An airdrop that preserves recipient privacy™

Riad S. Wahby* Dan Boneh* Christopher Jeffrey® Joseph Poon?

*Stanford University ~ °Purseo ‘Lightning Network

Abstract. A common approach to bootstrapping a new cryptocurrency
is an airdrop, an arrangement in which existing users give away currency
to entice new users to join. But current airdrops offer no recipient privacy:
they leak which recipients have claimed the funds, and this information
is easily linked to off-chain identities.

In this work, we address this issue by defining a private airdrop and de-
scribing concrete schemes for widely-used user credentials, such as those
based on ECDSA and RSA. Our private airdrop for RSA builds upon
a new zero-knowledge argument of knowledge of the factorization of a
committed secret integer, which may be of independent interest. We also
design a private genesis airdrop that efficiently sends private airdrops to
millions of users at once. Finally, we implement and evaluate. Our fastest
implementation takes 40-180 ms to generate and 3.7-10 ms to verify an
RSA private airdrop signature. Signatures are 1.8-3.3 kiB depending on
the security parameter.

Keywords: Cryptocurrency - Airdrop - User privacy - Zero-knowledge
proof of knowledge of factorization of an RSA modulus

1 Introduction

Newly-created cryptocurrencies face a chicken-and-egg problem: users appear
to prefer currencies that already have a thriving ecosystem [39]. For general-
purpose cryptocurrencies, this might entail a healthy transaction volume. For
currencies supporting distributed applications, it could mean having a critical
mass of clients already using the provided functionality. In both cases, the bottom
line is: to attract users, you must already have some.

This problem is well known in practice. One response is an airdrop, an ar-
rangement in which the existing users of a cryptocurrency give value in their
currency to non-users, at no cost, to entice them to become users. Airdrops
have become increasingly popular [2,13,15,49], with recent high-profile examples
including Stellar [74] and OmiseGO [61].

As the name implies, an airdrop is designed to transfer value to passive recip-
ients. To be most effective at recruiting new users, an airdrop should not require
recipients to enroll ahead of time—or, in the best case, even to know about the
airdrop in advance. This is effected by leveraging existing cryptographic infras-
tructure. Commonly, recipients claim their airdropped value on a new blockchain
by reusing their identities from some other, well-established blockchain.

* Extended abstract. The full paper is available from https://goosig.crypto.fyi.

https://goosig.crypto.fyi

While airdrops to existing blockchains are convenient, using other crypto-
graphic infrastructure may be more effective at recruiting desirable users. A
very interesting example is GitHub, since it has tens of millions of users [42],
many of whom use SSH keys to access repositories and PGP keys to sign com-
mits. GitHub publishes users’ public keys [43,44], which allows cryptocurrencies
to design airdrops intended for developers by allowing them to claim airdropped
funds using keys from GitHub. The PGP web of trust [64], Keybase [51], Git-
Lab [45], and the X.509 PKI [29] are interesting for similar reasons.

Yet, no matter the infrastructure they target, airdrops have a serious flaw:
they offer no privacy to their recipients. This means that an observer can easily
learn whether or not any given recipient has claimed her airdropped value. Even
cryptocurrencies that provide anonymity mechanisms for on-chain transactions
(e.g., [19,10]; §5) do not prevent this leakage, because a recipient must first use
her existing identity to claim the airdropped funds. And using cryptographic
infrastructure like GitHub exacerbates this privacy leak since GitHub accounts,
PGP keys, etc., are often tied to software projects and professional activities. All
told, these issues act as a disincentive for privacy-conscious recipients to redeem
their awards, which reduces the airdrop’s effectiveness in recruiting new users.

Existing solutions fall short of addressing this issue. The simplest possible
approach—sending each recipient a fresh secret key for claiming her funds—
carries an even stronger disincentive: it requires recipients to trust the sender.
Both the sender and recipient know the secret key, so either can take the funds,
but neither can prove who did. Meanwhile, a dishonest sender might garner free
publicity with an airdrop, only to claw back the funds; or an incompetent one
might accidentally disclose the secret keys. To avoid this trust requirement, a
workable solution must allow only the recipient to withdraw the funds.

A more plausible approach is to have recipients claim airdrop funds by prov-
ing their identities in zero knowledge. Concretely, a recipient proves that she
knows the secret key for some pre-existing public key (say, the RSA public key of
her GitHub credential), and that no prior airdrop claim has used this public key.
To preserve her privacy, she must do so without revealing which public key she
is using. But proving knowledge of one secret key among a large list of RSA keys
using general-purpose zero-knowledge proof systems [24,78,3,26,41,20,11,62,9] is
too expensive: infeasible computational cost, enormous proofs, and/or a setup
phase whose incorrect execution allows proving false statements (see §5).

Meanwhile, infrastructures like GitHub are primarily based on RSA because
it is, anecdotally, the most widely-supported key type for both SSH [73] and
PGP [47]. This means that taking advantage of these infrastructures effectively
requires support for airdrops to RSA keys.

Our contributions. This work builds an efficient and practical private airdrop
system using special-purpose zero-knowledge proofs designed for this task.
First, we define precisely the required functionality and security properties
for a private airdrop scheme (§2.1). Second, we exhibit practical private airdrop
schemes designed to work with ECDSA (§3) and RSA (§4) credentials. Our
ECDSA scheme extends in a straightforward way to Schnorr [71], EdDSA [12],

and similar credentials. To construct our RSA scheme, we devise a new succinct
zero-knowledge proof of knowledge (ZKPK) of the factorization of a committed
secret integer, which we prove secure in the generic group model for groups of
unknown order [72,31]. This new ZKPK may be of independent interest.

In the full paper, we carefully describe how to use private airdrops to boot-
strap a new cryptocurrency, a scheme we call a private genesis airdrop [77, §5].
This scheme is designed to handle millions of recipients, each of whom has hun-
dreds of keys of mixed types (some RSA, some ECDSA, etc.) and who may
potentially have lost one or more of their keys. The scheme lets the airdrop’s
sender prove the total value of the airdrop, while enabling airdrop recipients to
prove non-payment in case the sender was dishonest.

We have also implemented and evaluated our schemes [77, §6]. Our evalua-
tion focuses on the private airdrop scheme for RSA (which is more costly than
the one for ECDSA) and the private genesis airdrop. Depending on the security
parameter, our fastest implementation takes 40-180 ms for an airdrop recipient
to generate an RSA-based private airdrop signature comprising 1.8-3.3 kiB. The
signature takes miners 3.7-10 ms to verify. The scheme requires a trusted setup
to generate one global RSA modulus with an unknown factorization. Eliminating
trusted setup, by using class groups of unknown order, increases signing and ver-
ifying times by 9-13x in our reference implementation. Compared with a private
airdrop to one recipient, a private genesis airdrop to one million users, each with
one thousand public keys, increases signature size by less than 1.8 in the worst
case. Our implementations are available under open-source licenses [46,48].

2 Background and definitions

[¢] denotes the set of integers {0,1,...,£ — 1}. X is a security parameter (e.g.,
A = 128); we generally leave \ implicit. Primes(2)) is the set of the smallest 22
odd primes; this is roughly the primes up to 2\ + log(2X) bits in length.

Detailed knowledge of blockchains and cryptocurrencies is not required to
understand this work. For now, we regard a blockchain simply as an append-
only log of transactions. We give slightly more detail in the full paper [77, §5];
curious readers can also consult the survey of Bonneau et al. [18].

2.1 Private airdrop scheme

High-level description. In a private airdrop, a sender S creates a token and a
secret for a recipient R whose public key is pk. The sender sends the secret to
R! and records the token in a blockchain transaction. To claim the airdrop, R
uses the token, the secret, and her secret key sk (i.e., corresponding to pk) to
sign a new transaction. Any verifier 1V (i.e., other blockchain stakeholders) can
verify this signature using the token, and does not learn the recipient’s pk.

! This is usually accomplished by encrypting the secret to the recipient’s pk and
publishing the resulting ciphertext, so no explicit private channel is necessary.

Syntaz. Let SIG := (gen®®, sign®°, verify®®) be a signature scheme secure against

existential forgery under a chosen message attack. The derived private airdrop

scheme PAD with implicit security parameter A is a tuple of four algorithms:

setup(1") % pp: Output pp, which is an implicit input to the other algorithms.

send(pk) & (¢, s): Compute and output token ¢ and secret s for public key pk,
where (pk, sk) <+ gen*°(). Here ¢ is a public airdrop token that can later be
claimed by a recipient whose public key is pk. The element s is a secret that
the recipient will use, along with sk, to claim the token c.

sign(sk, (¢, s), msg) & sig: Sign message msg € {0,1}* under token-secret pair
(¢, s) using secret key sk, where (pk, sk) <+ gen®®() and (¢, s) <& send(pk). An
airdrop recipient uses this algorithm to claim the airdrop token c.

verify(c, msg, sig) — {OK, L}: OK if sig is valid for msg and token ¢, else L.
This algorithm is used to verify a claim for the token c.

PAD may also be validatable, in which case it has an additional algorithm:

validate(pk, (¢, s)) — {OK, L}: This algorithm outputs OK if token ¢ with se-
cret s granted to public key pk is valid, else it outputs L.

For schemes that are not validatable, we let validate(-,) := OK.

Functionality. We require that, for all messages msg € {0,1}*,

verify(c, msg, sig) = OK A validate(pk, (¢, s)) = OK
Pr | where pp <& setup(1?) (pk, sk) < gen®S() =1
(¢, s) < send(pk) sig < sign(sk, (¢, s), msg)

Security. PAD is secure if it is anonymous, unforgeable, and orthogonal to SIG.
Anonymity means, informally, that ¢ and sig reveal nothing about pk or sk, other
than a well-defined leakage given by a function A. This ensures that claiming a
token ¢ does not reveal the claimant’s identity, as required for privacy.

Definition 1. PAD is A-anonymous if there is a leakage function A such that
for all PPT adversaries A there exists a simulator Sim such that the following
two distributions are statistically indistinguishable, letting pp < setup(1*):

(pk, sk) < gen®()

k, sk) < gen®°
(¢, 8) f send(pk) (p I-)I & ;g\(pk (215)
Dy = (msg, st) < Afc) » Ds = (¢, msg, sig,st) <+ Sim(H)

sig < sign(sk, (¢, s), msg) _
output (pk, c, msg, sig, st) output (pk, ¢, msg, sig, st)

Remark 1. Sim sees only H (and not pk), yet it simulates (¢, msg, sig, st). This
shows that this 4-tuple reveals nothing about pk except the leakage H = A(pk, sk).

A does not learn s because in an airdrop only the sender and recipient do so,
and the goal is to prevent any other entity from learning the recipient’s identity.

Remark 2. A slightly stronger definition of anonymity also includes sk in the
output of both distributions. Anonymity under this definition implies, roughly

speaking, that even knowledge of the key sk corresponding to a token c is not
sufficient to connect sig to pk. The schemes in the following sections meet this
stronger notion, but it does not appear necessary in practice.

Unforgeability means, roughly speaking, that without sk one cannot generate

a valid PAD signature for any message, even given valid PAD signatures for

other messages and valid signatures in the underlying SIG for arbitrary messages.

Consider Forge, a game between adversary A and challenger C:

Setup: C sets pp <& setup(1*), (pk, sk) <& gen®¢(), and (c, s) <* send(pk), then
sends pk, (¢, s) to A.

Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msg3® to C, who replies with sigy® <* sign®®(sk, msg$'°).

Q2: A sends msg; to C, who replies with sig; <= sign(sk, (c, s), msg;).
Forge: A outputs (1, §), winning if verify(c, i, §)=0K A A ; mz#msg ;.

Definition 2. Let adversary A’s advantage in Forge be Advi{"ge = Pr[A wins|.
PAD is unforgeable if, for any PPT A, Advifrge < negl(A).

Orthogonality means, informally, that PAD signatures do not help to create a SIG
forgery. In other words, the airdrop scheme does not weaken the user’s credential
(e.g., for authenticating to GitHub). Consider Ortho, a game between adversary
A and challenger C:

Setup: C sets pp <* setup(1*) and (pk, sk) <* gen®(), then sends pk to A, who
chooses (¢, s) and sends them to C. Finally, C aborts if validate(pk, (¢, s)) = L.

Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msg, to C, who replies with sig, <* sign®°(sk, msg;).
Q2: A sends msg7® to C, who replies with sig}™® <* sign(sk, (c, s), msg7*®).
Forge: A outputs (71, §), winning if verify®®(pk, m, §)=0K A A\, m#msg,.

The game wkOrtho is similar, but further requires /\j m#msg;® for A to win.

Definition 3. Let adversary A’s advantage in Ortho be AdvQ™ = Pr[A wins).
PAD is orthogonal to SIG if, for any PPT adversary A, Advartho < negl(A).
PAD is weakly orthogonal if Ortho is replaced with wkOrtho in this definition.

Remark 3. The PAD scheme of Section 4 gives orthogonality, while the scheme of
Section 3 gives only weak orthogonality. In practice, weak orthogonality suffices
as long as messages signed in the PAD scheme cannot be confused with messages
signed in the SIG scheme; this appears to be true in our applications.

3 Warm-up: A private airdrop to ECDSA keys

Let H with generator g be a cyclic group of prime order §. Let the ECDSA

signature scheme in H be the triple (geny*() % (pk, sk), signp*(sk, msg) & sig,

verifyp* (pk, msg, sig) — {OK, L}); (pk, sk) = (%, x) is an ECDSA key pair.

We now define PAD-DSA, a private airdrop scheme to ECDSA keys. Intuitively,

the token c in this scheme is a fresh ECDSA public key derived from an existing

key, such that only that key’s owner can compute the corresponding secret. In

particular, PAD-DSA leverages the fact that ¢ = pk® = §%° € H is an ECDSA

public key whose corresponding secret key is sk - s = = - s € Zg. Further, if s is

chosen at random, pk® is independent of pk, so ¢ reveals nothing about pk.
Thus, PAD-DSA is the validatable private airdrop scheme given by:

setup(1*) — pp: Output L; this scheme uses no public parameters.
send(pk) & (¢, s): Choose s <= [q] \ {0}, set ¢ + pk® € H, and output (¢, s).

sign(sk, (¢, s), msg) % sig: Output signgt*(sk - s € Zg, (¢, msg)).
DSA

verify(c, msg, sig) — {OK, L} : Output verifyy”(c, (¢, msg), sig).
validate(pk, (¢, s)) — {OK, L}: OK if s € [¢] \ {0} A c = pk® € H, else L.

Theorem 1. PAD-DSA is anonymous (Def. 1), with no leakage.
We prove Theorem 1 in the full paper [77, §3].

Definition 4 (Idealized ECDSA [22,32]). The triple (genf*, signg™, verifyg”)
is the idealized ECDSA algorithm if the two hash functions called as subrou-
tines by signg” and verifyg” are modeled as random oracles.

Theorem 2. PAD-DSA is unforgeable (Def. 2) when (gen*,signg™, verifygr”)
is modeled as the idealized ECDSA algorithm.

Theorem 3. PAD-DSA is weakly orthogonal to ECDSA in H (Def. 3) when

(genP, signp™, verifyy") is modeled as the idealized ECDSA algorithm.

Dauterman et al. [32, Thm. 5, Appx. C] prove a statement equivalent to
Theorem 2. PAD-DSA is, in effect, a signature under a related key; Theorem 3
captures the required security against related-key attacks. Morita et al. [57,
Thm. 2] prove a statement equivalent to this theorem, and also suggest a tweak
to DSA whose use would give full (rather than weak) orthogonality for PAD-DSA.

An alternative to the above scheme is to use ¢ = pk - §° = §***, with signing
key x+s € Zg, similarly to hierarchical deterministic wallets [79]. PAD-DSA also
extends naturally to Schnorr [71], EADSA [12], and related schemes.

4 A private airdrop to RSA keys

Let G be a group of unknown order [77, §2.2] with generators g, h having un-
known discrete-log relation. Let H be an auxiliary cyclic group of known prime
order ¢ with generators g, h having unknown discrete-log relation. Let n € [N]
be a secret integer where N is a public upper bound on n and N > |G| -22*. Let
¢:=g"-h® € G be a Pedersen commitment [63] to n with opening s <+ [N].

In this section we construct a private airdrop to RSA keys. We proceed in
two steps: we first construct an interactive zero-knowledge proof of knowledge

(ZKPK) of the factorization of an RSA modulus n € Z given a public Pedersen
commitment [63] to this n (see §4.1 and §4.2). We then make this protocol non-
interactive via the Fiat-Shamir heuristic [34], yielding a private airdrop (§4.3).

One way to prove knowledge of the factorization of a committed n is for the
prover to commit to integers p and ¢, and then prove that they are nontrivial
factors of n. We instantiate this approach in Section 4.1, but verifying the proof
is costly: it requires an exponentiation by a several thousand—bit exponent.

To address this, in Section 4.2 we describe a second ZKPK that reduces the
verifier’s work by roughly 5x and gives ~14-50% shorter proofs. The resulting
protocol leaks a small amount of information about n: at most two bits, This
can be reduced to just one leaked bit under a mild assumption (Cor. 1, §4.3).

Remark 4. The protocols of this section are insecure if the group G contains
a non-identity element of known order. In the group Z), the element —1 has
order 2, and hence this group is unsuitable for our protocols. Instead, we work in
the quotient group G := Z /{x£1}, where elements are represented as integers in
the interval [1,m/2] and the product of z and y is defined as z-y = min(z, m—z)
where z = (2 - y mod m). In this group —1 is the same as 1, and presumably
there are no other known elements of known order other than the identity. We
discuss the group G further in the full paper [77, §7].

4.1 PoKF;: ZKPK of factorization of a committed integer

To prove knowledge of the factorization of n, the prover establishes the relation

;o <c €G, (n,p,qs)€[N]x Z3), where
mgh = (1)
c=g"-h*% p-q=n, p & {1, £n}

where c is the statement and (n, p, g, s) is the witness. At a high level, the proof
works as follows: the prover P sends the verifier V two Pedersen commitments c,
and ¢, to p and g, respectively, then proves that p-g =n and p ¢ {£1,£n}. For
this purpose, we combine folklore sigma protocols [71,27,60,30,6,52] with recent
work extending such protocols to generic groups of unknown order [17].

To efficiently prove that p ¢ {+1, +n} we make use of the auxiliary group H.
Recall that V has commitments to p and n, and could therefore prove that
p ¢ {£1,4n} by proving that (p? — 1)(p? — n?) # 0. However, this requires a
relatively large proof containing multiple elements of G.

To sidestep this issue, we take a different approach: rather than execute the
proof in G, our P and V execute it in a much smaller group H of known prime
order (say, an elliptic curve group). For RSA moduli at practical security levels
the order of H is all but certainly coprime to p, p+ 1, and p + n, so this suffices
to convince V' that p ¢ {£1,+n} in Z.

The prover P provides a commitment ¢, € H to p?, from which V can
compute a commitment to p? — 1 as ¢2/g € H. To do the same for p? — n?
the verifier V needs a commitment é,2 € H to n?. Fortunately, in the airdrop

context this is easy to arrange, by requiring the sender S to compute the token
as (¢, ¢,2) with corresponding secret (s, s3). This gives the modified relation

((c.é) €GXH, (n,pg,5.50) € [N] x 28 x [q])
1" L ~
%g’h’gﬁ =\ where ¢=g"-h®, Cpz = g(n2) - he2, (2)
p-qg=n, p & {£1l,£tn} mod ¢

for statement (c, ¢,2) and witness (n,p, g, s, $2).
We leave details of PoKF; to the full paper [77, §4.1, Appx. B].

4.2 PoKFj: reducing costs by allowing (1-bit) leakage

As mentioned previously, PoKF; suffers from high verification cost [77, §4.1,
Appx B.4]. In this section, we give a protocol that reduces both verification and
communication cost compared to PoKFy, but leaks one bit about n. This leakage
appears to be acceptable in private airdrop applications.

To prove knowledge of factorization of n, the prover establishes the following
relation for w € [N] where w? =t (mod n) and t € Z is prime, 2 < t < A.
(Recall that computing square roots modulo n is equivalent to factoring n.)

Ryp 1= ((C, t) € GX[A], (n,s,w,a)€ [N]4), where 3

c=g"-heCG, w=t+a-neZ, 2<t<\aprime

Here (c,t) is the statement and (n, s, w,a) is the witness. The integer relation
w? =t + a-n proves that w? =t (mod n), as required.

Remark 5. Common hardware security tokens for RSA keys (e.g., [80]) imple-
ment a signing oracle abstraction. This means that the device’s owner has access
to (at best) an e'" root in Z,, for (n,e) = pk—and not to the factorization of n.
Furthermore, these security tokens often fix e = 65537. In principle, it is possi-
ble to adapt our ZKPK to a relation analogous to (3) for w* a 65537'" root of
t. This proof would be an order of magnitude longer, but would eliminate the
leakage about n. We leave to future work the problem of devising a concretely
small ZKPK supporting these security tokens.

We now give an interactive ZKPK for Relation (3), building on the results
of Boneh et al. [17]. This relation leaks that ¢ € Z is a quadratic residue modulo
the committed n. As discussed below (Cor. 1, §4.3), this leakage amounts to one
bit under a standard cryptographic assumption.

Protocol PoKF; for relation (3) between prover P and verifier V works as
follows. V’s input is (¢, t) € Gx[A] with ¢ prime, and P’s input is (¢, t,n, s, w, a) €
G x [N]5. To start, P chooses two random integers s, s2 < [N] and computes
c1 < g¥-h% € G and ¢ < g% - h*? € G. Next, define a homomorphism
¢ : Z8 — G* x Z parameterized by g, h, ¢, c1, ca:

w, w2, sl,a, wopsl o gaLps2 gu2 . psiw jow

na, slw, sa, s2 g h /et w2 — na

It is easy to see that ¢ is a group homomorphism whose range is the group
G* x Z. We will write the group operation in this group multiplicatively. That
is, if (a4, bi,ci,d;, e;) € G* x Z for i € {1,2}, then

(a1,b1,c1,d1,e1) - (az, b2, ca,da, €2) i= (@1a2, biba, cice, dida, €1 + e2).

To prove knowledge of a witness for relation (3), it suffices for P to prove
that it knows a ¢-preimage of T := (c1,¢2,1,1,t) € G* x Z. In other words, we
need a ZKPK for a vector v/ = (w', w2’,s1’,a’, na’, siw’, sa’, s2") € Z8 such that

d(v') =T = (c1,¢0,1,1,) € G* x Z. (5)

This proves that ¢; is a commitment to w’ € Z, ¢y is a commitment to o’ € Z,
w2 = (w')?, and na’ = a’ - n for some integer a’. The fifth term in (5) proves
that (w')? —a' - n =t € Z, as required.

We design a ZKPK for a ¢-preimage using a zero-knowledge protocol due to
Boneh et al. [17, Appx. A]. Here, the verifier V is given T € G* x Z and the
prover P is given T and v € Z® where ¢(v) = T. The protocol works as follows:
(1) P sets T := (Tu, Tw2, Tsis Tas Trnas Tstw, Tsas Ts2) € Z8 where

Tws Tw2sTnayTa & [22>\] and Ts1,Ts1wy TsarTs2 & [N]

P then computes R + ¢(r) € G* x Z and sends (cy,c2, R) to V.

(2) V chooses challenges ch <* [2*] and ¢ <* Primes(2)),? and sends them to P.

(3) P computes z < (ch-v+r1) € Z8, 7y + (zmod ¢) € [(|®, z, + |z/t] € Z5,
and Z, < ¢(z4); and sends (Zq, z¢) € (G* x Z) x [(]8 to V.

(4) V accepts if Z) - ¢(z) =T" - R in G* x Z.

Verification cost is dominated by evaluation of Zf; - ¢(z¢), which entails four
multi-exponentiations with exponents of size at most 2A + log(2A) bits (i.e., the
bit length of ¢; §2). For A = 128 and N ~ 2499 this is roughly 5x less expensive
than the verification cost of protocol PoKF; from the prior section. As we discuss
in the full paper [77, Appx. B.4], PoKF; also gives ~14-50% smaller proofs.

Remark 6. The commitment ¢y to the integer a is necessary for soundness, and
in particular to ensure that a is an integer. If ¢y along with so and the second
coordinate of ¢ are eliminated then there is an attack where an adversarial prover
can prove knowledge of (v/3 mod n) using a = 1/n and w = 2.

Theorem 4. Protocol PoKF, is a zero-knowledge protocol for Ry, from (3).

Definition 5. Algorithm G is an honest instance generator for R, 5, (eq. (3))
if it chooses integers n, s,t, and outputs (c,t) where c:= g™ -h® € G and t € [A].

Theorem 5. Protocol PoKF; is an argument of knowledge for the relation Ry p,
in (3) for instances (c,t) generated by an honest instance generator G, when the
group G is a modeled as a generic group of unknown order.

We prove Theorems 4 and 5 in the full paper [77, Appx. C].

2 In an interactive protocol, £ < Primes(\) would suffice for soundness. Applying the
Fiat-Shamir heuristic causes a loss in security, thus requiring a larger ¢ [16, §3.3].

4.3 PAD-RSA: a private airdrop for RSA keys

We construct PAD-RSA by applying the Fiat-Shamir heuristic [34] to the inter-
active ZKPK PoKF; from Section 4.2. We optimize further in [77, §4.4].

Let (gen™*() & (pk, sk), sign™**(sk, msg) & sig, verify™*(pk, msg, sig) — {OK, L})
be an RSA signature scheme, e.g., RSA-FDH [8]. Then PAD-RSA is given by:
setup(1") % pp: Select a group G generated by g and h, and N > |G| - 22} an

upper bound on the size of RSA moduli that can be used with these public
parameters. Output pp = (G, g, h, N, A). We discuss candidate groups G below.

send(pk) & (¢, s): For (n,e) = pk, s <~ [N], ¢ < g™ - h® € G, output (c,).
sign(sk, (¢, s), msg) & sig: For (n,p,q) = sk, do:
(1) choose a random prime 2 < ¢t < X such that ¢ is a quadratic residue in Z,,

2
3

find integers (w,a) such that w? =t + an in Z (i.e. w? =t mod n),

choose a random s; < [N] and compute ¢; < g* - h®t € G,

5
6

2)
3)
(4) choose a random so <t [N] and compute cg + g% - h%2 € G,
(5) compute v + (w,w?,s1,a,n-a,s; -w,s-a,ss),

(6)

. . 8

set r = (va Tw2,Ts15TasTnas Tstws T'sas 7‘32) € Z° where
R 2\ R

Tws Tw2s Tnas Ta < [2] and Ts1,Ts1wyTsarTs2 < [N]v

(7) compute R < ¢(r) € G* x Z, where ¢ is the homomorphism defined in (4),
(8) compute (ch,¥) + Hash(msg,G,g,h,c,c1,ca,t,R), where ch € [2*] and
¢ € Primes(2)) (e.g., by treating the hash output as a PRG seed),
(9) compute z < (ch-v +71) € Z8, 2z, + (zmod ¥) € [{]®, z, + |z/l]| € 75,
Z, + ¢(zq) € G* X Z,
(10) output the signature sig = (c1,c2,t, ch, ¥, Zy, zy).
verify(c, msg, sig) — {OK, L} : For (c1,ce,t, ch,l,Z,,2¢) = sig,
(1) output L if ¢ & [A] or not prime, cl,c2 ¢ G, Z, ¢ G* x Z, or z, ¢ [(]5.
(2) with T := (c1,¢2,1,1,t) € G* x Z, compute R’ < Zf;~¢>(zz)/TCh €G*x 12,

(3) compute (ch’,¢") < Hash(msg, G, g, h,c,cy1,ca,t, R'), where ch’ € [2*] and
¢ € Primes(2)),

(4) output OK if ch’ = ch and ¢’ = ¢, else output L.
validate(pk, (¢, s)) — {OK, L}: Output OKif s € [N]Ac=g"-h* € G, else L.

As discussed in Remark 4, the security of PAD-RSA relies crucially on G
containing no elements of known order other than the identity. Z) /{£1} for
m an RSA modulus with unknown factorization is a convenient choice, but it
requires a trusted setup (to generate m without leaking its factorization). A
candidate G that does not require trusted setup is the class group of imaginary
quadratic order [23]. We discuss further in the full paper [77, §7].

Since the ZKPK of Section 4.2 is complete, PAD-RSA is a valid scheme. The
following theorems establish the security properties of PAD-RSA. Corollary 1 and

10

Theorem 8 rely on the quadratic residuosity assumption (QRA) [14]: informally,
for RSA modulus m with unknown factorization, distinguishing between a square
modulo m and a non-square with Jacobi symbol +1 is infeasible.

Theorem 6. PAD-RSA is A**anonymous (Def. 1) in the ROM. N*** reveals two
bits about (n,e) = (pk, sk), namely, a small prime quadratic residue mod n.

Corollary 1. Under QRA, N**(pk, sk) leaks one bit about pk with respect to
any RSA modulus of unknown factorization, to any PPT observer.

Theorem 7. PAD-RSA is unforgeable in the random oracle model if computing
V't € Z,, from RSA public key (n,e) = pk is hard, 2 <t < X\ a prime.

Theorem 8. PAD-RSA is orthogonal to RSA under QRA in the ROM.

We prove Theorems 6-8 and Corollary 1 in the full paper [77, §4.3].

5 Related work

Anonymity and privacy for cryptocurrencies. Our work relates broadly to pri-
vacy for cryptocurrency users, but it attacks a different problem than prior work.
We very briefly rehearse that work for context. Following Biinz et al. [24], we
separate prior work into anonymity, hiding associations between identities and
transactions, and confidentiality, hiding contents of transactions.

While Bitcoin was intended to provide anonymity [58], in practice it does
not [55,4]. Early responses to this issue hide transaction history by shuffling to-
gether unrelated transactions [53,69]. More recent work uses cryptographic ma-
chinery to give stronger guarantees [10,59,70]. CryptoNote stealth addresses [70]
are similar to a PAD in that they allow a sender to derive an anonymous iden-
tity from a recipient’s public key. But this scheme requires a special public key
format, is incompatible with RSA keys, and has no formal security statement.

A related line of work deals with confidentiality. Maxwell showed how to con-
struct transactions whose inputs and outputs are hidden in cryptographic com-
mitments, and which include zero-knowledge proofs attesting to validity [54].
Later work built upon and refined this approach [66,50,65,36]. Most recently,
Biinz et al. [24] showed how to significantly improve the costs of the zero-
knowledge proofs on which confidential transactions are built.

Efficient airdrops. MerkleMine [56] and pooled payments [67] are methods for
compressing airdrops using Merkle trees. These are similar to our private genesis
airdrop (described in the full paper [77, §5]), but our design entails more com-
plexity because it aims to preserve the privacy of recipients, supports multiple
keys per recipient, and allows recipients to accuse the sender of dishonesty.

A recent survey of airdrops [35] discusses the cost of these and other methods.

11

General-purpose zero-knowledge proofs and private smart contracts. Several lines
of work have produced frameworks for constructing zero-knowledge proofs for
general NP statements; other work has applied these ideas to constructing smart
contracts. For space reasons we defer this discussion to the full paper [77, §8]. In
sum, these works pay a high cost for their generality, and are far more expensive
than the special-purpose ZKPK of Section 4.

Group signatures, ring signatures, etc. In a group signature scheme [28,7], users
join a group by registering with an administrator; thereafter, any user can sign
for the group. This signature does not reveal which user signed, just that one
member of the group did. Private airdrops are vaguely similar to group signa-
tures, but they disconnect the anonymity set (all users who own a certain key
type) from the signing set (exactly one user, designated by the sender). Our
private genesis airdrop (described in the full paper [77, §5]) is roughly a “one-
time-per-user” group signature with extra properties tailored to our application.

Ad-hoc anonymous identification schemes [33] and ring signatures [68], unlike
group signatures, have no administrator. Instead, users create ad-hoc anonymity
sets out of existing keys, then create signatures which reveal only that one user in
the anonymity set was the signer. Private airdrops are similar to ring signatures
in that they do not require users to register with an administrator, but an
administrator (the sender) is nevertheless required.

The ring signature scheme of Abe et al. [1] admits signatures whose ad-
hoc anonymity sets mix keys of different types. In this scheme, signing and
verifying time and signature size are all linear in the size of the anonymity set.
Our private genesis airdrop scheme also allows signatures with anonymity sets
having mixed key types; it has logarithmic and concretely small cost in the size
of the anonymity set, but requires a sender to set up the scheme.

Anonymous proxy signatures [37] let a delegator give signing privileges to a
proxy. The delegator’s role is faintly reminiscent of the sender’s in a private air-
drop; and like the recipient, the proxy’s identity is kept secret. But the delegator
retains signing privileges after designating a proxy, whereas the private airdrop
sender permanently transfers signing privileges for a given token to its recipient.

Proving knowledge of factorization of an RSA modulus. A large body of work
deals with proving knowledge of factorization of RSA moduli. Much of this is
in the setting where the modulus n is public (e.g., [76,21,38,40]) and is thus
unsuitable for our application, since revealing n would violate anonymity.

Camenisch and Michels [25] give a protocol for proving that a-b = d mod n for
committed values a, b, d, and n, that is secure under the discrete log assumption.
This is considerably milder than our modeling G as a generic group of unknown
order (§4.2; [77, §7]). On the other hand, as a consequence of impossibility re-
sults for X-protocols in groups of unknown order [5,75], the protocol requires k
repetitions for soundness 27%, wherein each repetition requires five range proofs
and five proofs of knowledge of a commitment’s opening. This means that proofs
are orders of magnitude larger and costlier to verify than in our scheme.

12

6 Conclusion

We have defined private airdrops, which allow users to create signatures us-
ing their cryptographic credentials without revealing those credentials, and we
have described concrete private airdrop schemes for ECDSA and RSA keys. To
construct private airdrops for RSA, we defined a new zero-knowledge argument
of knowledge of the factorization of a committed integer, in generic groups of
unknown order.

In the full paper [77, §5] we describe how to use these private airdrops to
bootstrap a new cryptocurrency, using a design we call a private genesis airdrop.
Private genesis airdrops handle millions of recipients, each having hundreds of
public keys, potentially of different types. The creator of a private genesis airdrop
can prove the total value he has airdropped; if he created the airdrop dishonestly,
recipients can prove that they did not receive the promised funds.

Finally, we have implemented and evaluated our schemes [77, §6]. In our
fastest implementation, private airdrop signatures for RSA keys take tens to
hundreds of milliseconds to create and milliseconds to verify, and they comprise
at most a few kilobytes. The private genesis airdrop scheme increases signature
size by about a kilobyte for an airdrop to millions of users, each having hundreds
of keys; its computational overhead is negligible. While these costs are expensive
compared to plain RSA signatures, we believe that may be justified, in the
airdrop setting, by the improvement in recipient privacy.

Our implementations are available under open-source licenses [46,48].

Acknowledgments

This work was supported in part by the NSF, the ONR, the Simons Founda-
tion, the Stanford Center for Blockchain Research, and the Ripple Foundation.
The authors thank Fraser Brown, Henry Corrigan-Gibbs, and Dmitry Kogan
for helpful conversations, and David Mazieres for pointing out the need for the
orthogonality property.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASTACRYPT 2002. LNCS, vol. 2501, pp. 415-432. Springer,
Heidelberg (Dec 2002). 10.1007/3-540-36178-2"26

2. Airdrop Alert. https://airdropalert.com/

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087-2104. ACM Press (Oct / Nov
2017). 10.1145/3133956.3134104

4. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Proc. Financial Crypto (Apr 2013)

13

https://doi.org/10.1007/3-540-36178-2_26
https://airdropalert.com/
https://doi.org/10.1145/3133956.3134104

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bangerter, E., Camenisch, J., Krenn, S.: Efficiency limitations for S-protocols for
group homomorphisms. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
553-571. Springer, Heidelberg (Feb 2010). 10.1007/978-3-642-11799-2"33
Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of dis-
crete logarithms and representations in groups with hidden order. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 154-171. Springer, Heidelberg (Jan 2005).
10.1007/978-3-540-30580-4'11

Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614-629.
Springer, Heidelberg (May 2003). 10.1007/3-540-39200-9°38

Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62-73. ACM Press (Nov 1993). 10.1145/168588.168596
Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701-732. Springer, Heidelberg (Aug 2019). 10.1007/978-3-
030-26954-8"23

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459-474. IEEE Computer Society Press
(May 2014). 10.1109/SP.2014.36

Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014. pp. 781-796. USENIX Association (Aug 2014)

Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124-142. Springer, Heidelberg (Sep / Oct 2011). 10.1007/978-3-642-23951-9°9
Bjorgy, T.V.: The latest crypto PR craze: ‘airdropping’ free coins into your wallet.
VentureBeat (Sep 2017)

Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 61-78.
Plenum Press, New York, USA (1982)

Bogart, S.: The trend that is increasing the urgency of owning Bitcoin and
Etherium. Forbes (Oct 2017)

Boneh, D., Biinz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptol-
ogy ePrint Archive, Report 2018/712 (2018), https://eprint.iacr.org/2018/712
Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561-586. Springer, Heidelberg (Aug
2019). 10.1007/978-3-030-26948-7"20

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.-W.: SoK:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy. pp. 104—121. IEEE Computer Society
Press (May 2015). 10.1109/SP.2015.14

Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E-W.: Mix-
coin: Anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486-504. Springer, Heidelberg (Mar 2014).
10.1007/978-3-662-45472-531

14

https://doi.org/10.1007/978-3-642-11799-2_33
https://doi.org/10.1007/978-3-540-30580-4_11
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-23951-9_9
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1007/978-3-662-45472-5_31

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327-357. Springer,
Heidelberg (May 2016). 10.1007/978-3-662-49896-5"12

Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: Giving hints and
using deficiencies. In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT’89.
LNCS, vol. 434, pp. 155-172. Springer, Heidelberg (Apr 1990). 10.1007/3-540-
46885-4'18

Brickell, E.F., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for dis-
crete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 276-292. Springer, Heidelberg (Jan 2000). 10.1007/978-3-
540-46588-1"19

Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Proc. Public-Key
Cryptography and Computational Number Theory (Sep 2000)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315-334. IEEE Computer Society Press (May 2018).
10.1109/SP.2018.00020

Camenisch, J.; Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp.
107-122. Springer, Heidelberg (May 1999). 10.1007/3-540-48910-X'8

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger,
C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T,
Xu, D. (eds.) ACM CCS 2017. pp. 1825-1842. ACM Press (Oct / Nov 2017).
10.1145/3133956.3133997

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO’92. LNCS, vol. 740, pp. 89-105. Springer, Heidelberg (Aug 1993).
10.1007/3-540-48071-4'7

Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT’91. LNCS, vol. 547, pp. 257-265. Springer, Heidelberg (Apr 1991).
10.1007/3-540-46416-6"22

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Tech. Rep. RFC5280, IETF (May 2008)

Cramer, R.J.F.: Modular design of secure yet practical cryptographic protocols.
Ph.D. thesis, Universiteit van Amsterdam (Jan 1997)

Damgard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256-271. Springer, Heidelberg (Apr / May 2002). 10.1007/3-
540-46035-7°17

Dauterman, E., Corrigan-Gibbs, H., Mazieres, D., Boneh, D.; Rizzo, D.: True2F:
Backdoor-resistant authentication tokens. In: IEEE Symposium on Security and
Privacy (May 2019), https://arxiv.org/abs/1810.04660

Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 609-626. Springer, Heidelberg (May 2004). 10.1007/978-3-540-24676-3'36
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (Aug 1987). 10.1007/3-540-47721-7"12

15

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/3-540-46885-4_18
https://doi.org/10.1007/3-540-46885-4_18
https://doi.org/10.1007/978-3-540-46588-1_19
https://doi.org/10.1007/978-3-540-46588-1_19
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://arxiv.org/abs/1810.04660
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/3-540-47721-7_12

35.

36.

37.

38.

39.

40.

41.

42.
43.
44.
45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.
59.

Fréowis, M., Bohme, R.: The operational cost of Ethereum airdrops.
arXiv:1907.12383 (2019), https://arxiv.org/abs/1907.12383

Fuchsbauer, G., Orru, M., Seurin, Y.. Aggregate cash systems: A crypto-
graphic investigation of Mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 657-689. Springer, Heidelberg (May
2019). 10.1007/978-3-030-17653-2"22

Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
Prisco, R.D., Visconti, I. (eds.) SCN 08. LNCS, vol. 5229, pp. 201-217. Springer,
Heidelberg (Sep 2008). 10.1007/978-3-540-85855-3'14

Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
16-30. Springer, Heidelberg (Aug 1997). 10.1007/BFb0052225

Gandal, N., Halaburda, H.: Competition in the cryptocurrency market. Tech. Rep.
DP10157, Center for Economic Policy Research (Sep 2014)

Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In: Gong, L., Reiter, M.K.
(eds.) ACM CCS 98. pp. 67-72. ACM Press (Nov 1998). 10.1145/288090.288108
Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069-1083.
USENIX Association (Aug 2016)

GitHub: About. https://github.com/about

GitHub: User public keys. https://developer.github.com/v3/users/keys/
GitHub: User GPG keys. https://developer.github.com/v3/users/gpg_keys/
GitLab: Users API. https://docs.gitlab.com/ce/api/users.html

GooSig: short signatures from RSA that hide the signer’s public key. https://
github.com/kwantam/GooSig

GnuPG frequently asked questions. https://www.gnupg.org/faq/gnupg-faq.
html#default_rsa2048

handshake-org/goosig: Anonymous RSA signatures. https://github.com/
handshake-org/goosig/

ICO Drops. https://icodrops.com/

Jedusor, T.E.: Mimblewimble. Tech. rep. (Jul 2016)

Keybase.io. https://keybase.io/

Maurer, U.M.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 09. LNCS, vol. 5580, pp. 272-286. Springer, Heidelberg (Jun
2009)

Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.
org/index.php?topic=279249 (Aug 2013)

Maxwell, G.: Confidential transactions. Tech. rep. (2016)

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoins: Characterizing payments among men with
no names. In: Proc. IMC (Oct 2013)

MerkleMine specification. https://github.com/livepeer/merkle-mine/blob/
master/SPEC.md

Morita, H., Schuldt, J.C.N.,; Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 15. LNCS, vol. 9558, pp. 20-35. Springer, Heidelberg (Nov
2016). 10.1007/978-3-319-30840-1"2

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1 (2016)

16

https://arxiv.org/abs/1907.12383
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-540-85855-3_14
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1145/288090.288108
https://github.com/about
https://developer.github.com/v3/users/keys/
https://developer.github.com/v3/users/gpg_keys/
https://docs.gitlab.com/ce/api/users.html
https://github.com/kwantam/GooSig
https://github.com/kwantam/GooSig
https://www.gnupg.org/faq/gnupg-faq.html#default_rsa2048
https://www.gnupg.org/faq/gnupg-faq.html#default_rsa2048
https://github.com/handshake-org/goosig/
https://github.com/handshake-org/goosig/
https://icodrops.com/
https://keybase.io/
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
https://github.com/livepeer/merkle-mine/blob/master/SPEC.md
https://github.com/livepeer/merkle-mine/blob/master/SPEC.md
https://doi.org/10.1007/978-3-319-30840-1_2

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

e

78.

79.

80.

Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp.
31-53. Springer, Heidelberg (Aug 1993). 10.1007/3-540-48071-4'3

OmiseGO airdrop update. https://www.omise.co/omisego-airdrop-update
(Aug 2017)

Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238-252.
IEEE Computer Society Press (May 2013). 10.1109/SP.2013.47

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (Aug 1992). 10.1007/3-540-46766-1"9

Penning, H.P.: Analysis of the strong set in the PGP web of trust. https://pgp.
cs.uu.nl/plot/ (Dec 2018)

Poelstra, A.: Mimblewimble. Tech. rep. (Oct 2016)

Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential as-
sets. Tech. rep. (Apr 2017)

Pooled payments (scaling solution for one-to-many transactions). https:
//ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-
transactions/590

Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASTACRYPT 2001. LNCS, vol. 2248, pp. 552-565. Springer, Heidelberg (Dec 2001).
10.1007/3-540-45682-1"32

Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized coin
mixing for Bitcoin. In: Proc. ESORICS (Sep 2014)

van Saberhagen, N.: CryptoNote v 2.0. Tech. rep. (Oct 2013)

Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239-252. Springer, Heidelberg (Aug
1990). 10.1007/0-387-34805-0"22

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256-266. Springer, Heidelberg
(May 1997). 10.1007/3-540-69053-0"18

ssh-keygen(1): OpenBSD manual pages. https://man.openbsd.org/ssh-keygen
We're distributing 16 billion Lumens to Bitcoin holders. https://www.stellar.
org/blog/bitcoin-claim-lumens-2/ (Mar 2017)

Terelius, B., Wikstrém, D.: Efficiency limitations of S-protocols for group homo-
morphisms revisited. In: Visconti, I., Prisco, R.D. (eds.) SCN 12. LNCS, vol. 7485,
pp. 461-476. Springer, Heidelberg (Sep 2012). 10.1007/978-3-642-32928-9'26

van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of your
public key. In: Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 128-134.
Springer, Heidelberg (Aug 1988). 10.1007/3-540-48184-2'9

Wahby, R.S., Boneh, D., Jeffrey, C., Poon, J.: An airdrop that preserves recipient
privacy. https://goosig.crypto.fyi (Jan 2020)

Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Secu-
rity and Privacy. pp. 926-943. IEEE Computer Society Press (May 2018).
10.1109/SP.2018.00060

Wauille, P.: BIP 32: Hierarchical deterministic wallets. https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki (Feb 2012)

The YubiKey. https://www.yubico.com/products/yubikey-hardware/

17

https://doi.org/10.1007/3-540-48071-4_3
https://www.omise.co/omisego-airdrop-update
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9
https://pgp.cs.uu.nl/plot/
https://pgp.cs.uu.nl/plot/
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-transactions/590
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-transactions/590
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-transactions/590
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-69053-0_18
https://man.openbsd.org/ssh-keygen
https://www.stellar.org/blog/bitcoin-claim-lumens-2/
https://www.stellar.org/blog/bitcoin-claim-lumens-2/
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/3-540-48184-2_9
https://goosig.crypto.fyi
https://doi.org/10.1109/SP.2018.00060
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://www.yubico.com/products/yubikey-hardware/

	An airdrop that preserves recipient privacy

