advantage |Pr[E0] − Pr[E1]| and resources (t, q, μ). A′ with oracle T
simply simulates Π0 if T is an instance of V and Π1 if T is a uniform random
VOL-function R (this is possible as the inputs to Vk1 in Π0 and to Rn,∗ in Π1
are distributed uniformly at random), and then A′ outputs 1 if and only if A is
successful. Second, Π1 and Π2 are equivalent experiments unless the auxiliary
random r-values returned by the encryption oracle are not all distinct, an event
upper bounded by q(q−1)/2n+1. Third, from A we can construct a VIL-WMAC-
forger A′′ for W with advantage Pr[E2]/q′ and resources (t, q, μ + qμ + μ′). A′′

simply picks a random element i ∈ {1, . . . , q′} and starts simulating Π2 – except
for invoking D∗k1,k2

on A’s queries – by using its own oracle in place of Wk2 (this
is possible as all inputs to Wk2 in Π2 are distributed uniformly at random).
However, once A makes its i-th query to D∗k1,k2

(if at all), A′′ stops the simulation
and returns it as its forgery.

For proving the second inequality, let Π ′0 denote the IND-P2-C2 experiment

(k1,k2)
$←{0, 1}κ1×{0, 1}κ2,

(x0, x1)←AEk1,k2 ,Dk1,k2, b
$←{0, 1}, y←Ek1,k2(xb), b̂←AEk1,k2 ,Dk1,k2 (y),

for SE2 = (E, D) and any adversary A with resources (t, q, μ, q′, μ′). Without loss
of generality, we assume that A does not query Dk1,k2 with an output from Ek1,k2 .



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 513

Let Π ′1 be the same experiment as Π ′0, except that all queries to Dk1,k2 are
rejected. Moreover, for i = 0, 1, let Si denote the event that b̂ = b in Π ′i. Then

Advind-p2-c2
SE2,A

def= 2 · Pr[S0] − 1 = 2 ·
(
Pr[S0] − Pr[S1]

)
+ 2 · Pr[S1] − 1

≤ 2 · Pr[E ] + Advind-p2-c0
SE2 (t, q, μ) ≤ 2 · Pr[E ] + Advind-p2-c0

SE1
(t, q, μ),

where E denotes the event that a query to Dk1,k2 in Π ′1 (or Π ′0) is a valid cipher-
text. The first inequality follows from the the fact that Π ′0 and Π ′1 are equivalent
experiments unless E occurs, and that Π ′1 is equivalent to the corresponding
IND-P2-C0 experiment for SE2 (in which the VIL-WMAC is superfluous by
Proposition 1). It remains to show that

Pr[E ] ≤ Advint-ctxt
SE2 (t, q, μ, q′, μ′).

This is the case as A can trivially be transformed into a INT-CTXT adver-
sary A′′′ (for SE2) using the same resources and having advantage Pr[E ]. A′′′

simply runs A, by answering its encryption queries with its own encryption ora-
cle and rejecting all decryption queries. In addition, A′′′ forwards A’s decryption
queries to its D∗ oracle. If A presents its challenge input (m0, m1), A′′′ flips a
coin b, queries its encryption oracle with mb, and returns the result to A. ��
Remark 3. The above result leads to an interesting open question for further re-
search, namely, how efficient constructions are there of a VIL-WMAC W based
on any WPRF F . One approach – for constructing W – would be to first trans-
form F into the PRF ICF : {0, 1}3n ×{0, 1}N → {0, 1}n (see Sect. 3.1) and then
apply the following rather standard method [25,23,6] for constructing a VIL-
MAC (and thus also a VIL-WMAC) from any PRF. Simply hash the message
using an ε-almost universal (AU) hash function H :K × {0, 1}∗ → {0, 1}N (i.e.,
for all distinct m, m′ ∈ {0, 1}∗, Pr[k′ ← K : Hk′(m) = Hk′ (m′)] ≤ ε [24]) and
then apply ICF to the result: Wk,k′ (x) def= ICF

k ◦Hk′(x).13 This method is appeal-
ing since H exists unconditionally and ICF is invoked on “short” inputs (of size
N). There are 21−N -AU hash functions, with 5N -bit key size and maximal input
length 2N , that should do for most practical applications (see [25]).

Remark 4. By combining (6) with V = ICTF and a W (as defined above), we
get a CCA-secure encryption scheme from any WPRF F . In [8], Damg̊ard and
Nielsen also proposed to use the encrypt-then-MAC method for achieving CCA-
security of SE1. However, their approach for constructing the VIL-MAC from
any WPRF introduces a too large overhead for the solution to be practical.
The number of applications of the WPRF per evaluation is in the order of the
message length. The approach we give in Remark 3 is more efficient using at
most N applications of the WPRF independently of the message length, where
typically N � n (recall that n is the block length of F ). Whereas this additive
overhead is of little concern for “long” messages, it is an open problem whether
it can be improved for “short” messages.
13 For any Q : K′ × {0, 1}N → {0, 1}n and ε-AU hash function H : K × {0, 1}∗ →

{0, 1}N , Advvil-mac
Q◦H (t, q, μ) ≤ Advprf

Q (t, q) + q(q − 1)ε/2 + 1/2n (see [6]).



514 U. Maurer and J. Sjödin

4.4 A Non-adaptive CCA-Secure Encryption Scheme

To achieve IND-P2-C1-security of SE1, we note that it is sufficient to WMAC the
auxiliary randomness r. This has the advantage (over SE2) that the WMAC does
not need to have VIL. To be precise, for V : {0, 1}κ1 ×{0, 1}n ×N → {0, 1}∗ and
W : {0, 1}κ2 × {0, 1}n → {0, 1}�, let SE3 denote the encryption scheme defined
by encrypting a message m ∈ {0, 1}∗ under the key (k1, k2) ∈ {0, 1}κ1 × {0, 1}κ2

and some auxiliary uniform random string r ∈ {0, 1}n as

((k1, k2), r, m) �→
(
r, Vk1 (r, |m|) ⊕ m, Wk2(r)

)
. (SE3) (7)

Theorem 4. For any t, q, μ, q′, and μ′

Advind-p2-c1
SE3 (t, q, μ, q′, μ′) ≤ 2 · q′ · Advwmac

W (t, q) + Advind-p2-c0
SE1 (t, q, μ+qμ′).

Proof. For SE3 = (E, D), let Π0 denote the IND-P2-C1 random experiment for
any adversary A with resources (t, q, μ, q′, μ′), i.e.,

(k1, k2)
$←{0, 1}κ1×{0, 1}κ2,

(x0, x1) ← AEk1,k2 ,Dk1,k2 , b
$←{0, 1}, y ← Ek1,k2(xb), b̂ ← AEk1,k2 (y).

Let Π1 be the same same random experiment as Π0 except for replacing A
with an adversary B (described next) that has the same advantage as A and
does not issue any query to Dk1,k2 for which the auxiliary random part is the
same as for a ciphertext returned previously by Ek1,k2 . To be precise, let �max
denote the maximal length of the second input part of the decryption queries
issued by A (clearly �max < μ′). The adversary B simply runs A and for each
encryption query m issued by A, B appends zeroes such that it is of length lmax,
i.e., m′ := m‖0�max−|m|, and then queries the encryption oracle with m′. On
output (r, c′, w) from the encryption oracle, B returns (r, c′[1, |m|], w) to A (and
stores (m′, (r, c′, w)) in a look-up table). If A queries some decryption query,
say (r, c, w′), for which r occurs in the look-up table as (m′, (r, c′, w)), B re-
turns c⊕c′[1, |c|]⊕m′[1, |c|] if w = w′ and otherwise rejects. When A presents its
challenge input (m0, m1), B flips a coin b, queries its encryption oracle with mb,
and returns the result to A. Finally, B decides as A does. Further, let Π2 be the
same experiment as Π1 except that all queries to Dk1,k2 are rejected.

Moreover, for i = 0, 1, let Si denote the event that b̂ = b in Πi. Then

Advind-p2-c1
SE3,A

def= 2 · Pr[S0] − 1 = 2 · Pr[S2] − 1 + 2 ·
1∑

i=0

(
Pr[Si] − Pr[Si+1]

)

≤ Advind-p2-c0
SE3 (t, q, μ+qμ′) + 2 · Pr[E ] ≤ Advind-p2-c0

SE1
(t, q, μ+qμ′) + 2 · Pr[E ],

by the following three facts. First, Pr[S0] = Pr[S1] as B decides as A does.
Second, Π1 and Π2 are equivalent experiments unless the event E occurs that B
queries a valid ciphertext to its decryption oracle. It follows that

Pr[S1] − Pr[S2] ≤ Pr[E ] ≤ q′ · Advwmac
W (t, q),



A Fast and Key-Efficient Reduction of Chosen-Ciphertext 515

as B can be transformed to the following forger B′ for W with advantage at least
Pr[E ]/q′. B′ simply picks a random i ∈ {1, . . . , q′} and starts running B, answer-
ing its encryption queries with help of its own oracle and the decryption queries
by rejection. When B (if at all) issues its i-th decryption query (ri, ci, wi), B′

returns (ri, wi) as its forgery (without making any extra calls to its encryp-
tion oracle). Third, Π2 corresponds to the IND-P2-C0 experiment (in which the
WMAC W is superfluous by Proposition 1). ��

Remark 5. Combining (7) with V = ICTF and W = ICF ◦ H results in an
IND-P2-C1-secure scheme based on any WPRF F , but with the advantage that
the ε-AU hash function H only is applied on fixed-sized strings (of length n).
Alternatively, using W = ICF saves the call to H and results in n/2 overhead
applications on average (as ICF is then invoked on random inputs).

5 Conclusions

We have proposed two constructions, the Increasing Chain Tree (ICT) and the
Increasing Chain (IC). Whereas ICT extends the output length of weak PRFs
in an optimal way (within a natural class of extensions) and optimizes Damg̊ard
and Nielsen’s CPA-secure encryption scheme based on any weak PRF [8], IC is
a construction of a regular PRF from any weak PRF that, in particular, reduces
the key-material of Naor-Reingold’s efficient PRF based on the DDH assump-
tion [20]. By combining IC and ICT, we get a CCA-secure encryption scheme
based on any weak PRF that is indeed much more efficient than the CCA-secure
scheme proposed by Damg̊ard and Nielsen (especially for “long” messages). It
is an open problem to construct efficient schemes for “short” messages. Another
interesting question is how to construct efficient weak MACs based on weak
PRFs.

Although several highly efficient candidates for weak PRFs exist, none were
targeted at this particular security notion explicitly. It is an interesting open
problem for further research how much block-cipher design can benefit from this
weakening of the desired security goal.

References

1. W. Aiello, S. Rajagopalan, and R. Venkatesan. High-speed pseudorandom number
generation with small memory. In Fast Software Encryption, volume 1636 of LNCS,
pages 290–304. Springer, 1999.

2. F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In
ICICS ’03, volume 2836 of LNCS, pages 301–312. Springer, 2003.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proc. of the 38th Symposium on Foundations of Com-
puter Science, pages 394–403. IEEE, 1997.

4. M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In
Advances in Cryptology — CRYPTO ’94, volume 839 of LNCS, pages 341–358.
Springer, 1994.



516 U. Maurer and J. Sjödin

5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Advances in Cryptology
— ASIACRYPT ’00, volume 1976 of LNCS, pages 531–545. Springer, 2000.

6. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac: Fast and
secure message authentication. In Advances in Cryptology — CRYPTO ’99, volume
1666 of LNCS, pages 313–328. Springer, 1999.

7. A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives
based on hard learning problems. In Advances in Cryptology — CRYPTO ’93,
volume 773 of LNCS, pages 278–291. Springer, 1993.

8. I. Damg̊ard and J. B. Nielsen. Expanding pseudorandom functions; or: From
known-plaintext security to chosen-plaintext security. In Advances in Cryptology
— CRYPTO ’02, volume 2442 of LNCS, pages 449–464. Springer, 2002.

9. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

10. O. Goldreich. Foundations of Cryptography – Volume II – Basic Applications.
Cambridge University Press, 2004.

11. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

12. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

13. J. Katz and M. Yung. Complete characterization of security notions for probabilis-
tic private-key encryption. In Proc. of the 32nd Annual Symposium on Theory of
Computing, pages 245–254. ACM, 2000.

14. M. Keller. Constructing weak pseudorandom functions with prescribed structure,
2006. Semester Thesis, ETH Zurich.

15. S. Kent and R. Atkinson. IP encapsulating security payload (ESP), November
1998. Request for Comments 2406.

16. K. Minematsu and Y. Tsunoo. Expanding weak PRF with small key size. In ICISC
’05, volume 3935 of LNCS, pages 284–298. Springer, 2005.

17. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Advances in Cryptology — EUROCRYPT ’99, volume 1592 of LNCS,
pages 327–346. Springer, 1999.

18. M. Naor and O. Reingold. From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs. In Advances in Cryptology
— CRYPTO ’98, LNCS, pages 267–282. Springer, 1998.

19. M. Naor and O. Reingold. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. J. Comp. Sys. Sci., 58(2):336–375, 1999.

20. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. of the ACM, 51(2):231–262, 2004.

21. K. Pietrzak and J. Sjödin. Weak pseudorandom functions in minicrypt, November
2006. Manuscript.

22. K. Pietrzak and J. Sjödin. Domain extension for weak PRFs; the good, the bad,
and the ugly. In Advances in Cryptology — EUROCRYPT ’07, LNCS. Springer,
2007. This proceedings.

23. V. Shoup. On fast and provably secure message authentication based on universal
hashing. In Advances in Cryptology — CRYPTO ’96, volume 1109 of LNCS, pages
313–328. Springer, 1996.

24. D. R. Stinson. Universal hashing and authentication codes. In Advances in Cryp-
tology — CRYPTO ’91, volume 576 of LNCS, pages 74–85. Springer, 1992.

25. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. J. Comp. Sys. Sci., 22:265–279, 1981.



Range Extension for Weak PRFs;
The Good, the Bad, and the Ugly

Krzysztof Pietrzak1,� and Johan Sjödin2,��

1 CWI Amsterdam
pietrzak@cwi.nl

2 Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
sjoedin@inf.ethz.ch

Abstract. We investigate a general class of (black-box) constructions
for range extension of weak pseudorandom functions: a construction
based on m independent functions F1, . . . , Fm is given by a set of strings
over {1, . . . , m}∗, where for example {〈2〉, 〈1, 2〉} corresponds to the func-
tion X �→ [F2(X), F2(F1(X))]. All efficient constructions for range ex-
pansion of weak pseudorandom functions that we are aware of are of this
form.

We completely classify such constructions as good, bad or ugly, where
the good constructions are those whose security can be proven via a
black-box reduction, the bad constructions are those whose insecurity
can be proven via a black-box reduction, and the ugly constructions are
those which are neither good nor bad.

Our classification shows that the range expansion from [10] is optimal,
in the sense that it achieves the best possible expansion (2m − 1 when
using m keys).

Along the way we show that for weak quasirandom functions (i.e. in
the information theoretic setting), all constructions which are not bad –
in particular all the ugly ones – are secure.

1 Introduction

Pseudorandomness, introduced by Blum and Micali, is a crucial concept in
theoretical computer science in general, and cryptography in particular. Infor-
mally, an object is pseudorandom if no efficient adversary can distinguish it from
a truly random one. The most popular pseudorandom objects are pseudorandom
generators (PRG), functions (PRF), and permutations (PRP). A PRG is a func-
tion prg : {0, 1}n → {0, 1}m where m > n and no efficient A can distinguish
prg(Un) from Um, where Ui denotes the uniform distribution over i bit strings.
A PRF is a family of functions F : {0, 1}�×{0, 1}n → {0, 1}m, where no efficient

� Supported by DIAMANT, the Dutch national mathematics cluster for discrete in-
teractive and algorithmic algebra and number theory. This work was partially done
while the author was a postdoc at the Ecole Normale Supérieure, Paris.

�� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 517–533, 2007.
c© International Association for Cryptology Research 2007



518 K. Pietrzak and J. Sjödin

A can distinguish F (U�, .) from a uniformly random function. Weak PRFs, are
defined similarly to PRFs, but where the adversary gets only to see the outputs
on random inputs (and not on inputs of his choice). PRGs, PRFs, and PRPs are
equivalent, i.e. black-box reducible, to one-way functions [4,3,6]. Unfortunately
these reductions are quite inefficient, and therefore practical pseudorandom ob-
jects are either constructed from scratch (like the AES block-cipher, which is
supposed to be a PRP) or from stronger assumptions than OWFs (in particular
number theoretic assumptions like Decisional Diffie-Hellman).

Range Extension for PRGs and PRFs. From a PRG prg : {0, 1}n →
{0, 1}2n one can efficiently construct a PRG with a larger range: on input
X ∈ {0, 1}n compute YL‖YR ← prg(X) and output the 4n-bit string Z ←
prg(YL)‖prg(YR). One can now recursively apply prg on input Z in order to
get a pseudorandom 8n-bit string and so on. The security of this construction
follows by a simple hybrid argument.

From a PRF prf : {0, 1}� × {0, 1}n → {0, 1}n we can get a PRF prf ′ :
{0, 1}�t × {0, 1}n → {0, 1}nt with larger range as

prf ′(k1, . . . , kt, x) = prf(k1, x)‖ . . . ‖prf(kt, x)

This construction also works for weak PRFs, but is not very practical as the
number of keys is linear in the expansion factor. Let bin(i) denote the binary
representation of i padded with 0’s to the length �log t�. The following construc-
tion of a {0, 1}� × {0, 1}n−�log t� → {0, 1}nt function

prf ′′(k, x) = prf(k, x‖bin(0))‖ . . . ‖prf(k, x‖bin(t − 1))

just needs a single key, and prf ′′ is easily seen to be a PRF if prf is. Unfor-
tunately this construction does not work for weak PRFs (just consider a weak
PRF where the output does not depend on the last input bit).

Range Extension for weak PRFs. Efficient range extension for weak PRFs
has been investigated in [2,10,11]. All constructions considered in these papers
can be defined by an ordered set α of strings over [m] def= {1, . . . , m}. The input to
the construction are m keys k1, . . . , km for the fixed output length PRF F , and
a single input x to F . Each string s ∈ α now defines how to compute a part of
the output, for example s = 〈2, 1, 3〉 corresponds to the value Fk3(Fk1 (Fk2(x))),
thus the expansion factor is the size of α. We give a formal definition for such
constructions, which we call expansions, in Section 3.

Classifying Expansions. Not all expansions are secure in the sense of being
a weak PRF whenever the underlying component F is a weak PRF. Before we
continue, the reader might take a look at the three expansions given in the figure
below, and try to answer the following question: if F is a weak PRF, which of
the three length doubling constructions will also be a weak PRF (here k1, k2 are
two random independent keys).



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 519

Fk1 Fk2

Fk2

Fk1 Fk2

Fk1 Fk2

Fk1 Fk2

Fk2 Fk1

C
{〈1,2〉,〈2〉}
F C

{〈1,1〉,〈2,2〉}
F C

{〈1,2〉,〈2,1〉}
F

In this paper we exactly classify which expansions are secure and which are not
(cf. Theorem 1). Interestingly there are three (and not just two) natural classes
which come up, we will call them good, bad, and ugly (the three constructions in
the figure above are simple examples of a good, a bad, and an ugly expansion).
We call expansions whose security can be proven by a black-box reduction1

good. We call an expansion bad, if its insecurity can be proven by a black-box
reduction. There are also expansion which are neither good nor bad, we call
them ugly.

More on the Notion of Weak (Pseudo/Quasi)Random Functions. A
function is a pseudorandom function if

(i) It cannot be distinguished from a uniformly random function by any efficient
distinguisher.

(ii) It can be efficiently computed.

In this paper we also consider the setting where (ii) is not necessarily satisfied,
as the function is realized by some oracle, we call such functions simply random
functions (RF). If (i) only holds for distinguishers which may query the function
on random inputs, we prepend the term “weak” (like weak PRF). Functions
which cannot be distinguished from random by any (and not just any efficient)
distinguisher making some bounded number of queries are called quasirandom
functions (QRF).2 In particular any function which is a RF relative to a PSPACE
oracle is a QRF.3

We use the term randomized function to denote a function which is not de-
terministic. This could be an efficient family of functions, where a function is
sampled by choosing a random key. It could also be an oracle implementing

1 In such a reduction one constructs an efficient adversary A, such that for every adver-
sary B which breaks the security (as a weak PRF) of the expansion, the adversary
A, given black-box access to B, breaks the security of the underlying randomized
function (here A and B have only black-box access to the randomized function).
Having black-box access to some component means that one only can query it on
inputs of ones choice to get some output, but one does not get to see a description
(say as a Turing machine) of the component.

2 In the literature one often refers to such functions a almost k-wise independent
functions, where k is a bound on the number of queries.

3 This is the case as relative to a PSPACE oracle no computational hardness, and thus
no pseudorandomness, exists. So if we have a RF relative to a PSPACE oracle, its
randomness must be information theoretic, which means it is a QRF.



520 K. Pietrzak and J. Sjödin

a function, where the oracle uses randomness. Clearly, any random function is
a randomized function as a deterministic function is easily distinguished from
random, the converse is not true in general.

1.1 Related Work

Optimal Expansions. Efficient range expansion for weak PRFs have been in-
vestigated by Damg̊ard and Nielsen [2]. They prove that there are good expan-
sions which achieve an exponential expansion factor of roughly 2m/2 − 1 (using
m keys). This has been improved to roughly 3m/2 − 1 in [11] and to 2m − 1 in
[10]. From our classification it follows (Corollary 1) that 2m − 1 is indeed the
best possible.4

Expansions in Minicrypt. In [13], we show that in Minicrypt, i.e. under the
assumption that public-key cryptography does not exist5, some ugly construc-
tions6 are secure. We do not know if relative to this assumption all ugly con-
structions are secure (in this paper we show that relative to a PSPACE oracle
all ugly constructions are secure).

1.2 Applications

Weak PRFs are a strictly weaker primitive than PRFs, and thus requiring that
some construction (like AES) is only a weak PRF is less of an assumption than
assuming it to be a “regular” PRF.7 Still, for many applications, weak PRFs
are enough. An example is symmetric encryption [12,2,10]. The scheme defined
by encrypting a message M as (r, F (k, r)⊕M), where r is sampled uniformly at
random, is IND-CPA secure if F is a weak PRF [12]. There is some overhead as
the ciphertext is |r| bits longer than the plaintext, but using range extension for
weak PRFs, a message of any length can be encrypted [2], and thus the overhead
is independent of the message length.

In particular, when using the optimal expansion from [10] in the above scheme
one needs m = �log2(|M |/n+ 1)� shared keys (n being the block-length) for the
(fixed output length) weak PRF (those keys can also be computed by expanding
a single key, see [10]). This expansion has a “depth” of m, by which we mean
that to compute some elements of the output, one will have to invoke the weak

4 In [10], it is shown – under the Inverse Decisional Diffie Hellman (IDDH) assumption
– that their expansion α of size 2m − 1 is optimal for expansions containing strings
of length logarithmic in the expansion factor (this corresponds to log-time random
access to the output blocks). However, this still leaves open the possibility that a
different expansion of larger size exists. In fact, [11] claim to have found a construction
with a better expansion, but their proof is flawed (see [10]).

5 This means relative to an oracle where one-way functions do exist, but key-agreement
does not, such an oracle was constructed by Impagliazzo and Rudich [5].

6 In particular (using notation introduced in the next section) α = {〈1, 2〉, 〈2, 1〉}.
7 Block ciphers like AES are usually not only assumed to be PRFs, but even super

pseudorandom-permutations, i.e. indistinguishable from a uniformly random permu-
tation when adaptively queried from both directions.



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 521

PRF up to m times sequentially. Let us, however, stress that to compute all
2m − 1 outputs, one only needs a total number of 2m − 1 invocations. This is
no contradiction, as if we compute an element with depth c, all the c − 1 values
computed on the way will also be part of the output.

Although a depth of m is only logarithmic in the expansion factor, this might
already be too much (say, due to hardware restrictions). We show (Corollary 2)
that if we require a smaller depth c < m, then the best expansion factor we can
get is

∑c
i=0

(
m
c

)
− 1. Note that for m = c, this indeed gives the 2m − 1 bound.

2 Basic Definitions

By LX and RX we denote the left and right half of a bit string X of even length,
respectively. We denote with [m] the set {1, . . . , m}.

An expansion α is a set of strings over an alphabet [m] for some m ∈ N.
Consider an expansion α = {s1, . . . , st}, each si ∈ [m]∗. With si[j] we denote
the j’th letter of si. We denote with #α

def= m the alphabet size, with |α| def= t
the size, with ‖α‖ =

∑t
i=1 |si| the total length, and for 1 ≤ i ≤ m with αi the

number of occurrences of the letter i in α. Note that
∑#α

i=1 αi = ‖α‖.
For an expansion α, #α = m, |α| = t, and functions F1, . . . , Fm, each X → X ,

we define the function
Cα

F1,...,Fm
= X → X t

as follows. On input X ∈ X , the i’th component (i ∈ [t]) of the output is
computed using si as

Fsi[|si|](Fsi [|si|−1](. . . Fsi[2](Fsi [1](X)) . . .)).

We will refer to the above computation as the evaluation of the i’th chain.
For a randomized function F , we denote with Cα

F the function Cα
F1,...,Fm

where
m = #α and each Fi as an independent instantiation of F .

3 The Good, the Bad and the Ugly

We classify the expansions into three classes depending on the security they
guarantee for Cα

F .

The Good: α is good if the security of Cα
F as a weak random function can be

efficiently black-box reduced to the security of F as a weak random function.8

So whenever F is a weak random function, also Cα
F is, and moreover this holds

relative to any oracle.
The Bad: α is bad if there is an efficient construction F ′ which uses some
function F as a black-box, such that the security of F ′ as a weak random function
8 The reduction being efficient means that from any adversary A which breaks the

security of Cα
F , we construct an adversary B where BA,F breaks the security of F ,

and the size of B (as an oracle circuit) is polynomial in the size of α and the range
of F .



522 K. Pietrzak and J. Sjödin

can be efficiently black-box reduced to the security of F as a weak random
function, but Cα

F ′ is not a weak random function.
The Ugly: α is ugly if it is neither good nor bad.

We now give a simple classification of all expansions into three classes G, B
and U, which by Theorem 1 below are exactly the good, the bad, and the ugly
expansions.

Definition 1. An expansion α = {s1, . . . , st} is

– of type B if it does contain a string with two consecutive identical letters or
two identical strings, i.e.

∃i, k where si[k] = si[k + 1] or ∃i, j, 1 ≤ i < j ≤ m : si = sj .

– of type G if it is not of type B and whenever a letter c appears before a letter
d in some s ∈ α, then d does not appear before c in any string s′ ∈ α, i.e.9

∀s, s′ ∈ α, i, j, i′, j′ : s[i] = s′[i′] ∧ s[j] = s′[j′] ∧ i < j ⇒ i′ < j′.

– of type U if it is not of type G or B.

Theorem 1 (main)

(i) An expansion is good if and only if it is of type G.
(ii) An expansion is bad if and only if it is of type B.
(iii) An expansion is ugly if and only if it is of type U.

That G expansions are good and B expansions are bad follows by rather simple
black-box reductions (Lemmata 1 and 2), the “only if” part is much harder. In
order to show that the U expansions are ugly, one has to come up with an oracle
implementing a random function, such that relative to this oracle the expansion
is not secure (thus it is not good), and another oracle relative to which it is
secure (thus it is not bad). For the latter oracle we use a PSPACE oracle, as
we show (Theorem 2) that for QRFs (recall that any RF is a QRF relative to a
PSPACE oracle) any expansion which is not of type B, is secure. The following
table summarizes the proof of the theorem.

G U B

good by Lemma 2 (and [10]) not good by Lemma 3
not bad by Theorem 2 bad by Lemma 1

So Theorem 1.(i) follows from Lemma 2 and 3, Theorem 1.(ii) follows from
Theorem 2 and Lemma 1, and Theorem 1.(iii) follows from (i) and (ii).

Corollaries. For every m, [10] construct a good expansion of size 2m −1 using
m keys: let α contain all 2m − 1 distinct s (of length at least 1) over [m] where
s[i − 1] < s[i] for all 2 ≤ i ≤ |s|. From our classification it follows that this is
best possible, and moreover, this expansion is the unique good expansion of size
2m − 1 (up to relabellings of the keys).
9 Note that we do not require c �= d, so this condition implies that no letter appears

more than once in any string.



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 523

Corollary 1. For any m and α with alphabet size #α = m, if α is good then

|α| ≤ 2m − 1,

and this is tight for α = {s ∈ [m]∗ ; s[1] < s[2] < . . . < s[|s|]}.

For some c < m, consider the expansion we get by removing all s ∈ α of length
more than c from the optimal expansion just described. This expansion is still
good, and it is not hard to show that it is the best good expansion of depth c
using m keys.

Corollary 2. For any m, c ≤ m, and α with alphabet size #α = m, if α is good
then

|α| ≤
c∑

i=0

(
m

i

)
− 1,

and this is tight for α = {s ∈ [m]∗ ; s[1] < s[2] < . . . < s[|s|], |s| ≤ c}.

Note that Corollary 1 is just a special case of Corollary 2 for the case c = m.

4 The Bad Expansions Are Exactly B

To prove that expansions outside of B are not bad, we use the random systems
framework of Maurer [7]. Here we only give a rather informal and restricted
exposition of the framework, in particular we only consider known-plaintext
attacks (KPA), as this is the only attack relevant for this paper.

Notation. We use capital calligraphic letters like X to denote sets, capital
letters like X to denote random variables, and small letters like x denote concrete
values. To save on notation we write X i for X1, X2, . . . , Xi.
Random Systems. Informally, a random system is a system which takes inputs
X1, X2, . . . and generates, for each new input Xi, an output Yi which depends
probabilistically on the inputs and outputs seen so far. We define random systems
in terms of the distribution of the outputs Yi conditioned on X iY i−1, more
formally: An (X , Y)-random system F is a sequence of conditional probability
distributions PF

Yi|XiY i−1 for i ≥ 1. Here we denote by PF
Yi|XiY i−1(yi, x

i, yi−1) the
probability that F will output yi ∈ Y on input xi ∈ X conditioned on the fact
that F did output yj ∈ Y on input xj ∈ X for j = 1, . . . , i − 1.

Uniformly random functions (URFs) are random systems which will be im-
portant in this paper, throughout Rn,m will denote a URF {0, 1}n → {0, 1}m.
Conditions for Random Systems. With FA we denote the random system
F, but which additionally defines an internal binary random variable after each
query (called a condition). Let Ai ∈ {0, 1} denote the condition after the i’th
query. We set A0 = 0 and require the condition to be monotone which means
that Ai = 1 ⇒ Ai+1 = 1 (i.e. when the condition failed, it will never hold
again). Let ai denote the event Ai = 1, then with νKPA(FA, ak) we denote the



524 K. Pietrzak and J. Sjödin

probability of the event ak occurring when FA is queried on random inputs, i.e.

νKPA(FA, ak) def=
∑

xk∈Xk

Pr[Xk = xk] · Pr[ak holds in FA(xk)]

=
1

|X |k
∑

xk∈Xk

Pr[ak holds in FA(xk)].

Indistinguishability. For (X , Y)-random systems F and G, we denote with
ΔKPA

k (F,G) the distinguishing advantage of any unbounded distinguisher in a k
query known-plaintext attack. This advantage is simply the statistical distance,
i.e. with Xk being uniformly random over X k

ΔKPA
k (F,G) def=

1
2

∑

xk∈Xk,yk∈Yk

Pr[Xk = xk] ·
∣∣Pr[F(xk) = yk] − Pr[G(xk) = yk]

∣∣

=
1

2 · |X |k
∑

xk∈Xk,yk∈Yk

∣∣Pr[F(xk) = yk] − Pr[G(xk) = yk]
∣∣ .

FA � GB denotes that FA is equivalent to GB while the respective condition
holds:

FA � GB ⇐⇒ ∀xi, yi : PrF
A

ai∧Y i|Xi(yi, xi) = PrG
B

bi∧Y i|Xi(yi, xi).

We say that FA is dominated by G, which is denoted by FA � G, if on any
input xi and for any possible output yi the probability that FA(xi) output yi

and the condition A holds, is at most the probability that G(xi) = yi.

FA � G ⇐⇒ ∀xi, yi :PrF
A

ai∧Y i|Xi(yi, xi) ≤ PrGY i|Xi(yi, xi)

or equivalently ∀xi, yi :PrF
A

ai∧Yi|XiY i−1ai−1
(yi, x

i, yi−1) ≤ PrGYi|XiY i−1(yi, x
i, yi−1)

Note that FA � GB implies FA � G and GB � F. The following are the two
main propositions of the framework (restricted to the case of KPA attacks).

Proposition 1. If FA � G then ΔKPA
q (F,G) ≤ νKPA(FA, aq).

Proposition 2. For any random systems F and G, there exist conditions A
and B such that

FA � GB and ΔKPA
q (F,G) = νKPA(FA, aq) = νKPA(GB, bq).

Proposition 1 is quite easy to prove and appeared in the original paper [7]. Propo-
sition 2 is from (the yet unpublished) [9], a weaker version of this proposition
appeared in [8].

4.1 Expansions Not in B Are Not Bad

By the following theorem, Cα
F1,...,Fm

is a weak quasirandom function whenever
the Fi’s are weak QRFs and α is not in B. The distance of the output of Cα

F1,...,Fm



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 525

on q random queries can be upper bounded by the sum of the distances of the
Fi’s on qαi random queries (recall that αi is the number of invocations of Fi on
an invocation of Cα

F1,...,Fm
), plus some term which is small unless q · ‖α‖ is in

the order of 2n/2.

Theorem 2. For any expansion α = {s1, . . . , st} which is not of type B, any
randomized functions Fi : {0, 1}n → {0, 1}n, 1 ≤ i ≤ #α := m, and every q ∈ N:

ΔKPA
q (Cα

F1,...,Fm
,Rn,n·t) ≤

m∑

i=1

ΔKPA
q·αi

(Fi,Rn,n) +
q2‖α‖2

2n
.

Proof. To save on notation let

I def= Cα
R1,...,Rm

and C def= Cα
F1,...,Fm

,

where the Ri’s are independent instantiations of Rn,n. By the triangle inequality

ΔKPA
q (C,Rn,n·t) ≤ ΔKPA

q (C, I) + ΔKPA
q (I,Rn,n·t). (1)

The theorem follows from the two claims below, which bound the two terms on
the right hand side of (1) respectively.

Claim 1

ΔKPA
q (I,Rn,n·t) ≤ q2‖α‖2

2n+1

Proof (of Claim 1) We define a condition D on I as follows: the condition is
satisfied as long as for all i, 1 ≤ i ≤ m, there was no nontrivial collision on the
inputs to the component Ri. Here the trivial collisions are the “unavoidable”
collisions which occur when two chains have the same prefix. For example in
C
{〈1,2,3,4〉,〈1,2,4,3〉}
R1,...,R4

the inputs to R1 in the two different chains are always iden-
tical, the same holds for the inputs to R2 (but not for R3 or R4). We now show
(using that α is not of type B) that this condition satisfies ID � Rn,n·t, i.e.

∀xi, yi : PrIYi∧di|XiY i−1∧di−1
(yi, x

i, yi−1) ≤ PrRn,n·t
Yi|XiY i−1(yi, x

i, yi−1) = 2−n·t.
(2)

Assume we invoke I on the i’th query xi ∈ {0, 1}n, and that di−1, i.e. the
condition was satisfied after the (i − 1)’th query. We evaluate the t = |α| chains
of I = Cα

R1,...,Rm
one by one and assume that the si’s are ordered by increasing

length.10 For any j, when computing the j’th chain we stop just before we
invoke the last component Rsj [|sj |]. Now, if the input to this component is fresh
(i.e. Rsj [|sj|] was never invoked on that input before), then every output has
probability exactly 2−n. The probability that we get fresh inputs (to the last
components) on all t chains and the outputs will be consistent with yi in all
chains is thus at most 2−n·t. On the other hand, if at some point we have an
10 This will only be important if one chain is the prefix on another.



526 K. Pietrzak and J. Sjödin

input which is not fresh, then there has been a collision. Now, as no two chains
are equivalent (as α is not in B) and we process them by increasing length, it
follows that this collision was a nontrivial one, and thus di. This concludes the
proof of (2). The first step of

ΔKPA
q (I,Rn,n·t) ≤ νKPA(ID, dq) ≤

∑m
i=1(q · αi)2

2n+1 ≤ q2‖α‖2

2n+1 (3)

follows by Proposition 1 using ID � Rn,n·t. The second step follows by the
birthday bound: the fact that dq means that at some point for some i ∈ [m]
the uniformly random output of Ri did collide with some “old” input to Ri.
As Ri is invoked q · αi times, the probability that there will be a collision is at
most (q · αi)2/2n+1. To get the probability that there will be a collision for any
Ri, i ∈ [m], we take the union bound. �
Claim 2

ΔKPA
q (C, I) ≤ q2‖α‖2

2n+1 +
m∑

i=1

ΔKPA
q·αi

(Fi,Rn,n)

Proof (of Claim 2) For every i, 1 ≤ i ≤ m, let Ai and Bi be conditions such that
(the existence of such conditions follows by Proposition 2)

FA
i

i � RB
i

n,n and ΔKPA
q (Fi,Rn,n) = νKPA(RB

i

n,n, b
i

q) = νKPA(FA
i

i , ai
q). (4)

To save on notation let B def= B1 ∧ · · · ∧ Bm, A def= A1 ∧ · · · ∧ Am and qi = q · αi. .
As for all FA

i

i ≡ RB
i

n,n for 1 ≤ i ≤ m, it follows that

CA � IB. (5)

Let b ⇒q d denote the event defined on IB∧D which holds if at any timepoint up
to after the q’th query, either D holds or B does not hold (or equivalently, either
D does not fail, or it only fails after B fails). The first step below follows by
Proposition 1 using (5). The last step follows by the union bound and observing
that bq ∨ dq holds iff dq ∨ [bq ∧ [b ⇒q d]].

ΔKPA
q (C, I) ≤ νKPA(IB, bq)

≤ νKPA(IB∧D, bq ∨ dq)
≤ νKPA(ID, dq) + νKPA(IB∧D, bq ∧ [b ⇒q d]). (6)

We can bound the first term of (6) using (3) as νKPA(ID, dq) ≤ q2‖α‖2/2n+1.
We now bound the second term of (6), using bq ⇐⇒ b

1
q1

∨ . . . ∨ b
m

qm
in the first

inequality, and the union bound in the second step:

νKPA(IB∧D, bq ∧ [b ⇒q d]) = νKPA(IB∧D, [b
1
q1

∨ . . . ∨ b
m

qm
] ∧ [b ⇒q d])

≤
m∑

i=1

νKPA(IB∧D, b
i

qi
∧ [b ⇒q d]).



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 527

The term νKPA(IB∧D, b
i

qi
∧ [b ⇒q d]) is the probability that when querying I on q

random inputs, the condition Bi defined on Ri will fail, and it will do so before
D fails. Now, as long as D holds, Ri is invoked on uniformly random inputs: the
inputs are either part of the global input (which is random in a KPA attack), or
it is the output of some URF Rj . It is important to note that in this case always
j �= i,11 so Ri is never invoked on its own output, which guarantees that (while
D holds) the inputs to Ri are not only random, but also independent of Ri. So
the probability that b

i

qi
∧ [b ⇒q d] in I can be upper bounded by the probability

that bqi in RB
i

i in a normal KPA attack, i.e.

νKPA(IB∧D, b
i

qi
∧ [b ⇒q d]) ≤ νKPA(RB

i

i , b
i

qi
) = ΔKPA

qi
(Fi,Rn,n),

where the second step follows by (4). �
��

4.2 Type B Expansions Are Bad

Lemma 1. Expansions of type B are bad.

Proof. To prove the lemma we show a black-box construction of a random func-
tion GP based on a permutation P such that:

(i) The security of GP as a weak random function can be black-box reduced to
the security of P as a random permutation.

(ii) For every bad expansion α, Cα
GP is not a weak random function.

Note that we assume that G has access to an oracle which implements a random
permutation,12 and not just a weak RF as required by the lemma. We can do
this as random permutations and weak random functions are equivalent, in the
sense that both can be constructed from (and imply the existence of) functions
which are hard to invert on random inputs13 via a black-box reduction [3,4,6].

To simplify the argument, in the proof we assume that the random permuta-
tion P : {0, 1}2n → {0, 1}2n is a uniformly random permutation (URP). As by
definition a random permutation is indistinguishable from a URP, this does not
change the statement. GP (X) : {0, 1}2n → {0, 1}2n is defined as follows, first let
Y = LY ‖RY ← P−1(X), now

GP (X) =
{

02n if LY = 0n or X = 02n

P (0n‖RX) otherwise.

We first prove statement (i), namely that GP is a weak random function (in fact,
as we assume that P is a URP, we can even show that GP is a weak quasirandom
function).
11 This is because α is not of type B and thus no s ∈ α has two identical consecutive

letters.
12 A random permutation is a random bijective function (with same range and domain).
13 Such functions are called one-way functions in the special (and most interesting)

case where the function can be efficiently computed in forward direction.



528 K. Pietrzak and J. Sjödin

Claim 3

ΔKPA
q (GP ,R2n,2n) ≤ 3q2

2n

Proof (of Claim 3). By the triangle inequality

ΔKPA
q (GP ,R2n,2n) ≤ ΔKPA

q (GP , P ) + ΔKPA
q (P,R2n,2n) (7)

GP is equivalent to P unless we happen to query GP on input 02n or an input
X where the first n bits of P−1(X) are 0n. For a random X , this happens with
probability ≤ 2−2n + 2−n. By the union bound

ΔKPA
q (GP , P ) ≤ 2q

2n
. (8)

By the so called PRF/PRP switching lemma (see e.g. [1]) we have

ΔKPA
q (P,R2n,2n) ≤ q2

22n+1 . (9)

The claim follows from (7), (8), and (9). �

Now we prove statement (ii), i.e. that for every bad expansion α, Cα
GP is not a

weak random function. Recall that α = {s1, . . . , st} is bad if either si = sj for
some i �= j or there is a si with two consecutive identical letters, i.e. for some
j : si[j] = si[j + 1]. When si = sj then also the i’th and j’th tuple in the output
of Cα

GP (X) are identical for any X , and thus easy to distinguish from random.
We now consider the other case. Let α be any expansion where for some

element s ∈ α we have for some j that s[j] = s[j + 1]. As we prove a negative
statement, we can without loss of generality assume that s is the only element
in α. We claim that Cα

GP is not random as for any m = #α instantiations
GP

1 , . . . , GP
m of GP and any X we have Cα

GP
1 ,...,GP

m
(X) = 02n. To see this let

X0 = X and for i = 1, . . . , |s| : Xi = GP
s[i](Xi−1), then Cα

GP
1 ,...,GP

m
(X) = X|s|.

Now by the definition of GP , for any Z and i ∈ [m], GP
i (GP

i (Z)) = 02n, in
particular Xj+1 = GP

s[j+1](G
P
s[j](Xj−1)) = 02n, and as GP

i (02n) = 02n for any i

we get X� = 02n for all � ≥ j. For concreteness let us illustrate this computation
on the example α = {〈1, 2, 2, 3〉}. Here P2 is the P used by GP

2 , and X3 = 02n

holds as LP−1
2 (X2) = 0n.

X = X0
GP

1→ X1
GP

2→ X2 = P2(0n‖RX1)
GP

2→ X3 = 02n GP
3→ X4 = 02n. ��

5 The Good Expansions Are Exactly G

5.1 Type G Expansions Are Good

The following lemma is from [10], for completeness we give a proof in the ap-
pendix.

Lemma 2. Expansions of type G are good.



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 529

5.2 Expansions Not in G Are Not Good

Lemma 3. Expansions not in G are not good.

By Lemma 1 expansions of type B are not good. It remains to show that there
exists an oracle O relative to which a weak random function FO exists, but
where for any expansion α = {s1, . . . , st} of type U the function Cα

F O is not
weakly random. The oracle O we construct will consist of two parts, which can
be accessed by setting the first part of the input to either “eval” or “break”.

Let n be our security parameter (think of O as a family of oracles, one for each
n ∈ N). Let m = maxi |si| and � = n3m. Let FO : {0, 1}n × {0, 1}� → {0, 1}� (O
still to be defined)

FO(k, x) = O(eval, k, x).

We will often write the key as a subscript FOk (.) = FO(k, .). The all zero string
0n is excluded from the valid keys as later 0n will have the special meaning of
“no key”.

We now define the “eval” part of the oracle. Initially, 2mn − 1 disjoint subsets
of {0, 1}�, each of size 2n, are sampled. Each such set corresponds to an ordered
sequence of at most m (and at least one) keys, the set corresponding to the keys
k1, . . . , km′ , m′ ≤ m is denoted S0(m−m′)n‖k1‖k2‖...‖km′ . With S0 we denote the
elements from {0, 1}� which are in no set, i.e. S0 = {0, 1}� \

⋃
x∈{0,1}mn\0mn Sx

(we have |S0| = 2mn3 − 2mn2
+ 2n, i.e. all but a 2−n fraction of elements from

{0, 1}� are in S0).
Now for any key k, O(eval, k, .) maps the elements from S0 at random to

S0(m−1)n‖k. As for the inputs not in S0, for any key k and keys k1, . . . , km′ ,
O(eval, k, .) is defined as a random bijective function from S0(m−m′)n‖k1‖k2‖...‖km′

to S0(m−m′−1)n‖k1‖k2‖...‖km′‖k (where for m = m′, we shift the leftmost key out,
i.e. we map Sk1‖k2‖...‖km

to Sk2‖...‖km‖k). Note that this means that for any t ≤ m
and x ∈ S0 a value computed as y = FOkt

(FOkt−1
. . . FOk1

(x)) is in S0(m−t)n‖k1‖...‖kt
.

For a computationally bounded distinguisher, this y will look random, but the
computationally unbounded “break” part of the oracle (defined below) can learn
the keys k1, . . . , kt used.

We now define the “break” part of the oracle. O(break, .) is a ({0, 1}�)2 →
{0, 1} function and defined as follows. For any Y1 ∈ S0m−m′n‖a1‖...‖am′ and Y2 ∈
S0m−m′′n‖b1‖...‖bm′′ , we define O(break, {Y1, Y2}) = 1 if there are i, i′, j, j′ where

ai = bi′ aj = bj′ i < j i′ > j′, .

and O(break, {Y1, Y2}) = 0 otherwise. In particular, O(break, {Y1, Y2}) outputs
0 if either Y1 ∈ S0 or Y2 ∈ S0.

Claim 4. For any α of type U, Cα
F O is not a weak random function (relative to

the oracle O).

Proof (of Claim 4). Let X ∈ {0, 1}� be a random input, and Y = Cα
F O (X). Let

Yi denote the i’th �-bit block of Y
def= Y1‖ . . . ‖Yt. As α = {s1, . . . , st} is of type



530 K. Pietrzak and J. Sjödin

U, there are i, j and letters c, d such that si = ∗c ∗ d∗, and sj = ∗d ∗ c∗, where
each ∗ is a wildcard, i.e. stands for “any” string. As Yi ∈ S∗si = S∗c∗d∗ and
Yj ∈ S∗sj = S∗d∗c∗, it follows that O(break, {Yi, Yj}) = 1. On the other hand,
for a random Y ′ = Y ′1‖ . . . ‖Y ′t the probability that O(break, {Y ′i , Y ′j }) = 1 is
very small: we get a rough (but already exponentially small) upper bound on
this probability by using that the oracle will output 0 whenever Y ′i is in S0, i.e.

Pr[O(break, {Y ′i , Y ′j }) = 1] ≤ Pr[Y ′i �∈ S0] < 1/2n.

Thus we can distinguish the output Y of Cα
F O from random Y ′ with advantage

almost 1. �

Claim 5. FO is a weak random function relative to O.

Proof (sketch of Claim 5). Clearly the function FO is a random function relative
to the oracle O(eval, ., .) alone (i.e. where there is no O(break, .)).

Now we will show that adding the oracle O(break, .) will not break the se-
curity of FO as a weak random function (but note that it trivially does break
the security of FO as a (non weak) random function14), as if an adversary AO

can distinguish FO(k, .) from random on random inputs and access to the oracle
O(break, .), then there is an adversary BO,A which uses A as “black-box” and
which can distinguish FO without querying the oracle O(break, .) at all (this
is a contradiction as FO is a random function relative to O(eval, .) alone). The
adversary BO,A on input Q = {(X1, Y1), . . . , (Xq, Yq)} (where the Xi’s are ran-
dom and the Yi’s are either random or Yi = FO(k, Xi) for a random k) runs
A on input Q. Here A has no access to the oracle O, but B controls A’s oracle
gates. B initializes an empty set T , this T will be used to remember the queries
made by A. Whenever A requests the output of O(eval, .) on some input k, x,
BO,A correctly answers with y = O(eval, k, x) and adds (k, x, y) to T . When
A requests the output of O(break, .) on an input {Y, Y ′}, B guesses the answer
itself, and we will show that BO,A can indeed guess O(break, {Y, Y ′}) correctly
with high probability. We now describe how BO,A guesses O(break, {Y, Y ′}).

BO,A first looks up the sequence (k1, x1, y1), . . . , (kt, xt, yt) ∈ T where Y = yt

and for i = 2, . . . , t : xi = yi−1 (where t is maximal, i.e. (k, x, x1) �∈ T for
any k, x). Similarly it looks up the sequence (k′1, x

′
1, y
′
1), . . . , (k

′
t′ , x′t′ , y′t′) where

yt′ = Y ′. Note that this means that Y and Y ′ were computed as

Y = FOkt
(FOkt−1

(. . . FO1 (x1) . . .)) Y ′ = FOkt′ (F
O
kt′−1

(. . . FO1 (x′1) . . .)). (10)

Now, if there are i, j, i′, j′ where i < j ≤ m, j′ < i′ ≤ m and ki = k′i′ , kj = k′j′ ,
then BO,A guesses that O(break, {Y, Y ′}) is 1 and guesses that it is 0 otherwise.

14 Having chosen plaintext access to a function T (.), we pick some key k and evaluate
C

〈1,2〉,〈2,1〉
T (.),F O(k,.) on some input X to get an output Y = Y1‖Y2. As {〈1, 2〉, 〈2, 1〉} is ugly,

if T (.) is of the form F O(k′, .), then O(break, {Y1, Y2}) will be 1, and if T (.) is a
URF, then O(break, {Y1, Y2}) will almost certainly be 0. Thus we can distinguish
F O(k, .) with random k from a URF .



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 531

When the guess is 1, it is always correct by the definition of O(break, .). So we
must show that when the guess is 0 then O(break, {Y, Y ′}) = 1 is very unlikely.

First we assume that the random X1, . . . , Xq ∈ Q are all in S0, this will hold
but with probability q/2n. Next, we assume that for the case where the Yi are
computed as FO(k, Xi), A never makes a query O(eval, k, X) for any X . As k
is random this will be true with probability at least q/2n. Now if BO,A wrongly
guesses that O(break, {Y, Y ′}) is 0, then the initial input x1 or x′1 from (10) was
not in S0. As x1 and x′1 were not received as an output from O (otherwise we
could extend one of the sequences of (10)), A has guessed a value outside of S0.
As S0 is a random subset which covers all but a 1/2n fraction of possible inputs,
the probability that A could have guessed an x1 outside of S0 is at most 1/2n

(same for x′1). �

The lemma follows from the two claims above.

Acknowledgments

We would like to the thank the Eurocrypt committee for their suggestions.

References

1. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology — EURO-
CRYPT ’06, volume 4004 of LNCS, pages 409–426. Springer, 2006.

2. Ivan Damg̊ard and Jesper B. Nielsen. Expanding pseudorandom functions; or:
From known-plaintext security to chosen-plaintext security. In Advances in Cryp-
tology — CRYPTO ’02, volume 2442 of LNCS, pages 449–464. Springer, 2002.

3. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

4. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

5. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proc, 21th ACM Symposium on the Theory of Computing
(STOC), pages 44–61, 1989.

6. Michael Luby and Charles Rackoff. Pseudo-random permutation generators and
cryptographic composition. In Proc, 18th ACM Symposium on the Theory of Com-
puting (STOC), pages 356–363, 1986.

7. Ueli Maurer. Indistinguishability of random systems. In Advances in Cryptology
— EUROCRYPT ’02, volume 2332 of LNCS, pages 110–132. Springer, 2002.

8. Ueli Maurer and Krzysztof Pietrzak. Composition of random systems: When two
weak make one strong. In Theory of Cryptograpy — TCC ’04, volume 2951 of
LNCS, pages 410–427. Springer, 2004.

9. Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability ampli-
fication, 2006. Cryptology ePrint Archive: Report 2006/456, 2006.

10. Ueli Maurer and Johan Sjödin. A fast and key-efficient reduction of chosen-
ciphertext to known-plaintext security. In Advances in Cryptology — EURO-
CRYPT ’07, LNCS. Springer, 2007. This proceedings.



532 K. Pietrzak and J. Sjödin

11. Kazuhiko Minematsu and Yukiyasu Tsunoo. Expanding weak PRF with small key
size. In ICISC ’05, volume 3935 of LNCS, pages 284–298. Springer, 2005.

12. Moni Naor and Omer Reingold. From unpredictability to indistinguishability:
A simple construction of pseudo-random functions from MACs. In Advances in
Cryptology — CRYPTO ’98, LNCS, pages 267–282. Springer, 1998.

13. Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt,
November 2006. Manuscript.

A Proof of Lemma 2

Proof (of Lemma 2). To show that expansions of type G are good, we must show
that for any expansion α of type G, the security of Cα

F as a weak random function
can be black-box reduced to the security of F as a weak random function.

Let AdvA
q (F, G) denote the advantage of the distinguisher A to distinguish

the randomized function F from G in a q query known-plaintext attack. More
formally, consider the random variable QF = (X1, . . . , Xq, Y1, . . . , Yq) where the
Xi’s are uniformly random and Yi = F ′(Xi) for an instantiation F ′ of F , then

AdvA
q (F, G) = Pr[A(QF ) → 1] − Pr[A(QG) → 1].

We prove the following statement:

For any expansion α of type G, any randomized function F with range
and domain {0, 1}n, there exists an adversary B such that for any ad-
versary A

AdvBA,F

q·αmax
(F,Rn,n) ≥

AdvA
q (Cα

F ,Rn,n·t)
#α

− q2 · α2
max

2n
. (11)

Where αmax = max(α1, . . . , α#α). Moreover B only uses A and F as a
black-box and it is efficient (basically, all that B has to do is to simulate
Cα

F on q inputs and it invokes A only once).

So if A breaks the security of Cα
F as a weak RF, then B breaks the security of the

underlying F as a weak RF. For the special case of pseudorandom functions, this
statement implies that if F is a weak PRF, then so is Cα

F . We now prove (11).
Consider an expansion α = {s1, . . . , st} of type G. We can assume without

loss of generality that for all s ∈ α and 0 < i < j ≤ t it holds that s[i] < s[j] (as
we can always permute the letters of an α of type G so that this holds).

For the proof it will be convenient to introduce a new random system. With
Ba,b we denote a random beacon {0, 1}a → {0, 1}b, this system is simply a ran-
dom source which outputs a new uniformly random value in {0, 1}b on each input.
As Ba,b and Ra,b have exactly the same output distribution unless queried twice
on the same input, it is easy to show that for any A (e.g. using the framework
from section 4 for the second step)

AdvA
q (Ba,b,Ra,b) ≤ ΔKPA

q (Ba,b,Ra,b) ≤ q2

2a+1 . (12)



Range Extension for Weak PRFs; The Good, the Bad, and the Ugly 533

Let m := #α and consider the hybrid systems Ci
def= Cα

B1,...,Bi,Fi+1,...,Fm
, where

each Bi denotes an instantiation of Bn,n. As C0 ≡ Cα
F1,...,Fm

, Cm ≡ Cα
B1,...,Bm

≡
Bn,t·n we have

AdvA
q (Cα

F1,...,Fm
,Bn,t·n) =

m∑

i=1

AdvA
q (Ci−1, Ci). (13)

For i ∈ [m] let BA,F
i be an adversary which on input (X1, . . . , Xqαi , Y1, . . . , Yqαi)

simulates the computation of Cα
B1,...,Bi−1,T,Fi+1,...,Fm

(T to be defined) on q ran-
dom inputs X ′1, . . . , X

′
q to get outputs Y ′1 , . . . , Y ′q , and then outputs the output

of A(X ′1, . . . , X
′
q, Y

′
1 , . . . , Y ′q ). In this simulation the component T is only queried

on uniformly random inputs15. Instead of choosing those inputs at random,
we require that BA,F

i uses the values X1, X2, . . . if it has to define the ran-
dom values which are used as inputs to T . Now, if T is a beacon Bn,n, then
Cα

B1,...,Bi−1,T,Fi+1,...,Fm
is Ci, and if T is an instance of F then it is Ci−1, so

AdvBA,F
i

qαi
(F,Bn,n) = AdvA

q (Ci−1, Ci). (14)

Now consider an adversary BA,F which first chooses a random i ∈ [m] and then
runs BA,F

i . Using (14) in the second and (13) in the third step, we get:

AdvBA,F

q·αmax
(F,Bn,n) =

1
m

m∑

i=1

AdvBA,F
i

qαi
(F,Bn,n)

=
1
m

m∑

i=1

AdvA
q (Ci−1, Ci)

=
AdvA

q (Cα
F1,...,Fm

,Bn,t·n)
m

. (15)

To conclude the proof of (11) we must “replace” the beacons B in (15) by URFs
R. Below we use the triangle inequality in the first and third, and (15) in the
second step. In the last step we use (12) twice.

AdvBA,F

q·αmax
(F,Rn,n)

≥ AdvBA,F

q·αmax
(F,Bn,n) − AdvBA,F

q·αmax
(Bn,n,Rn,n)

=
AdvA

q (Cα
F1,...,Fm

,Bn,t·n)
m

− AdvBA,F

q·αmax
(Bn,n,Rn,n)

≥
AdvA

q (Cα
F1,...,Fm

,Rn,t·n)
m

−
AdvA

q (Bn,t·n,Rn,t·n)
m

− AdvBA,F

q·αmax
(Bn,n,Rn,n)

≥
AdvA

q (Cα
F1,...,Fm

,Rn,t·n)
m

− q2

2n+1 · m − q2 · α2
max

2n+1
︸ ︷︷ ︸

q2·α2
max/2n

�

15 As s[i] < s[j] if i < j, so T is invoked on either the global input or on the output of
some Bj , j < i.



Feistel Networks Made Public, and Applications

Yevgeniy Dodis and Prashant Puniya

Department of Computer Science,
Courant Institute of Mathematical Sciences,

New-York University
{dodis,puniya}@cs.nyu.edu

Abstract. Feistel Network, consisting of a repeated application of the
Feistel Transform, gives a very convenient and popular method for de-
signing “cryptographically strong” permutations from corresponding
“cryptographically strong” functions. Up to now, all usages of the Feistel
Network, including the celebrated Luby-Rackoff’s result, critically rely
on (a) the (pseudo)randomness of round functions; and (b) the secrecy
of (at least some of) the intermediate round values appearing during the
Feistel computation. Moreover, a small constant number of Feistel rounds
was typically sufficient to guarantee security under assumptions (a) and
(b). In this work we consider several natural scenarios where at least one
of the above assumptions does not hold, and show that a constant, or
even logarithmic number of rounds is provably insufficient to handle such
applications, implying that a new method of analysis is needed.

On a positive side, we develop a new combinatorial understanding of
Feistel networks, which makes them applicable to situations when the
round functions are merely unpredictable rather than (pseudo)random
and/or when the intermediate round values may be leaked to the adver-
sary (either through an attack or because the application requires it). In
essence, our results show that in any such scenario a super-logarithmic
number of Feistel rounds is necessary and sufficient to guarantee security.

Of independent interest, our technique yields a novel domain extension
method for messages authentication codes and other related primitives,
settling a question studied by An and Bellare in CRYPTO 1999.

Keywords: Feistel Network, Verifiable Random Functions/Permutations,
PRFs, PRPs, MACs, Domain Extension.

1 Introduction

Feistel Networks are extremely popular tools in designing “cryptographically
strong” permutations from corresponding “cryptographically strong” functions.
Such networks consist of several iterative applications of a simple Feistel per-
mutation Ψf (xL ‖ xR) = xR ‖ xL ⊕ f(xR), with different (pseudo)independent
round functions f used at each round. Among their applications, they are com-
monly used in the design of popular block ciphers, such as DES, as well as other
constructs, such as popular padding schemes OAEP [2] or PSS-R [3]. In par-
ticular, the celebrated result of Luby and Rackoff [12] shows that three (resp.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 534–554, 2007.
c© International Association for Cryptology Research 2007



Feistel Networks Made Public, and Applications 535

four) rounds of the Feistel transform are sufficient to turn a pseudorandom func-
tion (PRF) family into a pseudorandom permutation (PRP) family (resp. strong
PRP family). There has been a lot of subsequent work (e.g., [20,23,15,22]) on
improving various aspects of the Luby-Rackoff’s result (referred to as “LR” from
now on). However, all these results crucially relied on:

(a) the (pseudo)randomness of round functions; and
(b) the secrecy of (at least some of) the intermediate round values appearing

during the Feistel computation

In this work we consider several natural scenarios where at least one of the
above assumptions does not hold, and show that a fundamentally new analysis
technique is needed for such applications. But first let us motivate our study.

Is Unpredictability Enough? We start with the assumption regarding
pseudorandomness of round functions. This assumption is quite strong, since
practical block ciphers certainly do not use PRFs as their round functions. In-
stead, they heuristically use considerably more than the three-six rounds pre-
dicted by the LR and all the subsequent “theoretical justifications”. Thus, a
large disconnect still remains to be bridged. Clearly, though, we need to assume
some security property of the round function, but can a weaker property be
enough to guarantee security?

In the context of domain extension of message authentication codes, An and
Bellare [1] studied a natural question whether unpredictability — a much weaker
property than pseudorandomness — can at least guarantee the unpredictability
of the resulting Feistel permutation. Although not as strong as pseudorandom-
ness, this will at least guarantee some minimal security of block ciphers (see
[7]), is enough for basic message authentication, and anyway doubles the do-
main of the unpredictable function, which is useful (and non-trivial!) by itself.
[1] gave a negative answer for the case of three rounds, and suggested that “even
more rounds do not appear to help”. This result indicates that previous “LR-
type techniques” are insufficient to handle unpredictability (since in the case of
PRFs three rounds are enough), and also leaves open the question whether more
Feistel rounds will eventually be enough to preserve unpredictability. Our work
will completely resolve this question. Along the way, it will prove that Feistel
Networks could serve as domain extenders for message authentication codes.

Is it Safe to Leak Intermediate Results? Another crucial reason for the
validity of the LR result is the fact that all the intermediate round values are
never leaked to the attacker. In fact, the key to the argument, and most of the
subsequent results, is that the attacker effectively gets no information about most
of these values in case a PRF is used for the round function, and simple attacks
(which we later generalize to many more rounds) are possible to invalidate the
LR result in case the intermediate values are leaked. Unfortunately, for many
natural applications this assumption (or conclusion!) can not be enforced, and
a totally new argument is needed. We give several examples.

Starting with the simplest (but also least interesting) example, intermediate
values might be inadvertently leaked through an attack. For example, one might



536 Y. Dodis and P. Puniya

imagine a smartcard implementing a block cipher via the Feistel network using
a secure chip implementing a PRF. In this case the attacker might be able to
observe the communication between the smartcard and the chip, although it
is unable to break the security of the chip. More realistically, when the round
functions are not PRFs, the attacker might get a lot of information about the
intermediate values anyway, even without extra attack capabilities. For example,
in the case of unpredictable functions (UFs) mentioned above, we will construct
provably secure UFs such that the output of the Feistel Network completely leaks
all the intermediate round values. Although artificial, this example illustrates
that weaker assumptions on the round functions can no longer guarantee the
secrecy of intermediate values.

For yet another example, the round function might simply be public to begin
with. This happens when one considers the question of implementing an ideal
cipher from a random oracle, considered by the authors in TCC’06 [6]. In this
case the round function is a publicly accessible random oracle, and is certainly
freely available to the attacker. To see the difference with the usual block cipher
setting where four round are enough, [6] showed that even five Feistel rounds
are not sufficient to built an ideal cipher, although conjectured that a larger
constant number of rounds is sufficient. The authors also showed a weaker pos-
itive implication in the so called “honest-but-curious model”, although only for
a super-logarithmic number of rounds (as they also showed, reducing the num-
ber of rounds in this model would imply the security in the usual, “malicious”
model). As a final example (not considered in prior work), the attacker might get
hold of the intermediate values because the application requires to reveal such
values. This happens when one tries to add verifiability to PRFs and PRPs (or
their unpredictable analogs), which we now describe in more detail.

Verifiable Random Functions and Permutations. We consider the prob-
lem of constructing verifiable random permutations (VRPs) from verifiable ran-
dom functions (VRFs). VRFs and VRPs are verifiable analogs of PRFs and
PRPs, respectively. Let us concentrate on VRFs first. Intuitively, regular PRFs
have a limitation that one must trust the owner of the secret key that a given
PRF value is correctly computed. And even when done so, a party receiving
a correct PRF value cannot later convince some other party that the value is
indeed correct (i.e., PRF values are “non-transferable”). In fact, since the func-
tion values are supposed to be (pseudo)random, it seems that such verifiability
of outputs of a PRP would contradict its pseudorandomness. The way out of this
contradiction was provided by Micali, Rabin and Vadhan [17], who introduced
the notion of a VRF. Unlike PRFs, a VRF owner must be able to provide a short
proof that any given VRF output is computed correctly. This implies that the
VRF owner must publish a public key allowing others to verify the validity of
such proofs. However, every “unopened” VRF value (i.e., one for which no proof
was given yet) should still look indistinguishable from random, even if many
other values were “opened” (by giving their proofs). Additionally, the public
key should commit the owner of the VRF to all its function values in a unique
way, even if the owner tries to select an “improper” public key. Micali et al. [17]



Feistel Networks Made Public, and Applications 537

also gave a secure construction of a VRF based on the RSA assumption. Since
then, several more efficient constructions of VRFs have been proposed based on
various cryptographic assumptions; see [13,5,8].

The notion of a VRP, which we introduce in this paper, naturally adds ver-
ifiability to PRPs, in exactly the same natural way as VRFs do to PRFs. We
will describe some applications of VRPs later (and more in [7]), but here let us
concentrate on the relation between VRFs and VRPs. On the one hand, it is
easy to see that a VRP (on a “non-trivial domain”) is also a VRF, just like in
the PRF/PRP case. On a first look, we might hope that the converse implication
holds as well, by simply applying the Luby-Rackoff result to VRFs in place of
PRFs. However, a moment of reflection shows that this is not the case. Indeed,
the proof for the iterated Feistel construction must include all the VRF values
for the intermediate rounds, together with their proofs. Thus, the attacker can
legally obtain all the intermediate round values for every input/output that he
queries, except for the one on which he is being “challenged”. This rules out the
LR-type proof for this application. More critically, even the recent proof of [6]
(implementing the ideal cipher from a random oracle in the “honest-but-curious”
model) appears to be “fundamentally inapplicable” as well. Indeed, that proof
crucially used the fact that truly random functions (in fact, random oracles)
are used in all the intermediate rounds: for example, to derive various birthday
bounds used to argue that certain “undesirable” events are unlikely to happen.
One might then hope that a similar argument might be carried out by replacing
all the VRFs by truly random function as well. However, such “wishful replace-
ment” is prevented by the fact that we are required to prove the correctness
of each intermediate round value, and we (provably) cannot provide such proofs
when we use a totally random function in place of a VRF (which is “committed”
to by its public key). To put it differently, with a random function we have no
hope of simulating the VRF proofs that are “legally expected” by an adversary
attacking the VRP construction. Thus, again, a new technique is needed.

Verifiable Unpredictable Functions and Permutations. We also con-
sider the natural combination of the scenarios we considered so far, exempli-
fied by the task of constructing verifiable unpredictable permutations (VUPs)
from verifiable unpredictable functions (VUFs) [17] (also called unique signature
schemes [11,13]). A VUF is defined in essentially the same way as VRFs, except
that the pseudorandomness requirement for VRFs is replaced by a weaker unpre-
dictability requirement. Similarly, VUPs, introduced in this paper, are either the
permutation analogs of VUFs, or, alternatively, unpredictable analogs of VRPs.
Of course, as a VRP is also a VUP, we could attempt to build a VUP by actually
building a VRP via the Feistel construction applied to a VRF, as suggested in
the previous paragraph. However, this seems quite wasteful since VUFs appear
to be much easier to construct than VRFs. Indeed, although in theory VUFs
are equivalent to VRFs [17], the “Goldreich-Levin-type” reduction from VUFs
to VRFs in [17] is extremely inefficient (it loses exponential security and forces
the authors to combine it with another inefficient tree construction). Moreover,
several previous papers [17,13] constructed efficient VUFs based on relatively



538 Y. Dodis and P. Puniya

standard computational assumptions, while all the efficient VRF constructions
[5,8] are based on very ad hoc decisional assumptions. Thus, it is natural to
study the security of the Feistel network when applied to VUFs. In this case,
not only the round functions cannot be assumed pseudorandom, but also all the
intermediate values must be leaked together with their proofs of correctness,
making this setting the most challenging to analyze.

Other Related Work. Several prior works tried to relax the security of some
of the round functions. For example, Naor and Reingold showed that the first
and the fourth round could use pairwise independent hash functions instead of
PRFs. In a different vein, Maurer et al. [14] studied the case when the PRFs used
are only non-adaptively secure. Already in this setting, the authors showed that
it is unlikely that four Feistel rounds would yield a PRP (although this is true
in the so called “information-theoretic” setting). However, in these results at
least some of the round functions are still assumed random. In terms of leaking
intermediate results, Reyzin and Ramzan showed that in a four-round construc-
tion it is safe to give the attacker oracle access to the second and third (but not
first and fourth) round functions. This is incomparable to our setting: we leak
intermediate results actually happening during the Feistel computation, and for
all the rounds. Finally, we already mentioned the paper by the authors [6], which
showed how to deal with public intermediate results when truly random round
functions are used. As we argued, however, this technique is insufficient to deal
with unpredictability, and cannot even be applied to the case of VRFs (because
one cannot simulate the proofs of correctness for a truly random function).

1.1 Our Results

In this work we develop a new understanding of the Feistel Network which allows
us to analyze the situations when the intermediate round values may be leaked
to the adversary, and also handle cases when the round values are merely unpre-
dictable rather than pseudorandom. In our modeling, a k-round Feistel Network
is applied to k members f1 . . . fk independently selected from some (not neces-
sarily pseudorandom) function family C, resulting in a Feistel permutation π.
Whenever an attacker makes a forward (resp. backward) query to π (resp. π−1),
we assume that it learns all the intermediate values (as we mentioned, this is
either required by the application, or may anyway happen with unpredictable
functions).

Negative Result. As our first result, we show a simple attack allowing an ad-
versary to compute any value π−1(y) by making at most exponential in k number
of forward queries to π. Since such an inversion should be unlikely (with polyno-
mially many queries) even for an unpredictable permutation, this immediately
means that at least a superlogarithmic number of Feistel rounds (in the security
parameter λ) is necessary to guarantee security for any of the applications we
consider. Aside from showing the tightness of all our positive results described
below, this result partially explains why practical block ciphers use significantly
more than 3-6 rounds predicted by all the previous “theoretical justifications” of



Feistel Networks Made Public, and Applications 539

the Feistel Network. Indeed, since all such ciphers heuristically use round func-
tions which are not PRFs, and we just showed that even unpredictable round
functions might leak a lot (or even all) of the intermediate results, the simple
attack we present might have been quite applicable if a small constant number
of rounds was used!

Matching Positive Result. On a positive side, we show a general combina-
torial property of the Feistel Network which makes essentially no assumptions
(such as pseudorandomness) about the round functions used in the Feistel con-
struction, and allows us to apply it to a wide variety of situations described
above, where the previous techniques (including that of [6]) failed. In essence,
for any s ≤ k/2, we show that if an attacker, making a sub-exponential in s
number of (forward or backward) queries to the construction and always learn-
ing all the intermediate round values, can cause a non-trivial collision somewhere
between rounds s and k − s, then the attacker can also find a simple (and non-
trivial) XOR condition on a constant (up to six) number of the round values of
the queries he has made. This means that if a function family C is such that it is
provably hard for an efficient attacker to find such a non-trivial XOR condition,
— and we call such families 5-XOR resistant (see Section 4), — then it is very
unlikely that the attacker can cause any collisions between rounds s and k−s (as
long as s, and thus k, are super-logarithmic in the security parameter λ). And
once no such collisions are possible, we show that is possible to directly argue
the security of the Feistel Network for our applications. In particular, as even
mere unpredictability is enough to establish 5-XOR resistance, we conclude that
super-logarithmic number of Feistel rounds is necessary and sufficient to yield

– a (strong) unpredictable permutation (UP) from any unpredictable function
(UF).

– a strong PRP from any PRF, which remains secure even if all the round
values are made public.

– a strong VUP from any VUF.
– a strong VRP from any VRF.

These results are in sharp contrast with the “LR-type” results where a constant
number of rounds was sufficient, but also give the first theoretical justification
regarding the usage of Feistel Networks not satisfying assumptions (a) or (b)
mentioned earlier. For the case of block ciphers, our justification seems to match
more closely the number of rounds heuristically used in practical constructions.

Implications to Domain Extension. Since the Feistel Network doubles the
length of its input, our results could also be viewed in relation to the question of
domain extension of UFs, VUFs and VRFs. In practice, the question of domain
extension is typically handled by a collision-resistant hash function (CRHF): it
uses only one call the the underlying n-bit primitive f and does not require
the secret key to grow. However, the existence of a CRHF is a theoretically
strong assumption, which does not seem to follow from the mere existence of
UFs, VRFs or VUFs. This is especially true for UFs, whose existence follows



540 Y. Dodis and P. Puniya

from the existence of mere one-way functions and, hence, can even be “black-
box separated” from CRHFs [24]. Thus, it makes sense to consider the question
of domain extension without introducing new assumptions.

For PRFs, this question is easily solved by using (almost) universal hash
functions (instead of CRHFs) to hash the message to n bits before applying the
n-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in the case
of unpredictability because the output reveals information about the hash key,
and for VRFs because it is unclear how to provide proofs of correctness without
revealing the hash key. Another attempt (which works for digital signatures)
is to use target collision-resistant hash functions [21] in place of CRHFs, but
such functions have to be freshly chosen for each new input, which will break
the unique provability of UFs, VUFs and VRFs. (Additionally, the hash key
should also be authenticated, which further decreases the bandwidth.) In case
the underlying n-bit primitive f is shrinking (say, to n − a bits), one can use
some variant of the cascade (or Merkle-Damg̊ard) construction. Indeed, this was
formally analyzed for MACs by [1,16]. However, the cost of this method is one
evaluation of f per a input bits. In particular, in case the output of f is also
equal to n, which is natural if one wants to extend the domain of a UF given by
a block cipher, this method is either inapplicable or very inefficient.1

In contrast, our method builds a UF/VUF/VRF from 2n to 2n bits from
the one from n to n bits, by using k = ω(log λ) evaluations of f , albeit also
at the price of increasing the secret key by the same amount. This answers the
question left open by An and Bellare [1] (who only showed that three rounds are
insufficient): Feistel Network is a good domain extender for MACs if and only if
it uses super-logarithmic number of rounds!

Moreover, in the context of UFs (and VUFs), where one wants to minimize the
output length as well, we notice that the output length can be easily reduced from
2n to n. This is done by simply dropping the “left half” of the k-round Feistel
network output! The justification for this optimization follows by noticing that in
this case the attacker will only make forward queries to the Feistel construction.
For such attackers, we can extend our main combinatorial lemma as follows. For
any s ≤ k, if a 5-XOR resistant family is used to implement the round functions
and the attacker made less than exponential in s number of queries, then the
attacker has a negligible chance to cause any collisions between rounds s and k
(as opposed to k − s we had when backward queries were allowed). From this,
one can derive that k = ω(log λ) Feistel rounds is enough to turn a UF (or
VUF) from n to n bits into one from 2n to n bits. Moreover, in the case of UFs
we expect that one would use a (possibly heuristic) pseudorandom generator to
derive the k round keys (much like in the case of block ciphers), meaning that
the only effective cost is k computations of the basic UF. Once the domain is
doubled, however, one can use the cascade methods [1,16] to increase it further
without increasing the key or the output length.

1 In principle, such length-preserving f can be “truncated” by a bits, but this loses an
exponential factor in a in terms of exact security. Thus, to double the input length,
one would have to evaluate f at least Ω(n/ log λ) times.



Feistel Networks Made Public, and Applications 541

Other Applications. In the full version [7], we illustrate several applications
of our results. We describe only a couple here due to the space constraints.

As a simple, but illustrative application, we notice that VRPs immediately
yield non-interactive, setup-free, perfectly-binding commitments schemes. The
sender chooses a random key pair (SK, PK) for a VRP π. To commit to m (in
the domain of the VRP), the sender sends PK and the value c = πSK(m) to
the receiver. To open m, the sender sends m and the proof that c = πSK(m),
which the receiver can check using the public key PK. The hiding property of
this construction trivially follows for the security of VRPs. As for binding, it
follows from the fact that π is a permutation even for an adversarial choice of
PK. As we can see, it is not clear how to achieve binding directly using plain
VRFs. However, given our (non-trivial) equivalence between VRFs and VRPs, we
get that VRFs are also sufficient for building non-interactive, perfectly binding
commitment schemes without setup. Alternatively, to commit to a single bit b,
one can use VUPs augmented with the Goldreich-Levin bit [10]. Here the sender
would pick a random r and x, and send PK, r, πSK(x), and (x · r) ⊕ b, where
x · r denotes the inner product modulo 2. Using our equivalence between VUPs
and VUFs, we see that VUFs are sufficient as well.

We remark that the best general constructions of such commitments schemes
was previously based on one-way permutations (using the hardcore bit) [4], since
Naor’s construction from one-way functions [19] is either interactive, or non-
setup-free. Since the assumption of one-way permutations is incompatible with
VUFs or VRFs, our new construction is not implied by prior work.

Micali and Rivest [18] suggested the following elegant way to perform non-
interactive lottery (with the main application in micropayments). The merchant
publishes a public key PK for a VRF f , the user chooses a ticket x, and wins if
some predicate about f(x) is true (for example, if f(x) is less than some threshold
t). Since f looks random to the user, the user cannot significantly bias his odds
no matter what x he chooses. Similarly, since the merchant is committed to f
by the public key PK, they merchant cannot lie about the value f(x). However
even in this case, nothing stops the merchant from publishing a “non-balanced”
VRF (meaning choosing a specific f such that f(x) is “far from random” even
for random x). In the extreme case, a constant function f(x) = c, where c is
selected so that the predicate does not hold. We need “balancedness” to ensure
that the merchant not only cannot change the value of f after the commitment,
but also that the user has a fair chance of winning when he chooses a random
x, no matter which f the merchant selects. VRPs perfectly solve this problem.

Moreover, VRPs have an extra advantage that one can precisely know the
number of possible winners: it is exactly equal to the number of strings y satis-
fying the given predicate. Thus, one can always allocate a given number of prizes
and never worry that with some small probability there will be more winners
than prizes.

We briefly mention some other applications described in [7]. For example, UPs
are enough to argue weaker “fall-back” security properties for some applications
of block ciphers, which is nice in case the PRP assumption on the block cipher



542 Y. Dodis and P. Puniya

turns out incorrect. VRPs, or sometimes even VUPs, can be useful in several ap-
plications where plain VRFs are insufficient. For example, to implement so called
“invariant signatures” needed by Goldwasser and Ostrovsky [11] in constructing
non-interactive zero-knowledge proofs. Additionally, VRPs could be useful for
adding verifiability to some application of PRPs (where, again, PRFs are not
sufficient). For example, to construct verifiable CBC encryption or decryption,
or to “truthfully”, yet efficiently, sample certain verifiable huge (pseudo)random
objects [9], such as random constant-degree expanders. Finally, our construction
of VRPs from VRFs could lead to a “proof-transferable” implementation of the
Ideal Cipher Model using a semi-trusted third party. We refer to [7] for more
details, and hope that more applications of our constructs and techniques will
be found.

2 Definitions and Preliminaries

Let λ denote the security parameter. We use negl(λ) to denote a negligible func-
tion of λ. Fibonacci(k) denotes the kth Fibonacci number, and thus Fibonacci(k)
= O(1.618k).

Now we give informal definitions of the various primitives that we use in this
paper. For formal definitions, see full version [7]. We start by defining the notion
of pseudorandom functions (PRFs). We use a slightly non-standard definition of
PRFs that is convenient to prove our results. However, this definition is equiva-
lent to the usual definition.

In the new PRF attack game, the attacker Af runs in three stages: (1) In
the experimentation phase, it is allowed to query a PRF sampled from the PRF
family. (2) In the challenge phase, it sends an unqueried PRF query and in
response the challenger sends either the PRF output or a random output with
equal probability. (3) In the analysis phase, the attacker again gets oracle access
to the PRF, but cannot query it on the challenge query. At the end of the
attack, Af has to guess if the challenge response was random or pseudorandom.
The attacker Af wins if it guesses correctly. Similar to the notion of PRFs, we
can define the notion of (strong) pseudorandom permutations (PRPs). Here the
attacker has oracle access to both the forward as well as inverse PRP, but the
attack game is otherwise similar to that for PRFs.

A slightly weaker notion than PRFs is that of Unpredictable Functions (UFs).
Unpredictable functions are also popularly known as (deterministic) Message
Authentication Codes (MACs). In this case, the UF attacker is allowed to query
an unpredictable function from the UF family, and it needs to predict the output
of the UF on an unqueried input at the end of the interaction. The advantage of
the UF adversary is the maximum probability with which it predicts correctly.
In an analogous fashion, we can also define the notion of Unpredictable Per-
mutations (UPs), where the attacker has oracle access to both the forward and
inverse permutation and has to predict an unqueried input/output pair.

We can define verifiable analogs of each of the above primitives. Thus, we get
verifiable random functions, verifiable random permutations, verifiable



Feistel Networks Made Public, and Applications 543

unpredictable functions and verifiable unpredictable permutations. In each case,
the primitive takes a public/private key pair, and consists of three algorithms
(Gen, Prove, Verify). The Gen algorithm outputs a public/private key pair. The
Prove algorithm allows the private key owner to compute the function/
permutation output as well as give a proof of correctness. Finally, the Verify
algorithm allows anyone who knows the public key to verify the correctness of
an input/output pair by observing the corresponding proof.

Each of these primitives satisfies two properties: (1) Correctness, i.e. one can
verify correct input/output pairs, and (2) Soundness, i.e. one cannot prove two
distinct outputs for the same input, even for an adversarially chosen public
key. Additionally, these primitives satisfy the natural analogs of the pseudoran-
domness/unpredictability definition of the corresponding non-verifiable primi-
tive (except the attacker also gets the proofs for all the values except for the
challenge).

The Feistel transformation using f : {0, 1}n → {0, 1}n is a permutation Ψf on

2n bits defined as, Ψf (x)
def
= xR ‖ xL ⊕ f(xR). The symbols xL and xR denote

the left and right halves of 2n bit string x. We will often call the construction
based on k iterated applications of the Feistel transformation, a k-round LR con-
struction, and denote it by Ψf1...fk

(or Ψk when f1 . . . fk are clear from context)
where f1 . . . fk are the round functions used. If the input to Ψk is x = R0||R1,
for R0, R1 ∈ {0, 1}n, then the k-round LR construction Ψk generates k more
n-bit values R2 . . . Rk+1 (one after each application of a round function, i.e.
Ri = fi−1(Ri−1) ⊕ Ri−2 for i = 2 . . . (k + 1)). We will refer to the n-bit values
R0, R1 . . . Rk, Rk+1 as the round values of the LR construction.

3 Insecurity of O(log λ)-Round Feistel

We will demonstrate here that upto a logarithmic number of Feistel rounds do
not suffice for any of our results. In order to make our proof precise, we show a
simple adversary that is able to find the input corresponding to any permutation
output y ∈ {0, 1}2n by making polynomially many forward queries and observing
the intermediate round values.

Theorem 1. For the k round Feistel construction Ψk that uses k = O(log λ)
round functions, there exists a probabilistic polynomial time adversary Aπ that
takes oracle access to Ψk (while also gets access to the intermediate round values
of Ψk). The adversary Aπ makes O(Fibonacci(k)) = poly(λ) forward queries to
Ψk and with high probability finds the input corresponding to an output y without
actually making that query.

Proof: The adversary Aπ starts by choosing a permutation output y, that it
will try to invert Ψk on. For concreteness, we assume that y = 02n (anything else
works just as well). We will describe the recursive subroutine that the attacker Aπ

is based on. Say the round functions of Ψk are f1 . . . fk. The recursive function
that we describe is E(j, Y ), where j is the number of rounds in the Feistel
construction and Y is a 2n bit value, and the task of E(j, Y ) is to find the input



544 Y. Dodis and P. Puniya

such that the jth and (j + 1)th round values are YL and YR (the left and right
halves of Y ), respectively.

– E(1,Y) : Choose a random R′0 ← {0, 1}n. Make the forward query R′0 ‖ YL

to Ψ1, where the 2nd round value is R′2. Now the 1st and 2nd round values
for the input R′2 ⊕ R′0 ⊕ YR ‖ YL are YL and YR.

– E(j,Y) , j > 1 : Perform the following steps,
• Make a random query R0 ‖ R1 ← {0, 1}2n, and say the 2n bit value at

the jth round is is Rj ‖ Rj+1. Then, fj(Rj) = (Rj−1 ⊕ Rj+1).
• Run E(j − 2, (fj−1(Rj−1) ⊕ YL) ‖ Rj−1) and the 2n bit value at the

(j − 1)th round is Rj−1 ‖ YL. Hence fj(YL) = Rj−1 ⊕ Rj+1.
• Run E((j − 1), (fj(YL) ⊕ YR) ‖ YL), and the jth and (j + 1)th round

values are YL and YR, respectively.

The adversary Aπ essentially runs the algorithm E(k, 02n). Now we need to
make sure that the adversary Aπ does not query on the input corresponding to
the output 02n. But since all the queries made in the recursive algorithm are
essentially chosen at random, we know that the probability of this happening is

q
22n . Hence, the probability that Aπ succeeds is at least

(
1 − q

22n

)
.

We note that the above attacker works in a scenario where it can only make for-
ward queries to the Feistel construction Ψk. In case it can make inverse queries as
well, it is possible to design a similar attacker that succeeds in O(Fibonacci(k/2))
queries. If the number of rounds k = O(log λ), then the number of queries needed
by either of these attackers is polynomial in the security parameter λ.

It is easy to see how such an attacker can be utilized in three of the four
scenarios, if we use the Feistel construction for each of these cases.

– PRP construction with public round values: By definition, for a PRP we
should not be able to invert an output without actually querying the con-
struction on it.

– VRP (VUP) construction using VRFs (VUFs): In order to provide the proofs
for the VRP (VUP), the VRP (VUP) construction will need to reveal all
intermediate VRF (VUF) inputs/outputs and the corresponding proofs.

On the first look, it seems that when we use a Feistel construction with unpre-
dictable functions in each round to construct an unpredictable permutation (UP),
the UP adversary cannot make use of the above attacker since it does not have
access to all the intermediate round values. However, we will show that if certain
pathological (but secure) unpredictable functions are used as round functions,
then the UP adversary can infer all the round values simply by observing the
output of the Feistel construction!

Lemma 1. For any k ≤ n
ω(log λ) (in particular, if k = O(log λ)), there exist k

secure unpredictable functions f1 . . . fk, such that by querying the k-round Feistel
construction Ψf1...fk

on any input, an attacker can always efficiently learn all the
intermediate round values (even when it does not have access to the intermediate
round values).



Feistel Networks Made Public, and Applications 545

Proof: Let {gi : {0, 1}n → {0, 1}n/k}i∈{1...k} be k secure unpredictable func-
tions. For i ∈ {1, k}, we will define the functions fi : {0, 1}n → {0, 1}n as
fi(x) = 0(i−2)·(n/k) ‖ xi−1 ‖ gi(x) ‖ 0(k−i)·(n/k), where xi−1 denotes the (i − 1)th

(n/k) bit block in the input x. Each of the functions fi is a secure unpredictable
function if the corresponding function gi is a secure UF.

Consider a query (R0 ‖ R1) ∈ {0, 1}2n made to the Feistel construction
Ψf1...fk

. Now we will consider both R0 and R1 as consisting of k blocks of length
(n/k) each, which we will denote by R0 = R1

0 ‖ . . . ‖ Rk
0 and R1 = R1

1 ‖ . . . ‖ Rk
1 .

Denote the round values generated in computing the output of this construction
as (R0, R1) . . . (Rk, Rk+1), where Rk ‖ Rk+1 is the output of this construction.
If the number of rounds k in the Feistel construction is even, then we note that
the output of the construction is:

Rk = (g1(R1) ⊕ R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−1(Rk−1) ⊕ Rk−1
0 ) ‖ Rk

0

Rk+1 = (g1(R1) ⊕ R1
0 ⊕ R1

1) ‖ . . . ‖ (gk(Rk) ⊕ Rk
1)

If number of rounds k is odd, then the output of the Feistel construction is,

Rk = (g1(R1) ⊕ R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−1(Rk−1) ⊕ Rk−1
1 ) ‖ Rk

1

Rk+1 = (g1(R1) ⊕ R1
0 ⊕ R1

1) ‖ . . . ‖ (gk(Rk) ⊕ Rk
0)

Now it is easy to find each of the round function outputs (and hence the inter-
mediate round values) by simply observing the right half of the output of the
Feistel construction.

Thus, we see that if the number of rounds in the Feistel construction (using UFs)
used to construct unpredictable permutations is k = O(log λ), then the resulting
construction is insecure (since all the intermediate round values may be visible
and we can apply theorem 1). Even if we attempt to shrink the output length
of this MAC construction by chopping the left half of the output, it would be
possible to retrieve all intermediate round values by simply observing the MAC
output. In fact, even for k = ω(log λ) (but less than n/ω(logλ)) rounds it might
be possible to retrieve all intermediate round values, and hence a new proof
technique is needed.

4 A Combinatorial Property of the Feistel Construction

In this section, we will prove a general combinatorial lemma about the k round
LR-construction Ψk, that uses arbitrary round functions f1 . . . fk. We will see in
the following section that this lemma is crucial in deriving each of our results
using the Feistel construction.

Consider an arbitrary ordered sequence of q forward/inverse permutation
queries made to the construction Ψk, each of which is a 2n bit string. Denote the
(k + 2) n-bit round values associated with the ith query as Ri

0, R
i
1 . . . Ri

k, Ri
k+1,

where Ri
0 ‖ Ri

1 (resp. Ri
k ‖ Ri

k+1) is the input if this is a forward (resp. inverse)
query. We say that such a sequence of queries produces an sth round value col-
lision, if the sth round value collides for two different permutation queries from



546 Y. Dodis and P. Puniya

this query sequence. That is, we have that Ri
s = Rj

s for i, j ∈ {1 . . . q} and
Ri

0 ‖ Ri
1 �= Rj

0 ‖ Rj
1.

We essentially show that if any such sequence of q queries produces a rth

round value collision for any r ∈ {s . . . (k − s)} (where s ≤ (k/2)), then one of
the following must hold:

1. The number of queries q is exponential in s.
2. For this sequence of queries, there is at least one new round function eval-

uation such that the new round value generated can be represented as a
bit-by-bit XOR of upto 5 previously existing round values.

We refer to the second condition above as the 5-XOR condition. We label the
queries in the order they are made, i.e. query i is made before query i + 1 for
i = 1 . . . q − 1. By a “new round function evaluation”, we mean when a round
function is evaluated on an input (i.e. the corresponding round value) to which
it was not applied in an earlier query. If the ith query is a forward (inverse)
query and the round function evaluation fj(Ri

j) is a new one, then the new
round value generated as a result is Ri

j+1 (resp. Ri
j−1). The 5-XOR condition

essentially states that for at least one such new round function evaluation, the
new round value generated can be represented as the bit-by-bit XOR of upto 5
previously existing round values. Here previously existing round values include
round values from previous queries and round values in the same query that were
generated earlier (depending on whether this is a forward/inverse query). Our
combinatorial result is formalized in the main lemma below (where, for future
convenience, we denote Ri

j by R[i, j]).

Lemma 2. Let Ψk be a k round LR construction that uses fixed and arbi-
trary round functions f1 . . . fk. For any s ≤ k

2 , and any ordered sequence of
q = o(1.3803

s
2 ) forward/inverse queries, with associated round values R[i, 0], . . . ,

R[i, k + 1] for i = 1 . . . q, if the 5-XOR condition does not hold for this sequence
of queries then there is no rth round value collision for these queries, for all
r ∈ {s . . . (k − s)}.
Notethatlemma2simplystatesastructuralpropertyofthek-roundLRconstruction
that holds irrespective of the round functions used in the construction.The proof of
this lemma is quite technical and we omit it here due to space constraints (see [7]).

Next, we state a more restricted version of the combinatorial lemma, when the
adversary only makes forward queries to the Feistel construction. This lemma
(whose proof can also be found in [7]) will be useful when we attempt domain
extension of MACs in the next section. We give an intuition of the proof of this
lemma, which is quite similar to the proof of Lemma 2 (though slightly simpler).

Lemma 3. Let Ψk be a k-round LR construction that uses fixed and arbitrary
round functions f1 . . . fk. For any round number s, and any ordered sequence of
q = o(1.3803

s
2 ) forward queries, with associated round values R[i, 0], . . . , R[i, k+

1] for i = 1 . . . q, if the 5-XOR condition does not hold for this sequence of
forward queries then there is no rth round value collision for these queries, for
all r ≥ s.



Feistel Networks Made Public, and Applications 547

Proof Intuition: Consider a sequence of q queries for which the rth round values
of two queries collide, while the 5-XOR condition does not hold. Without loss
of generality, we can assume that one of queries involved in the rth round value
collision is the last one (i.e. the qth query) 2. We will label the queries 1 · · · q, in
the order in which they were made. Thus for the round value R[i, j], all the round
values R[i′, j′] , with (i′ < i) or (i′ = i) ∧ (j′ < j), were generated before R[i, j].
We denote by p(i, j), the least query number such that R[p(i, j), j] = R[i, j].

Our main argument consists of four steps which all rely on the fact that the
5-XOR condition does not hold. We start by showing that if the round value
R[q, r] collides with the rth round value in an earlier query, then all the round
values R[q, 1] . . . R[q, (r − 1)] collide with corresponding round values in earlier
queries as well. That is,

(p(q, r) < q) ⇒ (p(q, 1) < q) ∧ . . . ∧ (p(q, (r − 1)), (r − 1))

In order to see this, consider the round value R[q, (r − 1)]. We know that
(fr−1(R[q, (r − 1)]) = R[q, (r − 2)] ⊕ R[q, r]). Now since both the round values
R[q, (r − 2)] and R[q, r] were generated before R[q, (r − 1)] (the former because
this is a forward query and the latter because p(q, r) < q), it must be the case
that p(q, (r − 1)) < q since otherwise the 5-XOR condition will be satisfied.
Now we can apply the same argument to the round values R[q, (r − 2)] down to
R[q, 1] to get the desired result. Moreover, we can also show that these queries
p(q, 1) . . . p(q, r) could only have been made in certain restricted orders. In par-
ticular, we show that there is a j ∈ {1 . . . r} such that

p(q, 1) > . . . > p(q, j) < . . . < p(q, r)

In order to see this consider any three consecutive round values R[q, (i−1)], R[q, i]
and R[q, (i + 1)], corresponding to queries p(q, (i − 1)), p(q, i) and p(q, (i + 1)).
We know that fi(R[p(q, i), i]) = R[p(q, (i − 1)), (i − 1)] ⊕ R[p(q, (i + 1)), (i + 1)].
If it were the case that p(q, (i − 1)) < p(q, i) and p(q, (i + 1)) < p(q, i), then this
would imply a 5-XOR condition. The only orders that do not have such a query
triple are the ones specified above.

Now we can deduce that at least one of these two strictly descending/ascending
query sequence, i.e. p(q, 1) > . . . > p(q, j) or p(q, j) < . . . < p(q, r), consists of at
least (r/2) queries. Without loss of generality, as the longer sequence of queries is
p(q, 1) > . . . > p(q, j). We consider any of the queries p(q, �) for � ∈ {1 . . . (j−2)},
and show that each of the round values R[p(q, �), 1] . . . R[p(q, �), (�−1)] collide with
the corresponding round value in an earlier query. The first step of this argument,
i.e. showing that R[p(q, �), (� − 1)] collides with the corresponding round value
in an earlier query, is the tricky step in this part, beyond which the argument is
similar to the first step. Thus, we show that

(p(p(q, �), 1) < p(q, �)) ∧ . . . ∧ (p(p(q, �), (� − 1)) < p(q, �))

2 In addition, we assume that the query sequence does not consist of any duplicate
queries.



548 Y. Dodis and P. Puniya

Next, we show that the queries p(p(q, �), 1) . . . p(p(q, �), (� − 1)) occur only in a
strictly descending order. Additionally, we also show that the first (�−2) of these
queries were made strictly in between the queries p(q, (� + 1)) and p(q, �). That
is, we show that

p(q, (� + 1)) < p(p(q, �), (� − 2)) < . . . < p(p(q, �), 1) < p(q, �)

Note that this is the really crucial step of the argument since we have essen-
tially shown that each of the queries p(p(q, �), 1) . . . p(p(q, �), (� − 2)) is distinct
from any of the queries p(q, 1) . . . p(q, j) (since they occur strictly in between
two consecutive queries in the latter sequence). In addition, we are also able
to prove that these queries are in strict descending order (unlike the queries
p(q, 1) . . . p(q, r)).

We notice that the above technique can again be applied to the strictly de-
scending sequence of queries, p(p(q, �), 1) . . . p(p(q, �), (� − 2)). In this manner,
we can continue this argument recursively and derive a recurrence equation to
count the number of queries whose existence we prove (which can all shown to
be different using the technique above) as follows:

q ≥ Q(r/2), where Q(i) = i +
i−2∑

�=2

Q(� − 2)

Upon solving this recurrence, we get that q = ω(1.3803r/2).

In our applications, we will be interested in using the LR construction with round
functions that resist the 5-XOR condition, when any adaptive adversary makes
a polynomial number of queries to the construction while having access to all
the intermediate round values. We will specify this as a property of families of
functions from which the round functions are independently derived. Hence, let
us begin by describing a function family. A function family C is a set of functions
along with a distribution defined on this set. For such a family, f ← C denotes
sampling a function according to the distribution specified by C. A function
family is called a 5-XOR resistant function family if the LR construction using
independently sampled functions from this family resists the 5-XOR condition
when queried a polynomial number of times by any adaptive adversary.

Definition 1 (5-XOR resistant function family). A function family C(k,n),
that consists of length preserving functions on n bits, is a 5-XOR resistant func-
tion family if for any adversary A,

Pr
[

A 5-XOR condition
holds in (A ←→ Ψf1...fk

)

∣∣∣∣ f1 . . . fk ←− C(k,n)

]
≤ εxor = negl(λ)

Here the advantage εxor of the adversary A depends on the running time of A
and the security parameter λ. The running time of A, the input length n and
number of Feistel rounds k are all polynomial functions of λ.



Feistel Networks Made Public, and Applications 549

By applying Lemma 2 to a LR construction using round functions independently
sampled from a 5-XOR resistant function family, we can derive the following
corollary.

Corollary 1. Let Ψk be a k-round LR construction that uses round functions
that are independently sampled from a 5-XOR resistant function family consist-
ing of functions on n bits. For any adversary A that adaptively makes permuta-
tion queries to Ψk, while observing the intermediate round values, it holds that

– if A makes both forward/inverse queries, then for any round number s ≤
(k/2) with s = ω(log λ),

Pr
[
∃ rth round value collision during A ↔ Ψk

for some r ∈ {s . . . (k − s)}

]
≤ εxor

– if A makes only forward queries, then for any round number s = ω(log λ),

Pr
[
∃ rth round value collision during A ↔ Ψk

for some r ∈ {s . . . k}

]
≤ εxor

Here the bound εxor denotes the maximum advantage of the XOR finding ad-
versary that runs in time O(tA + (qAk)5), where tA is the running time of the
adversary A and qA denotes the number of queries made by it. Also, tA, qA and
the input length n are all polynomial in λ.

This corollary is easily proved since the 5-XOR finding adversary simply runs
the collision finding adversary, and performs a brute-force search for a 5-XOR
condition when it finds a round value collision. From Lemma 2, such a 5-XOR
condition is guaranteed to exist. In fact, we will make use of this corollary in each
of the results that we present in the next section, since each of these function
families will turn out to be 5-XOR resistant (the proof of this result can also be
found in [7]; here we just state the result, although briefly sketching the case of
UFs inside the proof of Theorem 3).

Theorem 2. For each of the primitives: (1) unpredictable functions, (2) pseudo-
random functions, (2) verifiable unpredictable functions, and (4) verifiable ran-
dom functions; a function family that yields an independent random sample of the
appropriate primitive is a 5-XOR resistant function family.

5 Implications

All the cryptographic applications of the Feistel construction until recently have
relied on all or some of the round functions not being visible to the adversary.
In the previous section, we proved a combinatorial property of the Feistel con-
struction where the internal round function values were visible to the adversary.
Now we will describe how this property can be applied to a variety of scenarios
to yield new or improved cryptographic constructions than before.

We get the following constructions using this new technique: (1) secure con-
struction of unpredictable permutations from unpredictable functions, (2) more



550 Y. Dodis and P. Puniya

resilient construction of pseudorandom permutations from pseudorandom func-
tions, (3) construction of verifiable unpredictable permutations from verifiable
unpredictable functions, and (4) construction of verifiable random permutations
from verifiable random functions.

In each case, the proof consists of three parts: (1) showing that the function
family under consideration is a 5-XOR function family (see Theorem 2); (2) using
Corollary 1 to show that the corresponding permutation construction is unlikely to
have collisions at “advanced” rounds; and (3) show that the lack of such collisions
implies that the construction is secure. All the proofs are given in [7].

5.1 Unpredictable Permutations and More Resilient PRPs

As a first implication of our combinatorial result, we can see that an ω(log(λ))-
round LR construction with independent PRFs in each round gives a more re-
silient construction of PRPs that remain secure even if the intermediate round
values are visible to the attacker. We defer further details of this application to
the full version [7].

We saw in Section 3 that observing the output of a k = n/ω(logλ) round
Feistel construction with unpredictable round functions may leak all the inter-
mediate round values. Even for realistic UFs, some partial information about the
intermediate round values may be leaked through the output. As we discussed
earlier, in such a case none of the previous proof techniques are applicable.
We will prove a much stronger result here, by showing that if we use a super-
logarithmic number of rounds in the Feistel construction, then the resulting UP
construction is secure even if the adversary gets all the intermediate round values
along with the permutation output.

The UP construction ΨU,k that we propose consists of k = ω(log λ) rounds of
the Feistel construction using independent unpredictable functions f1 . . . fk ← F .
The following theorem essentially states that this construction is a secure UP
construction. Due to space constraints, we omit the formal proof of this theorem
(see [7]) and give a short proof intuition here.

Theorem 3. Given a UP adversary Aπ (with advantage επ) in the unpredictabil-
ity game against the UP construction ΨU,k (using round functions from UF fam-
ily F), one can build a UF adversary Af that has comparable advantage (to επ)
in the UF attack game against a UF sampled from F . Quantitatively, we show
επ = O

(
εf · (qk)6

)
, where εf denotes the maximum advantage of a UF adversary

running in time O(t + (qk)5) against a UF sampled from F . Here t, q are the run-
ning time and the number of queries made by Aπ, respectively.

Proof Intuition: Consider the UP adversary Aπ that has advantage επ against
the construction ΨU,k, based on the k-round LR construction with independently
sampled UFs from the family F in each round. We can consider two cases.

Case 1: the sequence of queries made by Aπ satisfies the 5-XOR condition with
probability at least επ/2. However, this means that our UF family in not 5-XOR



Feistel Networks Made Public, and Applications 551

resistant, contradicting Theorem 2. To get the exact security bound (alterna-
tively, to sketch the proof Theorem 2 for the case of UFs), we can construct an
attacker Af for the UF as follows. Af proceeds by plugging in its challenge UF
randomly as any one of the round functions f1 . . . fk, say fi. It then chooses at
random a query made by Aπ as the query in which it will try to predict the
output of fi. It honestly computes the LR construction for this query until the
round function fi, getting round value Ri. At this point, it chooses a random
XOR representation from all round values that already exist and outputs this
as its prediction for fi(Ri). Since the UP attacker Aπ forces a 5-XOR condi-
tion with non-negligible probability, then Af also succeeds with non-negligible
probability (precisely, the advantage εf of Af is Ω(επ/(qk)6)).

Case 2: alternatively, Aπ wins the UP attack game with advantage at least επ/2
without its queries satisfying the 5-XOR condition. In this case we construct Af

as follows. It will attempt to predict a fresh UF value for the middle round func-
tion fk/2 (and will choose the remaining functions by itself). It will simulate Aπ

in the obvious manner, using its oracle to find out the middle values fk/2. When
the adversary Aπ outputs a prediction (X, Y ) for some fresh UP input/output,
Af computes the LR construction “forward” honestly to get Rk/2 from X , and
“backward” honestly to get Rk/2+1 from Y . It then outputs Rk/2−1 ⊕Rk/2+1 as
its prediction for fk/2(Rk/2), winning if Aπ won and the value Rk/2 is “fresh”.
Thus, Af could only fail if it already made the query fk/2(Rk/2) in order to
respond to one of the queries of Aπ. However, this would imply a (k/2)th round
collision, and we can use the combinatorial Lemma 2 to show that the 5-XOR
condition must have been true, contradicting our assumption on Aπ that the
5-XOR condition was false.

Domain Extension of MACs. The above result can also be viewed as a
construction of MACs from 2n to 2n bits using MACs from n to n bits. We
observe that it is possible to reduce the output length in the above construction
to n by simply dropping the left half of the output. Using this technique, we
get a MAC construction from 2n to n bits. To briefly justify it, in the usual
MAC attack game the attacker can only make forward queries. From corollary
1, we get that for any s = ω(log λ) no efficient attacker can cause a collision on
any round value r ∈ {s . . . k} with non-negligible probability. Thus, a proof of
security for this MAC will proceed by plugging in the target n- to n-bit MAC in
the last round function of the Feistel construction, and arguing that the attacker
predicting the 2n- to n-bit constructed MAC must also forge this last-round n-
to n-bit MAC. This is done using a similar proof technique to that for Theorem
3 (albeit using second part of Corollary 1 to argue that no collision occurs at
the last round).

More Resilient PRPs. Similarly to the above, we show that ω(log λ) Feistel
rounds yeilds a construction of PRPs from PRFs that remains secure even if
the PRF input/output pairs used in the intermediate rounds are visible to an



552 Y. Dodis and P. Puniya

attacker. We denote the corresponding k-round construction by ΨR,k, and show
the following quantitative result in [7].

Theorem 4. Given a PRP adversary Aπ with advantage επ in the “extended
PRP” attack game against ΨR,k (using round functions from PRF family F), one
can build a PRF adversary Af having comparable advantage (to επ in the PRF
attack game against a PRF sampled from the PRF family F . Quantitatively, we
show that επ = O

(
qkεf + (qk)6

2n

)
, where εf denotes the maximum advantage of

a PRF adversary running in time O(t + (qk)5) against a PRF sampled from F .
Here t, q are the running time and number of queries made by Aπ, respectively.

5.2 Verifiable Unpredictable/Pseudorandom Permutations

The VRP and VUP constructions that we propose are essentially the same, ex-
cept that we use VRFs as round function in one case and VUFs in the other.
Our VRP (resp. VUP) construction ΨV R,k (resp. ΨV U,k) uses a k-round Feis-
tel construction using independent VRFs (resp. VUFs) f1 . . . fk ← F as round
functions. The public/private keys of ΨV R,k (resp. ΨV U,k) are simply the con-
catenation of the public/private keys of the k VRFs (resp. VUFs). The Prove
functionality for ΨV R,k (resp. ΨV U,k) simply gives the permutation output, and
gives all intermediate round values along with the VRF (resp. VUF) proofs as
its proof. The Verify functionality simply checks if all intermediate VRF (resp.
VUF) proofs verify correctly.

We then prove the three properties of the VRP (resp. VUP) construction:
Completeness, Soundness (or unique proofs) and Pseudorandomness (resp. Un-
predictability). The Completeness and Soundness properties in each case are a
direct consequence of the corresponding VRF (resp. VUF) properties. Here the
Pseudorandomness (resp. Unpredictability) property are proven in much the same
way as Theorem 4 (resp. Theorem 3); see [7] for formal proofs.

Theorem 5. Given a VRP (resp. VUP) adversary Aπ with advantage επ in the
pseudorandomness (resp. unpredictability) game against the VRP (resp. VUP)
construction ΨV R,k (resp. ΨV U,k) using VRFs (resp. VUFs) sampled from the
VRF (resp. VUF) family F as round functions, one can build a VRF (resp.
VUF) adversary Af that has comparable advantage (to επ) in the pseudoran-
domness (resp. unpredictability) game against a VRF (resp. VUF) sampled from
F . Quantitatively, we show επ = O

(
qkεf + (qk)6

2n

)
(resp. O(q6k7 · εf )), where

εf denotes the maximum advantage of a VRF (resp. VUF) adversary running
in time O(t + (qk)5) (resp. O(t + (qk)5)) against a VRF (resp. VUF) sampled
from F . Here t, q are the running time and number of queries made by Aπ,
respectively.

Acknowledgments. We would like to thank Rafail Ostrovsky and Shabsi Wal-
fish for several helpful discussions.



Feistel Networks Made Public, and Applications 553

References

1. Jee Hea An and Mihir Bellare, Constructing VIL-MACs from FIL-MACs: Message
Authentication under Weakened Assumptions, CRYPTO 1999: 252-269.

2. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.

3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

4. Manuel Blum, Coin Flipping by Telephone - A Protocol for Solving Impossible
Problems, COMPCON 1982: 133-137.

5. Y. Dodis, Efficient construction of (distributed) verifiable random functions, In
Proceedings of 6th International Workshop on Theory and Practice in Public Key
Cryptography, pp 1 -17, 2003.

6. Y. Dodis and P. Puniya, On the relation between Ideal Cipher and Random Oracle
Models, In Theory of Cryptography Conference 2006.

7. Y. Dodis and P. Puniya, Feistel Networks made Public, and Applications, Full
Version, available from IACR EPrint Archive.

8. Y. Dodis and A. Yampolskiy, A Verifiable Random Function With Short Proofs
and Keys, In Workshop on Public Key Cryptography (PKC), January 2005.

9. Oded Goldreich, Shafi Goldwasser and Asaf Nussboim, On the Implementation of
Huge Random Objects, FOCS 2003: 68-79.

10. Oded Goldreich and Leonid A. Levin, A Hard-Core Predicate for all One-Way
Functions, STOC 1989: 25-32.

11. Shafi Goldwasser and Rafail Ostrovsky, Invariant Signatures and Non-Interactive
Zero-Knowledge Proofs are Equivalent (Extended Abstract), in CRYPTO 1992:
228-245.

12. M. Luby and C. Rackoff, How to construct pseudo-random permutations from
pseudo-random functions, in SIAM Journal on Computing, Vol. 17, No. 2, April
1988.

13. A. Lysyanskaya, Unique Signatures and verifiable random functions from DH-DDH
assumption, in Proceedings of the 22nd Annual International Conference on Ad-
vances in Cryptography (CRYPTO), pp. 597 612, 2002.

14. Ueli M. Maurer, Yvonne Anne Oswald, Krzysztof Pietrzak and Johan Sj?din, Luby-
Rackoff Ciphers from Weak Round Functions?, EUROCRYPT 2006: 391-408.

15. Ueli M. Maurer and Krzysztof Pietrzak, The Security of Many-Round Luby-Rackoff
Pseudo-Random Permutations, in EUROCRYPT 2003, 544-561.

16. Ueli M. Maurer and Johan Sj?din, Single-Key AIL-MACs from Any FIL-MAC,
ICALP 2005: 472-484.

17. S. Micali, M. Rabin and S. Vadhan, Verifiable Random functions, In Proceedings
of the 40th IEEE Symposium on Foundations of Computer Science, pp. 120 -130,
1999.

18. Silvio Micali and Ronald L. Rivest, Micropayments Revisited, CT-RSA 2002,
149-163.

19. Moni Naor, Bit Commitment Using Pseudo-Randomness, CRYPTO 1989: 128-136.
20. Moni Naor and Omer Reingold, On the construction of pseudo-random permuta-

tions: Luby-Rackoff revisited, in Journal of Cryptology, vol 12, 1999, pp. 29-66.
21. Moni Naor and Moti Yung, Universal One-Way Hash Functions and their Crypto-

graphic Applications, STOC 1989: 33-43.



554 Y. Dodis and P. Puniya

22. Jacques Patarin, Security of Random Feistel Schemes with 5 or More Rounds, in
CRYPTO 2004, 106-122.

23. Z. Ramzan and L. Reyzin, On the Round Security of Symmetric-Key Cryp-
tographic Primitives, in Advances in Cryptography - Crypto, LNCS vol. 1880,
Springer-Verlag, 2000.

24. Daniel R. Simon, Finding Collisions on a One-Way Street: Can Secure Hash Func-
tions Be Based on General Assumptions?, EUROCRYPT 1998: 334-345.



Oblivious-Transfer Amplification

Jürg Wullschleger

ETH Zürich, Switzerland
wjuerg@inf.ethz.ch

Abstract. Oblivious transfer (OT) is a primitive of paramount impor-
tance in cryptography or, more precisely, two- and multi-party compu-
tation due to its universality. Unfortunately, OT cannot be achieved in
an unconditionally secure way for both parties from scratch. Therefore,
it is a natural question what information-theoretic primitives or compu-
tational assumptions OT can be based on.

The results in our paper are threefold. First, we give an optimal proof
for the standard protocol to realize unconditionally secure OT from a
weak variant of OT called universal OT, for which a malicious receiver
can virtually obtain any possible information he wants, as long as he does
not get all the information. This result is based on a novel distributed
leftover hash lemma which is of independent interest.

Second, we give conditions for when OT can be obtained from a faulty
variant of OT called weak OT, for which it can occur that any of the
parties obtains too much information, or the result is incorrect. These
bounds and protocols, which correct on previous results by Damg̊ard et.
al., are of central interest since in most known realizations of OT from
weak primitives, such as noisy channels, a weak OT is constructed first.

Finally, we carry over our results to the computational setting and
show how a weak OT that is sometimes incorrect and is only mildly se-
cure against computationally bounded adversaries can be strengthened.

Keywords: oblivious-transfer amplification, universal oblivious transfer,
weak oblivious transfer, computational weak oblivious transfer, distrib-
uted leftover hash lemma, hard-core lemma.

1 Introduction

The goal of multi-party computation, introduced in [42], is to allow two parties to
carry out a computation in such a way that no party has to reveal unnecessary
information about her input. A primitive of particular importance in this con-
text is oblivious transfer (OT) [39,36,18]. Chosen one-out-of-two string oblivious
transfer,

(2
1

)
-OTn for short, is a primitive where the sender sends two strings x0

and x1 of length n and the receiver’s input is a choice bit c; the latter then learns
xc but gets no information about the other string x1−c. One reason for the im-
portance of OT is its universality, i.e., it allows for carrying out any two-party
computation [32]. Unfortunately, OT is impossible to achieve in an uncondi-
tionally secure way from scratch, i.e., between parties connected by a noiseless

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 555–572, 2007.
c© International Association for Cryptology Research 2007



556 J. Wullschleger

channel. However, if some additional weak primitives are available such as noisy
channels or noisy correlations, then unconditional security can often be achieved
[12,11,17,15,13,40,16,35]. Most of these protocols first implement a weak version
of OT, and then strengthen it to achieve OT. In [20,23] it was shown that such
a strengthening is sometimes also needed in the computational setting.

In this paper we study how weak versions of OT can be amplified to OT.

1.1 Previous Work

Various weak versions of OT have been proposed. In most of them, only the
receiver’s side is weak, such as α-1-2 slightly OT from [12], or only the sender’s
side is weak, such as XOT, GOT or UOT with repetitions from [6,7]. All of
these primitives were shown to be strong enough to imply OT. In [8], a more
general primitive called Universal OT, (α)-

(2
1

)
-UOTn for short, has been pro-

posed, where α specifies a lower bound on the amount of uncertainty a (possibly
malicious) receiver has over both inputs, measured in collision- or min-entropy.
Unfortunately, the security proof contained an error that was corrected in [16]. It
was shown that

(2
1

)
-OT� can be implemented from one instance of (α)-

(2
1

)
-UOTn

with an error of at most ε if � ≤ 1
4α − 3

4 log(1/ε) − 1.
Weak OT, introduced in [17], is a weak version of

(2
1

)
-OT1 where both players

may obtain additional information about the other player’s input, and where
the output may have some errors. It is used as a tool to construct OT out of
unfair primitives, i.e., primitives where the adversary is more powerful than the
honest participant, such as the unfair noisy channel. Weak OT is denoted as
(p, q, ε)-WOT, where p is the maximal probability that the sender gets side in-
formation about the receiver’s input, q the maximal probability that the receiver
gets side information about the sender’s input, and ε is the maximal probability
that an error occurs. Using a simple simulation argument, it was shown in [17]
that there cannot exist a protocol that implements

(2
1

)
-OT1 from (p, q, ε)-WOT

if p+q+2ε ≥ 1. For ε = 0, they give a protocol secure against active adversaries
that implements

(2
1

)
-OT1 from (p, q, 0)-WOT for p + q < 1, which is optimal.

Furthermore, for the case where p, q, and ε are bigger than 0, a protocol is
presented that is secure against passive adversaries for p + q + 2ε < 0.45. Weak
OT was later generalized in [15] to (special) generalized weak OT, in order to
improve the reduction of

(2
1

)
-OT1 to unfair noisy channels.

In [20], a reduction of
(2
1

)
-OT1 to (p, q, ε)-WOT in the computational set-

ting was presented. These results were used to show that OT can be based on
collections of dense trapdoor permutations.

1.2 Problems with the Definition of Weak OT in [17]

While [17] does not give a formal definition of (p, q, ε)-WOT, [15] formally de-
fines (p, q, ε)-WOT by giving an ideal functionality. Their definition implicitly
makes two assumptions. It requires that, firstly, the players do not get infor-
mation about whether an error occurred, and secondly, that the event that an



Oblivious-Transfer Amplification 557

error occurs is independent from the events that the players get side informa-
tion. These assumptions are rather unnatural and in most of the cases where
(p, q, ε)-WOT is used, they cannot be satisfied. For example, neither the simula-
tion of (p, q, ε)-WOT for p + q + 2ε = 1, nor the application to the unfair noisy
channel satisfy these assumptions.

Unfortunately, if we remove these two assumptions from the definition of
(p, q, ε)-WOT, the E-Reduce protocol from [17] gets insecure, because it de-
pends on the fact that the two events are independent. The following example
illustrates the problem: Even though (0, 1/2, 1/4)-WOT can be simulated, by
applying R-Reduce(3000, E-Reduce(10, (0, 1/2, 1/4)-WOT)) (using the reductions
R-Reduce and E-Reduce as defined in [17]) we get a (0, 0.06, 0.06)-WOT, which
implies

(2
1

)
-OT1. We would get an information-theoretic secure

(2
1

)
-OT1 from

scratch, which is impossible.
Directly affected by this problem are Lemma 5 and Theorem 2 in [17] and

Lemma 6 in [15]. Indirectly affected are Lemma 11 and Theorem 3 in [17], and
Lemma 1, 4, 5 and 7 in [15], as they rely on Lemma 5 in [17].

1.3 Contribution

In the first part, we show how to implement
(2
1

)
-OT� from one instance of

(α)-
(2
1

)
-UOTn for � ≤ α

2 − 3 log 1
ε with an error of at most 2ε. This improves

the bound of [16] by a factor of two, at the cost of a slightly bigger error term,
and is asymptotically optimal for the standard protocol using 2-universal hash-
ing. The proof makes use of a new distributed leftover hash lemma, which is a
generalization of the leftover hash lemma and of independent interest.

In the second part, we will look at reductions of
(2
1

)
-OT1 to (p, q, ε)-WOT, for

new, weaker definitions of (p, q, ε)-WOT. Using a different E-Reduce protocol that
also works for our definitions, we show for the special case where p = 0 (q = 0),
that

(2
1

)
-OT1 can efficiently be implemented from (p, q, ε)-WOT if

√
q + 2ε < 1

(
√

p + 2ε < 1), secure against passive adversaries. For the general case, we show
that if p + q + 2ε ≤ 0.24 or max(p + 22q + 44ε, 22p+ q + 44ε, 7

√
p + q + 2ε) < 1,(2

1

)
-OT1 can efficiently be implemented from (p, q, ε)-WOT secure against passive

adversaries. This fixes Lemma 5 and Theorem 2 in [17] and gives some new
bounds, but does not reach the bound of p + q + 2ε < 0.45 from [17].

Finally, we apply these results to the computational case, and show, using the
uniform hard-core lemma from [26], how an OT which may contain errors and
which is only mildly computationally secure against the two players can be ampli-
fied to a computationally-secure OT. In particular, we show that if (p, q, ε)-WOT
can be amplified to

(2
1

)
-OT1 in the information-theoretic setting, then also the

computational version of (p, q, ε)-WOT which we call (p, q, ε)-compWOT can
be amplified to a computationally-secure

(2
1

)
-OT1, using the same protocol. In

combination with our information-theoretic results, we get a way to amplify
(p, q, ε)-compWOT. Our results generalize the results presented in [20], as we
cover a much bigger region for the values p, q and ε, and in our case the security
for both players may only be computational.

A more detailed analysis of all these results can be found in [41].



558 J. Wullschleger

2 Preliminaries

Let X and X ′ be two random variables distributed over the same domain X . The
advantage of an algorithm A : X → {0, 1} to distinguish X from X ′ is defined
as AdvA(X, X ′) :=

∣∣ Pr[A(X) = 1] − Pr[A(X ′) = 1]
∣∣. The statistical distance

between X and X ′ is defined as Δ(X, X ′) = 1
2

∑
x∈X

∣∣Pr[X = x] − Pr[X = x]
∣∣.

It is easy to see that Δ(X, X ′) = maxA AdvA(X, X ′). We say that a random
variable X over X is ε-close to uniform with respect to Y , if Δ(PXY , PUPY ) ≤ ε,
where PU is the uniform distribution over X .

Definition 1. Let PXY be a distribution over {0, 1} × Y. The maximal bit-
prediction advantage of X from Y is PredAdv(X | Y ) := 2 · maxf Pr[f(Y ) =
X ] − 1.

In other words, if PredAdv(X | Y ) = δ, then we have for all functions f : Y →
{0, 1} that Pr[f(Y ) = X ] ≤ (1+ δ)/2. It is easy to see that there exists an event
E with Pr[E ] = PredAdv(X | Y ), such that if E occurs, then X is a function of
Y and if E does not occur, then X is uniform conditioned on Y . Furthermore,
we have PredAdv(X | Y ) = 2 · Δ(PXY , PUPY ), where PU is the uniform dis-
tribution over {0, 1}. Let H∞(X | Y ) = minxy:PXY (x,y)>0 − log PX|Y (x | y) be
the conditional min-entropy of X given Y . A function h : R × X → {0, 1}m

is called a 2-universal hash function [10], if for all x0 �= x1 ∈ X , we have
Pr[h(R, x0) = h(R, x1)] ≤ 2−m, if R is uniform over R.

We say that a function f : N → N is polynomial in k, denoted by poly(k), if
there exists a constant c > 0 such that f(k) ∈ O(kc). A function f : N → [0, 1]
is negligible in k, denoted by negl(k), if for all c > 0, f(k) ∈ o(k−c).

2.1 Definition of Security

A W-hybrid protocol is a sequence of interactions between two players. In each
step, the players may apply a randomized function on their data, and send the
result to the other player. They may also use the functionality W by sending
input to W which gives them an output back according to the specification of
W . In the last stage the players output a randomized function of their data.
A protocol is efficient if it can be executed using two polynomial time turing
machines.

In the semi-honest model, the adversary is passive, which means that she fol-
lows the protocol, but outputs her entire view, i.e., all the information she has
obtained during the execution of the protocol. In the malicious model the adver-
sary is active, which means that he may change his behavior in an arbitrary way.
Our definitions for the security of a protocol are based on the standard real vs.
ideal paradigm of [34] and [1] (see also [9]). The idea behind the definition is that
anything an adversary can achieve in the real life protocol, he could also achieve
by another attack in an ideal world, i.e., where the players only have black-box
access to the functionality they try to achieve. If the executions in the real and
the ideal settings are statistically indistinguishable (the statistical distance is



Oblivious-Transfer Amplification 559

smaller than ε), we call the protocol secure with an error of at most ε, if they
are only computationally indistinguishable (any efficient algorithm has negligible
advantage in distinguishing them), we call the protocol computationally secure.

We will only look at a fully randomized version of
(2
1

)
-OTn denoted by(2

1

)
-ROTn.

(2
1

)
-ROTn is equivalent to

(2
1

)
-OTn, which was shown in [4] and for-

mally proved in [2]. Our definition of
(2
1

)
-ROTn is similar to the definitions in

[16] and [14].

Definition 2 (Randomized oblivious transfer, malicious model). A pro-
tocol Π between a sender and a receiver where the sender outputs (X0, X1) ∈
{0, 1}n × {0, 1}n and the receiver outputs (C, Y ) ∈ {0, 1} × {0, 1}n securely im-
plements

(2
1

)
-ROTn in the malicious model with an error of at most ε, if the

following conditions are satisfied:

– (Correctness) If both players are honest, then Pr[Y �= XC ] ≤ ε.
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , there exists a random variable C ∈ {0, 1}, such that X1−C is
ε-close to uniform with respect to (C, XC , V ).

– (Security for the receiver) For an honest receiver and any (malicious) sender
with output U , C is ε-close to uniform with respect to U .

In the semi-honest model, we additionally require that C = C, because we also
require the adversary in the ideal world to be semi-honest.

3 Distributed Randomness Extraction

In order to get an optimal bound for the reduction from
(2
1

)
-OT1 to (α)-

(2
1

)
-UOTn,

we will need a generalization of Lemma 1, the leftover hash lemma. Since this is
of independent interest, we present it in a separate section.

Lemma 1 tells us how many almost-random bits can be extracted from an
imperfect source of randomness X , if some additional uniform randomness is
present. It is also known as privacy amplification. See also [3,25].

Lemma 1 (Leftover hash lemma [5,30]). Let X be a random variable over
X and let m > 0. Let h : S × X → {0, 1}m be a 2-universal hash function. If
m ≤ H∞(X) − 2 log(1/ε) + 2, then for S uniform over S, h(S, X) is ε-close to
uniform with respect to S.

We now generalize the setting and let two players independently extract random-
ness from two dependent random variables. Lemma 1 tells us that if the length
of the extracted strings are smaller than the min-entropy of these random vari-
ables, then each of the extracted strings is close to uniform. However, the two
strings might still be dependent on each other. Lemma 2 now says that if the
total length of the extracted strings is smaller than the overall min-entropy, then
the two strings are also almost independent. The obtained bound is optimal. The
proof is very similar to a standard proof of the leftover hash lemma.



560 J. Wullschleger

Lemma 2 (Distributed leftover hash lemma). Let X and Y be random
variables over X and Y, and let m, n > 0. Let g : S × X → {0, 1}m and h :
R × Y → {0, 1}n be 2-universal hash functions. If

min (H∞(X) − m, H∞(Y ) − n, H∞(XY ) − m − n) ≥ 2 log(1/ε) ,

then, for (S, R) uniform over S × R, (g(S, X), h(R, Y )) is ε-close to uniform
with respect to (S, R).

Proof. For any W having distribution PW over W , and W ′ being uniformly
distributed over W , we have

Δ(W, W ′) =
1
2

∑

w

∣∣∣∣PW (w) − 1
|W|

∣∣∣∣ =
1
2

√√√√
(

∑

w

∣∣∣∣PW (w) − 1
|W|

∣∣∣∣

)2

≤1
2

√
|W|

√√√√∑

w

(
PW (w) − 1

|W|

)2

=
1
2

√
|W|

√∑

w

P 2
W (w) − 1

|W| .

Here we used that (
∑n

i=1 ai)2 ≤ n
∑n

i=1 a2
i , which follows from Cauchy-Schwarz.

Let V = g(S, X), V ′ = h(R, Y ) and U, U ′ be two uniform random variables over
{0, 1}m and {0, 1}n. Choosing W := (V, V ′, S, R) and W ′ := (U, U ′, S, R) in the
above inequality, we get

Δ((V, V ′, S, R), (U, U ′, S, R))

≤ 1
2

√
|S||R|2m+n

√ ∑

vv′sr

P 2
V V ′SR(v, v′, s, r) − 1

|S||R|2m+n
.

Since
∑

x P 2
X(x) is the collision probability1 of a random variable X , we have

for (X0, Y0) and (X1, Y1) independently distributed according to PXY and for
uniformly random S0, S1, R0, and R1 that
∑

vv′sr

P 2
V V ′SR(v, v′, s, r)

= Pr[g(X0, S0) = g(X1, S1) ∧ h(Y0, R0) = h(Y1, R1) ∧ S0 = S1 ∧ R0 = R1]
= Pr[S0 = S1 ∧ R0 = R1] Pr[g(X0, S0) = g(X1, S0) ∧ h(Y0, R0) = h(Y1, R0)] .

Because g and h are 2-universal hash functions, we have

Pr[g(X0, S0) = g(X1, S0) ∧ h(Y0, R0) = h(Y1, R0)]

≤ Pr[X0 = X1 ∧ Y0 = Y1] + 2−m Pr[X0 �= X1 ∧ Y0 = Y1]

+ 2−n Pr[X0 = X1 ∧ Y0 �= Y1] + 2−m−n

= (1 + 3ε2)2−m−n ,

from which follows that Δ((V, V ′, S, R), (U, U ′, S, R)) ≤
√

3
2 ε. 	


1 Let X0 and X1 be distributed according to PX . The collision probability is Pr[X0 =
X1] =

�
PX(x)2.



Oblivious-Transfer Amplification 561

4 Universal Oblivious Transfer

In this section, we give an implementation of
(2
1

)
-ROT� that uses one instance

of universal oblivious transfer (UOT), that allows � to be roughly twice as large
as in [16], at the cost of a slightly larger error term.

UOT is a weak version of ROT that allows a malicious receiver to obtain
more information than what he would be allowed in ROT. For simplicity, we
only define a perfect version of UOT. The definition (and also the proof of
Theorem 1) can easily be adapted to the statistical case.

Definition 3 (Universal oblivious transfer, malicious model). A protocol
Π between a sender and a receiver where the sender outputs (X0, X1) ∈ {0, 1}n×
{0, 1}n and the receiver outputs (C, Y ) ∈ {0, 1} × {0, 1}n securely implements
(α)-

(2
1

)
-UOTn in the malicious model, if the following conditions are satisfied:

– (Correctness) If both players are honest, then Y = XC .
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , we have H∞(X0, X1 | V ) ≥ α.
– (Security for the receiver) For an honest receiver and any (malicious) sender

with output U , C is uniform with respect to U .

We will use the same protocol as [6,8,7,16]. Note that this protocol is only secure
in the the malicious, but not to the semi-honest model.

Protocol ROTfromUOT(α, n, �)
Let (U0, U1) ∈ {0, 1}�×{0, 1}� be the senders output and (C, Y ) ∈ {0, 1}×{0, 1}�

the receivers output. Let h : R×{0, 1}n → {0, 1}� be a 2-universal hash function.

1. Both players execute (α)-
(2
1

)
-UOTn. The sender receives (X0, X1), and the

receiver receives (C, W ).
2. The sender chooses R0, R1 ∈ R at random and sends (R0, R1) to the receiver.
3. The sender outputs (U0, U1) := (h(R0, X0), h(R1, X1)), and the receiver out-

puts (C, Y ) := (C, h(RC , W )).

To prove that the protocol is secure for the sender, we will define an additional
random variable A ∈ {0, 1, 2} that distinguishes between three cases. (We assume
that the receiver gets to know A, which may only help him.) We will show that
the protocol is secure in all three cases. It is easy to see that for this protocol
the bound we obtain in Theorem 1 is asymptotically optimal.

Theorem 1. Let ε > 0. Protocol ROTfromUOT(α, n, �) securely implements(2
1

)
-ROT� with an error of at most 2ε out of one instance of (α)-

(2
1

)
-UOTn in

the malicious model, if � ≤ α/2 − 3 log(1/ε).

Proof. Obviously the protocol satisfies correctness. Let the sender be honest.
Let V

′
be the output of (α)-

(2
1

)
-UOTn to the (malicious) receiver. We will im-

plicitly condition on V
′

= v′. After the execution of (α)-
(2
1

)
-UOTn, we have

H∞(X0X1) ≥ α. Let Si :=
{
xi ∈ Xi : Pr[Xi = xi] ≤ 2−α/2

}
, for i ∈ {0, 1}. We



562 J. Wullschleger

define the random variable A as follows. Let A = 2 if (X0 ∈ S0) ∧ (X1 ∈ S1), let
A = 0 if (X0 �∈ S0)∧ (X1 ∈ S1), let A = 1 if (X1 �∈ S1)∧ (X0 ∈ S0), and let A be
chosen uniformly at random in {0, 1} if (X0 �∈ S0)∧ (X1 �∈ S1). If Pr[A = 2] ≤ ε,
we will ignore the event A = 2. Therefore, we redefine A for this event to take
on the value 3. We end up with a random variable A that takes on the value 2
with probability 0 or at least ε, and which takes on the value 3 with probability
at most ε. Let C = min(A, 1).

– If the event A = i occurs for i ∈ {0, 1}, we have C = i. All xi ∈ Si have
Pr[Xi = xi ∧ A = i] = 0. For all xi �∈ Si we have Pr[Xi = xi ∧ A = i] ≥
Pr[Xi = xi]/2 ≥ 2−α/2−1. It follows that

Pr[X1−i = x1−i | Xi = xi ∧ A = i] =
Pr[X1−i = x1−i ∧ Xi = xi ∧ A = i]

Pr[Xi = xi ∧ A = i]

≤ 2−α/2−α/2−1 = 2−α/2+1 ,

and hence, H∞(X1−C | XC , A = i) ≥ α/2 − 1. Since R1−C is chosen in-
dependently of the rest, it follows from Lemma 1 that, given A = i, the
distribution of U1−C is ε-close to uniform with respect to (R0, R1, UC).

– If the event A = 2 occurs, we have C = 1, Pr[A = 2] ≥ ε, Pr[X0 = x0 ∧X1 =
x1 | A = 2] ≤ 2−α/ε, and Pr[Xi = xi | A = 2] ≤ 2−α/2/ε, for i ∈ {0, 1}.
It follows that H∞(X0 | A = 2) ≥ α/2 − log(1/ε), H∞(X1 | A = 2) ≥
α/2− log(1/ε), and H∞(X0X1 | A = 2) ≥ α− log(1/ε). Since R0 and R1 are
chosen independently of the rest, it follows from Lemma 2 that given A = 2,
(U0, U1) is ε-close to uniform with respect to (R0, R1), from which follows
that U1−C is ε-close to uniform with respect to (R0, R1, UC).

Therefore, for all a ∈ {0, 1, 2}, given A = a, there exists a C such that the
distribution of U1−C is ε-close to uniform with respect to (R0, R1, C, UC). It fol-
lows that U1−C is also ε-close to uniform with respect to (R0, R1, C, UC) given
A < 3, and since Pr[A = 3] ≤ ε, U1−C is 2ε-close to uniform with respect to
(R0, R1, C, UC). Because this holds for all v′ ∈ V ′, and because V is a random-
ized function of (R0, R1, V

′
), U1−C is also 2ε-close to uniform with respect to

(C, UC , V ).
Let the receiver be honest, and let U

′
be the output of (α)-

(2
1

)
-UOTn to a

(malicious) sender. From the security of (α)-
(2
1

)
-UOTn follows that C is uniform

with respect to U
′
. Since the receiver does not send any messages to the sender,

C is also uniform with respect to U . 	


5 Weak Oblivious Transfer

In this section we show how ROT can be implemented using many instances
of weak oblivious transfer (WOT), which is a weak version of ROT where both
players may get additional information, and where the output may be incorrect.
We start by giving two new, weaker definitions of WOT for both models.



Oblivious-Transfer Amplification 563

Definition 4 (Weak oblivious transfer, semi-honest model). Let Π be a
protocol between a sender and a receiver that outputs (X0, X1) ∈ {0, 1} × {0, 1}
to the sender and (C, Y ) ∈ {0, 1} × {0, 1} to the receiver. Let U be the view of
the semi-honest sender, and let V be the view of the semi-honest receiver. Let
E := XC ⊕ Y . Π implements (p, q, ε)-WOT in the semi-honest model, if

– (Correctness) Pr[Y �= XC ] ≤ ε.
– (Security for the sender) PredAdv(X1−C | V, E) ≤ q.
– (Security for the receiver) PredAdv(C | U, E) ≤ p.

Since C and Y are part of V , (C, XC , V ) is a function of (V, E). Note that for the
protocols we present here, it would be sufficient to require PredAdv(C | U) ≤ p
for the security for the receiver. We do not use this definition in order to get a
stronger Theorem 6 that is easier to proof.

Definition 5 (Weak oblivious transfer, malicious model). Let Π be a
protocol between a sender and a receiver that outputs (X0, X1) to the sender and
(C, Y ) to the receiver. Π implements (p, q, ε)-WOT in the malicious model, if

– (Correctness) Pr[Y �= XC ] ≤ ε.
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , there exists a C, such that PredAdv(X1−C | C, XC , V ) ≤ q.
– (Security for the receiver) For an honest receiver and any (malicious) sender

with output U , we have PredAdv(C | U) ≤ p.

It is easy to see that in both models (ε, ε, ε)-WOT implies
(2
1

)
-ROT1 with an

error of at most ε.
Besides the fact that we only consider a randomized version of WOT, our

definitions of (p, q, ε)-WOT differ from the definitions used in [17] and [15] in the
fact that we do not specify exactly what a malicious player may receive, but we
only require that his output should not give too much information about X1−C

and C. This means that a malicious player may, for example, always receive
whether an error occurred in the transmission or not, if that information is
independent of the inputs. The most important difference is, however, that our
definitions do not require that the error must occur independently of the event
that a player gets side information, which is very important when we want to
apply it. Note that our definitions still are quite close to the definitions from
[17,15], because there exist events with probability 1 − p and 1 − q, such that if
they occur, then the adversary does not get any side information.

In order to improve the achievable range of the reductions, Generalized WOT
(GWOT) was introduced in [15]. Our weaker definitions of WOT imply that,
at least for the moment, the usage of GWOT does not give any advantage over
WOT.

Notice that the impossibility result, Lemma 1 in [17], only works for our
weaker definitions of WOT.



564 J. Wullschleger

5.1 Basic Protocols for WOT Amplification

To achieve
(2
1

)
-OT1 from (p, q, ε)-WOT, we will use the reductions R-Reduce,

S-Reduce and E-Reduce. Protocol R-Reduce is used to reduce the parameter p,
and Protocol S-Reduce is used to reduce the parameter q. Both protocols where
already used in [12,17,15,20], as well as in [22,33] to build OT-combiners. It
is easy to verify that these protocols are also secure when our definitions of
(p, q, ε)-WOT is used. (Notice that R-Reduce and S-Reduce, as well as E-Reduce
below, use a non-randomized WOT as input. Therefore, we have to apply first
the protocol presented in [4,2] that converts ROT into OT.)

Lemma 3 ([17]). Protocol R-Reduce(n, W) implements a (p′, q′, ε′)-WOT in the
semi-honest and the malicious model out of n instances of (p, q, ε)-WOT, where
p′ = 1 − (1 − p)n ≤ np, q′ = qn ≤ e−n(1−q), and ε′ = (1 − (1 − 2ε)n)/2 ≤ nε.

Protocol S-Reduce(n, W) implements a (p′, q′, ε′)-WOT in the semi-honest and
the malicious model out of n instances of (p, q, ε)-WOT, where p′ = pn ≤
e−n(1−p), q′ = 1 − (1 − q)n ≤ np, and ε′ = (1 − (1 − 2ε)n)/2 ≤ nε.

Protocol E-Reduce was also used in [20] and is an one-way variant of Protocol
E-Reduce presented in [17]. It is only secure in the semi-honest model.

Protocol E-Reduce(n, W)
The sender has input (x0, x1) ∈ {0, 1} × {0, 1}, and the receiver c ∈ {0, 1}.

1. They execute W n times, using x0, x1 and c as input in the ith execution.
The receiver receives yi.

2. The receiver outputs y := majority(y1, . . . , yn).

Lemma 4. Protocol E-Reduce(n, W) implements (p′, q′, ε′)-WOT in the semi-
honest model out of n instances of (p, q, ε)-WOT, where p′ = 1 − (1 − p)n ≤ np,
q′ = 1 − (1 − q)n ≤ nq and ε′ =

∑n
i=�n/2�

(
n
i

)
εi(1 − ε)n−i ≤ e−2n(1/2−ε)2 .

The proof of Lemma 4 is straightforward. The last inequality follows from the
Chernoff-Hoeffding bound.

5.2 WOT Amplification for ε = 0

If p, q > 0, but ε = 0, we only need Protocols R-Reduce and S-Reduce. As they
are the same as in [17], their result for this case also holds for our definitions.
The bound is optimal. For a more detailed analysis, see [41].

Theorem 2 ([17]). If p + q ≤ 1 − 1/ poly(k), then (2−k, 2−k, 0)-WOT can be
efficiently implemented using (p, q, 0)-WOT secure in the semi-honest and the
malicious model.

5.3 WOT Amplification for p = 0 or q = 0

The special case where ε > 0, but either p = 0 or q = 0 has not been considered in
[17]. There is a strong connection of this problem to the one-way key-agreement
problem studied in [28], as well as to the statistical distance polarization problem
studied in [37,38]. We use the same protocol as Lemma 3.1.12 in [38].



Oblivious-Transfer Amplification 565

Theorem 3. For constant p, q, and ε with p = 0 ∧ √
q + 2ε < 1 or q =

0 ∧ √
p + 2ε < 1, (2−k, 2−k, 2−k)-WOT can efficiently be implemented using

(p, q, ε)-WOT secure in the semi-honest model.

Proof. We will only show the theorem for q = 0. For p = 0 it is symmetric.
Let β = p, and α = 1 − 2ε. Let λ = min(α2/β, 2), � = �logλ 4k and m =

λ�/(2α2�) ≤ (α2�/β�)/(2α2�) = 1/(2β�). From
√

p + 2ε < 1 follows that β < α2

and hence, 1 < λ ≤ 2. Notice that m is polynomial in k, since � = O(log k).
We use the reductions W ′ = S-Reduce(�, W), W ′′ = E-Reduce(m, W ′), and
W ′′′ = S-Reduce(k, W ′′). Since W is a (β, 0, (1−α)/2)-WOT, W ′ is a (β′, 0, (1−
α′)/2)-WOT, where β′ = β� and α′ = α�. W ′′ is a (β′′, 0, (1 − α′′)/2)-WOT with
β′′ ≤ mβ′ ≤ 1/2 and

α′′ ≥ 1 − 2 exp
(

− λ�

2α2�
· (α�)2

2

)
= 1 − 2 exp

(
−λ�

4

)
≥ 1 − 2e−k .

Finally, W ′′′ is a (β′′′, 0, (1−α′′′)/2)-WOT with α′′′ ≥ (1−2e−k)k ≥ 1−2ke−k ≥
1 − 2−k and β′′′ ≤ 2−k, as long as k is sufficiently large, which can be achieved
by artificially increasing k at the start. 	


5.4 WOT Amplification for p, q, ε > 0

To find a good protocol for the general case is much harder. We start with the
case where all values are smaller than 1/50.

Lemma 5. In the semi-honest model, (2−k, 2−k, 2−k)-WOT can efficiently and
securely be implemented using O(k2+log(3)) instances of (1/50, 1/50, 1/50)-WOT.

Proof. We iterate the reduction W ′ := S-Reduce(2, R-Reduce(2, E-Reduce(3, W)))
t times. In every iteration, we have p′ ≤ (2 · (3p))2 = 36p2, q′ ≤ 2 · ((3q)2) = 18q2,
and ε′ ≤ 2 · 2 · (3ε2 − 2ε3) ≤ 12ε2, from which follows that after t iterations,
we have max(p′, q′, ε′) ≤ (36/50)2

t

. To achieve max(p′, q′, ε′) ≤ 2−k, we choose
t := �log k/ log(50/36) ≤ log(3 · k) + 1 = log(6 · k). We need at most 12t ≤
(6 · k)log(12) = O(k2+log(3)) instances of W . 	


The following Lemma 6 is a corrected version of Lemma 5 in [17]. Since our
Protocol E-Reduce is different, we are only able to achieve a smaller bound. As
in [17], we obtain our bound using a simulation.

Let li(p, q) be a function such that for all p, q and ε < li(p, q),
(2
1

)
-ROT1

can be implemented using (p, q, ε)-WOT. Using li(p, q), we define li+1(p, q) :=
max(S−1

ε (li(Sp(p), Sq(q))), R−1
ε (li(Rp(p), Rq(q))), E−1

ε (li(Ep(p), Eq(q)))), where
Sp(p) := p2, Sq(q) := 1−(1−q)2, S−1

ε (ε) := (1−
√

1 − 2ε)/2, Rp(p) := 1−(1−p)2,
Rq(q) := q2, R−1

ε (ε) := (1 −
√

1 − 2ε)/2, Ep(p) := 1 − (1 − p)3, Eq(q) :=
1 − (1 − q)3, and E−1

ε (ε) is the inverse of Eε(ε) := 3ε − 2ε3.
Now for all p, q and ε < li+1(p, q),

(2
1

)
-ROT1 can be implemented using

(p, q, ε)-WOT, since one of the protocols S-Reduce(2, W), R-Reduce(2, W), or
E-Reduce(3, W) achieves ε′ < li(p′, q′), from which we can achieve

(2
1

)
-ROT1.



566 J. Wullschleger

From Lemma 5 follows that l0(p, q) := 0.02 − p − q satisfies our condition.
Iterating 8 times, we get that for all p, q, l8(p, q) ≥ (0.15 − p − q)/2. Using
l′0(p, q) := (0.15 − p − q)/2 and iterating 11 times, we get l′11(p, q). Since for all
p, q we have l′11(p, q) ≥ (0.24 − p − q)/2, we get

Lemma 6. If p + q + 2ε ≤ 0.24, then (2−k, 2−k, 2−k)-WOT can efficiently be
implemented using (p, q, ε)-WOT secure in the semi-honest model.

Often (p, q, ε)-WOT will be applied when one of the three values is big, while
the others are small. We will now give bounds for these three cases.

Lemma 7. If p + 22q + 44ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Proof. We apply W ′ = S-Reduce(n, W) for n = �ln(20)/(1 − p). From Lem-
mas 3 follows directly that we obtain a (p′, q′, ε′)-WOT with p′+ q′+2ε′ ≤ 0.24.
The lemma follows now from Lemma 6. 	


Lemma 8. If 22p + q + 44ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Lemma 9. If 7
√

p + q + 2ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Proof. We apply W ′ = E-Reduce(n, W) for n =
⌈
ln(50)/(2(1

2 − ε)2)
⌉
. From

Lemma 4 follows directly that we obtain a (p′, q′, ε′)-WOT with p′ + q′ + 2ε′ ≤
0.24. The lemma follows now from Lemma 6. 	


Theorem 4. If p+ q +2ε ≤ 0.24, or min(p+22q +44ε, 22p+q +44ε, 7
√

p + q+
2ε) ≤ 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can efficiently be implemented
using (p, q, ε)-WOT secure in the semi-honest model.

6 Computationally Secure Weak Oblivious Transfer

Even though the protocols from the last section are purely information-theoretic,
we can also use them in the computational semi-honest model, as we will see in
this section. The main tool to show this will be a pseudo-randomness extraction
theorem (Theorem 5), that is a modified version of Theorem 7.3 from [27]. It is
based on the uniform hard-core lemma from [26], which is a uniform variant of
the hard-core lemma from [29].

6.1 Pseudo-randomness Extraction

The main difference of Theorem 5 compared to the (implicit) extraction lemma
in [24,25] and the extraction lemma in [21] is that it allows the adversary to gain
some additional knowledge during the extraction (expressed by the function
Leak), which is needed for our application.



Oblivious-Transfer Amplification 567

Besides a simplification, the main difference of our Theorem 5 to Theorem 7.3
from [27] is that we allow the functions Ext and Leak also to depend on the
values Zi. Intuitively, Theorem 5 says the following: if we have an information-
theoretic protocol (modeled by the two functions Ext and Leak), that converts
many instances of X over which an adversary having Z has only partial knowl-
edge, into an X ′ over which the adversary has almost no knowledge, and if we
have a computational protocol (modeled by the function f(W ) and the predicate
P (W )), where an adversary having f(W ) has only partial computational knowl-
edge about P (W ), then the modified information-theoretic protocol, where every
instance of X is replaced with P (W ) and every instance of Z with f(W ), will
produce a value over which the adversary has almost no computation knowledge.

Theorem 5 (Pseudo-randomness Extraction Theorem, Modified
Theorem 7.3 in [27]). Let the functions f : {0, 1}k → {0, 1}�, P : {0, 1}k →
{0, 1}, and β : N → [0, 1] computable in time poly(k) be given. Assume that
every polynomial time algorithm B satisfies

Pr[B(f(W )) = P (W )] ≤ (1 + β(k))/2

for all but finitely many k, for a uniform random W ∈ {0, 1}k. Further, let also
functions n(k), s(k),

Ext : {0, 1}�·n × {0, 1}n × {0, 1}s → {0, 1}t ,

Leak : {0, 1}�·n × {0, 1}n × {0, 1}s → {0, 1}t′
,

be given which are computable in time poly(k), and satisfy the following: for any
distribution PXZ over {0, 1} × {0, 1}� where PredAdv(X | Z) ≤ β(k), the out-
put of Ext(Zn, Xn, R) is ε(k)-close to uniform with respect to Leak(Zn, Xn, R)
(where R ∈ {0, 1}s is chosen uniformly at random). Then, no polynomial time
algorithm A, which gets as input

Leak((f(w1), . . . , f(wn)), (P (w1), . . . , P (wn)), R) ,

(where (w1, . . . , wn) are chosen uniformly at random) distinguishes

Ext((f(w1), . . . , f(wn)), (P (w1), . . . , P (wn)), R)

from a uniform random string of length t with advantage ε(k) + γ(k), for any
non-negligible function γ(k).

The proof of Theorem 5 is very similar to the proof of Theorem 7.3 in [27] and
can be found in [41]. Note that our proof makes an additional step that has been
missing in the proof of Theorem 7.3 in [27].

6.2 Computational-WOT Amplification

We will denote the computational version of (p, q, ε)-WOT by (p, q, ε)-compWOT.
The difference to the information-theoretic definition is that now we require the
algorithms that guess X1−C or C to be efficient, i.e., to run in polynomial time.



568 J. Wullschleger

Definition 6 (Computationally secure weak oblivious transfer, semi-
honest model). Let functions ε : N → [0, 1/2], p : N → [0, 1], and q : N → [0, 1]
computable in time poly(k) be given. Let Π be a protocol between a sender and
a receiver. On input 1k, Π outputs (X0, X1) ∈ {0, 1} × {0, 1} to the sender and
(C, Y ) ∈ {0, 1}×{0, 1} to the receiver. Let U be the view of a semi-honest sender,
and let V be the view of a semi-honest receiver. Let E := XC ⊕Y . Π implements
(p(k), q(k), ε(k))-compWOT in the semi-honest model, if

– (Efficiency) Π can be executed in time poly(k).
– (Correctness) Pr[Y �= XC ] ≤ ε(k) for all k.
– (Security for the sender) All polynomial time algorithms A satisfy

Pr[A(V, E) = X1−C ] ≤ (1 + q(k))/2

for all but finitely many k.
– (Security for the receiver) All polynomial time algorithms A satisfy

Pr[A(U, E) = C] ≤ (1 + p(k))/2

for all but finitely many k.

We apply Theorem 5 twice to get Theorem 6, which says that if we have a pro-
tocol that implements (p, q, ε)-compWOT, and an efficient information-theoretic
protocol that implements

(2
1

)
-ROT1 from (p, q, ε)-WOT secure in the semi-honest

model, then we can construct a protocol that implements
(2
1

)
-ROT1 computa-

tionally secure in the semi-honest model.

Theorem 6. Let the functions ε(k), p(k), and q(k) computable in time poly(k)
be given. Let a protocol Π achieve (p, q, ε)-compWOT and let an efficient infor-
mation-theoretic protocol Π ′ be given which takes 1k as input and implements
(2−k, 2−k, 2−k)-WOT from (p, q, ε)-WOT secure in the semi-honest model. Then,
protocol Π ′, where every instance of (p, q, ε)-WOT is replaced by an independent
outcome of Π, implements

(2
1

)
-ROT1 computationally secure in the semi-honest

model.

Proof. Let W = (WS, WR) be the randomness used in Π by the sender and the
receiver, and let Z be the communication. (X0, X1) and (C, Y ) are the output
to the honest sender and receiver, respectively. U = (X0, X1, Z, WS) and V =
(C, Y, Z, WR) are the views of the semi-honest sender and receiver, respectively.
Let E := Y ⊕ XC . Note that all these values are functions of W .

In the protocol Π ′, the sender receives (X0, X1)n, which are her output from
the n independent instances of Π , and the receiver receives (C, Y )n. The sender
outputs (X∗0 , X∗1 ) and the receiver (C∗, Y ∗). Let R = (RS, RR) be the randomness
used in Π ′ by both players, and let Z ′ be the communication produced by Π ′.
V ∗ = (E∗, C∗, Y ∗, V n, Z ′, RR) is the view of the semi-honest receiver after the
execution of Π ′, and U∗ = (E∗, X∗0 , X∗1 , Un, Z ′, RS) the view of the semi-honest
sender. Let E∗ := Y ∗ ⊕ X∗C∗ . Note that the values E∗, X∗0 , X∗1 , C∗, Y ∗, V ∗, U∗

and Z ′ are functions of ((X0, X1, C, Y )n, R).



Oblivious-Transfer Amplification 569

First of all, the resulting protocol will be correct and efficient, as every out-
come of Π satisfies Pr[Y �= XC ] ≤ ε.

For the security of the sender, we define the following functions: let f(W ) :=
(V, E) and P (W ) := X1−C . Since XC = E ⊕ Y , it is possible to simulate the
protocol Π ′ using the values (V, E)n, (X1−C)n, and R. Therefore, we can de-
fine Ext((V, E)n, (X1−C)n, R) := X∗1−C∗ and Leak((V, E)n, (X1−C)n, R) := V ∗.
Since Π ′ implements (negl(k), negl(k), negl(k))-WOT, the functions Ext and
Leak satisfy the extraction requirements from Theorem 5 with ε(k) = negl(k).
Furthermore, Ext and Leak can be computed efficiently, since the protocol Π ′ is
efficient. From the security condition of compWOT follows that every polynomial-
time algorithm B satisfies Pr[B(f(W )) = P (W )] ≤ (1 + q(k))/2 for all but fi-
nitely many k, for W chosen uniformly at random. Theorem 5 tells us that no
polynomial time algorithm A, which gets as input Leak((V, E)n, (X1−C)n, R),
distinguishes Ext((V, E)n, (X1−C)n, R) from a uniform random bit with advan-
tage negl(k)+γ(k), for any non-negligible function γ(k), from which follows that
the protocol is computationally secure for the sender.

For the security of the receiver, we define the following functions: let f(W ) :=
(U, E) and P (W ) := C. Since XC = E ⊕ Y , it is possible to simulate the
protocol Π ′ using the values (U, E)n, Cn, and R. Therefore, we can define
Ext((U, E)n, Cn, R) := C∗, and Leak((U, E)n, Cn, R) := U∗. Since Π ′ imple-
ments (negl(k), negl(k), negl(k))-WOT, the functions Ext and Leak satisfy the
extraction requirements from Theorem 5 with ε(k) = negl(k). Furthermore,
Ext and Leak can be computed efficiently, since the protocol Π ′ is efficient.
From the security condition of compWOT follows that every polynomial time
algorithm A satisfies Pr[A(f(W )) = P (W )] ≤ (1 + p(k))/2 for all but finitely
many k, for W chosen uniformly at random. Theorem 5 tells us that no polyno-
mial time algorithm B, which gets as input Leak((U, E)n, Cn, R), distinguishes
Ext((U, E)n, Cn, R) from a uniform random bit with advantage negl(k) + γ(k),
for any non-negligible function γ(k), from which follows that the protocol is
computationally secure for the receiver. 	


Together with the information-theoretic protocols presented in Section 5, (Theo-
rems 2, 3 and 4) we get a way to implement ROT based on compWOT, computa-
tionally secure in the semi-honest model. From [31] follows that such a protocol
implies one-way functions. Using the compiler from [19], we get an implementa-
tion of OT computationally secure in the malicious model. The following corol-
lary follows.

Corollary 1. Let the functions ε(k), p(k), and q(k) computable in time poly(k)
be given, such that either for all k ε = 0 ∧ p+ q < 1−1/ poly(k) or p+ q +2ε ≤
0.24 or min(p + 22q + 44ε, 22p + q + 44ε, 7

√
p + q + 2ε) < 1 − 1/ poly(k), or,

for constant functions p(k), q(k) and ε(k), (p = 0) ∧ (
√

q + 2ε < 1) or (q =
0) ∧ (

√
p + 2ε < 1). If there exists a protocol Π that achieve (p, q, ε)-compWOT

computationally secure in the semi-honest model, then there exists a protocol that
implements

(2
1

)
-OT1 computationally secure in the malicious model.



570 J. Wullschleger

Corollary 1 generalizes results from [20], because it covers a much wider range
of values for p, q, and ε, and it allows the security for both players to be only
computational.

Acknowledgments

I would like to thank Thomas Holenstein and Stefan Wolf for helpful discus-
sions, and Ivan Damg̊ard and Louis Salvail for answering my questions about
their work. I also thank Serge Fehr, Iftach Haitner, Melanie Raemy, Christian
Schaffner and anonymous referees for giving helpful comments on this work.

I was supported by the Swiss National Science Foundation (SNF).

References

1. D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology
— CRYPTO ’91, volume 1233 of LNCS, pages 377–391. Springer-Verlag, 1992.

2. D. Beaver. Precomputing oblivious transfer. In Advances in Cryptology — EU-
ROCRYPT ’95, volume 963 of LNCS, pages 97–109. Springer-Verlag, 1995.

3. C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Transactions on Information Theory, 41, 1995.

4. C. H. Bennett, G. Brassard, C. Crépeau, and H. Skubiszewska. Practical quantum
oblivious transfer. In Advances in Cryptology — CRYPTO ’91, volume 576 of
LNCS, pages 351–366. Springer, 1992.

5. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

6. G. Brassard and C. Crépeau. Oblivious transfers and privacy amplification. In
Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS, pages 334–
347. Springer-Verlag, 1997.

7. G. Brassard, C. Crépeau, and S. Wolf. Oblivious transfers and privacy amplifica-
tion. Journal of Cryptology, 16(4):219–237, 2003.

8. C. Cachin. On the foundations of oblivious transfer. In Advances in Cryptology —
EUROCRYPT ’98, volume 1403 of LNCS, pages 361–374. Springer-Verlag, 1998.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

10. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979.

11. C. Crépeau. Efficient cryptographic protocols based on noisy channels. In Advances
in Cryptology — CRYPTO ’97, volume 1233 of LNCS, pages 306–317. Springer-
Verlag, 1997.

12. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions (extended abstract). In Proceedings of the 29th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’88), pages 42–52, 1988.

13. C. Crépeau, K. Morozov, and S. Wolf. Efficient unconditional oblivious transfer
from almost any noisy channel. In Proceedings of Fourth Conference on Security
in Communication Networks (SCN), volume 3352 of LNCS, pages 47–59. Springer-
Verlag, 2004.



Oblivious-Transfer Amplification 571

14. C. Crépeau, G. Savvides, C. Schaffner, and J. Wullschleger. Information-theoretic
conditions for two-party secure function evaluation. In Advances in Cryptology —
EUROCRYPT ’06, volume 4004 of LNCS, pages 538–554. Springer-Verlag, 2006.
Full version available at http://eprint.iacr.org/2006/183.

15. I. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and obliv-
ious transfer. In Theory of Cryptography Conference — TCC ’04, volume 2951 of
LNCS, pages 355–373. Springer-Verlag, 2004.

16. I. Damgard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded
quantum-storage model. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’05), pages 449–458. IEEE Computer
Society, 2005.

17. I. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Advances in
Cryptology — EUROCRYPT ’99, volume 1592 of LNCS, pages 56–73. Springer-
Verlag, 1999.

18. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC ’87),
pages 218–229. ACM Press, 1987.

20. I. Haitner. Implementing oblivious transfer using collection of dense trapdoor
permutations. In Theory of Cryptography Conference — TCC ’04, volume 2951 of
LNCS, pages 394–409. Springer-Verlag, 2004.

21. I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate.
In Advances in Cryptology — CRYPTO ’06, volume 4117 of LNCS, pages 21–40.
Springer-Verlag, 2006.

22. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners
for oblivious transfer and other primitives. In Advances in Cryptology — EURO-
CRYPT ’05, volume 3494 of LNCS, pages 96–113, 2005.

23. D. Harnik, M. Naor, O. Reingold, and A. Rosen. Completeness in two-party secure
computation: a computational view. In Proceedings of the 36th Annual ACM Sym-
posium on Theory of Computing (STOC ’04), pages 252–261. ACM Press, 2004.

24. J. H̊astad. Pseudo-random generators under uniform assumptions. In Proceedings
of the 22st Annual ACM Symposium on Theory of Computing (STOC ’90), pages
395–404. ACM Press, 1990.

25. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

26. T. Holenstein. Key agreement from weak bit agreement. In Proceedings of the
37th ACM Symposium on Theory of Computing (STOC ’05), pages 664–673. ACM
Press, 2005.

27. T. Holenstein. Strengthening key agreement using hard-core sets. PhD thesis, ETH
Zurich, Switzerland, 2006. Reprint as vol. 7 of ETH Series in Information Security
and Cryptography, Hartung-Gorre Verlag.

28. T. Holenstein and R. Renner. One-way secret-key agreement and applications
to circuit polarization and immunization of public-key encryption. In Advances
in Cryptology — CRYPTO ’05, volume 3621 of LNCS, pages 478–493. Springer-
Verlag, 2005.

29. R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceed-
ings of the 36th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’95), pages 538–545. IEEE Computer Society, 1995.



572 J. Wullschleger

30. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-
way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC ’89), pages 12–24. ACM Press, 1989.

31. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proceedings of the 30th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’89), pages 230–235, 1989.

32. J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages 20–31. ACM
Press, 1988.

33. R. Meier, B. Przydatek, and J. Wullschleger. Robuster combiners for oblivious
transfer. In Theory of Cryptography Conference — TCC ’07, LNCS. Springer-
Verlag, 2007.

34. S. Micali and P. Rogaway. Secure computation (abstract). In Advances in Cryp-
tology — CRYPTO ’91, volume 576 of LNCS, pages 392–404. Springer-Verlag,
1992.

35. A. Nascimento and A. Winter. On the oblivious transfer capacity of noisy correla-
tions. In Proceedings of the IEEE International Symposium on Information Theory
(ISIT ’06), 2006.

36. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

37. A. Sahai and S. Vadhan. Manipulating statistical difference. In Randomization
Methods in Algorithm Design (DIMACS Workshop ’97), volume 43 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 251–270.
American Mathematical Society, 1999.

38. S. Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Massachusets
Institute of Technology, USA, 1999.

39. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.
40. S. Wolf and J. Wullschleger. Zero-error information and applications in cryptog-

raphy. In Proceedings of 2004 IEEE Information Theory Workshop (ITW ’04),
2004.

41. J. Wullschleger. Oblivious-Transfer Amplification. PhD thesis, ETH Zurich,
Switzerland, 2007.

42. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’82), pages 160–
164, 1982.



Simulatable Adaptive Oblivious Transfer

Jan Camenisch1, Gregory Neven2,3, and abhi shelat1

1 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon
2 Katholieke Universiteit Leuven, Dept. of Electrical Engineering, B-3001 Heverlee
3 Ecole Normale Supérieure, Département d’Informatique, 75230 Paris Cedex 05

Abstract. We study an adaptive variant of oblivious transfer in which a
sender has N messages, of which a receiver can adaptively choose to re-
ceive k one-after-the-other, in such a way that (a) the sender learns noth-
ing about the receiver’s selections, and (b) the receiver only learns about
the k requested messages. We propose two practical protocols for this
primitive that achieve a stronger security notion than previous schemes
with comparable efficiency. In particular, by requiring full simulatabil-
ity for both sender and receiver security, our notion prohibits a subtle
selective-failure attack not addressed by the security notions achieved by
previous practical schemes.

Our first protocol is a very efficient generic construction from unique
blind signatures in the random oracle model. The second construction
does not assume random oracles, but achieves remarkable efficiency with
only a constant number of group elements sent during each transfer. This
second construction uses novel techniques for building efficient simulat-
able protocols.

1 Introduction

The oblivious transfer (OT) primitive, introduced by Rabin [Rab81], and ex-
tended by Even, Goldreich, and Lempel [EGL85] and Brassard, Crépeau and
Robert [BCR87] is deceptively simple: there is a sender S with messages M1, . . . ,
MN and a receiver R with a selection value σ ∈ {1, . . . , N}. The receiver wishes
to retrieve Mσ from S in such a way that (1) the sender does not “learn” any-
thing about the receiver’s choice σ and (2) the receiver “learns” only Mσ and
nothing about any other message Mi for i �= σ. Part of the allure of OT is
that it is complete, i.e., if OT can be realized, virtually any secure multiparty
computation can be [GMW87, CK90].

In this paper, we consider an adaptive version of oblivious transfer in which
the sender and receiver first run an initialization phase during which the sender
commits to a “database” containing her messages. Later on, the sender and
receiver interact as before so that the receiver can retrieve some message Mσ. In
addition, we allow the receiver to interact with the sender k−1 additional times,
one interaction after the other, in order to retrieve additional values from the
sender’s database. Notice here that we specifically model the situation in which
the receiver’s selection in the ith phase can depend on the messages retrieved in
the prior i − 1 phases. This type of adaptive OT problem is central to a variety

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 573–590, 2007.
c© International Association for Cryptology Research 2007



574 J. Camenisch, G. Neven, and a. shelat

of practical problems such as patent searches, treasure hunting, location-based
services, oblivious search, and medical databases [NP99b].

The practicality of this adaptive OT problem also drives the need for ef-
ficient solutions to it. Ideally, a protocol should only require communication
linear in N and the security parameter κ during the initialization phase (so
that the sender commits to the N messages), and an amount of communication
of O(max(κ, log N)) during each transfer phase (so that the receiver can use
cryptography and encode the index of his choice).1 In the race to achieve these
efficiency parameters, however, we must also not overlook—or worse, settle for
less-than-ideal security properties.

1.1 Security Definitions of Oblivious Transfer

An important contribution of this work is that it achieves a stronger simulation-
based security notion at very little cost with respect to existing schemes that
achieve weaker notions. We briefly summarize the various security notions for
OT presented in the literature, and how our notion extends them.

Honest-but-curious model. In this model, all parties are assumed to follow
the protocol honestly. Security guarantees that after the protocol completes, a
curious participant cannot analyze the transcript of the protocol to learn any-
thing else. Any protocol in the honest-but-curious model can be transformed into
fully-simulatable protocols, albeit at the cost of adding complexity assumptions
and requiring costly general zero-knowledge proofs for each protocol step.

Half-simulation. This notion, introduced by Naor and Pinkas [NP05], consid-
ers malicious senders and receivers, but handles their security separately. Re-
ceiver security is defined by requiring that the sender’s view of the protocol
when the receiver chooses index σ is indistinguishable from a view of the pro-
tocol when the receiver chooses σ′. Sender security, on the other hand, involves
a stronger notion. The requirement follows the real-world/ideal-world paradigm
and guarantees that any malicious receiver in the real world can be mapped to
a receiver in an idealized game in which the OT is implemented by a trusted
party. Usually, this requires that receivers are efficiently “simulatable,” thus we
refer to this notion as half-simulation.

The Problem of Selective Failure. We argue that the definition of half-
simulation described above does not imply all properties that one may expect
from a OT N

k×1 scheme. Notice that a cheating sender can always make the current
transfer fail by sending bogus messages. However, we would not expect him to
be able to cause failure based on some property of the receiver’s selection. Of
course, the sener can also prevent the receiver from retrieving Mσ by replacing it

1 In practice, we assume that κ > log(N)—so that the protocol can encode the re-
ceiver’s selection—but otherwise that κ is chosen purely for the sake of security. In
this sense, O(κ) is both conceptually and practically different than O(polylog(N)).



Simulatable Adaptive Oblivious Transfer 575

with a random value during the initialization phase. But again, the sender should
not be able to make this decision anew at each transfer phase. For example, the
sender should not be able to make the first transfer fail for σ = 1 but succeed
for σ ∈ {2, . . . , N}, and to make the second transfer fail for σ = 2 but succeed
for σ ∈ {1, 3, . . . , N}. The receiver could publicly complain whenever a transfer
fails, but by doing so it gives up the privacy of its query. Causing transfers
to fail may on the long term harm the sender’s business, but relying on such
arguments to dismiss the problem is terribly naive. A desperate patent search
database may choose to make faster money by selling a company’s recent queries
to competitors than by continuing to run its service.

We refer to this issue as the selective-failure problem. To see why it is not
covered by the half-simulation notion described above, it suffices to observe that
the notion of receiver security only hides the message received by the receiver
from the cheating sender’s view. A scheme that is vulnerable to selective-failure
attacks does not give the cheating sender any additional advantage in break-
ing the receiver’s privacy, and may therefore be secure under such a notion.
(This illustrates the classic argument from work in secure multiparty compu-
tation that achieving just privacy is not enough; both privacy and correctness
must be achieved simultaneously.) In fact, the schemes of [NP05] are secure
under half-simulation, yet vulnerable to selective-failure attacks. In an earlier
version [NP99b], the same authors recognize this problem and remark that it
can be fixed, but do not give formal support of their claim. A main contribution
of this work is to show that it can be done without major sacrifices in efficiency.

Simulatable OT. The security notion that we consider employs the real-
world/ideal-world paradigm for both receiver and sender security. We extend
the functionality of the trusted party such that at each transfer, the sender in-
puts a bit b indicating whether it wants the transfer to succeed or fail. This
models the capability of a sender in the real world to make the transfer fail by
sending bogus messages, but does not enable it to do so based on the receiver’s
input σ. Moreover, for security we require indistinguishability of the combined
outputs of the sender and the receiver, rather than only of the output of the dis-
honest party. The output of the honest receiver is assumed to consist of all the
messages Mσ1 , . . . ,Mσk

that it received. This security notion excludes selective-
failure attacks in the real world, because the ideal-world sender is unable to
perform such attacks, which will lead to noticeable differences in the receiver’s
output in the real and ideal world.

Finally, we observe that simulatable oblivious transfer is used as a primitive
to build many other cryptographic protocols [Gol04]. By building an efficient OT
protocol with such simulation, we take the first steps at realizing many other
interesting cryptographic protocols.

1.2 Construction Overview

Our random-oracle protocol. Our first construction is a black-box construc-
tion using any unique blind signature scheme. By unique, we mean that for all



576 J. Camenisch, G. Neven, and a. shelat

public keys and messages there exists at most one valid signature. First, the
sender generates a key pair (pk , sk) for the blind signature scheme, and “com-
mits” to each message in its database by xor-ing the message Mi with H(i, si),
where si is the unique signature of the message i under pk . Intuitively, we’re
using si as a key to unlock the message Mi. To retrieve the “key” to a message
Mi, the sender and receiver engage in the blind signature protocol for message
i. By the unforgeability of the signature scheme, a malicious receiver will be
unable to unlock more than k such messages. By the blindness of the scheme,
the sender learns nothing about which messages have been requested.

The random oracle serves four purposes. First, it serves as a one-time pad to
perfectly hide the messages. Second, it allows a simulator to extract the sender’s
original messages from the commitments so that we can prove receiver-security.
Third, in the proof of sender-security, it allows the simulator to both extract the
receiver’s choice and, via programming the random oracle, to make the receiver
open the commitment to an arbitrary message. Finally, it allows us to extract
forgeries of the blind signature scheme from a malicious receiver who is able to
break sender-security.

Our standard-model protocol. There are three main ideas behind the stan-
dard protocol in §4. At a very high level, just as in the random oracle protocol,
the sender uses a unique signature of i as a key to encrypt Mi in the initializa-
tion phase. However, unlike the random-oracle protocol, we observe here that we
only need a blind signature scheme which allows signatures on a small, a-priori
fixed message space {1, . . . , N}.

The second idea concerns the fact that after engaging in the blind-signing
protocol, a receiver can easily check whether the sender has sent the correct
response during the transfer phase by verifying the signature it received. While
seemingly a feature, this property becomes a problem during the simulation of
a malicious receiver. Namely, the simulator must commit to N random values
during the initialize phase, and later during the transfer phase, open any one
of these values to an arbitrary value (the correct message Mi received from the
trusted party during simulation). In the random oracle model, this is possible via
programming the random oracle. In the standard model, a typical solution would
be to use a trapdoor commitment. However, a standard trapdoor commitment is
unlikely to work here because most of these require the opener to send the actual
committed value when it opens the commitment. This is not possible in our OT
setting since the sender does not know which commitment is being opened.

Our solution is to modify the “blind-signing” protocol so that, instead of re-
turning a signature to the user, a one-way function (a bilinear pairing in our
case) of the signature is returned. To protect against a malicious sender, the
sender then proves in zero-knowledge that the value returned is computed cor-
rectly. In the security proof, we will return a random value to the receiver and
fake the zero-knowledge proof.

The final idea behind our construction concerns a malicious receiver who may
use an invalid input to the “blind-signature protocol” in order to, say, retrieve a
signature on a value outside of {1, . . . , N}. This is a real concern, since such an



Simulatable Adaptive Oblivious Transfer 577

attack potentially allows a malicious receiver to learn the product Mi ·Mj which
violates the security notion. In order to prevent such cheating, we require the
receiver to prove in zero-knowledge that (a) it knows the input it is requesting
a signature for, and (b) that the input is valid for the protocol. While this is
conceptually simple, the problem is that the size of such a theorem statement,
and therefore the time and communication complexity of such a zero-knowledge
proof, could potentially be linear in N . For our stated efficiency goals, we need a
proof of constant size. To solve this final problem, we observe that the input to
the blind signature process is a small set—i.e., only has N possible values. Thus,
the sender can sign all N possible input messages (using a different signing key
x) to the blind signature protocol and publish them in the initialization phase.
During the transfer phase, the receiver blinds one of these inputs and then gives
a zero-knowledge proof of knowledge that it knows a signature of this blinded
input value. Following the work of Camenisch and Lysyanskaya [CL04], there
are very efficient proofs for such statements which are constant size.

Finally, in order to support receiver security, the sender provides a proof of
knowledge of the “commitment key” used to commit to its input message. This
key can thus be extracted from the proof of knowledge and use it to compute
messages to send to the trusted party.

1.3 Related Work

The concept of oblivious transfer was proposed by Rabin [Rab81] (but consid-
ered earlier by Wiesner [Wie83]) and further generalized to one-out-of-two OT
(OT 2

1) by Even, Goldreich and Lempel [EGL85] and one-out-of-N OT (OT N
1 )

by Brassard, Crépeau and Robert [BCR87]. A complete history of the work on
OT is beyond our scope. In particular, here we do not mention constructions of
OT which are based on generic zero-knowlege techniques or setup assumptions.
See Goldreich [Gol04] for more details.

Bellare and Micali [BM90] presented practical implementations of OT 2
1 under

the honest-but-curious notion and later Naor and Pinkas [NP01] did the same un-
der the half-simulation definition. Brassard et al. [BCR87] showed how to imple-
ment OT N

1 using N applications of a OT 2
1 protocol. Under half-simulation, Naor

and Pinkas [NP99a] gave a more efficient construction requiring only log N OT 2
1

executions. Several direct 2-message OT N
1 protocols (also under half-simulation)

have been proposed in various works [NP01, AIR01, Kal05].
The first adaptive k-out-of-N oblivious transfer (OT N

k×1) protocol is due to
Naor and Pinkas [NP99b]. Their scheme is secure under half-simulation and in-
volves O(log N) invocations of a OT 2

1 protocol during the transfer stage. Using
optimistic parameters, this translates into a protocol with O(log N) rounds and
at least O(k log N) communication complexity during the transfer phase. The
same authors also propose a protocol requiring 2 invocations of a OT

√
N

1 proto-
col. Laur and Lipmaa [LL06] build an OT N

k×1 in which k must be a constant.
Their security notion specifically tolerates selective-failure, and the efficiency of



578 J. Camenisch, G. Neven, and a. shelat

their construction depends on the efficiency of the fully-simulatable OT N
1 and the

equivocable (i.e., trapdoor) list commitment scheme which are used as primitives.
In the random oracle model, Ogata and Kurosawa [OK04] and Chu and

Tzeng [CT05] propose two efficient OT N
k×1 schemes satisfying half-simulation

which require O(k) computation and communication during the transfer stage.
Our first generic OT N

k×1 construction based on unique blind signatures cov-
ers both schemes as special cases, offers full simulation-security, and fixes mi-
nor technical problems to prevent certain attacks. Prior to our work, Malkhi
and Sella [MS03] observed a relation between OT and blind signatures, but
did not give a generic transformation between the two. They present a direct
OT N

1 protocol (also in the random oracle model) based on Chaum’s blind sig-
natures [Cha88]. Their scheme could be seen as a OT N

k×1 protocol as well, but
it has communication complexity O(κN) in the transfer phase. Their scheme is
not an instantiation of our generic construction.

OT N
k×1 can always be achieved by publishing commitments to the N data

items, and executing k OT N
1 protocols on the N pieces of opening information.

This solution incurs costs of O(κN) in each transfer phase.
Naor and Pinkas [NP05] demonstrate a way to transform a singe-server

private-information retrieval scheme (PIR) into an oblivious transfer scheme
with sublinear-in-N communication complexity. This transformation is in the
half-simulation model and the dozen or so constructions of OT from PIR seem
to also be in this model. Moreover, there are no adaptive PIR schemes known.

2 Definitions

If k ∈ N, then 1k is the string consisting of k ones. The empty string is denoted
ε. If A is a randomized algorithm, then y

$← A(x) denotes the assignment to y of
the output of A on input x when run with fresh random coins. Unless noted, all
algorithms are probabilistic polynomial-time (PPT) and we implicitly assume
they take an extra parameter 1κ. A function ν : N → [0, 1] is negligible if for all
c ∈ N there exists a κc ∈ N such that ν(κ) < κ−c for all κ > κc.

2.1 Blind Signatures

A blind signature scheme BS is a tuple of PPT algorithms (Kg, Sign, User, Vf).
The signer generates a key pair via the key generation algorithm (pk , sk) $←
Kg(1κ). To obtain a signature on a message M , the user and signer engage in an
interactive signing protocol dictated by the User(pk ,M ) and Sign(sk ) algorithms.
At the end of the protocol, the User algorithm returns a signature s or ⊥ to indi-
cate rejection. The verification algorithm Vf(pk ,M , s) returns 1 if the signature
is deemed valid and 0 otherwise. Correctness requires that Vf(pk ,M , s) = 1 for
all (pk , sk) output by the Kg algorithm, for all M ∈ {0, 1}∗ and for all signa-
tures output by User(pk ,M ) after interacting with Sign(sk ). We say that BS is
unique [GO92] if for each public key pk ∈ {0, 1}∗ and each message M ∈ {0, 1}∗
there exists at most one signature s ∈ {0, 1}∗ such that Vf(pk ,M , s) = 1.



Simulatable Adaptive Oblivious Transfer 579

The security of blind signatures is twofold. On the one hand, one-more un-
forgeability [PS96] requires that no adversary can output n + 1 valid message-
signature pairs after being given the public key as input and after at most n
interactions with a signing oracle. We say that BS is unforgeable if no PPT
adversary has non-negligible probability of winning this game.

Blindness, on the other hand, requires that the signer cannot tell apart the mes-
sage it is signing. The notion was first formalized by Juels et al. [JLO97], and was
later strengthened to dishonest-key blindness [ANN06, Oka06]. In this work, we
further strengthen the definition to selective-failure blindness. It is defined through
the following game. The adversary first outputs a public key pk and two messages
M0,M1. It is then given black-box access to two instances of the user algorithm,
the first implementing User(pk ,Mb) and the second implementing User(pk ,M1−b)
for a random bit b

$← {0, 1}. Eventually, these algorithms produce local output sb

and s1−b, respectively. If sb �= ⊥ and s1−b �= ⊥, then the adversary is given the pair
(s0, s1); if sb = ⊥ and s1−b �= ⊥, then it is given (⊥, ε); if sb �= ⊥ and s1−b = ⊥,
then it is given (ε, ⊥); and if sb = s1−b = ⊥ it is given (⊥, ⊥). The adversary then
guesses the bit b. The scheme BS is said to be selective-failure blind if no PPT
adversary has a non-negligible advantage in winning the above game.

2.2 Simulatable Adaptive Oblivious Transfer

An adaptive k-out-of-N oblivious transfer scheme OT N
k×1 is a tuple of four PPT

algorithms (SI, RI, ST, RT). During the initialization phase, the sender and receiver
perform an interactive protocol where the sender runs the SI algorithm on input
messages M1, . . . ,MN , while the receiver runs the RI algorithm without input. At
the end of the initialization protocol, the SI and RI algorithm produce as local
outputs state information S0 and R0, respectively. During the i-th transfer, 1 ≤
i ≤ k, the sender and receiver engage in a selection protocol dictated by the ST and
RT algorithms. The sender runs ST(Si−1) to obtain updated state information Si,
while the receiver runs the RT algorithm on input state information Ri−1 and the
index σi of the message it wishes to receive, to obtain updated state information
Ri and the retrieved message M ′σi

. Correctness requires that M ′σi
= Mσi for all

messages M1, . . . ,MN , for all selections σ1, . . . , σk ∈ {1, . . . , N} and for all coin
tosses of the algorithms.

To capture security of an OT N
k×1 scheme, we employ the real-world/ideal-world

paradigm. Below, we describe a real experiment in which the parties run the pro-
tocol, while in the ideal experiment the functionality is implemented through a
trusted third party. For the sake of simplicity, we do not explicitly include auxil-
iary inputs to the parties. This can be done, and indeed must be done for sequential
composition of the primitive, and our protocols achieve this notion as well.

Real experiment. We first explain the experiment for arbitrary sender and re-
ceiver algorithms Ŝ and R̂. The experiment Real

�S,�R(N, k,M1, . . . ,MN , Σ) pro-

ceeds as follows. Ŝ is given messages (M1, . . . ,MN ) as input and interacts with
R̂(Σ), where Σ is an adaptive selection algorithm that, on input messagesMσ1 , . . . ,
Mσi−1 , outputs the index σi of the next message to be queried. In their first run,



580 J. Camenisch, G. Neven, and a. shelat

Ŝ and R̂ produce initial states S0 and R0 respectively. Next, the sender and re-
ceiver engage in k interactions. In the i-th interaction for 1 ≤ i ≤ k, the sender
and receiver interact by running Si

$← Ŝ(Si−1) and (Ri,M ∗i ) $← R̂(Ri−1), and up-
date their states to Si and Ri, respectively. Note that M ∗i may be different from
Mσi when either participant cheats. At the end of the k-th interaction, sender and
receiver output strings Sk and Rk respectively. The output of the Real

�S,�R exper-
iment is the tuple (Sk,Rk).

For an OT N
k×1 scheme (SI, ST, RI, RT), define the honest sender S algorithm as

the one which runs SI(M1, . . . ,MN ) in the initialization phase, runs ST in all fol-
lowing interactions, and always outputs Sk = ε as its final output. Define the
honest receiver R as the algorithm which runs RI in the initialization phase, runs
RT(Ri−1, σi) and in the i-th interaction, where Σ is used to generate the index σi,
and returns the list of received messages Rk = (Mσ1 , . . . ,Mσk

) as its final output.

Ideal experiment. In experiment Ideal
�S′,�R′(N, k,M1, . . . ,MN , Σ), the (possibly

cheating) sender algorithm Ŝ′(M1, . . . ,MN ) generates messages M ∗1 , . . . ,M ∗N and
hands these to the trusted party T. In each of the k transfer phases, T receives
a bit bi from the sender Ŝ′ and an index σ∗i from the (possibly cheating) receiver
R̂′(Σ). If bi = 1 and σ∗i ∈ {1, . . . , N}, then T hands M ∗σ∗

i
to the receiver; otherwise,

it hands ⊥ to the receiver. At the end of the k-th transfer, Ŝ′ and R̂′ output a string
Sk and Rk; the output of the experiment is the pair (Sk,Rk).

As above, define the ideal sender S′(M1, . . . ,MN ) as one who sends messages
M1, . . . ,MN to the trusted party in the initialization phase, sends bi = 1 in all
transfer phases, and uses Sk = ε as its final output. Define the honest ideal receiver
R′ as the algorithm which generates its selection indices σi through Σ and submits
these to the trusted party. Its final output consists of all the messages it received
Rk = (Mσi , . . . ,MσN ).

Sender security. We say that OT N
k×1 is sender-secure if for any PPT real-world

cheating receiver R̂ there exists a PPT ideal-world receiver R̂′ such that for
any polynomial Nm(κ), any N ∈ [1, Nm(κ)], any k ∈ {1, . . . , N}, any mes-
sages M1, . . . ,MN , and any selection strategy Σ, the advantage of any PPT
distinguisher in distinguishing the distributions

RealS,�R(N, k,M1, . . . ,MN , Σ) and IdealS′,�R′(N, k,M1, . . . ,MN , Σ)

is negligible in κ.
Receiver security. We say that OT N

k×1 is receiver-secure if for any PPT real-
world cheating sender Ŝ there exists a PPT ideal-world sender Ŝ′ such that for
any polynomial Nm(κ), any N ∈ [1, Nm(κ)], any k ∈ {1, . . . , N}, any mes-
sages M1, . . . ,MN , and any selection strategy Σ, the advantage of any PPT
distinguisher in distinguishing the distributions

Real
�S,R(N, k,M1, . . . ,MN , Σ) and Ideal

�S′,R′(N, k,M1, . . . ,MN , Σ)

is negligible in κ.



Simulatable Adaptive Oblivious Transfer 581

3 A Generic Construction in the Random Oracle Model

In this section, we describe a generic yet very efficient way of constructing adap-
tive k-out-of-N OT schemes from unique blind signature schemes, and prove its
security in the random oracle model.

3.1 The Construction

To any unique blind signature scheme BS = (Kg, Sign, User, Vf), we associate the
OT N

k×1 scheme as depicted in Fig. 1. The security of the oblivious transfer scheme

Initialization

SI(M1, . . . ,MN) : RI :

(pk , sk) $← Kg(1κ)
For i = 1 . . . N

si ← Sign(sk , i)

Ci ← H(i, si) ⊕ Mi
pk ,C1, . . . , CN� R0 ← (pk ,C1, . . . ,CN )

S0 ← sk ; Output S0 Output R0

Transfer

ST(Si−1) : RT(Ri−1, σi) :
Parse Si−1 as sk Parse Ri−1 as (pk ,C1, . . . ,CN )
Run protocol Sign(sk) �� Run protocol si

$← User(pk , σi)
If Vf(pk , σi, si) = 0 then Mσi ← ⊥
Else Mσi ← Cσi ⊕ H(i, si)

Output Si = Si−1 Output (Ri = Ri−1,Mσi)

Fig. 1. A construction of OT N
k×1 using a random oracle H and any unique blind signa-

ture scheme BS = (Kg, Sign, User, Vf)

follows from that of the blind signature scheme. In particular, Theorem 1 states
that the sender’s security is implied by the one-more unforgeability of BS , while
Theorem 2 states that the receiver’s security follows from the selective-failure
blindness of BS . We provide brief proof sketches below; detailed proofs can be
found in the full version [CNS07].

Theorem 1. If the blind signature scheme BS is unforgeable, then the OT N
k×1 de-

picted in Fig. 1 is sender-secure in the random oracle model.

Proof (Sketch). The idea of this proof is that the ideal-world receiver R̂′ runs the
real-world receiver R̂ on random ciphertexts C1, . . . , CN . R̂′ observes the random
oracle queries made by R̂, trying to parse them as H(σi, si) such that Vf(pk , σi, si)
=1. If this succeeds, then it requests Mσi from the trusted party and returns Cσi ⊕
Mσi . If there are more than k such queries, then R̂ has forged the blind signature
scheme.



582 J. Camenisch, G. Neven, and a. shelat

Theorem 2. If the blind signature scheme BS is selective-failure blind, then the
OT N

k×1 scheme depicted in Fig. 1 is receiver-secure in the random oracle model.

Proof (Sketch). For any real-world cheating sender Ŝ, consider the ideal-world
cheating sender Ŝ′ that, when Ŝ outputs (pk , C1, . . . , CN ), goes over all random or-
acle queries made by Ŝ and tries to parse them as (i, si) such that Vf(pk , i, si) = 1.
If this succeeds it sets Mi ← Ci ⊕ H(i, si), all other messages are chosen at ran-
dom. It then submits M1, . . . ,MN to the trusted party. At the i-th transfer, Ŝ′

runs Ŝ against (Ri,M ∗i ) $← RT(Ri−1, 1). If M ∗i = ⊥ then Ŝ′ submits a zero bit
to the trusted party, indicating that the present transfer should fail, otherwise it
sends a one. The selective-failure blindness of BS ensures that Ŝ cannot distin-
guish a query for index 1 from any other query, and that it cannot make RT fail
depending on the value of its selection.

Instantiations. Many blind signature schemes exist, but only the schemes of
Chaum [Cha88, BNPS03] and Boldyreva [Bol03] seem to be unique. Both are effi-
cient two-round schemes which result in round-optimal adaptive oblivious transfer
protocols.

The instantiation of our generic construction with Chaum’s blind signature
scheme coincides with the direct OT scheme of Ogata-Kurosawa [OK04]. However,
special precautions must be taken to ensure that Chaum’s scheme is selective-
failure blind. For example, the sender must use a prime exponent e greater than
the modulus n [ANN06], or must provide a non-interactive proof that gcd(e, n) =
1 [CPP07]. Anna Lysyanskaya suggests having the receiver send e to the sender.
This solution is much more efficient than the previous two, but would require re-
proving the security of the OT N

k×1 scheme since it is no longer an instance of our
generic construction. In any case, the authors of [OK04] overlooked this need,
which creates the possibility for attacks on the receiver’s security of their proto-
col. For example, a cheating sender could choose e = 2 and distinguish between
transfers for σi and σ′i for which H(σi) is a square modulo n and H(σ′i) is not.

When instantiated with Boldyreva’s blind signature scheme [Bol03] based on
pairings, our generic construction coincides with the direct OT scheme of Chu-
Tzeng [CT05]. A similar issue concerning the dishonest-key blindness of the scheme
arises here, but was also overlooked. The sender could for example choose the
group to be of non-prime order and break the receiver’s security in a similar way
as demonstrated above for the scheme of [OK04]. One can strengthen Boldyreva’s
blind signature scheme to provide selective-failure blindness by letting the user
algorithm check that the group is of prime order p and that the generator is of full
order p.

4 Simulatable Adaptive OT in the Standard Model

Computational assumptions. Our protocol presented in this section requires
bilinear groups and associated hardness assumptions. Let Pg be a pairing group
generator that on input 1κ outputs descriptions of multiplicative groups G1, GT



Simulatable Adaptive Oblivious Transfer 583

of prime order p where |p| = κ. Let G
∗
1 = G1 \ {1} and let g ∈ G

∗
1. The generated

groups are such that there exists an admissible bilinear map e : G1 × G1 → GT,
meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) �= 1;
and (3) the bilinear map is efficiently computable.

Definition 1 (StrongDiffie-HellmanAssumption [BB04]). We say that the
�-SDH assumption associated to a pairing generator Pg holds if for all PPT adver-
saries A, the probability that A(g, gx, . . . , gx�

) where (G1, GT) $← Pg(1κ), g
$← G

∗
1

and x
$← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp in negligible in κ.

Definition 2 (Power DecisionalDiffie-HellmanAssumption).We say that
the �-PPDH assumption associated to Pg holds if for all PPT adversaries A, the
probability that A on input (g, gx, gx2

, . . . , gx�

, H) where (G1, GT) $← Pg(1κ), g
$←

G
∗
1, x

$← Zp, H
$← GT, distinguishes the vector T = (Hx, Hx2

, . . . , Hx�

) from a
random vector T

$← G
�
T is negligible in κ.

Boneh-Boyen signatures. We modify the weakly-secure signature scheme of
Boneh and Boyen [BB04] as follows. The scheme uses a pairing generator Pg as
defined above. The signer’s secret key is x

$← Zp, the corresponding public key
is y = gx. The signature on a message M is s ← g1/(x+M ); verification is done
by checking that e(s , y · gM ) = e(g, g). This scheme is similar to the Dodis and
Yampolskiy verifiable random function [DY05].

Security under weak chosen-message attack is defined through the following
game. The adversary begins by outputting � messages M1, . . . ,M�. The challenger
generates a fresh key pair and gives the public key to the adversary, together with
signatures s1, . . . , s� on M1, . . . ,M�. The adversary wins if it succeeds in outputing
a valid signature s on a message M �∈ {M1, . . . ,M�}. The scheme is said to be
unforgeable under weak chosen-message attack if no PPT adversary A has non-
negligible probability of winning this game. An easy adaptation of the proof of
[BB04] can be used to show that this scheme is unforgeable under weak chosen-
message attack if the (� + 1)-SDH assumption holds.

Zero-knowledge proofs. We use definitions from [BG92, CDM00]. A pair of
interacting algorithms (P, V) is a proof of knowledge (PoK) for a relation R =
{(α, β)} ⊆ {0, 1}∗×{0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for all (α, β) ∈ R,
V(α) accepts a conversation with P(β) with probability 1; and (2) there exists an
expected polynomial-time algorithm E, called the knowledge extractor, such that
if a cheating prover P̂ has probability ε of convincing V to accept α, then E, when
given rewindable black-box access to P̂, outputs a witness β for α with probability
ε − κ.

A proof system (P, V) is perfect zero-knowledge if there exists a PPT algorithm
Sim, called the simulator, such that for any polynomial-time cheating verifier V̂
and for any (α, β) ∈ R, the outputs of V̂(α) after interacting with P(β) and that
of Sim

�V(α)(α) are identically distributed.



584 J. Camenisch, G. Neven, and a. shelat

Initialization

SI(1κ,M1, . . . ,MN ) : RI(1κ) :

(G1, GT) $← Pg(1κ)
g, h

$← G
∗
1 ; H ← e(g, h)

x
$← Zp ; y ← gx ; pk ← (g, H, y)

For i = 1, . . . , N do
Ai ← g1/(x+i)

Bi ← e(h, Ai) · Mi

Ci ← (Ai, Bi) pk , C1, . . . , CN �

S0 ← (h, pk) PoK{(h) : H = e(g, h)}� R0 ← (pk ,C1, . . . ,CN )

Transfer

ST(Si−1) : RT(Ri−1, σi) :

v
$← Zp ; V ← (Aσi)

v

V�
PoK{(σi, v) : e(V, y) = e(V, g)−σie(g, g)v}�

W ← e(h, V ) W �
PoM {(h) : H = e(g, h) ∧ W = e(h, V )}�

Si = Si−1 M ← Bσi/(W
1/v)

Ri = Ri−1

Fig. 2. Our OT N
k×1 protocol in the standard model associated to pairing generator

Pg. We use notation by Camenisch and Stadler [CS97] for the zero-knowledge pro-
tocols. They can all be done efficiently (in four rounds and O(κ) communication) by
using the transformation of [CDM00]. The protocols are given in detail in the full
version [CNS07].

Our protocol in the standard model is depicted in Fig. 2. All zero-knowledge
proofs can be performed efficiently in four rounds and with O(κ) communica-
tion using the transformation of [CDM00]. The detailed protocols are provided
in the full version [CNS07]. We assume that the messages Mi are elements of the
target group GT.2 The protocol is easily seen to be correct by observing that
W = e(h, Aσi)v, so therefore Bσi/W 1/v = Mσi .

We now provide some intuition into the protocol. Each pair (Ai, Bi) can be seen
as an ElGamal encryption [ElG85] in GT of Mi under public key H . But instead
of using random elements from GT as the first component, our protocol uses ver-
ifiably random [DY05] values Ai = g1/(x+i). It is this verifiability that during the
transfer phase allows the sender to check that the receiver is indeed asking for
the decryption key for one particular ciphertext, and not for some combination of
ciphertexts.
2 This is a standard assumption we borrow from the literature on Identity-Based En-

cryption. The target group is usually a subgroup of a larger prime field. Thus, de-
pending on implementation, it may be necessary to “hash” the data messages into
this subgroup. Alternatively, one can extract a random pad from the element in the
target group and use ⊕ to encrypt the message.



Simulatable Adaptive Oblivious Transfer 585

Receiver security. We demonstrate the receiver security of our scheme by prov-
ing the stronger property of unconditional statistical indistinguishability. Briefly,
the ideal-world sender can extract h from the proof of knowledge in the initial-
ization phase, allowing it to decrypt the messages to send to the trusted party.
During the transfer phase, it plays the role of an honest receiver and asks for a
randomly selected index. If the real-world sender succeeds in the final proof of
membership (PoM) of the well-formedness of W , then the ideal sender sends b = 1
to its trusted-party T to indicate continue.

Notice how the sender’s response W is simultaneously determined by the initial-
ization phase, unpredictable by the receiver during the transfer phase, but yet ver-
ifiable once it has been received (albeit, via a zero-knowledge proof). Intuitively,
these three properties prevent the selective-failure attack.

Theorem 3. The OT N
k×1 protocol in Fig. 2 is unconditionally receiver-secure.

Proof. We show that for every real-world cheating sender Ŝ there exists an ideal-
world cheating sender Ŝ′ such that no distinguisher D, regardless of its running
time, has non-negligible probability to distinguish the distributions
Real

�S,R(N, k,M1, . . . ,MN , Σ) and Ideal
�S′,R′(N, k,M1, . . . ,MN , Σ). We do so by

considering a sequence of distributions Game-0, . . . ,Game-3 such that for some
Ŝ′ that we construct, Game-0 = Real

�S,R and Game-3 = Ideal
�S′,R′ , and by

demonstrating the statistical difference in the distribution for each game transi-
tion. Below, we use the shorthand notation

Pr [Game-i ] = Pr
[

D(X) = 1 : X
$← Game-i

]
.

Game-0: This is the distribution corresponding to Real
�S,R, i.e., the game where

the cheating sender Ŝ is run against an honest receiver R with selection strat-
egy Σ. Obviously, Pr [Game-0 ] = Pr

[
D(X) = 1 : X

$← Real
�S,R

]
.

Game-1: In this game the extractor E1 for the first proof of knowledge is used
to extract from Ŝ the element h such that e(g, h) = H . If the extractor fails,
then the output of Game-1 is ⊥; otherwise, the execution of Ŝ continues as
in the previous game, interacting with R(Σ). The difference between the two
output distributions is given by the knowledge error of the PoK, i.e.,

Pr [Game-1 ] − Pr [Game-0 ] ≤ 1
p

.

Game-2: This game is identical to the previous one, except that during the trans-
fer phase the value V sent by the receiver is replaced by picking a random v′

and sending V ′ ← Av
1 . The witness (v′, 1) is used during the second PoK. Since

V and V ′ are both uniformly distributed over G1, and by the perfect witness-
indistinguishability of the PoK (implied by the perfect zero-knowledge prop-
erty), we have that Pr [Game-2 ] = Pr [Game-1 ].

Game-3: In this game, we introduce an ideal-world sender Ŝ′ which incorporates
the steps from the previous game. Algorithm Ŝ′ uses E1 to extract h from Ŝ,



586 J. Camenisch, G. Neven, and a. shelat

decrypts M ∗i as Bi/e(h, Ai) for i = 1, . . . , N and submits M ∗1 , . . . ,M ∗N to the
trusted party T. As in Game-2, during the transfer phase, Ŝ′ feeds V ′ $← Av′

1

to Ŝ and uses (v′, 1) as a witness in the PoK. It plays the role of the verifier
in the final PoM of W . If Ŝ convinces Ŝ′ that W is correctly formed, then Ŝ′

sends 1 to the trusted party, otherwise it sends 0. When Ŝ outputs its final
state Sk, Ŝ′ outputs Sk as well.

One can syntactically see that

Pr [Game-3 ] = Pr [Game-2 ] = Pr
[

D(X) = 1 : X
$← Ideal

�S′,R′

]
.

Summing up, we have that the advantage of the distinguisher D is given by

Pr
[

D(X) = 1 : X
$← Ideal

�S′,R′

]
− Pr

[
D(X) = 1 : X

$← Real
�S,R

]
≤ 1

p
.

Sender security. The following theorem states the sender-security of our second
construction.

Theorem 4. If the (N +1)-SDH assumption and the (N +1)-PDDH assumptions
associated to Pg hold, then the OT N

k×1 protocol depicted in Fig. 2 is sender-secure.

Proof. Given a real cheating receiver R̂, we construct an ideal-world cheating re-
ceiver R̂′ such that no algorithm D can distinguish between the distributions
RealS,�R(N, k,M1, . . . ,MN , Σ) and IdealS′,�R′(N, k,M1, . . . ,MN , Σ). We again do
so by considering a sequence of hybrid distributions and investigate the differences
between successive ones.

Game-0: This is the distribution corresponding to R̂ being run against the honest
sender S(M1, . . . ,MN ). Obviously, we have that Pr [Game-0 ] =
Pr

[
D(X) = 1 : X

$← RealS,�R

]
.

Game-1: This game differs from the previous one in that at each transfer the
extractor E2 of the second PoK is used to extract from R̂ the witness (σi, v).
If the extraction fails, Game-1 outputs ⊥. Because the PoK is perfect zero-
knowledge, the difference on the distribution with the previous game is sta-
tistical (i.e., independent of the distinguisher’s running time) and given by k
times the knowledge error, or Pr [Game-1 ] − Pr [Game-0 ] ≤ k/p. Note
that the time required to execute these k extractions is k times the time of
doing a single extraction, because the transfer protocols can only run sequen-
tially, rather than concurrently. One would have to resort to concurrent zero-
knowledge protocols [DNS04] to remove this restriction.

Game-2: This game is identical to the previous one, except that Game-2 returns
⊥ if the extracted value σi �∈ {1, . . . , N} during any of the transfers. One can
see that in this case s = V 1/v is a forged Boneh-Boyen signature on message
σi. The difference between Game-1 and Game-2 is bounded by the following
claim, which we prove below:



Simulatable Adaptive Oblivious Transfer 587

Claim (1). If the (N + 1)-SDH assumption associated to Pg holds, then
Pr [Game-2 ] − Pr [Game-1 ] is negligible.

Game-3: In this game the PoK of h in the initialization phase is replaced with
a simulated proof using Sim1, the value W returned in each transfer phase
is computed as W ← (Bσi/Mσi)v, and the final PoM in the transfer phase is
replaced by a simulated proof using Sim3. Note that now the simulation of the
transfer phase no longer requires knowledge of h. However, all of the simulated
proofs are proofs of true statements and the change in the computation of W
is purely conceptional. Thus by the perfect zero-knowledge property, we have
that Pr [Game-3 ] = Pr [Game-2 ] .

Game-4: Now the values B1, . . . , BN sent to R̂ in the initialization phase are re-
placed with random elements from GT. Now at this point, the second proof
in the previous game is a simulated proof of a false statement. Intuitively, if
these changes enable a distinguisher D to separate the experiments, then one
can solve an instance of the SBDHI problem. This is caputed in the following
claim:

Claim (2). If the (N + 1)-PDDH assumption associated to Pg holds, then
Pr [Game-4 ] − Pr [Game-3 ] is negligible.

The ideal-world receiver R̂′ can be defined as follows. It performs all of the changes
to the experiments described in Game-4 except that at the time of transfer, after
having extracted the value of σi from R̂, it queries the trusted party T on index
σi to obtain message Mσi . It then uses this message to compute W . Syntactically,
we have that

Pr
[

D(X) = 1 : X
$← IdealS′,�R′

]
= Pr [Game-4 ] .

Summing up the above equations and inequalities yields that

Pr
[

D(X) = 1 : X
$← IdealS′,�R′

]
− Pr

[
D(X) = 1 : X

$← RealS,�R

]

is negligible. The running time of R̂′ is that of R̂ plus that of O(N2) exponentia-
tions, k extractions and k proof simulations, so is polynomial in κ.

It remains to prove the claims used in the proof above.

Proof (Claim (1)). We prove the claim by constructing an adversaryA that breaks
the unforgeability under weak chosen-message attack of the modified Boneh-Boyen
signature scheme . By the security proof of [BB04], this directly gives rise to an
expected polynomial-time adversary with non-negligible advantage in solving the
(N + 1)-SDH problem.

Given a cheating receiver R̂ for that distinguishes between Game-1 and
Game-2 with advantage εSt, consider the forger A that outputs messages M1 =
1, . . . ,MN = N , and on input a public key y and signatures A1, . . . , AN runs the
honest sender algorithm using these values for h and A1, . . . , AN . At each transfer



588 J. Camenisch, G. Neven, and a. shelat

it uses E2 to extract from R̂ values (σi, v) such that e(V, y) = e(V, g)−σie(g, g)v.
(This extraction is guaranteed to succeed since we already eliminated failed ex-
tractions in the transition from Game-0 to Game-1.) When σi �∈ {1, . . . , N}
then A outputs s ← V 1/v as its forgery on message M = σi. The forger A wins
whenever it extracts a value σi �∈ {1, . . . , N} from Ŝ. Its running time is that of R̂
plus k times the running time of a single extraction, so polynomial in κ.

Proof (Claim (2)). Given an algorithmD with non-negligible probability in distin-
guishing Game-2 and Game-3, consider the following algorithm A for the PDDH
problem for � = N+1. On input (u, ux, . . . , uxN+1

, V ) and a vector (T1, . . . , TN+1),
A proceeds as follows. For ease of notation, let T0 = V . Let f be the polyno-
mial defined as f(X) =

∏N
i=1(X + i) =

∑N
i=0 ciX

i. Then A sets g ← uf(x) =∏N
i=0(u

xi

)ci and y ← gx =
∏N

i=0(u
xi+1

)ci . If fi is the polynomial defined by
fi(X) = f(X)/(X + i) =

∑N−1
j=0 ci,jX

j, then A can also compute the values

Ai = g1/(x+i) as Ai ←
∏N−1

j=0 (uxj

)ci,j . It then sets H ← V f(x) =
∏N

i=0 T ci

i , and
computes Bi = H1/(x+i) as Bi ←

∏N−1
j=0 T

ci,j

i , and continues the simulation of R̂’s
environment as in Game-3 and Game-4, i.e., at each transfer extracting (σi, v),
computing W ← (Bσi/Mσi) and simulating the PoM. When R̂ outputs its final
state Rk, algorithm A runs b

$← D(ε,Rk) and outputs b.
In the case that Ti = V xi

one can see that the environment that A created for Ŝ
is exactly that of Game-3. In the case that T1, . . . , TN are random elements of GT,
then one can easily see that this environment is exactly that of Game-4. There-
fore, if D has non-negligible advantage in distinguishing the outputs of Game-3
and Game-4, then A has non-negligible advantage in solving the (N + 1)-PDDH
problem. The running time of A is at most that of the distinguisher D plus that of
O(N2) exponentiations, of k + 1 simulated proofs, and of k extractions.

Acknowledgements

The authors would like to thank Xavier Boyen, Christian Cachin, Anna Lysyan-
skaya, Benny Pinkas, Alon Rosen and the anonymous referees for their useful com-
ments and discussions. Gregory Neven is a Postdoctoral Fellow of the Research
Foundation Flanders (FWO-Vlaanderen). This work was supported in part by
the European Commission through the IST Program under Contract IST-2002-
507932 ECRYPT and Contract IST-2002-507591 PRIME.

References

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. : Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT 2001, p. 119–135.

[ANN06] M. Abdalla, C. Namprempre, and G. Neven. On the (im)possibility of blind
message authentication codes. In CT-RSA 2006, p. 262–279.

[BB04] D. Boneh and X. Boyen. Short signatures without random oracles. In EU-
ROCRYPT 2004, p. 56–73.



Simulatable Adaptive Oblivious Transfer 589

[BCR87] G. Brassard, C. Crépeau, and J.M. Robert. All-or-nothing disclosure of
secrets. In CRYPTO’86, p. 234–238.

[BG92] M. Bellare and O. Goldreich. On defining proofs of knowledge. In
CRYPTO’92, p. 390–420.

[BM90] M. Bellare and S. Micali. Non-interactive oblivious transfer and applica-
tions. In CRYPTO’89, p. 547–557.

[BNPS03] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. J. Cryptology, 16(3):185–215, 2003.

[Bol03] A. Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In PKC 2003,
p. 31–46.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, p. 62–73.

[Can00] R. Canetti. Security and composition of multi-party cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.

[CDM00] R. Cramer, I. Damg̊ard, and P. MacKenzie. Efficient zero-knowledge proofs
of knowledge without intractability assumptions. In PKC 2000, p. 354–372.

[Cha88] D. Chaum. Blind signature systems. U.S. Patent #4,759,063, 1988.
[CK90] C. Crépeau and J. Kilian. Weakening security assumptions and oblivious

transfer. In CRYPTO’88, p. 2–7.
[CL04] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous cre-

dentials from bilinear maps. In CRYPTO 2004, p. 56–72.
[CNS07] J. Camenisch, G. Neven, and a. shelat. Simulatable Adaptive Oblivious

Transfer. Cryptology ePrint Archive, 2007.
[CPP07] D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor hard-to-invert group

isomorphisms and their application to password-based authentication. To
appear in J. Cryptology, 2007.

[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups. In CRYPTO’97, p. 410–424.

[CT05] C.-K. Chu and W.-G. Tzeng. Efficient k-out-of-n oblivious transfer schemes
with adaptive and non-adaptive queries. In PKC 2005, p. 172–183.

[DNS04] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs
and keys. In PKC 2005, p. 416–431.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637–647, 1985.

[ElG85] T. ElGamal. A public key cryptosystem and signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

[Gol04] O. Goldreich. Foundations of Cryptography, Volume 2. Cambridge Univer-
sity Press, 2004.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In 19th ACM
STOC, p. 218–229.

[GO92] S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive
zero-knowledge proofs are equivalent. In CRYPTO’92, p. 228–245.

[JLO97] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures
(Extended abstract). In CRYPTO’97, p. 150–164.



590 J. Camenisch, G. Neven, and a. shelat

[Kal05] Y. Kalai. Smooth projective hashing and two-message oblivious transfer.
In EUROCRYPT 2005, p. 78–95.

[LL06] S. Laur and H. Lipmaa. On security of sublinear oblivious transfer. Cryp-
tology ePrint Archive, 2006.

[MS03] D. Malkhi and Y. Sella. Oblivious transfer based on blind signatures. Tech-
nical Report 2003-31, Leibniz Center, Hebrew University, 2003.

[MSK02] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE
Transactions Fundamentals, E85-A(2):481–84, 2002.

[NP99a] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In
31st ACM STOC, p. 245–254, 1999.

[NP99b] M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. In
CRYPTO’99, p. 573–590.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th SODA,
p. 448–457, 2001.

[NP05] M. Naor and B. Pinkas. Computationally secure oblivious transfer. J. Cryp-
tology, 18, 2005.

[OK04] W. Ogata and K. Kurosawa. Oblivious keyword search. J. Complexity,
20(2-3):356–371, 2004.

[Oka06] T. Okamoto. Efficient blind and partially blind signatures without random
oracles. In TCC 2006, LNCS, p. 80–99.

[OS04] W. Ogata and R. Sasahara. k out of n oblivious transfer without random
oracles. IEICE Transactions, 87-A(1):147–151, 2004.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In EU-
ROCRYPT’96, p. 387–398.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

[Wie83] S. Wiesner. Conjugate Coding. SIGACT News, 15, 1983. . 78–88.



Author Index

Bauer, Aurélie 361
Boyen, Xavier 210, 394

Camenisch, Jan 246, 573
Canard, Sébastien 482
Chen, Hao 291
Cramer, Ronald 291, 329

Damg̊ard, Ivan 329, 412
Deng, Yi 148
Dodis, Yevgeniy 534
Dubois, Vivien 264

Enge, Andreas 379

Farràs, Oriol 448
Fouque, Pierre-Alain 264

Gaudry, Pierrick 379
Geiselmann, Willi 466
Goldwasser, Shafi 291
Gouget, Aline 482
Granger, Robert 430

Haan, Robbert de 291, 329
Hess, Florian 430
Hohenberger, Susan 246
Hsiao, Chun-Yuan 169

Jarecki, Stanis�law 97
Joux, Antoine 361

Katz, Jonathan 115, 311
Koo, Chiu-Yuen 311

Lenstra, Arjen 1
Lin, Dongdai 148
Lindell, Yehuda 52
Lu, Chi-Jen 169

Mart́ı-Farré, Jaume 448
Maurer, Ueli 498
Minder, Lorenz 347

Neven, Gregory 573

Ong, Shien Jin 187
Oyono, Roger 430

Padró, Carles 448
Pedersen, Michael Østergaard 246
Pietrzak, Krzysztof 23, 517
Pinkas, Benny 52
Preneel, Bart 276
Puniya, Prashant 534

Reyzin, Leonid 169
Ristenpart, Thomas 228

shelat, abhi 573
Shmatikov, Vitaly 97
Shokrollahi, Amin 347
Sjödin, Johan 498, 517
Steinberger, John P. 34
Steinwandt, Rainer 466
Stern, Jacques 264
Stevens, Marc 1

Thériault, Nicolas 430
Thorbek, Rune 412

Vadhan, Salil 187
Vaikuntanathan, Vinod 291
Vercauteren, Frederik 430

Weger, Benne de 1
Woodruff, David P. 79
Wu, Hongjun 276
Wullschleger, Jürg 555

Yilek, Scott 228
Yung, Moti 129

Zhao, Yunlei 129


	Front Matter
	01 Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities
	Introduction
	Chosen-Prefix Collisions for MD5
	Applications of Chosen-Prefix Collisions
	Colliding X.509 Certificates for Different Identities
	Attack Scenarios
	Certificate Construction Outline
	Certificate Construction Details

	Chosen-Prefix Collision Construction
	Preliminaries
	Description of MD5
	Outline of the Collision Construction
	Differential Paths and Bitconditions
	Extending Differential Paths
	Constructing Full Differential Paths
	Implementation Details

	Concluding Remark

	02 Non-trivial Black-Box Combiners for Collision-Resistant Hash-Functions Don’t Exist
	Introduction
	The Boneh-Boyen and Our Result
	Related Work

	Combiners for CRHFs

	03 The Collision Intractability of MDC-2 in the Ideal-Cipher Model
	Introduction
	Preliminaries
	Our Security Bound
	Analysis
	Conclusion
	References

	04 An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries
	Introduction
	Preliminaries
	Definitions -- Secure Computation
	Functionalities That Provide Output to a Single Party

	The Protocol
	High-Level Overview
	Checks for Correctness and Consistency
	The Full Protocol

	Proof of Security
	Efficiency of the Protocol
	Efficient Implementation of the Different Primitives
	Reducing the Number of Oblivious Transfers


	05 Revisiting the Efficiency of Malicious Two-Party Computation
	Introduction
	Our Contributions
	Other Related Work
	Organization

	Preliminaries
	Two-Party Secure Computation
	Yao's Garbled Circuit Protocol
	Equality-Checker Scheme
	Expander Properties
	Combinatorial Identities

	Expander-Checker
	Security Analysis for $Equality-checker$      
	Security Analysis for $Expander-checker$

	Efficiency
	Practical Issues and Open Questions


	06 Efficient Two-Party Secure Computation on Committed Inputs
	Introduction
	Related Work on Constant-Round 2PC and Committed OT
	Cryptographic Tools
	Camenisch-Shoup (CS) Encryption Scheme [CS03]
	Simplified Camenisch-Shoup (sCS) Encryption Scheme
	CS Commitments and sCS Commitments
	Efficient Concurrently Secure ZK Proof Systems in the CRS Model

	UC-Secure Committed Oblivious Transfer on Strings
	UC-Secure Two-Party Computation on Committed Inputs
	References

	07 Universally Composable Multi-party Computation Using Tamper-Proof Hardware
	Motivation
	A Brief Review of Existing Solutions
	Relying on Tamper-Proof Hardware
	Have We Gained Anything?

	Modeling Tamper-Proof Hardware
	Using Tamper-Proof Hardware for Secure Computation
	Proof Intuition
	Proof of Security

	Conclusions and Future Directions

	08 Generic and Practical Resettable Zero-Knowledge in the Bare Public-Key Model
	Introduction
	Our Contributions

	Preliminaries
	The Generic rZK-CS Construction
	Discussion: On the Weak Concurrent Knowledge-Extractability 

	Simplified, Practical, Round-Optimal Implementations
	Simplified Implementation
	Generic Yet Practical Transformation
	Round-Optimal Implementation


	09 Instance-Dependent Verifiable Random Functions and Their Application to Simultaneous Resettability
	Introduction
	Definitions
	Instance-Dependent Verifiable Random Functions
	InstD-VRFs: Definition
	InstD-VRFs: Constructions

	Two Instance-Dependent Protocols
	Key_Instance-Dependent Resettabley-Sound Bounded-Class Resettable ZK Arguments for NP
	The Resettable WI Arguments with Instance-Dependent Weak Resettable-Soundness 

	Transforming Public-Coin (Bounded) Concurrent ZK Arguments to (Bounded-Class) Resettable ZK Arguments with (Weak) Resettable-Soundness

	10 Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility
	Introduction
	Definitions and Notation
	Separating HILL Entropy from Yao Entropy
	Non-interactive Zero Knowledge (NIZK)
	The Construction

	Randomness Extraction
	Extracting from Conditional HILL Entropy
	Extracting from Conditional Yao Entropy
	Unconditional Extraction

	Unpredictability Entropy
	Relation to Other Notions and Bit Extraction

	Modifications to the Proof of LMS05
	Unconditional HILL Entropy of (X, Z)

	11 Zero Knowledge and Soundness Are Symmetric
	Introduction
	The SZKP--OWF Characterization

	Preliminaries
	Instance-Dependent Cryptographic Primitives
	Interactive Protocols and Zero Knowledge

	Unconditional Characterizations of Zero Knowledge
	Our Main Characterization Theorems
	Steps of Our Proof
	From Zero-Knowledge Protocols to SZKP--OWF Characterizations
	From SZKP--OWF Characterization to Instance-Dependent Commitment Schemes
	From Instance-Dependent Commitment Schemes to Zero-Knowledge Protocols
	Putting It All Together


	12 Mesh Signatures
	Introduction
	Related Work

	Definitions and Security Models
	Recursive Mesh Signature Specification
	Anonymity Model
	Unforgeability Model

	Framework and Computational Assumption
	Review of the SDH Assumption
	Poly-SDH: For Better Use of the Pairing
	Generic Hardness of Poly-SDH

	Special Case: Ring Signatures
	General Case: Mesh Signatures
	Flattened Mesh Representation
	Information-Theoretic Blinding
	Construction

	Conclusion
	References

	13 The Power of Proofs-of-Possession Securing Multiparty Signatures against Rogue-Key Attacks
	Introduction
	Preliminaries
	The Registered Key Model
	Multisignatures Using POPs
	Multisignatures Based on BLS Signatures
	Multisignatures Based on Waters Signatures
	Attacks Against Standardized Key Registration Protocols
	Other POP Variants

	Ring Signatures in the Registered Key Model

	14 Batch Verification of Short Signatures
	Introduction
	Our Contributions
	Batch Verification Overview
	Efficiency of Prior Work and Our Contributions

	Definitions
	Algebraic Setting and Group Membership
	Batch Verification Without Random Oracles
	Batch Verification for Waters IBS

	Faster Batch Verification with Restrictions
	Batch Verification of BLS Signatures
	A New Signature Scheme CL*

	Conclusions and Open Problems
	References

	15 Cryptanalysis of SFLASH with Slightly Modified Parameters
	Introduction
	C$^∗$ and C$^{∗−}$
	The Generic Construction of Multivariate Schemes
	The C$^∗$ Scheme
	C$^{∗−}$ Schemes

	Skew-Symmetric Maps w.r.t the Differential of C$^∗$
	Recovering the Skew-Symmetric Maps from a C$^{∗−}$Public Key
	Recomposing a C$^∗$  Public Key Using Skew-Symmetric Maps
	Forging Signatures Using Patarin’s Attacks
	Conclusion
	References

	16 Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy
	Introduction
	The Specifications of Py and Pypy
	The Key Setup
	The IV Setup
	The Keystream Generation

	IdenticalKeystreams
	IVs Differing in Two Bytes
	IVs Differing in Three Bytes
	Improving the Attack

	Key Recovery Attack on Py and Pypy
	Recovering Part of the Array Y
	Recovering the Key

	The Security of Py6
	Conclusion
	References

	17 Secure Computation from Random Error Correcting Codes
	Introduction
	Organization of the Paper

	Preliminaries and Definitions
	Basic Definitions from Coding Theory
	Threshold and Ramp Secret Sharing Schemes

	Linear Ramp Schemes with Multiplication from Codes
	Massey's Secret Sharing from Codes
	Extensions of Massey's Idea
	Existence and Bounds
	Application to VSS and Secure Computation

	Ramp Schemes with High Information Rate
	A High Information Rate Ramp Scheme
	A More Fruitful Approach
	High Information Rate Ramp Schemes: Existence and Bounds


	18 Round-Efficient Secure Computation in Point-to-Point Networks
	Introduction
	Overview of Our Techniques
	Prior Work
	Outline of the Paper

	Model and Preliminaries
	Gradecast
	Generalized Secret Sharing and VSS

	Secure Multiparty Computation for t < n/3
	Outline of the Construction
	A (7, 1)-Round VSS Protocol with 2-Level Sharing
	Secure Multiparty Computation Using One Round of Broadcast

	Secure Multiparty Computation for t < n/2
	Conclusion
	References

	19 Atomic Secure Multi-party Multiplication with Low Communication
	Introduction
	Rabin's Secure Multiplication Protocol
	Prior Work: Parallel Secure Computation
	Ramp Schemes and Share Conversion
	Atomic Secure Multiplication: The Main Idea
	A More General View

	Further Trade-Offs
	Secure MPC Against an Active Adversary (Overview)
	Efficient Circuit Evaluation
	Secure MPC Against an Active Adversary
	VSS
	Multiplication/Resharing Step
	Local Computation


	20 Cryptanalysis of the Sidelnikov Cryptosystem
	Introduction
	Reed-Muller Codes
	Minimum-Weight Codewords
	Cryptanalysis of the Sidelnikov Cryptosystem
	Outline of the Attack
	Finding the Subcode $\RM(r - 1, m)^\sigma \subseteq \RM(r,
m)^\sigma$
	The Case $r $= 1
	Running Time Analysis
	Experimental Running Time

	Appendix
	The Low Weight Word Problem in the Shortened Code
	A Brief Note on the Generalized Sidelnikov System


	21 Toward a Rigorous Variation of Coppersmith’s Algorithm on Three Variables
	Introduction
	Preliminaries
	Lattices
	Gr\"obner Basis on Three Variables
	Primary Decomposition
	Coppersmith's Method, a Basic Variation on 3 Variables
	Recovering the Root
	The Notion of Independence

	A New Lattice to Find a Third Independent Polynomial
	Overview of the Main Idea
	Truncated Gr\"obner Basis
	A Second Coppersmith's Iteration

	A Criterion That Guarantees Rigorous Success
	Some Preliminary Results
	Construction of the Lattice $\mathcal{L}_1$}
	Using LLL-Reduction to Construct $p_3$

	 Application to ``Partial Key Exposure Attack on RSA"
	The RSA Equation
	A Heuristic Attack
	Our Attack
	Experiments
	Special Cases of Interest

	Possible Generalizations in More Variables
	Conclusion
	First Iteration Using a Basic Variation of Coppersmith's Method on Three Variables
	Preliminaries
	Construction of the Lattice $\mathcal{L}_1$
	Using LLL-Reduction to Construct $p_2$

	Algebraic Independence Between $p_1, p_2$ and $p_3$

	22 An (L 1_3 + e) Algorithm for the Discrete Logarithm Problem for Low Degree Curves
	Introduction
	Main Idea
	Smoothness
	Computing the Group Structure
	Computing Discrete Logarithms
	Extensions to Wider Families of Curves
	Highly Singular Curves
	Different Balancing Between n and d


	23 General Ad Hoc  Encryption from Exponent Inversion IBE
	Introduction 
	A Classification of IBE Schemes 
	Exponent Inversion Abstractions 
	Linear IBE Schemes 
	Parallel IBE Security 

	Concrete Instantiations 
	\ensuremath{\textsf{BB}_2}-IBE 
	SK-IBE 
	The Case of the Gentry IBE 

	Generic Constructions 
	Hierarchical Identities 
	Fuzzy Identities 
	Attribute-Based Encryption 
	Multiple Independent Key Generators 

	Conclusion 

	24 Non-interactive Proofs for Integer Multiplication
	Introduction
	Preliminaries
	Verifiable Secret Sharing (VSS) and Distributed Verifier Proofs
	Model and Definition
	An Integer Commitment Scheme
	Public-Key Encryption with Verifiable Opening
	VSS Using Integer Commitments
	Verifiable Commitment Multiplication Proof

	Verifiable Multiplication Proof Based onPseudo-Random Sharing
	Replicated Integer Secret-Sharing and Share Conversion
	Application to VSS
	Multiplication Proof

	Interval Proofs and Application to Secure Computing
	References

	25 Ate Pairing on Hyperelliptic Curves
	Introduction
	Mathematical Background
	Hyperelliptic Curves
	Tate-Lichtenbaum Pairing
	Miller's Algorithm

	Ate Pairing on Hyperelliptic Curves
	Ate Pairing on Superspecial Curves
	Conclusion
	Performance Estimates
	Miller's Algorithm
	Operation Count
	Performance Comparison


	26 Ideal Multipartite Secret Sharing Schemes
	Introduction
	Related Work
	Our Results
	Multipartite Access Structures, Multipartite Matroids, and Discrete Polymatroids
	Ideal Secret Sharing Schemes and Matroids
	Matroids, Integer Polymatroids, and Discrete Polymatroids
	Multipartite Access Structures and Multipartite Matroids

	Matroid-Related Multipartite Access Structures
	Representable Multipartite Matroids
	Tripartite Access Structures
	Characterizing Matroid-Related Tripartite Access Structures
	All Matroid-Related Tripartite Access Structures Are Ideal


	27 Non-wafer-Scale Sieving Hardware for the NFS Another Attempt to Cope with 1024-Bit
	Introduction
	Preliminaries: Sieving in the NFS
	Line Sieving
	Choice of 1024-Bit Parameters

	The Proposed Design: Main Components
	Collection Unit
	Computing the Arithmetic Progressions

	Performance and Parameters for the 1024-Bit Case
	Stations for the 1024-Bit Case
	Collection Unit for the 1024-Bit Case
	Combination of the Chips for the 1024-Bit Case

	Conclusion and Future Work

	28 Divisible E-Cash Systems Can Be Truly Anonymous
	Introduction
	Related Works
	Our Contribution
	Organization of the Paper

	Security Model
	Algorithms
	Notions of Security

	General Description
	Truly Anonymous E-Cash Scheme Based on Binary Trees 
	Useful Tools

	Divisible E-Cash System ${DCS}$
	Setup
	Withdrawal Protocol
	Spending Protocol
	Deposit Protocol
	Identify
	Verify Guilt

	Security Arguments
	Conclusion
	Matching Multi Diffie-Hellman problem

	29 A Fast and Key-Efficient Reduction of Chosen-Ciphertext to Known-Plaintext Security
	Introduction
	Weakening of Cryptographic Assumptions
	Contributions and Related Work

	Preliminaries
	Notation and Definitions
	Cryptographic Functions

	The IC- and ICT-Construction
	A PRF from Any WPRF
	A VOL-WPRF from Any WPRF

	Applications
	Symmetric Encryption
	A CPA-Secure Encryption Scheme
	A CCA-Secure Encryption Scheme
	A Non-adaptive CCA-Secure Encryption Scheme

	Conclusions

	30 Range Extension for Weak PRFs; The Good, the Bad, and the Ugly
	Introduction
	Related Work
	Applications

	Basic Definitions
	The Good, the Bad and the Ugly
	The Bad Expansions Are Exactly $B$
	Expansions Not in $B$ Are Not Bad
	Type $B$ Expansions Are Bad

	The Good Expansions Are Exactly $G$
	Type $G$ Expansions Are Good
	Expansions Not in $G$ Are Not Good

	Proof of Lemma 2

	31 Feistel Networks Made Public, and Applications
	Introduction
	Our Results

	Definitions and Preliminaries
	Insecurity of O(log)-Round Feistel
	A Combinatorial Property of the Feistel Construction
	Implications
	Unpredictable Permutations and More Resilient PRPs
	Verifiable Unpredictable/Pseudorandom Permutations


	32 Oblivious-Transfer Amplification
	Introduction
	Previous Work
	Problems with the Definition of Weak OT in DaKiSa99
	Contribution

	Preliminaries
	Definition of Security

	Distributed Randomness Extraction
	Universal Oblivious Transfer
	Weak Oblivious Transfer
	Basic Protocols for WOT Amplification
	WOT Amplification for $\eps=0$
	WOT Amplification for $p=0$ or $q=0$
	WOT Amplification for $p,q,\eps >0$

	Computationally Secure Weak Oblivious Transfer
	Pseudo-randomness Extraction
	Computational-WOT Amplification


	33 Simulatable Adaptive Oblivious Transfer
	Introduction
	Security Definitions of Oblivious Transfer
	Construction Overview
	Related Work

	Definitions
	Blind Signatures
	Simulatable Adaptive Oblivious Transfer

	A Generic Construction in the Random Oracle Model
	The Construction

	Simulatable Adaptive OT in the Standard Model

	Back Matter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




