
Aggregatable Subvector Commitments for Stateless Cryptocurrencies

Alin Tomescu�,1, Ittai Abraham1, Vitalik Buterin2, Justin Drake2, Dankrad Feist2, and Dmitry Khovratovich2

{alint,iabraham}@vmware.com, {vitalik,justin,dankrad,dmitry.khovratovich}@ethereum.org

1 VMware Research
Palo Alto, CA

2 Ethereum Foundation

Abstract. An aggregatable subvector commitment (aSVC) scheme is a vector commitment (VC) scheme that
can aggregate multiple proofs into a single, small subvector proof. In this paper, we formalize aSVCs, give an
efficient construction in prime-order groups from constant-sized polynomial commitments and use it to bootstrap
a highly-efficient stateless cryptocurrency.

Our aSVC supports (1) computing all n O(1)-sized proofs in O(n logn) time, (2) updating a proof in O(1) time
and (3) aggregating b proofs into an O(1)-sized subvector proof in O(b log2 b) time. Importantly, our scheme has an
O(n)-sized proving key, an O(1)-sized verification key and O(1)-sized update keys. In contrast, previous schemes
with constant-sized proofs in prime-order groups either (1) require O(n2) time to compute all proofs, (2) require
O(n)-sized update keys to update proofs in O(1) time, or (3) do not support aggregating proofs. Furthermore,
schemes based on hidden-order groups either (1) have larger concrete proof size and computation time, or (2) do
not support proof updates.

We use our aSVC to obtain a stateless cryptocurrency with very low communication and computation overheads.
Specifically, our constant-sized, aggregatable proofs reduce each block’s proof overhead to just one group element,
which is optimal. In contrast, previous work required O(b logn) group elements, where b is the number of trans-
actions per block. Furthermore, our smaller proofs reduce the block verification time from O(b logn) pairings to
just two pairings and an O(b)-sized multi-exponentiation. Lastly, our aSVC’s smaller update keys only take up
O(b) block space, compared to O(b logn) in previous work. Also, their zverifiability reduces miner storage from
O(n) to O(1). The end result is a stateless cryptocurrency that concretely and asymptotically outperforms the
state of the art.

1 Introduction

In a stateless cryptocurrency, neither miners nor cryptocurrency users need to store the full blockchain. Instead, the
blockchain state consisting of users’ account balances is authenticated using an authenticated data structure (ADS).
This way, miners only store a succinct digest of the blockchain state. Nonetheless, miners can still validate transactions
sent by users, who now include proofs that they have sufficient balance. Furthermore, miners can still propose new
blocks and users can easily synchronize or update their proofs as new blocks get published.

Stateless cryptocurrencies have received increased attention [STS99, Mil12, Tod16, But17, Dry19, RMCI17, CPZ18,
BBF19, GRWZ20] due to their many advantages. First, stateless transaction validation against a digest scales better
than stateful validation against a stored database [CPZ18]. Second, stateless cryptocurrencies eliminate hundreds of
gigabytes of storage that miners or full nodes need to validate blocks. Third, statelessness makes sharding much easier,
by allowing miners to efficiently switch from one shard to another. Fourth, since validating a block is stateless and
efficient, anybody can be a full node, resulting in a much more resilient, distributed cryptocurrency.

Previous work [Dry19, BBF18, CPZ18] shows how to obtain UTXO-based [Nak08] stateless cryptocurrencies effi-
ciently using RSA accumulators [BdM94] or Merkle hash trees. However, for account-based [Woo] cryptocurrencies,
current solutions either have larger-than-ideal proof sizes [CPZ18] or are based on hidden-order groups which are
concretely slower [BBF18]. Thus, the focus of this paper is to improve the concrete and asymptotic complexities
of account-based, stateless cryptocurrencies. (The advantages and disadvantages of account-based and UTXO-based
designs are discussed in depth in [Zah18,But16,Cor16,Pat17,Eth17,Yan16].)

Account-based, Stateless Cryptocurrencies from Vector Commitments (VCs). Previous work pioneers the
idea of building account-based stateless cryptocurrencies on top of any vector commitment (VC) scheme [CPZ18]. At
a high level, a VC scheme allows a prover to compute a succinct commitment c of a vector v = [v0, v1, . . . , vn−1] of n
elements where vi ∈ Zp. Importantly, the prover can generate a proof πi that vi is the element at position i in v, and
any verifier can check it against the commitment c.

The prover needs a proving key prk to commit to vectors and to compute proofs, while the verifier needs a verification
key vrk to verify proofs. (Usually |vrk| � |prk|.) Some VC schemes support updates: if one or more elements in the
vector change, the commitment and proofs can be updated efficiently. For this, an update key upkj tied to the updated
position j is necessary. Together, the proving, verification and update keys are known as the VC’s public parameters.

Lastly, some schemes support computing succinct proofs for I-subvectors (vi)i∈I where I ⊂ {0, 1, . . . , n−1} = [0, n).
Such schemes are called subvector commitment (SVC) schemes [LM19]. Furthermore, some schemes are aggregatable:
multiple proofs πi for vi,∀i ∈ I can be aggregated into a single, succinct I-subvector proof.

1.1 Our Contributions

Stateless cryptocurrencies can be built efficiently from VCs if the underlying VC has (1) sublinear-sized, updatable
proofs with sublinear-time verification, (2) updatable commitments and (3) sublinear-sized update keys. We say such a
VC scheme has “scalable updates.” Unfortunately, most VCs do not have scalable updates (see Section 1.2 and Tables 2
and 4) or, if they do [CPZ18,Tom20], they are not optimal in their proof and update key sizes. Lastly, while schemes
in hidden-order groups could be enhanced with scalable updates, their concrete performance does not match that of
schemes in prime-order groups. In this paper, we present a new VC with scalable updates that has optimal proof sizes
and we use it to build an efficient stateless cryptocurrency.

Aggregatable Subvector Commitments (aSVCs) with Scalable Updates. We present a new notion of aggre-
gatable subvector commitment (aSVC), or an SVC that supports commitment updates, proof updates and aggregation
of proofs into subvector proofs. Then, we construct an aSVC with scalable updates over pairing-friendly groups. Our
aSVC outperforms previous work on several dimensions (see Table 2).

First, our aSVC has constant-sized I-subvector proofs: one group element. Second, it has constant-sized update
keys: two group elements (or one group element, when used in the stateless cryptocurrency setting). Third, it can
update proofs and commitments in O(1) time. Fourth, it can aggregate multiple proofs into an I-subvector proof
fast using O(|I|) exponentiations and O(|I| log2 |I|) field operations. Lastly, our aSVC can compute all proofs fast in
O(n log n) time via new techniques for precomputing proofs in polynomial commitments [FK20].

At the core of our construction lies a new idea by Buterin to use partial fraction decomposition to aggregate proofs
in polynomial commitments [But20]. We use this not only to aggregate proofs but also to reduce our update key size.
Furthermore, to prove security of our aSVC we have to strengthen the security definition of KZG polynomial commit-
ments and prove they still satisfy it. As a last remark, our aSVC could be used to improve verifiable databases with
efficient updates [BGV11], updatable elementary zero-knowledge databases [CF13], anonymous credentials [KZG10]
and stateless smart contract validation [GRWZ20].

Table 1. Asymptotic comparison of our work with other stateless cryptocurrencies. n is the number of cryptocurrency users,
2λ is the bit-width of a vector element in BBF2λ [BBF18], where λ is the security parameter. N = λn, and b is the number
of transactions in a block. |G| denotes either a group operation or a group element in a known-order, pairing-friendly group.
|G?| denotes the same for hidden-order groups. |Ge| denotes an exponentiation in a known-order group. |F| denotes either a
field element or operation in a field of size 22λ. |P| denotes a pairing computation. |πi| is the size of a proof for a user’s account
balance. |upki| is the size of user i’s update key. |πagg| is the size of a proof aggregated from all πi’s in a block. “Miner storage”
is the overhead for miners storing update keys. “Vrfy. proofs time/blk.” is the time for a miner to (batch) verify all transaction
proofs in a new block. “Check digest time/blk.” is the time for a miner to check that, by “applying” the transactions from
block t+ 1 to block t’s digest, he obtains the correct digest for block t+ 1. “Aggr. proofs time/blk.” is the time to aggregate b
transaction proofs into a single πagg for a block. “User proof synchr. time/blk” is the time for a user to “synchronize” or update
her proof by “applying” all the transactions in a new block. We treat Pointproofs [GRWZ20] as a payments-only stateless
cryptocurrency without smart contracts, where users store the O(n)-sized update key. Although BBF2λ [BBF18] has asymptotic
performance close to ours, it suffers from concretely higher overheads due to its reliance on hidden-order groups. Also, it does
not yet support updating proofs (see Appendix E.1.3). Our aggregation and verification times πagg have an undesired log2 b
factor, which comes from doing O(b log2 b) very fast field operations. However, in practice, the O(b) exponentiations dominate
the run time. A detailed analysis of the underlying VCs can be found in Appendices D.4, D.6, D.7 and E.1.

Account-based
stateless

cryptocurrencies
|πi| |upki| |πagg|

Miner
storage

Vrfy.
proofs

time/blk.

Check
digest

time/blk.

Aggr.
proofs

time/blk.

User proof
synchr.

time/blk.

Edrax [CPZ18] logn |G| logn |G| × n blogn |P| b |Ge| × blogn |Ge|
Pointproofs [GRWZ20] 1 |G| n |G| 1 |G| n b |Ge|+ 2 |P| b |Ge| b |Ge| b |Ge|
BBF2λ [BBF18] λ lgN |bit|+ 1 |G?| 1 |G?| 1 |G?| 1 bλ lgN |F|+ λ |G?| bλ lgN |G?| Ω(bλ lgN) ×

This work 1 |G| 1 |G| 1 |G| 1 blog2 b |F|+ b |Ge|+ 2 |P| b |Ge| blog2 b |F|+ b |Ge| b |Ge|

A Highly-Efficient Stateless Cryptocurrency. We use our aSVC to construct a stateless cryptocurrency based
on the elegant VC-based design of Edrax [CPZ18]. Our stateless cryptocurrency has very low storage, communication
and computation overheads (see Table 1). First, it has smaller proofs and update keys, which speeds up proof updates
and proof verification. Second, it uses proof aggregation to drastically reduce block size and further speed up proof
verification (see Table 1). This helps miners propose and validate new blocks faster, helps users update their proofs
faster and reduces overall communication. Third, our verifiable update keys removes the need for miners to either (1)
store all O(n) update keys or (2) interact during transaction validation to check update keys.

1.2 Related Work

Vector Commitments (VCs). The notion of VCs appears early in [CFM08, LY10, KZG10] but Catalano and
Fiore [CF13] are the first to formalize it. They introduce schemes based on the Computational Diffie-Hellman (CDH)
and the RSA problem. Their RSA-based scheme is the first to support O(1)-sized public parameters, which can be
specialized [CFG+20] into O(n)-sized ones when needed.

Lai and Malavolta [LM19] formalize subvector commitments (SVCs) and extend both constructions from [CF13]
with constant-sized I-subvector proofs. Camenisch et al. [CDHK15] build VCs from KZG commitments [KZG10] to
Lagrange polynomials (see Section 2.1) that are not only binding but also hiding. However, their scheme intentionally
prevents aggregation of proofs as a security feature.

Chepurnoy et al. [CPZ18] instantiate VCs using multivariate polynomial commitments [PST13] but with logarithmic
rather than constant-sized proofs. They then build the first efficient, account-based, stateless cryptocurrency on top
of their scheme. Their scheme is the first to support efficiently computing all n proofs in O(n log n) time. This is very
useful for proof serving nodes in stateless cryptocurrencies. Later on, Tomescu [Tom20] presents a very similar scheme
but from univariate polynomial commitments [KZG10] which supports subvector proofs.

Boneh et al. [BBF19] instantiate VCs using hidden-order groups. Their scheme is the first to allows multiple proofs
to be aggregated, under certain conditions (see [BBF18, Sec. 5.2, p. 20]). They are also the first to have constant-
sized public parameters (without the need to specialize them into O(n)-sized ones). Furthermore, they introduce
key-value map commitments (KVCs), which support a larger set of positions from [0, 22λ) rather than [0, n), where λ
is a security parameter. They argue their KVC can be used for account-based stateless cryptocurrencies, but do not
explore a construction in depth.

Campanelli et al. [CFG+20] also instantiate VCs using hidden-order groups. Their scheme is the first to support
infinite aggregation of proofs as well as disaggregation. They are also the first to formalize the notion of specialization
for public parameters.

Feist and Khovratovich [FK20] introduce a technique for precomputing all constant-sized evaluation proofs in KZG
commitments only if the evaluation points are all the n nth roots of unity. Our aSVC from Section 3.3 uses their
technique to compute VC proofs fast.

Gorbunov et al. [GRWZ20] extends [LY10] with I-subvector proofs that can be aggregated from (vi)i∈I proofs.
Additionally, they add support for aggregating multiple I-subvector proofs across different vector commitments into a
single, constant-sized proof. However, this versatility seems to come at the cost of (1) losing the ability to precompute
all proofs fast, (2) O(n)-sized update keys for updating proofs, and (3) O(n)-sized verification key. This makes it
difficult to apply the scheme in a stateless cryptocurrency for payments such as Edrax [CPZ18].

Concurrent with our work, Campanelli et al. [CFG+20] and Gorbunov et al. [GRWZ20] also formalize aSVCs with
a stronger notion of cross-commitment aggregation. However, these formalizations lack update keys and support for
updating proofs and/or commitments. This hides many complexities that arise in stateless cryptocurrencies, such as
verifying update keys (see Section 4.2.2). Furthermore, Gorbunov et al. also enhance Lagrange-based VCs with proof
aggregation via partial fraction decomposition, but they do not address the problem of updating proofs efficiently.
Lastly, Gorbunov et al. show it is possible to aggregate I-subvector proofs across different commitments for Lagrange-
based VCs, such as our aSVC from Section 3.

Libert et al. [LRY16] generalize VCs to functional commitments (FCs) which, instead of revealing vi when opening,
reveals

∑
i∈[0,n) xivi, for any x = (xi)i∈[0,n) given as input to the opening algorithm. Lai and Malavolta [LM19]

generalize FCs to linear map commitments (LMCs) which reveals f(v) for any linear map f : Fnp → Fqp given as input
to the opening algorithm (q is fixed at setup). Kohlweiss and Rial [KR13] extend VCs with zero-knowledge protocols
for proving correct computation of a new commitment, for opening elements at secret positions, and for proving secret
updates of elements at secret positions.

Stateless Cryptocurrencies. The concept of stateless validation appeared early in the cryptocurrency commu-
nity [Mil12,Tod16,But17] and later on in the academic community [RMCI17,Dry19,CPZ18,BBF19,GRWZ20].

UTXO-based. Proposals for UTXO-based cryptocurrencies were initially based on Merkle hash trees [Mil12, Tod16,
Dry19, CPZ18] as their authenticated data structure (ADS). Chepurnoy et al. [CPZ18] present such a construction,
partly inspired by Zcash’s design [BCG+14]. Dryja [Dry19] gives a beautiful Merkle forest construction that significantly
reduces communication. Boneh et al. [BBF18, BBF19] further reduce communication by replacing Merkle trees with
RSA accumulators [BdM94,LLX07].

Account-based. Reyzin et al. [RMCI17] introduce a Merkle-based construction for account-based stateless cryptocur-
rencies. Unfortunately, their construction relies on proof serving nodes: every user sending coins has to fetch the
recipient’s Merkle proof from a node and include it with her own proof in the transaction. Edrax [CPZ18] obviates
the need for proof serving nodes by using a vector commitment (VC) with efficiently updatable digests and proofs.
Nonetheless, proof serving nodes can still be used to assist users who do not want to manually update their proofs
(which is otherwise very fast). Unfortunately, Edrax’s proof sizes are logarithmic and thus sub-optimal. Furthermore,
Edrax does not support proof aggregation, which would significantly reduce block size.

Gorbunov et al. [GRWZ20] introduce Pointproofs, a powerful VC scheme that supports aggregating proofs across
different commitments. They use this power to solve a slightly different problem: stateless block validation for smart
contract executions (rather than stateless validation for payments as in Edrax). Unfortunately, their approach requires
miners to store a different commitment for each smart contract, or around 4.5 GBs of (dynamic) state in a system
with 108 smart contracts. This could be problematic in applications such as sharded cryptocurrencies, where miners
would have to download part of this large state from one another when switching shards. Lastly, the verification key
in Pointproofs is O(n)-sized, which imposes additional storage requirements on miners.

Furthermore, Gorbunov et al. do not discuss how to update or precompute proofs efficiently. Instead they assume
that all contracts have n ≤ 103 memory locations and users can compute all proofs in O(n2) time. In contrast, our
aSVC can compute all proofs in O(n log n) time [FK20]. Nonetheless, their approach is a very promising direction for
supporting smart contracts in stateless cryptocurrencies.

Bonneau et al. [BMRS20] enable stateless validation of blocks in an account-based cryptocurrency using recursively-
composable, succinct non-interactive arguments of knowledge (SNARKs) [BSCTV14]. However, while block validators
do not have to store the full state in their system, miners who propose blocks still have to. In contrast, in previous
stateless cryptocurrencies (including ours), even miners who propose blocks are stateless.

2 Preliminaries

Notation. Let λ denote our security parameter. Let G1,G2 be groups of prime order p endowed with a pairing
e : G1 ×G2 → GT [MVO91,Jou00]. (We assume symmetric pairings where G1 = G2 for simplicity of exposition.) Let
G? denote a hidden-order group. We will use multiplicative notation for the group operations in G?,G1,G2 and GT .
Let Zp denote a finite field of prime order p. Let ω denote a primitive nth root of unity [vzGG13a]. Let poly(·) denote

any function upper-bounded by some univariate polynomial. Let negl(·) denotes any negligible function. Let log x and
lg x be shorthand for log2 x. Let [i, j] = {i, i + 1, . . . , j − 1, j}, [0, n) = [0, n − 1] and [n] = [1, n]. Let v = (vi)i∈[0,n)
denote a vector of size n with elements vi ∈ Zp.

2.1 Lagrange Polynomial Interpolation

Given n pairs (xi, yi)i∈[0,n), we can find or interpolate the unique polynomial φ(X) of degree < n such that φ(xi) =

yi,∀i ∈ [0, n) using Lagrange interpolation [BT04] in O(n log2 n) time [vzGG13b] as:

φ(X) =
∑
i∈[0,n)

Li(X)yi, where Li(X) =
∏

j∈[0,n)
j 6=i

X − xj
xi − xj

(1)

Recall that a Lagrange polynomial Li(X) has the property that Li(xi) = 1 and Li(xj) = 0,∀i, j ∈ [0, n) with j 6= i.
Also, keep in mind that Li(X) is defined in terms of the interpolation domain (xi)i∈[0,n). Throughout this paper, the
domain will be either (ωi)i∈[0,n) or (ωi)i∈I , I ⊂ [0, n).

2.2 KZG Polynomial Commitments

Kate, Zaverucha and Goldberg (KZG) proposed a constant-sized commitment scheme for degree n polynomials φ(X)
based on the n-S(B)DH assumption [BB08, Goy07]. Importantly, an evaluation proof for any φ(a) is constant-sized
and constant-time to verify; it does not depend in any way on the degree of the committed polynomial. KZG requires
n-SDH public parameters (gτ

i

)i∈[0,n] where τ denotes a trapdoor. (These parameters are computed via a trusted setup
which can be decentralized with MPC protocols [BGG19,BGM17].) KZG is computationally-hiding under the discrete
log assumption and computationally-binding under n-SDH [KZG10].

Committing. Let φ(X) denote a polynomial of degree d ≤ n with coefficients c0, c1, . . . , cd in Zp. A KZG commitment

to φ(X) is a single group element C =
∏d
i=0

(
gτ

i
)ci

= g
∑d
i=0 ciτ

i

= gφ(τ). Committing to φ(X) takes Θ(d) time.

Proving One Evaluation. To compute an evaluation proof that φ(a) = y, KZG leverages the polynomial remainder
theorem, which says φ(a) = y ⇔ ∃q(X) such that φ(X)− y = q(X)(X − a). The proof is just a KZG commitment to
q(X): a single group element π = gq(τ). Computing the proof takes Θ(d) time. To verify π, one checks (in constant
time) if e(C/gy, g) = e(π, gτ/ga) ⇔ e(gφ(τ)−y, g) = e(gq(τ), gτ−a) ⇔ e(g, g)φ(τ)−y = e(g, g)q(τ)(τ−a) ⇔ φ(τ)− y =
q(τ)(τ − a).

Proving Multiple Evaluations. Given a set of points I and their evaluations {φ(i)}i∈I , KZG can prove all evaluations
with a constant-sized batch proof rather than |I| individual proofs [KZG10]. The prover computes an accumulator
polynomial a(X) =

∏
i∈I(X − i) in Θ(|I| log2 |I|) time and computes φ(X)/a(X) in Θ(d log d) time, obtaining a

quotient q(X) and remainder r(X). The batch proof is π = gq(τ).
To verify π against {φ(i)}i∈I and C, the verifier first computes a(X) from I and interpolates r(X) such that

r(i) = φ(i),∀i ∈ I in Θ(|I| log2 |I|) time (see Section 2.1). Next, she computes ga(τ) and gr(τ). Finally, she checks if
e(C/gr(τ), g) = e(gq(τ), ga(τ)). We stress that batch proofs are only useful when |I| ≤ d. Otherwise, if |I| > d, the
verifier can interpolate φ(X) directly from the evaluations, which makes verifying any φ(i) trivial.

2.3 Account-based Stateless Cryptocurrencies

In a stateless cryptocurrency based on VCs [CPZ18], there are miners running a permissionless consensus algo-
rithm [Nak08] and users, numbered from 0 to n−1 who have accounts with a balance of coins. (n can be unbounded if
the VC is unbounded.) For simplicity of exposition, we do not give details on the consensus algorithm, on transaction
signature verification and on monetary policy. These all remain the same as in previous stateful cryptocurrencies.

The (Authenticated) State. The state is an authenticated data structure (ADS) mapping each user i’s public key
to their account balance bali. (In practice, the mapping is also to a transaction counter ci, which is necessary to avoid
transaction replay attacks. We address this in Section 4.3.1.) Importantly, miners and users are stateless: they do not
store the state, just its digest dt at the latest block t they are aware of. Additionally, users store a proof πi,t for their
account balance that verifies against dt.

Miners. Despite miners being stateless, they can still validate transactions, assemble them into a new block, and
propose that block. Specifically, a miner can verify every new transaction spends valid coins by checking the sending

user’s balance against the latest digest dt. This requires each user i who sends coins to include her proof πi,t in her
transaction. However, user i does not need to include the recipient j’s proof πj,t in the transaction.

Once the miner has a set V of valid transactions, he can use them to create the next block t+ 1 and propose it.
The miner obtains this new block’s digest dt+1 by “applying” all transactions in V to dt. When other miners receive
this new block t+ 1, they can validate its transactions from V against dt and check that the new digest dt+1 was
produced correctly from dt by “reapplying” all the transactions from V .

Users. When creating a transaction tx for block t + 1, user i includes her proof πi,t for miners to verify she has
sufficient balance. When a user i sees a new block t+ 1, she can update her proof πi,t to a new proof πi,t+1, which
verifies against the new digest dt+1. For this, the user will look at all changes in balances (j,∆balj)j∈J , where J is the
set of users with transactions in block t+ 1, and “apply” those changes to her proof. Similarly, miners can also update
proofs of pending transactions which did not make it in block t and now need a proof w.r.t. dt+1

Users assume that the consensus mechanism produces correct blocks. As a result, they do not need to verify
transactions in the block; they only need to update their own proof. Nonetheless, since block verification is stateless
and fast, users could easily participate as block validators, should they choose to.

3 Aggregatable Subvector Commitment (aSVC) Schemes

In this section, we introduce the notion of aggregatable subvector commitments (aSVCs) as a natural extension to
subvector commitments (SVCs) [LM19]. Specifically, in an aSVC anybody can aggregate b proofs for individual positions
into a single constant-sized subvector proof for those positions. Our formalization differs from previous work [BBF18,
GRWZ20, CFG+20] in that it accounts for update keys as the (verifiable) auxiliary information needed to update
commitments and proofs. This is useful in distributed settings where the public parameters of the scheme are split
amongst many participants, such as in stateless cryptocurrencies. In Section 3.3, we introduce an efficient aSVC
construction with scalable updates from KZG commitments to Lagrange polynomials.

3.1 aSVC API

Our API resembles the VC API by Chepurnoy et al. [CPZ18] and the SVC API by Lai and Malavolta [LM19]. However,
we add a VC.VerifyUPK API for verifying update keys and a VC.AggregateProofs API for aggregating proofs. We stress
that VC.VerifyUPK is necessary in distributed applications such as stateless cryptocurrencies (see Section 4.2.2).

VC.KeyGen(1λ, n) → prk, vrk, (upkj)j∈[0,n). Randomized algorithm that, given a security parameter λ and an upper-
bound n on vector size, returns a proving key prk, a verification key vrk and update keys (upkj)j∈[0,n).

VC.Commit(prk,v)→ c. Deterministic algorithm that returns a commitment c to any vector v of size ≤ n.
VC.ProvePos(prk, I,v) → πI . Deterministic algorithm that returns a proof πI that vI = (vi)i∈I is the I-subvector of

v. For notational convenience, I can be either an index set I ⊆ [0, n) or an individual index I = i ∈ [0, n).
VC.VerifyPos(vrk, c,vI , I, πI) → T/F . Deterministic algorithm that verifies the proof πI that vI is the I-subvector of

the vector committed in c. As before, I can be either an index set I ⊆ [0, n) or an individual index I = i ∈ [0, n).
VC.VerifyUPK(vrk, i, upki)→ T/F . Deterministic algorithm that verifies that upki is indeed the ith update key.
VC.UpdateComm(c, δ, j, upkj) → c′. Deterministic algorithm that returns a new commitment c′ to v′ obtained by

updating vj to vj + δ in the vector v committed in c. Needs upkj associated with the updated position j.
VC.UpdateProof(πi, δ, j, upki, upkj)→ π′i. Deterministic algorithm that updates an old proof πi for the ith element vi,

given that the jth element was updated to vj + δ. Note that i can be equal to j.
VC.AggregateProofs(I, (πi)i∈I)→ πI Deterministic algorithm that takes πi for vi,∀i ∈ I and aggregates them into an

I-subvector proof πI , which is ideally constant-sized.

Additional APIs. We add a VC.EmptyCommit API for committing to an “empty” vector, which is useful for initial-
izing the authenticated state of a stateless cryptocurrency.

VC.EmptyCommit(eck) → c, π0. Deterministic algorithm that, given eck ∈ {prk, vrk}, returns a commitment to the
empty vector v = (0, 0, . . . , 0) and a proof π0 that vi = 0, which verifies successfully for any position i.

3.2 aSVC Correctness and Security Definitions

We argue why our aSVC from Section 3 satisfies these definitions in Section 3.4.6.

Definition 1 (Aggregatable Vector Commitment Scheme). (VC.KeyGen, VC.Commit, VC.ProvePos, VC.VerifyPos,
VC.VerifyUPK, VC.UpdateComm, VC.UpdateProof, VC.AggregateProofs) is a secure aggregatable vector commitment
scheme if ∀ upper-bounds n = poly(λ) it satisfies the following properties:

Definition 2 (Opening Correctness). ∀ vectors v = (vj)j∈[0,n), ∀ index sets I ⊆ [0, n):

Pr

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),

c← VC.Commit(prk,v),
πI ← VC.ProvePos(prk, I,v) :

VC.VerifyPos(vrk, c,vI , I, πI) = T

 ≥ 1− negl(λ)

Definition 3 (Commitment Update Correctness). ∀ vectors v = (vj)j∈[0,n), ∀ positions i, k ∈ [0, n), ∀ updates
δ ∈ Zp, let u be the same vector as v except with vk + δ rather than vk at position k. Then:

Pr

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),

c,← VC.Commit(prk,v),
ĉ← VC.UpdateComm(c, δ, k, upkk),

c′ ← VC.Commit(prk,u) :
c′ = ĉ

 ≥ 1− negl(λ)

Definition 4 (Proof Update Correctness). ∀ vectors v = (vj)j∈[0,n), ∀ positions i ∈ [0, n), k ∈ [0, n), ∀ updates
δ ∈ Zp:

Pr

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),

c← VC.Commit(prk,v),
c′ ← VC.UpdateComm(c, δ, k, upkk),

πi ← VC.ProvePos(prk, i,v),
π′i ← VC.UpdateProof(πi, δ, k, upki, upkk) :

VC.VerifyPos(vrk, c′, vk + δ, k, π′i) = T

 ≥ 1− negl(λ)

Definition 5 (Aggregation Correctness). ∀ vectors v = (vj)j∈[0,n), ∀ index sets I ⊆ [0, n):

Pr

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),

c← VC.Commit(prk,v),
(πi ← VC.ProvePos(prk, i,v))i∈I ,

πI ← VC.AggregateProofs(I, (πi)i∈I) :
VC.VerifyPos(vrk, c,vI , I, πI) = T

 ≥ 1− negl(λ)

Definition 6 (Update Key Correctness). ∀ positions i ∈ [0, n):

Pr

[
prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n) :

VC.VerifyUPK(vrk, i, upki) = T

]
≥ 1− negl(λ)

Definition 7 (Update Key Uniqueness). ∀ positions i ∈ [0, n):

Pr

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),
i, upk, upk′ ← A(1λ, prk, vrk, (upkj)j∈[0,n)) :

VC.VerifyUPK(vrk, i, upk) = T ∧
VC.VerifyUPK(vrk, i, upk′) = T∧

upk 6= upk′

 ≤ negl(λ)

Definition 8 (Position Binding Security). ∀ adversaries A running in time poly(λ):

Pr

prk, vrk, (upki)i∈[0,n) ← VC.KeyGen(1λ, n),

(c, I, J,vI ,v
′
J , πI , πJ)← A(1λ, prk, vrk, (upki)i∈[0,n)) :

VC.VerifyPos(vrk, c,vI , I, πI) = T ∧
VC.VerifyPos(vrk, c,v′J , J, πJ) = T ∧
∃k ∈ I ∩ J, such that vk 6= v′k

 ≤ negl(λ)

Table 2. Asymptotic comparison of our aSVC with other (aS)VCs. n is the vector size and b is the subvector size. See Appendix D
for a detailed explanation. The complexities in the table are asymptotic in terms of number of pairings, exponentiations and
field operations. “Proof upd.” is the time to update one proof for one single vector element after a change to one vector element.
“Com. upd.” is the time to update the commitment after a change to one vector element. We include complexities for computing
a VC proof for vi and a size-b subvector proof (in “Prove one vi” and in “Prove subv. (vi)i∈I”, respectively) and for committing
to a size-n vector (in “Com.”), even though these features are not needed in a stateless cryptocurrency.

(aS)VC scheme |prk| |vrk| |upki| Com.
Com.
upd.

|πi|
Prove
one
vi

Verify
one
vi

Proof
upd.

Prove
subv.

(vi)i∈I

Verify
subv.

(vi)i∈I

Aggr-
egate

Prove
each

(vi)i∈[n]

LMcdh [CF13,LM19] n2 n n n 1 1 n 1 1 bn b × n2

KZG [KZG10] n b × n lg2 n × 1 n 1 × b lg2 b+ n lgn b lg2 b × n2

KZGLagr [CDHK15] n n 1 n lg2 n 1 1 n 1 × n lg2 n b lg2 b × n2

CPZ [CPZ18] n lgn lgn n 1 lgn n lgn lgn × × × n lgn
TCZ [Tom20] n lgn+ b lgn n lgn 1 lgn n lgn lgn lgn b lg2 b+ n lgn b lg2 b × n lgn
LY [GRWZ20,LY10] n n n n 1 1 n 1 1 bn b b n2

Our aSVC n b 1 n 1 1 n 1 1 b lg2 b+ n lgn b lg2 b b lg2 b n lgn
Our aSVCprecomp n b 1 n logn 1 1 1 1 1 b lg2 b b lg2 b b lg2 b n lgn

3.3 aSVC From KZG Commitments to Lagrange Polynomials

In this subsection, we present our aSVC from KZG commitments to Lagrange polynomials. Similar to previous work, we
represent a vector v = [v0, v1, . . . , vn−1] as a polynomial φ(X) =

∑
i∈[0,n) Li(X)vi in Lagrange basis [KZG10,CDHK15,

Tom20,GRWZ20]. We use roots of unity and “store” vi as φ(ωi) = vi. This means that our Lagrange polynomials are

Li(X) =
∏
j∈[0,n),j 6=i

X−ωj
ωi−ωj . For this to work efficiently, we assume without loss of generality that n is a power of two.

Committing. A commitment to v is just a KZG commitment c = gφ(τ) to φ(X), where τ is the trapdoor of the KZG
scheme (see Section 2.2). Similar to previous work [CDHK15], the proving key includes commitments to all Lagrange
polynomials `i = gLi(τ). This means c can be computed as c =

∏n
i=1(`i)

vi in O(n) time without interpolating φ(X).
This also allows the commitment c to be easily updated to c′ after adding δ to vi. Specifically, c′ = c · (`i)δ, which is
just a commitment to the new updated φ′(X) = φ(X) + δ · Li(X).

Proving. A normal proof πi for a single element vi is just a KZG proof for the evaluation of φ(X) at ωi (see Section 2.2).
Interestingly, we show this proof can be computed in O(n) time without interpolating φ(X) (see Section 3.4.4). A
subvector proof πI for for vI , I ⊆ [0, n) is just a KZG batch proof for the evaluations of φ(X) at all (ωi)i∈I .

Limitations. Next, we add support for (1) updating proofs, (2) aggregating proofs and (3) precomputing all indi-
vidual proofs efficiently. For aggregation, we use known techniques for aggregating KZG proofs via partial fraction
decomposition (see Section 3.4). For updating proofs efficiently, we introduce a new mechanism to reduce the update
key size from linear to constant. For precomputing all proofs, we use existing techniques for computing evaluation
proofs fast in KZG polynomial commitments [FK20].

3.4 Partial Fraction Decomposition

A key ingredient in our aSVC scheme is partial fraction decomposition [Wik19], which we re-explain from the perspective
of Lagrange interpolation. First, let us rewrite the Lagrange polynomial for interpolating φ(X) given all

(
φ(ωi)

)
i∈I :

Li(X) =
∏

j∈I,j 6=i

X − ωj

ωi − ωj
=

AI(X)

A′I(ω
i)(X − ωi)

, where AI(X) =
∏
i∈I

(X − ωi) (2)

Here, A′I(X) =
∑
j∈[0,n)AI(X)/(X − ωj) is the formal derivative of AI(X) [vzGG13b]. Next, for any φ(X), we can

rewrite the Lagrange interpolation formula as φ(X) = AI(X)
∑
i∈[0,n)

yi
A′I(ω

i)(X−ωi) . In particular, for φ(X) = 1, this

implies 1
AI(X) =

∑
i∈[0,n)

1
A′I(ω

i)(X−ωi) . In other words, we can decompose AI(X) as:

1

AI(X)
=

1∏
i∈I(X − ωi)

=
∑
i∈[0,n)

ci ·
1

X − ωi
, where ci =

1

A′I(ω
i)

(3)

AI(X) can be computed inO(|I| log2 |I|) using a subproduct tree and DFT-based polynomial multiplication [vzGG13b].
Its derivative A′I(X) can be computed in O(|I|) time and evaluated at all ωi’s in O(|I| log2 |I|) time [vzGG13b].

Thus, all coefficients ci = 1
A′I(ω

i) can be computed in O(|I| log2 |I|) time. For the special case of I = [0, n), we have

AI(X) = A(X) =
∏
i∈[0,n)(X − ωi) = Xn − 1 and A′(ωi) = nω−i (see Appendix A). In this case, any ci can be

computed in O(1) time.

3.4.1 Aggregating Proofs

We build upon Buterin’s observation [But20] that partial fraction decomposition (see Section 3.4) can be used to
aggregate KZG evaluation proofs. Since our VC proofs are KZG proofs, we show how to aggregate a set of proofs
(πi)i∈I for elements vi of v into a single constant-sized proof πI for the I-subvector of v.

Recall that πi is a KZG commitment to qi(X) = φ(X)−vi
X−ωi and πI is a commitment to q(X) = φ(X)−R(X)

AI(X) , where

AI(X) =
∏
i∈I(X − ωi) and R(X) is interpolated such that R(ωi) = vi,∀i ∈ I. Our goal is to find coefficients ci ∈ Zp

such that q(X) =
∑
i∈I ciqi(X) and thus aggregate πI =

∏
i∈I π

ci
i . We observe that:

q(X) = φ(X)
1

AI(X)
−R(X)

1

AI(X)
= φ(X)

∑
i∈I

1

A′I(ω
i)(X − ωi)

−

(
AI(X)

∑
i∈I

vi
A′I(ω

i)(X − ωi)

)
· 1

AI(X)
(4)

=
∑
i∈I

φ(X)

A′I(ω
i)(X − ωi)

−
∑
i∈I

vi
A′I(ω

i)(X − ωi)
=
∑
i∈I

1

A′I(ω
i)
· φ(X)− vi
X − ωi

=
∑
i∈I

1

A′I(ω
i)
· qi(X) (5)

To conclude, to aggregate the πi’s into πI , we compute all ci = 1/A′I(ω
i) using O(|I| log2 |I|) field operations (see

Section 3.4) and compute πI =
∏
i∈I π

ci
i with an O(|I|)-sized multi-exponentiation.

3.4.2 Updating Proofs

When updating πi after a change to vj , it could be that either (1) i = j or that (2) i 6= j. First, recall that πi is a

KZG commitment to qi(X) = φ(X)−vi
X−ωi . Second, recall that, after a change δ to vj , the polynomial φ(X) is updated to

φ′(X) = φ(X) + δLj(X). We refer to the party updating their proof πi as the proof updater.

The i = j Case. Consider the quotient polynomial q′i(X) in the updated proof π′i after vi changed to vi + δ:

q′i(X) =
φ′(X)− (vi + δ)

X − ωi
=

(φ(X) + δLi(X))− vi − δ
X − ωi

=
φ(X)− vi
X − ωi

− δ(Li(X)− 1)

X − ωi
= qi(X) + δ

(
Li(X)− 1

X − ωi

)
(6)

This means the proof updater needs a KZG commitment to Li(X)−1
X−ωi , which is just a KZG evaluation proof that

Li(ωi) = 1. This can be addressed very easily by making this commitment part of upki, which the proof updater
always has. (Recall that, in this i = j case, the proof updater called VC.UpdateProof(πi, δ, i, upki, upki).) To conclude,

to update πi, the proof updater obtains ui = g
Li(τ)−1

τ−ωi from upki and computes π′i = πi · (ui)δ.

The i 6= j Case. Now, consider the quotient polynomial q′i(X) after vj changed to vj + δ:

q′i(X) =
φ′(X)− vi
X − ωi

=
(φ(X) + δLj(X))− vi

X − ωi
=
φ(X)− vi
X − ωi

− δLj(X)

X − ωi
= qi(X) + δ

(
Lj(X)

X − ωi

)
(7)

In this case, the proof updater needs a KZG commitment to
Lj(X)
X−ωi . For this, we will make sure upkj gives the proof

updater extra information to allow them to reconstruct this commitment in O(1) time. Here, our VC API differs from
that of Chepurnoy et al [CPZ18] as we assume the proof updater gets both upki and upkj . We stress this is reasonable
in the stateless cryptocurrency setting where each user has to store their proof πi and upki anyway as they process
the (δ, j, upkj) updates (see Section 4).

Update Keys for the i 6= j Case. To understand what extra information the proof updater with upki needs in order to

reconstruct a commitment ui,j to Ui,j(X) =
Lj(X)
X−ωi , let us rewrite it as Ui,j(X) = A(X)

A′(ωj)(X−ωj)(X−ωi) . Next, note that

since A′(ωj) = nω−j is a constant (see Appendix A), the proof updater need only reconstruct a KZG commitment to

Wi,j(X) = A(X)
(X−ωj)(X−ωi) .

Our key idea is to make aj = gA(τ)/(τ−ωj) part of upkj ,∀j ∈ [0, n). This way, the proof updater, who has both upki
and upkj , can reconstruct a commitment wi,j to Wi,j(X) using partial fraction decomposition. Specifically, the proof

updater will compute c1, c2 ∈ Zp such that 1
(X−ωj)(X−ωi) = c1

1
X−ωj + c2

1
X−ωi (see Section 3.4). Multiplying by A(X),

we have Wi,j(X) = A(X)
(X−ωj)(X−ωi) = c1

A(X)
X−ωj + c2

A(X)
X−ωi . Thus, the proof updater can compute wi,j = ac1j a

c2
i and then

get ui,j = (wi,j)
1

A′(ωj) .

To summarize, the proof updater will: (1) Obtain ai = gA(τ)/(τ−ωi) and aj = gA(τ)/(τ−ωj) from upki and upkj ,

respectively, (2) Compute dj = 1/(A′(ωj)) = 1/(nω−j) = ωj/n, (2) Use partial fraction decomposition to compute

wi,j = gA(τ)/[(τ−ωj)(τ−ωi)] from ai and aj , (3) Compute ui,j = (wi,j)
dj = g

A(τ)

A′(ωj)(τ−ωj)(τ−ωi) = gLj(τ)/(τ−ω
i), (4)

Compute the updated proof π′i = πi · (ui,j)δ.

3.4.3 Precomputing All Proofs

The Feist-Khovratovich [FK20] technique can be used to compute all proofs (πi)i∈[0,n) in O(n log n) time. (Note that
φ(X) can be interpolated in O(n log n) time via an inverse DFT.) As a result, any subset of (πi)i∈I proofs can be
aggregated into an I-subvector proof in O(|I| log2 |I|) time. This is useful for reducing the time to compute subvector
proofs (see Table 2). Furthermore, it helps proof serving nodes in stateless cryptocurrencies compute proofs faster (see
Section 4.3.2).

3.4.4 aSVC Algorithms

In this subsection, we give a full description of how our scheme implements the aSVC API from Section 3.1. To support
verifying I-subvector proofs, our verification key is O(|I|)-sized.

VC.KeyGen(1λ, n) → prk, vrk, (upkj)j∈[0,n). Generates n-SDH public parameters g, gτ , gτ
2

, . . . , gτ
n

. Computes a =

gA(τ), where A(X) = Xn − 1. Computes ai = gA(τ)/(X−ωi) and `i = gLi(τ),∀i ∈ [0, n). Computes KZG proofs

ui = g
Li(τ)−1

X−ωi for Li(ωi) = 1. Sets upki = (ai, ui). Sets prk =
(

(gτ
i

)i∈[0,n], (`i)i∈[0,n), (upki)i∈[0,n)

)
. Sets vrk =

((gτ
i

)i∈[0,|I|], a).
VC.Commit(prk,v)→ c. Returns c =

∏
i∈[0,n)(`i)

vi .

VC.ProvePos(prk, I,v) → πI . Computes AI(X) =
∏
i∈I(X − ωi) in O(|I| log2 |I|) time. Divides φ(X) by AI(X) in

O(n log n) time, obtaining a quotient q(X) and a remainder r(X). Returns πI = gq(τ). (We give an O(n) time
algorithm in Appendix D.7 for the |I| = 1 case.)

VC.VerifyPos(vrk, c,vI , I, πI) → T/F . Computes AI(X) =
∏
i∈I(X − ωi) in O(|I| log2 |I|) time and commits to it

as gAI(τ) in O(|I|) time. Interpolates RI(X) such that RI(i) = vi,∀i ∈ I in O(|I| log2 |I|) time and commits to
it as gRI(τ) in O(|I|) time. Returns T iff. e(c/gRI(τ), g) = e(πI , g

AI(τ)). (When I = {i}, AI(X) = X − ωi and
RI(X) = vi.)

VC.VerifyUPK(vrk, i, upki)→ T/F . First, checks if e(ai, g
τ/gω

i

) = e(a, g). (i.e., verify that ωi is a root of Xn−1, which

is committed in a.) Second, computes `i = a
1/A′(ωi)
i = gLi(τ) and checks if e(`i/g

1, g) = e(ui, g
τ/gω

i

). (i.e., verify
that Li(ωi) = 1.)

VC.UpdateComm(c, δ, j, upkj)→ c′. Computes `j = a
1/A′(ωj)
j . Returns c′ = c · (`j)δ.

VC.UpdateProof(πi, δ, j, upki, upkj) → π′i. If i = j, returns π′i = πi · (ui)δ. If i 6= j, computes c1, c2 ∈ Zp such that
1

(X−ωj)(X−ωi) = c1
1

X−ωj + c2
1

X−ωi (see Section 3.4). Computes wi,j = ac1j · a
c2
i and ui,j = w

1/A′(ωj)
i,j . Returns

π′i = πi · (ui,j)δ.
VC.AggregateProofs(I, (πi)i∈I)→ πI . Computes AI(X) =

∏
i∈I(X−ωi) in O(|I| log2 |I|) time. Computes the derivative

A′I(X) of AI(X) in O(|I|) time. Computes ci = (A′I(ω
i))i∈I in O(|I| log2 |I|) time using a multipoint polynomial

evaluation [vzGG13b]. Returns πI =
∏
i∈I π

ci
i .

3.4.5 Distributing the Trusted Setup

Our VC requires a trusted setup phase that computes its public parameters. To guarantee nobody learns the trapdoor
τ , this phase should be distributed via MPC protocols [BGG19,BGM17,BCG+15]. Unfortunately, the most efficient

MPC protocols only output (gτ
i

)’s [BGM17]. This means we can either (1) use less efficient protocols that output our

full public parameters or (2) find a way to derive the remaining public parameters from the (gτ
i

)’s. Fortunately, all
remaining public parameters are easy to derive.

First, the commitment a = gA(τ) to A(X) = Xn− 1 can be computed in O(1) time via an exponentiation. Second,

the commitments `i = gLi(τ) to Lagrange polynomials can be computed via a single DFT on the (gτ
i

)’s [Vir17, Sec

3.12.3, pg. 97]. Third, each ai = gA(τ)/(τ−ωi) is just a bilinear accumulator membership proof for ωi w.r.t. A(X).

Thus, all ai’s can be computed in O(n log n) time via the FK technique [FK20]. Lastly, we need a way to compute all

ui = g
Li(τ)−1

X−ωi .

Computing All ui’s Fast. Inspired by the FK technique [FK20], we show how to compute all n ui’s in O(n log n)

time using a single DFT on group elements. First, note that ui = g
Li(τ)−1

X−ωi = gQi(τ) is a KZG evaluation proof for
Li(ωi) = 1, which means:

Li(X) = Qi(X)(X − ωi) + 1 (8)

Let ψi(X) = A(X)
X−ωi = Xn−1

X−ωi , and let πi = gqi(τ) be an evaluation proof for ψi(ω
i) such that:

ψi(X) = qi(X)(X − ωi) + ψi(X) (9)

We argue that Qi(X) = 1
A′(ωi)qi(X) and thus each ui = gQi(τ) can be derived from πi = gqi(τ) as ui = π

1

A′(ωi)
i . For

this, we will use the fact that Li(X) = A(X)
A′(ωi)(X−ωi) = 1

A′(ωi)ψi(X) and ψ(ωi) = A′(ωi) (see Equation (2)):

ψi(X) = qi(X)(X − ωi) + ψi(ω
i)⇒ (10)

1

A′(ωi)
ψi(X) =

1

A′(ωi)
[qi(X)(X − ωi) +A′(ωi)]⇒ (11)

Li(X) =

(
1

A′(ωi)
qi(X)

)
· (X − ωi) + 1⇒ Qi(X) =

1

A′(ωi)
qi(X) (12)

Thus, computing all ui’s reduces to computing n evaluation proofs πi for ψi(ω
i). However, since each proof πi is for

a different polynomial ψi(X), all πi’s would still require O(n2) time to compute naively. We fix this next by leveraging
the “structure” of ψi(X) when divided by X − ωi. Specifically, in Appendix B, we show that:

qi(X) =
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−2)−j ,∀i ∈ [0, n) (13)

Let Hj(X) = (j + 1)X(n−2)−j . Then:

qi(X) =
∑

j∈[0,n−2]

Hj(X)ωij ,∀i ∈ [0, n) (14)

In particular, if hj and πi are KZG commitments to Hj(X) and qi(X) respectively, we have:

πi =
∏

j∈[0,n−2]

h
(ωij)
j ,∀i ∈ [0, n) (15)

Next, recall that the Discrete Fourier Transform (DFT) on a vector of group elements a = [a0, a1, . . . , an−1] ∈ Gn is:

DFTn(a) = â = [â0, â1, . . . , ân−1] ∈ Gn, where âi =
∏

j∈[0,n)

a
(ωij)
j (16)

If we let π = [π0, π1, . . . , πn−1] and h = [h0, h1, . . . , hn−2, 1G, 1G], it follows that:

π = DFTn(h) (17)

Thus, we can compute all πi’s in O(n log n) time with a single DFT on the hi’s. (All n hi’s can be computed in

O(n) time.) Then, we can compute each ui = π
1

A′(ωi)
i in O(n) time.

3.4.6 Correctness and Security

The correctness of our aSVC schemes follows naturally from Lagrange interpolation. Aggregation and proof updates
are correct by the arguments laid out in Sections 3.4.1 and 3.4.2, respectively. Subvector proofs are correct by the
correctness of KZG batch proofs [KZG10].

The security of our aSVC schemes does not follow naturally from the security of KZG polynomial commitments.
Specifically, as pointed out in [GRWZ20], two inconsistent subvector proofs do not lead to a direct break of KZG’s
batch evaluation binding, as defined in [KZG10, Sec. 3.4]. To address this, we propose a stronger batch evaluation
binding definition (see Definition 9 in Appendix C.1) and prove KZG satisfies it under n-SBDH. This new definition
is directly broken by two inconsistent subvector proofs, which implies our aSVC is secure under n-SBDH. Lastly, we
prove update key uniqueness holds unconditionally in Appendix C.2.

4 A Highly-efficient Stateless Cryptocurrency

In this section, we present a stateless cryptocurrency that improves over Edrax [CPZ18] in both computation and
communication efficiency. We adopt Edrax’s elegant design by replacing their VC with our secure aggregatable subvector
commitment (aSVC) scheme from Section 3.3. As a result, our stateless cryptocurrency has smaller, aggregatable proofs
and smaller update keys. This leads to smaller, faster-to-verify blocks for miners and faster proof synchronization times
for users (see Table 1). Furthermore, our verifiable update keys reduce the storage overhead of miners from O(n) update
keys to O(1). We also address a denial of service (DoS) attack in Edrax’s design.

4.1 From VCs to Stateless Cryptocurrencies

In this section, we re-introduce Edrax’s design, which we adopt and slightly modify. Edrax pioneered the idea of
building account-based, stateless cryptocurrencies on top of any VC scheme [CPZ18]. In contrast, previous approaches
were based on authenticated dictionaries (ADs) [RMCI17, But17], for which efficient constructions with updatable
proofs and digests are not known yet. (The key-value map commitment by Boneh et al. [BBF18] could work, but
its efficiency and updatability in the context of stateless cryptocurrencies remains to be explored.) As a result, these
AD-based approaches were interactive, requiring user i to ask a proof serving node for user j’s proof in order to create
a transaction sending money to j.

Trusted Setup. To support up to n users, public parameters (prk, vrk, (upki)i∈[0,n))← VC.KeyGen(1λ, n) are generated
via a trusted setup, which can be decentralized using MPC protocols [BGM17,BGG19]. Miners need to store all O(n)
update keys to propose blocks and to validate blocks (see Section 4.2.2). The prk is only needed for proof serving nodes
(see Section 4.3.2).

The (Authenticated) State. The state is a vector v = (vi)i∈[0,n) of size n that maps user i to vi = (addri|bali) ∈ Zp,
where bali is her balance and addri is her address, which we define later. (We discuss including transaction counters
for preventing replay attacks in Section 4.3.1.) Importantly, since p ≈ 2256, the first 224 bits of vi are used for addri
and the last 32 bits for bali.

The genesis block’s state is the all zeros vector. Its digest d0 is computed as d0, π0 ← VC.EmptyCommit(vrk).
Initially, each user i is unregistered and starts with πi,0 = π0 as their initial proof, which verifies correctly ∀i:
VC.VerifyPos(vrk, d0, 0, i, πi,0) = T .

“Full” vs. “traditional” Public Keys. User i’s address is computed as addri = H(FPKi), where FPKi = (i, upki, tpki)
is her full public key. Here, tpki denotes a “traditional” public key for a digital signature scheme, with corresponding
secret key tski used to authorize user i’s transactions. To avoid confusion, we will clearly refer to public keys as either
“full” or “traditional.”

Registering via INIT Transactions. INIT transactions are used to register new users and assign them a unique,
ever-increasing number from 1 to n. For this, each block t stores a count of users registered so far cntt. To register,
a user generates a traditional secret key tsk with a corresponding traditional public key tpk. Then, she broadcasts an
INIT transaction:

tx = [INIT, tpk]

A miner working on block t+ 1 who receives tx, proceeds as follows.

1. He sets i = cntt+1 and increments the count cntt+1 of registered users,
2. He updates the VC using a call to dt+1 = VC.UpdateComm(dt+1, (addri|0), i, upki),
3. He incorporates tx in his block t+ 1 as tx′ = [INIT, (i, upki, tpki)] = [INIT,FPKi].

The full public key with upki is included so other users can correctly update their VC when they process tx′.
(The index i is not necessary, since it can be computed from the block’s cntt+1 and the number of INIT transactions
processed in the block so far.) Note that to compute addri = H(FPKi) = H(i, upki, tpk), the miner needs to have the
correct upki which requires O(n) storage. We discuss how to avoid this in Section 4.2.2.

Transfering Coins via SPEND Transactions. When transferring v coins to user j, user i (who has v′ ≥ v coins)
must first obtain FPKj = (j, upkj , tpkj). This is similar to existing cryptocurrencies, except the (full) public key is now
slightly larger. Then, user i broadcasts a SPEND transaction, signed with her tski:

tx = [SPEND, t,FPKi, j, upkj , v, πi,t, v
′]

A miner working on block t+ 1 who receives this SPEND transaction, proceeds as follows:

1. He checks that v ≤ v′ and verifies the proof πi,t that user i has v′ coins via VC.VerifyPos(vrk, dt, (addri|v′), i, πi,t),
where addri = H(FPKi). (If the miner receives another transaction from user i, it needs to carefully account for
i’s new v′ − v balance.)

2. He updates i’s balance in block t+ 1 with dt+1 = VC.UpdateComm(dt+1,−v, i, upki), (Note that this only sets the
lower order bits of vi corresponding to bali, not touching the higher order bits for addri.)

3. He updates j’s balance in block t+ 1 with dt+1 = VC.UpdateComm(dt+1, +v, j, upkj).

Validating Blocks. Suppose a miner receives a new block t+ 1 with digest dt+1 that has b transactions of the form:

tx = [SPEND, t,FPKi, j, upkj , v, πi,t, v
′]

(We are ignoring INIT transactions, for now.) To validate this block, the miner (who has dt) proceeds in three steps:

Step 1: Check Balances. First, for each tx, he checks that v ≤ v′ and that user i has balance v′ via VC.VerifyPos(vrk, dt,
(addri|v′), i, πi,t) = T . Since the sending user i might have multiple transactions in the block, the miner has to carefully
keep track of each sending user’s balance to ensure it never goes below zero.

Step 2: Check Digest. Second, he checks dt+1 has been computed correctly from dt and from the new transactions
in block t + 1. Specifically, he sets d′ = dt and for each tx, he computes d′ = VC.UpdateComm(d′,−v, i, upki) and
d′ = VC.UpdateComm(d′,+v, j, upkj). Then, he checks that d′ = dt+1. (Finally, the miner can similarly verify and
“apply” INIT transactions.)

Step 3: Updated Proofs, If Any. If the miner was racing to build block t+ 1 and lost, the miner can start mining block
t+ 2 by “moving over” the SPEND transactions from his unmined block t+ 1. For this, he has to update all proofs in
those SPEND transactions, so they are valid against the new digest dt+1. Similarly, the miner must also “move over” all
INIT transactions, since block t+ 1 might have registered new users.

Catching Up With New Blocks. Consider a user i who has processed the blockchain up to time t and has digest
dt and proof πi,t. Eventually, she receives a new block t + 1 with digest dt+1 and needs to update her proof so it
verifies against dt+1. Initially, she sets πi,t+1 = πi,t. For each [INIT,FPKj] transaction, she updates her proof πi,t+1 =
VC.UpdateProof(πi,t+1, (H(FPKj)|0), j, upkj). For each [SPEND, t,FPKj , k, upkk, v, πj,t, v

′], she updates her proof twice:
πi,t+1 = VC.UpdateProof(πi,t+1,−v, j, upkj) and πi,t+1 = VC.UpdateProof(πi,t+1,+v, k, upkk).

We stress that users can safely be offline and miss new blocks. Eventually, when a user comes back online, she
downloads the missed blocks, updates her proof and is ready to transact.

4.2 Efficient Stateless Cryptocurrencies from aSVCs

In this subsection, we explain how replacing the Edrax VC with our aSVC from Section 3.3 results in a more efficient
stateless cryptocurrency (see Table 1). Then, we address a denial of service attack on user registrations in Edrax.

4.2.1 Smaller, Faster, Aggregatable Proofs

Since our aSVC proofs are aggregatable, miners can aggregate all b proofs in a block of b transactions into a sin-
gle, constant-sized proof using VC.AggregateProofs. This drastically reduces Edrax’s per-block proof overhead from
O(b log n) group elements to just one group element. Unfortunately, the b update keys cannot be aggregated, adding b
group elements of overhead per block (see Section 4.2.3). Nonetheless, this is still an improvement over Edrax, which
had O(b log n) overhead.

Our smaller proofs are also faster to update, taking O(1) time rather than O(log n). While verifying an aggregated
proof is O(b log2 b) time, which is asymptotically slower than the O(b) time for verifying b individual ones, it is still
concretely faster as it only requires two cryptographic pairings rather than b. This makes validating new blocks much
faster.

4.2.2 Reducing Miner Storage Using Verifiable Update Keys

Recall that miners need update keys to update the digest when processing and validating INIT and SPEND transactions.
Importantly, miners should validate an update key before using it. Otherwise, updating a digest with an incorrect
update key will corrupt that digest, leading to a denial of service attack. To address this, Edrax miners store all O(n)
update keys, which makes validating any update key trivial. Alternatively, Edrax can outsource update keys to an

untrusted third party (e.g., via a Merkle tree) and miners can verifiably fetch them on demand. Unfortunately, this
would require interaction during block proposal and block validation, which we believe is unacceptable.

Our design avoids the O(n) storage and (most of) the interaction by outsourcing the update keys, but in a different
fashion than Edrax. Specifically, since our update keys are verifiable, we do not need the overhead of Merkle tree-
based authentication. To handle SPEND transactions, miners simply verify the update keys included in the transaction
via VC.VerifyUPK. In contrast, in Edrax, miners either have to store all update keys or verify them by asking for a
Merkle proof from third parties, which requires interaction during block proposal and validation. Alternatively, each
Edrax user can include Merkle proofs in their transaction, but this increases transaction size and makes transacting
interactive, which Edrax is designed to avoid.

Furthermore, for INIT transactions, miners can fetch (in the background) a running window of the next k update
keys needed for the next k INIT transactions. Importantly, this does not require any interaction during the block
proposal, as the update keys are fetched in the background by upper-bounding the number of INIT transactions
expected in the near future. This background fetching could also be implemented in Edrax, but with additional
overhead from Merkle proofs. (Unless the Edrax update keys are made verifiable too, which seems possible.)

4.2.3 Smaller Update Keys

Recall that upki contains ai = gA(τ)/(X−ωi) and ui = g
Li(τ)−1

X−ωi in our aSVC. We observe that miners only need to
include ai in the block. This is because of two reasons. First, user i already has ui to update her own proof after
changes to her own balance. Second, no other user j 6= i will need ui to update her proof πj . However, as hinted
above, miners might actually need ui (e.g., when a subset of i’s pending transactions get included in block t and the
remaining transactions for block t+1 must have their proofs updated). Fortunately, this is not a problem, since miners
always receive ui with user i’s transactions. The key observation is that they do not have to include ui in the mined
block, since users do not need it.

4.2.4 Addressing DoS Attacks on User Registrations.

Unfortunately, the registration process based on INIT transactions is susceptible to Denial of Service (DoS) attacks:
an attacker can simply send a large number of INIT transactions and quickly exhaust the free space in the vector
v. One way to address this is to use a hidden-order based VC which supports an unbounded number of elements.
However, that would negatively impact performance. Yet another way, is to develop authenticated dictionaries with
scalable updates. This is left as future work.

For bounded VCs such as ours, we address this by adding a cost to user registrations. A simple solution would be
to register users by transferring a minimum amount of coins to their soon-to-be-registered TPKs via a different kind
of SPEND transaction. In other words, INIT transactions should be more like SPEND transactions that send coins to a
soon-to-be-registered user j. Thus, we propose a new INITSPEND transaction type that does exactly this:

[INITSPEND, t,FPKi, tpk, v, πi,t, v
′], where 0 < v ≤ v′

User i would sign this INITSPEND transaction using her tpki, similar to a SPEND transaction. Miners processing this
transaction would (1) first register a new user j with traditional public key tpk and (2) transfer v coins to j.

Finally, miners (and only miners) will be allowed to create a single [INIT,FPKi] transaction per block to register
themselves. This has to be the case if new miners are to be able to join without “permission” from other miners or
users. As a result, DoS attacks are severely limited, since malicious miners can only register a new account per block
(which is already the case in UTXO-based cryptocurrencies [Nak08]). Furthermore, transaction fees and/or additional
proof-of-work can also severely limit the frequency of INITSPEND transactions.

Limitations. This approach has the unfortunate side-effect of allowing user j to register multiple accounts under the
same tpk. Furthermore, user j might do so accidentally, as he distributes his tpk instead of his FPKj to other users to
pay her. We believe this issue could be addressed either through a careful user interface design or by ensuring that each
tpk is only registered once, perhaps via a cryptographic accumulator [BdM94, Ngu05] built over all TPKs. Certainly,
this issue could be side-stepped if the VC is replaced with an authenticated dictionary, which does not require INIT

transactions. We leave this as future work.

4.2.5 Minting Coins and Transaction Fees.

Support for minting new coins can be easily added by introducing a new MINT transaction type:

tx = [MINT, i, upki, v]

Here, i is the miner’s user account number and v is the amount of newly minted coins. (Note that miners, just like users,
must register using INIT transactions if they are to receive block rewards.) When this MINT transaction is processed
by other users or miners, they update their digest dt using VC.UpdateComm(dt,+v, i, upki). (In addition, users also
update their proofs.) To support transaction fees, we can extend the SPEND transaction format to include a fee, which
is then added with the miner’s block reward specified in the MINT transaction.

4.3 Discussion

4.3.1 Making Room for Transaction Counters

As mentioned in Section 2.3, to prevent transaction replay attacks, account-based stateless cryptocurrencies such as
Edrax should actually map a user i to vi = (addri|ci|bali), where ci is her transaction counter. This change is trivial,
but does leave less space in vi for addri, depending on how many bits are needed for ci and bali. (Recall that vi ∈ Zp
typically has ≈ 256 bits.)

This can be addressed by having two VCs rather than one: one VC for mapping i to addri and another for mapping
i to (ci|bali). Our key observation is that the two VCs should use different n-SDH params, one with base g and another
with base h, such that DiscreteLogg(h) is unknown. This would allow aggregating the VCs, their proofs and their
update keys, so as to introduce zero computational and communication overhead in our stateless cryptocurrency.

The security of this scheme should naturally follow from the information-theoretically hiding flavor of KZG com-
mitments [KZG10], which commits to φ(X) as gφ(τ)hr(τ) in a similar fashion. However, we leave investigating the
details of such a scheme to future work.

4.3.2 Overhead of Synchronizing Proofs

In a stateless cryptocurrency, users need to keep their proofs updated w.r.t. the latest block. Asymptotically, each
user spends O(b · ∆t) time updating her proof, if there are ∆t new blocks of b transactions each. Fortunately, when
the underlying VC scheme supports precomputing all n proofs fast [CPZ18, TCZ+20], this overhead can be shifted
to untrusted third parties called proof serving nodes [CPZ18]. Specifically, a proof serving node would have access
to the proving key prk and periodically compute all proofs for all n users. Then, any user with an out-of-sync proof
could ask a node for their proof and then manually update it, should it be slightly out of date with the latest block.
Proof serving nodes save users a significant amount of proof update work, which is important for users running on
constrained devices such as mobile phones.

5 Conclusion

In this paper, we formalized a new cryptographic primitive called an aggregatable subvector commitment (aSVC), which
is a subvector commitment (SVC) scheme that supports aggregation and supports updating proofs and commitments.
Then, we gave an efficient aSVC construction based on KZG commitments to Lagrange polynomials, which outperforms
previous work. Lastly, we used our aSVC to build an efficient stateless cryptocurrency in the account model which
outperforms previous work.

Future Work. Our work leaves open interesting challenges in stateless cryptocurrencies. First, the ability to aggregate
update keys would further reduce block size. Second, unbounded proof aggregation [CFG+20] could be used to further
“compress” stateless blockchains. Third, authenticated dictionaries with scalable updates would remove the limitation
on the number of users and eliminate DoS attacks on user registration.

References

BB08. Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles and the SDH Assumption in Bilinear
Groups. Journal of Cryptology, 21(2):149–177, Apr 2008.

BBF18. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains. Cryptology ePrint Archive, Report 2018/1188, 2018. https://eprint.iacr.org/2018/1188.

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO
2019, pages 561–586, Cham, 2019. Springer International Publishing.

BCG+14. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized
Anonymous Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474, May 2014.

BCG+15. E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure Sampling of Public Parameters for Succinct
Zero Knowledge Proofs. In 2015 IEEE Symposium on Security and Privacy, pages 287–304, May 2015.

BdM94. Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decentralized Alternative to Digital Signatures. In
Tor Helleseth, editor, EUROCRYPT ’93, pages 274–285, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

BGG19. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A Multi-party Protocol for Constructing the Public Parameters
of the Pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico
Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data Security, pages 64–77, Berlin, Heidelberg,
2019. Springer Berlin Heidelberg.

BGM17. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for zk-SNARK Parameters in the
Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050, 2017. https://eprint.iacr.org/2017/

1050.
BGV11. Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable Delegation of Computation over Large Datasets.

In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 111–131, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized Cryptocurrency at Scale.
Cryptology ePrint Archive, Report 2020/352, 2020. https://eprint.iacr.org/2020/352.

BSCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable Zero Knowledge via Cycles of Elliptic
Curves. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, pages 276–294,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

BT04. J. Berrut and L. Trefethen. Barycentric Lagrange Interpolation. SIAM Review, 46(3):501–517, 2004.
But16. Vitalik Buterin. Thoughts on UTXOs by Vitalik Buterin, Co-Founder of Ethereum. Medium.com, 2016. https:

//medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53.
But17. Vitalik Buterin. The stateless client concept. ethresear.ch, 2017. https://ethresear.ch/t/

the-stateless-client-concept/172.
But20. Vitalik Buterin. Using polynomial commitments to replace state roots. https://ethresear.ch/t/

using-polynomial-commitments-to-replace-state-roots/7095/print, 2020.
CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Composable and Modular

Anonymous Credentials: Definitions and Practical Constructions. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology – ASIACRYPT 2015, pages 262–288, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

CF13. Dario Catalano and Dario Fiore. Vector Commitments and Their Applications. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, Public-Key Cryptography – PKC 2013, pages 55–72, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

CFG+20. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. Vector Commitment Tech-
niques and Applications to Verifiable Decentralized Storage. Cryptology ePrint Archive, Report 2020/149, 2020.
https://eprint.iacr.org/2020/149.

CFM08. Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-Knowledge Sets with Short Proofs. In Nigel Smart,
editor, EUROCRYPT’08, pages 433–450, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

CLRS09. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009.

Cor16. Corda. Rationale for and tradeoffs in adopting a UTXO-style model. Corda Blog, 2016. https://www.corda.net/

blog/rationale-for-and-tradeoffs-in-adopting-a-utxo-style-model/.
CPZ18. Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A Cryptocurrency with Stateless

Transaction Validation. Cryptology ePrint Archive, Report 2018/968, 2018. https://eprint.iacr.org/2018/968.
Dry19. Thaddeus Dryja. Utreexo: A dynamic hash-based accumulator optimized for the Bitcoin UTXO set. Cryptology

ePrint Archive, Report 2019/611, 2019. https://eprint.iacr.org/2019/611.
Eth17. Ethereum Community. Design rationale: Blockchain-level protocol: Account and not utxos. Ethereum Wiki, 2017.

https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos.
FK20. Dankrad Feist and Dmitry Khovratovich. Fast amortized Kate proofs, 2020. https://github.com/khovratovich/

Kate.
Goy07. Vipul Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In Alfred Menezes, editor, Advances in

Cryptology - CRYPTO 2007, pages 430–447, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
GRWZ20. Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating Proofs for Multiple

Vector Commitments. Cryptology ePrint Archive, Report 2020/419, 2020. https://eprint.iacr.org/2020/419.

https://eprint.iacr.org/2018/1188
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/352
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://ethresear.ch/t/ the-stateless-client-concept/172
https://ethresear.ch/t/ the-stateless-client-concept/172
https://ethresear.ch/t/using-polynomial-commitments-to-replace-state-roots/7095/print
https://ethresear.ch/t/using-polynomial-commitments-to-replace-state-roots/7095/print
https://eprint.iacr.org/2020/149
https://www.corda.net/blog/rationale-for-and-tradeoffs-in-adopting-a-utxo-style-model/
https://www.corda.net/blog/rationale-for-and-tradeoffs-in-adopting-a-utxo-style-model/
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/611
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos
https://github.com/khovratovich/Kate
https://github.com/khovratovich/Kate
https://eprint.iacr.org/2020/419

Jou00. Antoine Joux. A One Round Protocol for Tripartite Diffie–Hellman. In Wieb Bosma, editor, Algorithmic Number
Theory, pages 385–393, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

KR13. Markulf Kohlweiss and Alfredo Rial. Optimally Private Access Control. In Proceedings of the 12th ACM Workshop
on Workshop on Privacy in the Electronic Society, WPES ’13, page 37–48, New York, NY, USA, 2013. Association
for Computing Machinery.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Commitments to Polynomials and Their
Applications. In Masayuki Abe, editor, ASIACRYPT ’10, pages 177–194, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

LLX07. Jiangtao Li, Ninghui Li, and Rui Xue. Universal Accumulators with Efficient Nonmembership Proofs. In Jonathan
Katz and Moti Yung, editors, Applied Cryptography and Network Security, pages 253–269, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

LM18. Russell W.F. Lai and Giulio Malavolta. Subvector Commitments with Application to Succinct Arguments. Cryp-
tology ePrint Archive, Report 2018/705, 2018. https://eprint.iacr.org/2018/705.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector Commitments with Application to Succinct Arguments. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 530–560,
Cham, 2019. Springer International Publishing.

LRY16. Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional Commitment Schemes: From Polynomial Com-
mitments to Pairing-Based Accumulators from Simple Assumptions. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages
30:1–30:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

LY10. Benôıt Libert and Moti Yung. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets
with Short Proofs. In Daniele Micciancio, editor, Theory of Cryptography, pages 499–517, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

Mil12. Andrew Miller. Storing UTXOs in a balanced Merkle tree (zero-trust nodes with O(1)-storage). BitcoinTalk Forums,
2012. https://bitcointalk.org/index.php?topic=101734.msg1117428.

MVO91. Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing Elliptic Curve Logarithms to Logarithms in a
Finite Field. In Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 80–89, New York, NY, USA, 1991. ACM.

Nak08. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf, 2008.
Accessed: 2019-04-12.

Ngu05. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In Alfred Menezes, editor, CT-RSA ’05, pages
275–292, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Pat17. Patrick Dai. Why Qtum Choose UTXO Model and the Benefits. 8BTC, 2017. http://news.8btc.com/

why-qtum-choose-utxo-model-and-the-benefits.
PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of Correct Computation. In Amit Sahai,

editor, Theory of Cryptography, pages 222–242, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
RMCI17. Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Improving Authenticated Dynamic

Dictionaries, with Applications to Cryptocurrencies. In Aggelos Kiayias, editor, Financial Cryptography and Data
Security, pages 376–392, Cham, 2017. Springer International Publishing.

Sha81. Adi Shamir. On the generation of cryptographically strong pseudo-random sequences. In Shimon Even and Oded
Kariv, editors, Automata, Languages and Programming, pages 544–550, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg.

STS99. Tomas Sander and Amnon Ta-Shma. Auditable, Anonymous Electronic Cash. In Michael Wiener, editor, Advances
in Cryptology — CRYPTO’ 99, pages 555–572, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

STSY01. Tomas Sander, Amnon Ta-Shma, and Moti Yung. Blind, Auditable Membership Proofs. In Yair Frankel, editor,
Financial Cryptography, pages 53–71, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

TCZ+20. Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas.
Towards Scalable Threshold Cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP), May 2020.

Tod16. Peter Todd. Making utxo set growth irrelevant with low-latency delayed txo commitments, 2016. https:

//petertodd.org/2016/delayed-txo-commitments.
Tom20. Alin Tomescu. How to Keep a Secret and Share a Public Key (Using Polynomial Commitments). PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 2020.
Vir17. Madars Virza. On Deploying Succinct Zero-Knowledge Proofs. PhD thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2017.
vzGG13a. Joachim von zur Gathen and Jurgen Gerhard. Fast Multiplication. In Modern Computer Algebra, chapter 8, pages

221–254. Cambridge University Press, New York, NY, USA, 3rd edition, 2013.
vzGG13b. Joachim von zur Gathen and Jurgen Gerhard. Fast polynomial evaluation and interpolation. In Modern Computer

Algebra, chapter 10, pages 295–310. Cambridge University Press, New York, NY, USA, 3rd edition, 2013.
vzGG13c. Joachim von zur Gathen and Jurgen Gerhard. Newton iteration. In Modern Computer Algebra, chapter 9, pages

257–292. Cambridge University Press, New York, NY, USA, 3rd edition, 2013.
Wik19. Wikipedia contributors. Partial fraction decomposition — Wikipedia, the free encyclopedia, 2019. [Online; accessed

11-April-2020].

https://eprint.iacr.org/2018/705
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcoin.org/bitcoin.pdf
http://news.8btc.com/why-qtum-choose-utxo-model-and-the-benefits
http://news.8btc.com/why-qtum-choose-utxo-model-and-the-benefits
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments

Woo. Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger. http://gavwood.com/paper.pdf.
Yan16. Yangrui. Utxo model vs. account/balance model (forum thread). StackExchange Bitcoin, 2016. https://bitcoin.

stackexchange.com/questions/49853/utxo-model-vs-account-balance-model.
Zah18. Joachim Zahnentferner. Chimeric Ledgers: Translating and Unifying UTXO-based and Account-based Cryptocur-

rencies. Cryptology ePrint Archive, Report 2018/262, 2018. https://eprint.iacr.org/2018/262.

http://gavwood.com/paper.pdf
https://bitcoin.stackexchange.com/questions/49853/utxo-model-vs-account-balance-model
https://bitcoin.stackexchange.com/questions/49853/utxo-model-vs-account-balance-model
https://eprint.iacr.org/2018/262

A Closed-form Formula for Evaluating the Derivative of Xn − 1 at Roots of Unity.

Let A(X) = Xn − 1 and recall that Li(X) = A(X)
A′(ωi)·(X−ωi) (see Section 3.4). Let A′(X) be the derivative of Xn − 1

and let g(x) = A(X)/(X − ωi).
First, note that A′(ωi) = g(ωi). Second, by carrying out the division of Xn − 1 by (X − ωi) you can verify that:

g(x) = (ωi)0Xn−1 + (ωi)1Xn−2 + (ωi)2Xn−3 + · · ·+ (ωi)n−2X1 + (ωi)n−1X0 (18)

Third, evaluating A′(X) at X = ωi gives:

A′(ωi) = g(ωi) = (ωi)0ωi(n−1) + (ωi)1ωi(n−2) + (ωi)2ωi(n−3) + · · ·+ (ωi)n−2ωi·1 + (ωi)n−1ωi·0 (19)

= nωi(n−1) = n(ωi·n−i) = nω−i (20)

B Computing all ui = g
Li(τ)−1

τ−ωi in O(n logn) time from gτ
i
’s

In Section 3.4.5, we argued all ui’s can be computed in O(n log n) time. Here, we give intuition on the quotients qi(X)
(see Equation (13)) and prove they are correct.

First, let us look at the quotient q1(X) obtained when dividing ψ1(X) by X − ω1, assuming n = 8:

X6 + 2ωX5 + 3ω2X4 + 4ω3X3 + 5ω4X2 + 6ω5X + 7ω6

X − ω
)

X7 + ωX6 + ω2X5 + ω3X4 + ω4X3 + ω5X2 + ω6X + ω7

−X7 + ωX6

2ωX6 + ω2X5

− 2ωX6 + 2ω2X5

3ω2X5 + ω3X4

− 3ω2X5 + 3ω3X4

4ω3X4 + ω4X3

− 4ω3X4 + 4ω4X3

5ω4X3 + ω5X2

− 5ω4X3 + 5ω5X2

6ω5X2 + ω6X
− 6ω5X2 + 6ω6X

7ω6X + ω7

− 7ω6X + 7ω7

8ω7

We have to show that:

qi(X) =
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−2)−j ,∀i ∈ [0, n) (21)

We do this by showing that the polynomial remainder theorem holds; i.e., ψi(X) = qi(X)(X − ωi) + ψi(ωi):

qi(X)(X − ωi) + ψi(ωi) = qi(X)(X − ωi) + nω−i (22)

= nω−i + (X − ωi)
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−2)−j (23)

= nω−i +X ·
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−2)−j − ωi ·
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−2)−j (24)

= nω−i +
∑

j∈[0,n−2]

(j + 1)(ωi)jX(n−1)−j −
∑

j∈[0,n−2]

(j + 1)(ωi)j+1X(n−2)−j (25)

= nω−i +
∑

j∈[0,n−2]

(j + 1)ωijX(n−1)−j −
∑

j∈[1,n−1]

jωijX(n−2)−(j−1) (26)

= nω−i +
∑

j∈[0,n−2]

(j + 1)ωijX(n−1)−j −
∑

j∈[1,n−1]

jωijX(n−1)−j (27)

= nω−i +Xn−1 +
∑

j∈[1,n−2]

(j + 1)ωijX(n−1)−j −
∑

j∈[1,n−2]

jωijX(n−1)−j + (n− 1)ωi(n−1)X0

(28)

= Xn−1 +
∑

j∈[1,n−2]

ωijX(n−1)−j + (n− 1)ω−iX0 + nω−iX0 (29)

=
∑

j∈[0,n−2]

ωijX(n−1)−j + ω−iX0 (30)

=
∑

j∈[0,n−2]

ωijX(n−1)−j + ωin−iX0 (31)

=
∑

j∈[0,n−2]

ωijX(n−1)−j + ωi(n−1)X0 (32)

=
∑

j∈[0,n)

ωijX(n−1)−j (33)

= ψi(X) (34)

C Security Proofs

C.1 KZG Batch Opening Binding (Re)definition

We rewrite the batch opening binding definition of KZG [KZG10, Sec. 3.4, pg. 9] to be stronger and prove KZG still
satisfies it.

Definition 9 (Batch Opening Binding). ∀ adversaries A running in time poly(λ):

Pr

pp← KZG.Setup(1λ, n),

c, I, J, vI(X), vJ(X), πI , πJ ← A(1λ) :
KZG.VerifyEvalBatch(pp, c, I, πI , vI(X)) = T ∧
KZG.VerifyEvalBatch(pp, c, J, πJ , vJ(X)) = T ∧

∃k ∈ I ∩ J, such that vI(k) 6= vJ(k)

 ≤ negl(λ) (35)

Suppose an adversary breaks the definition. Let AI(X) =
∏
i∈I(X − i). Then, the following holds:

e(c, g) = e(πI , g
AI(τ))e(gvI(τ), g) (36)

e(c, g) = e(πJ , g
AJ (τ))e(gvJ (τ), g) (37)

Divide the top equation by the bottom one to get:

1T =
e(gvI(τ), g)

e(gvJ (τ), g)

e(πI , g
AI(τ))

e(πJ , gAJ (τ))
⇔ (38)

1T = e(gvI(τ)−vJ (τ), g)
e(πI , g

AI(τ))

e(πJ , gAJ (τ))
⇔ (39)

e(gvJ (τ)−vI(τ), g) =
e(πI , g

AI(τ))

e(πJ , gAJ (τ))
(40)

Let vk = vI(k) and v′k = vJ(k). We can rewrite vI(X) using the polynomial remainder theorem as vI(X) = qI(X)(X−
k) + vk. Similarly, vJ(X) = qJ(X)(X − k) + v′k.

e(gqJ (τ)(τ−k)+v
′
k−qI(τ)(τ−k)−vk , g) =

e(πI , g
AI(τ))

e(πJ , gAJ (τ))
⇔ (41)

e(g(τ−k)(qJ (τ)−qI(τ))+v
′
k−vk , g) =

e(πI , g
AI(τ))

e(πJ , gAJ (τ))
⇔ (42)

e(g(τ−k)(qJ (τ)−qI(τ)), g)e(gv
′
k−vk , g) =

e(πI , g
AI(τ))

e(πJ , gAJ (τ))
⇔ (43)

e(gqJ (τ)−qI(τ), g)τ−ke(g, g)v
′
k−vk =

e(πI , g
AI(τ))

e(πJ , gAJ (τ))
(44)

Factor out (X − k) in AI(X) to get AI(X) = aI(X)(τ − k). Similarly, AJ(X) = aJ(X)(τ − k).

e(gqJ (τ)−qI(τ), g)τ−ke(g, g)v
′
k−vk =

(
e(πI , g

aI(τ))

e(πJ , gaJ (τ))

)τ−k
⇔ (45)

e(gqJ (τ)−qI(τ), g)e(g, g)
v′k−vk
τ−k =

e(πI , g
aI(τ))

e(πJ , gaJ (τ))
⇔ (46)

e(g, g)
v′k−vk
τ−k =

e(πI , g
aI(τ))

e(πJ , gaJ (τ))e(gqJ (τ)−qI(τ), g)
⇔ (47)

e(g, g)
1

τ−k =

(
e(πI , g

aI(τ))

e(πJ , gaJ (τ))e(gqJ (τ)−qI(τ), g)

) 1
v′
k
−vk

(48)

Since the commitments to aI(X), aJ(X), qI(X), qJ(X) can be easily reconstructed from vI(X), vJ(X), I and J , this
constitutes a direct break of n-SBDH.

C.2 Update Key Uniqueness

We prove that our aSVC scheme from Section 3 has Update Key Uniqueness as defined in Definition 7. Let a be
the commitment to A(X) = Xn − 1 from the verification key vrk. Suppose an adversary outputs two update keys
upki = (ai, ui) and upk′i = (a′i, u

′
i) at position i that both pass VC.VerifyUPK but upki 6= upk′i. Then, it must be the

case that either ai 6= a′i or that ui 6= u′i.

ai 6= a′
i Case: Since both proofs pass verification, the following pairing equations hold:

e(ai, g
τ/gω

i

) = e(a, g) (49)

e(a′i, g
τ/gω

i

) = e(a, g) (50)

Thus, it follows that:

e(ai, g
τ/gω

i

) = e(a′i, g
τ/gω

i

)⇔ (51)

e(ai, g) = e(a′i, g)⇔ (52)

ai = a′i (53)

Contradiction.

ui 6= u′
i Case: Let A′(X) denote the derivative of A(X) = Xn − 1. Let `i = a

1/A′(ωi)
i = gLi(τ).

Since both proofs pass verification, the following pairing equations hold:

e(`i/g
1, g) = e(ui, g

τ/gω
i

) (54)

e(`i/g
1, g) = e(u′i, g

τ/gω
i

) (55)

(56)

Thus, it follows that:

e(ui, g
τ/gω

i

) = e(u′i, g
τ/gω

i

) (57)

e(ui, g) = e(u′i, g)⇔ (58)

ui = u′i (59)

Contradiction.

Table 3. Asymptotic comparison of our aSVC with other (aS)VCs. n is the vector size and b is the subvector size. See Appendix D
for a detailed explanation. The complexities in the table are asymptotic in terms of number of pairings, exponentiations and
field operations. “Proof upd.” is the time to update one proof for one single vector element after a change to one vector element.
“Com. upd.” is the time to update the commitment after a change to one vector element. We include complexities for computing
a VC proof for vi and a size-b subvector proof (in “Prove one vi” and in “Prove subv. (vi)i∈I”, respectively) and for committing
to a size-n vector (in “Com.”), even though these features are not needed in a stateless cryptocurrency.

(aS)VC scheme |prk| |vrk| |upki| Com.
Com.
upd.

|πi|
Prove
one
vi

Verify
one
vi

Proof
upd.

Prove
subv.

(vi)i∈I

Verify
subv.

(vi)i∈I

Aggr-
egate

Prove
each

(vi)i∈[n]

LMcdh [CF13,LM19] n2 n n n 1 1 n 1 1 bn b × n2

KZG [KZG10] n b × n lg2 n × 1 n 1 × b lg2 b+ n lgn b lg2 b × n2

KZGLagr [CDHK15] n n 1 n lg2 n 1 1 n 1 × n lg2 n b lg2 b × n2

CPZ [CPZ18] n lgn lgn n 1 lgn n lgn lgn × × × n lgn
TCZ [Tom20] n lgn+ b lgn n lgn 1 lgn n lgn lgn lgn b lg2 b+ n lgn b lg2 b × n lgn
LY [GRWZ20,LY10] n n n n 1 1 n 1 1 bn b b n2

Our aSVC n b 1 n 1 1 n 1 1 b lg2 b+ n lgn b lg2 b b lg2 b n lgn
Our aSVCprecomp n b 1 n logn 1 1 1 1 1 b lg2 b b lg2 b b lg2 b n lgn

D Complexities of VCs in Table 2

We explain the complexities we gave in Table 2, which we re-include above for convenience as Table 3. Each VC scheme
has its own sub-section where we explain its complexities, ultimately surveying the full scheme itself. Despite our best
efforts to understand the complexities of each scheme, we recognize there could be better upper bounds for some of
them.

D.1 Complexities of LMcdh [LM19]

This scheme was originally proposed by Catalano and Fiore [CF13] and extended by Lai and Malavolta to support
subvector proofs [LM19].

Public Parameters. The proving key is prk = (hi,j = gzi·zj)i,j∈[0,n),i6=j and is O(n2) sized. The verification key is
vrk = (hi = gzi)i∈[0,n) and is O(n)-sized. The ith update key is upki = (hi, (hi,j)j∈[0,n)). Note that hi,j = hzij = h

zj
i .

Commitment. A commitment is c =
∏
i∈[0,n) h

vi
i and can be computed with O(n) exponentiations. If any vector

element vj changes to vj + δ, the commitment can be updated in O(1) time using hj from upkj as c′ = c · (hj)δ.

Proofs for a vi. A proof for vi is:

πi =
∏

j∈[0,n),j 6=i

h
vj
i,j =

 ∏
j∈[0,n),j 6=i

h
vj
j

zi

(60)

The proof is O(1)-sized and can be computed from the hi,j ’s in the prk with O(n) exponentiations. It can be verified
in O(1) time using hi from the vrk by computing two pairings:

e(C/hvii , hi) = e(πi, g) (61)

If any vector element vj , j 6= i changes to vj + δ, the proof πi can be updated in O(1) time using hi,j from upkj as

π′i = πi ·
(
hδi,j
)
. This new π′i will verify against the updated c′ commitment defined earlier. If vi changes to vi + δ, the

proof πi need not be updated.

Subvector Proofs for (vi)i∈I A O(1)-sized subvector proof for vI is:

πI =
∏
i∈I

∏
j∈[0,n)\I

h
vj
i,j =

∏
i∈I

 ∏
j∈[0,n)\I

h
vj
j

zi

=
∏
i∈I

π∗i (62)

As intuition, note that the inner product π∗i is very similar to a proof πi for vi but for a vector (vj)j∈[0,n)−I . The proof
can be computed from the hi,j ’s in the prk with O((n− |I|)|I|) exponentiations (because each π∗i can be computed in

O(n− |I|) exponentiations). A subvector proof πI can be verified using (hi)i∈I from vrk by checking in O(|I|) time if:

e

c/∏
j∈I

h
vj
j ,
∏
i∈I

hi

 = e(πI , g)⇔ (63)

e

 ∏
j∈[0,n)\I

h
vj
j ,
∏
i∈I

gzi

 = e

∏
i∈I

∏
j∈[0,n)\I

h
vj
i,j , g

 (64)

e

 ∏
j∈[0,n)\I

h
vj
j , g

∑
i∈I zi

 = e

∏
i∈I

 ∏
j∈[0,n)\I

h
vj
j

zi

, g

 (65)

e

 ∏
j∈[0,n)\I

h
vj
j

∑
i∈I zi

 = e

 ∏
j∈[0,n)\I

h
vj
j

∑
i∈I zi

, g

 (66)

Aggregating Proofs and Precomputing All Proofs. Aggregating proofs is not discussed in [CF13, LM19], but
it seems possible. Finally, precomputing all proofs efficiently is not discussed. Naively, it can be done inefficiently in
O(n2) time.

D.2 Complexities of KZG [KZG10]

In their paper on polynomial commitment schemes [KZG10, Sec], Kate, Zaverucha and Goldberg also discuss using
their scheme to commit to a sequence of messages, thus implicitly obtaining a VC scheme. Although they do not
analyze its complexity in their paper, we do so here.

Public Parameters. The proving key is prk = (gτ
i

)i∈[0,n−1] and is O(n) sized. The verification key is vrk =

(g, (gτ
i

)i∈|I|), where |I| is the size of the largest subvector whose proof the verifier should be able to check, and
is thus O(|I|)-sized. There is no support for updating commitments and proofs using update keys, although adding it
is possible.

Commitment. A commitment is c = gφ(τ) where φ(X) =
∑
i∈[0,n) Li(X)vi and can be computed with O(n log2 n)

field operations (see Section 2.1) and O(n) exponentiations. Commitment updates are not discussed, but the scheme
could be modified to support them.

Proofs for a vi. A proof for vi is:

πi = g
φ(τ)−vi
τ−i = gqi(τ) (67)

The proof is O(1)-sized and can be computed by dividing φ(X) by (X − i) in O(n) field operations, obtaining qi(X),

and committing to qi(X) using the gτ
i

’s in the prk with O(n) exponentiations. The proof can be verified in O(1) time
using gτ from the vrk by computing two pairings:

e(c/gvi , g) = e(πi, g
τ/gi) (68)

Proof updates are not discussed, but the scheme could be modified to support them (see Section 3.3).

Subvector Proofs for (vi)i∈I A O(1)-sized subvector proof for vI is:

πI = g
φ(τ)−RI (τ)

AI (τ) = gqI(τ) (69)

Here, RI(X) is interpolated in O(|I| log2 |I|) field operations so that RI(i) = vi,∀i ∈ I (see Section 2.1). Also,
AI(X) =

∏
i∈I(X−i) is computed inO(|I| log2 |I|) field operations via a subproduct tree [vzGG13b]. The quotient qI(X)

can be obtained in O(n log n) field operations via a DFT-based division [vzGG13c]. Given gτ
i

’s from the prk, committing
to qI(X) takes O(n− |I|) exponentiations (because deg(qI) ≤ max(deg(φ),deg(RI))− deg(AI) = (n− 1)− |I|). Thus,
the overall subvector proving time is O(n log n+ |I| log2 |I|).

To verify a subvector proof πI , first, the verifier must recompute RI(X) and AI(X) in O(|I| log2 |I|) field operations.

Then, the verifier uses (gτ
i

)i∈|I| from the vrk to compute KZG commitments gRI(τ) and gAI(τ) inO(|I|) exponentiations.
Finally, the verifier checks using two pairings if:

e(c/gRI(τ), g) = e(πI , g
AI(τ)) (70)

Thus, the overall subvector proof verification time is O(|I| log2 |I|) time.

Aggregating Proofs and Precomputing All Proofs. Aggregating proofs is not discussed, but the scheme can
be modified to support them (see Section 3.4.1). Finally, precomputing all proofs efficiently is not discussed, but is
possible (see Section 3.3). Naively, it can be done inefficiently in O(n2) time.

D.3 Complexity of KZGLagr [CDHK15]

In this scheme, we assume the vector v = [v1, v2, . . . , vn] is indexed from 1 to n. This scheme is similar to a KZG-
based VC, except (1) it is randomized, (2) it computes proofs in a slightly different way and (3) it willfully prevents
aggregation of proofs as a security feature.

Public Parameters. The proving key is prk =
(

(gτ
i

)i∈[0,n+1], (g
Li(τ))i∈[0,n], g

P (τ)
)

, where P (X) = x ·
∏
i∈[n](X − i)

and is O(n) sized. (Note that the Lagrange polynomials Li(X) =
∏
j∈[0,n],j 6=i

X−j
i−j are defined over the points [0, n],

not [n].) The verification key is vrk = (g, (gLi(τ))i∈[n], (g
τ i)i∈[0,|I|+1]), where |I| is the maximum size of a subvector

in a subvector proof, and is thus O(n)-sized. There is no support for updating commitments and proofs using update
keys, although adding it is possible.

Commitment. A commitment is c =
∏
i∈[n]

(
gLi(τ)

)vi (
gP (τ)

)r
= gφ(τ)+r·P (τ) where φ(X) =

∑
i∈[0,n] Li(X)vi, with

v0 = 0. The commitment can be computed with O(n) exponentiations, given the Lagrange commitments and gP (τ)

from prk. However, since φ(X) is needed to compute proofs, this adds another O(n log2 n) field operations. Commitment

updates are not discussed, but they can be trivially implemented by setting upki = gLi(τ) and having c′ = c ·
(
gLj(τ)

)δ
be the new commitment after a change δ to vj . We reflect this in Table 2.

Proofs for a vi. A proof for vi is:

πi = g
(φ(τ)+r·p(τ))−viLi(τ)

τ−i = gqi(τ) (71)

The proof is O(1)-sized and can be computed by dividing φ(X)+r ·P (X)−viLi(X) by (X−i) in O(n) field operations,

obtaining qi(X), and committing to qi(X) using the gτ
i

’s in the prk with O(n) exponentiations. The proof can be
verified in O(1) time using gLi(τ) from the vrk by computing two pairings:

e
(
c/
(
gLi(τ)

)vi
, g
)

= e(πi, g
τ/gi) (72)

Proof updates are not discussed, but the scheme could be modified to support them (see Section 3.3).

Subvector Proofs for (vi)i∈I A O(1)-sized subvector proof for vI is:

πI = g
φ(τ)+r·P (τ)−RI (τ)

AI (τ) = gqI(τ) (73)

Here, RI(X) is defined so that RI(i) = vi,∀i ∈ I and RI(i) = 0,∀i ∈ [0, n] \ I. (In particular, this means RI(0) = 0.)
Interpolating RI(X) takes O(n log2 n) field operations. Also, AI(X) = x

∏
i∈I(X − i) is computed in O(|I| log2 |I|)

field operations via a subproduct tree [vzGG13b]. Given gτ
i

’s from the prk, committing to qI(X) takes O(n − |I|)
exponentiations (because deg(qI) ≤ max(deg(φ),deg(P),deg(RI)) − deg(AI) = n − |I|). Thus, the overall subvector
proving time is O(n log2 n).

To verify a subvector proof πI , first, the verifier recomputes the commitment to gRI(τ) =
∑
i∈I
(
gLi(τ)

)vi
using

O(|I|) exponentiations. (Recall that Li(X) is defined over [0, n] and has its KZG commitment in the vrk.) Then, he com-

putes AI(X) in O(|I| log2 |I|) field operations using a subproduct tree [vzGG13b]. Then, the verifier uses (gτ
i

)i∈[0,|I|+1]

from the vrk to compute a KZG commitment to gAI(τ) in O(|I|) exponentiations. Finally, the verifier checks using two
pairings if:

e(c/gRI(τ), g) = e(πI , g
AI(τ)) (74)

Thus, the overall subvector proof verification time is O(|I| log2 |I|).

Aggregating Proofs and Precomputing All Proofs. Aggregating proofs is willfully prevented by this scheme, as
a security feature. Finally, precomputing all proofs efficiently is not discussed, but it can be done inefficiently in O(n2)
time. Importantly, because the proofs are slightly different from KZG, they are not amenable to known techniques for
precomputing all n proofs in O(n log n) time [FK20].

D.4 Complexities of CPZ [CPZ18]

Since the Edrax paper neatly summarizes its performance, we mostly refer the reader to [CPZ18, Table 1], with one
exception discussed below.

Aggregating Proofs and Precomputing All Proofs. Aggregating proofs is not discussed and it is unclear if the
scheme can be modified to support it. Precomputing all proofs efficiently is not discussed either to the best of our
knowledge, but it is possible. The key idea is to notice that computing n proofs separately actually repeats a lot of
work. If we avoid re-doing previously-done work, all proofs can be computed in O(n log n) time. We reflect this in
Table 2.

D.5 Complexities of TCZ [TCZ+20,Tom20]

In their paper on scaling threshold cryptosystems, Tomescu et al. [TCZ+20] present a technique for computing n
logarithmic-sized evaluation proofs for a KZG committed polynomial of degree t in O(n log t) time. Later on, Tomescu
describes a full VC based on this technique from KZG commitments [Tom20, Sec 9.2].

Public Parameters. The proving key is prk = ((gτ
i

)i∈[0,n−1], (g
Li(τ))i∈[0,n)) and is O(n) sized. Importantly, n is

assumed to be a power of two, and Li(X) =
∏
j∈[0,n),j 6=i

X−ωj
ωi−ωj where ω is a primitive nth root of unity [vzGG13a].

The verification key is vrk = (g, (gτ
2i

)i∈[blog2 (n−1)c], (g
τ i)i∈|I|), where |I| is the size of the largest subvector whose

proof the verifier should be able to check, and is thus O(|I|)-sized. The ith update key upki is the authenticated
multipoint evaluation tree (AMT) of Li(X) at all points (ωi)i∈[0,n) (see [TCZ+20, Sec III-B] and [Tom20, Ch 9]). This
AMT will be O(log n)-sized, consisting of a single path of non-zero quotient commitments leading to the evaluation of
Li(ωi) [Tom20, Sec 9.2.2].

Commitment. A commitment is c = gφ(τ) where φ(ωi) = vi,∀i ∈ [0, n) so that φ(X) can be computed with O(n log n)
field operations via an inverse Discrete Fourier Transform (DFT) [CLRS09, Ch 30.2] and O(n) exponentiations. Com-

mitment updates remain the same as in the KZG-based scheme from Appendix D.3: c′ = c ·
(
gLj(τ)

)δ
, where δ is the

change at position j in the vector and the Lagrange polynomial commitment can be obtained from upkj .

Proofs for a vi. A proof for vi is:

πi = (gqw(τ))w∈[1+blog (n−1)c] (75)

Here, each qw(X) is a quotient polynomial along the AMT tree path to φ(ωi). The proof is O(log n)-sized and can
be computed by “repeatedly” dividing φ(X) by accumulator polynomials of ever-decreasing sizes n/2, . . . , 4, 2, 1 in

T (n) = O(n log n) + T (n/2) = O(n log n) field operations, and committing to each qw(X) using the gτ
i

’s in the prk
with T ′(n) = O(n) +T ′(n/2) = O(n) exponentiations. (“Repeatedly” dividing means we first divide φ(X) by a degree
n/2 accumulator. Then, we take the remainder of this division and divide it by the degree n/4 accumulator. We then
take this remainder and divide it by a degree n/8 accumulator. And so on, ensuring the remainder degrees always

halve.) The proof can be verified in O(log n) time using the gτ
2i

’s from the vrk:

e(c/gvi , g) =
∏

w∈[1+blog (n−1)c]

e(gqw(τ), gaw(τ)) (76)

Here, the aw(X)’s denote the accumulator polynomials along the AMT path to φ(ωi), which are always of the form

X2i − c for some constant c and some i ∈ [0, blog (n− 1)c].
Proof Updates. If any vector element vj changes to vj + δ, the proof πi can be updated in O(log n) time. (It
could be that j = i.) The idea is to consider the quotient commitments gqw(τ) along πi’s AMT path and the guw(τ)

commitments along upkj ’s AMT path. For all locations w where the two paths intersect, the quotient commitments

are combined in constant time as gq
′
w(τ) = gqw(τ) ·

(
guw(τ)

)δ
. Since there are at most O(log n) locations w to intersect

in, this takes O(log n) exponentiations. This new π′i with quotient commitments gq
′
w(τ) will verify against the updated

c′ commitment defined earlier.

Subvector Proofs for (vi)i∈I This scheme uses the same subvector proof as the original KZG-based scheme in
Appendix D.2. Thus, the subvector proving time is O(n log n+ |I| log2 |I|) and the subvector proof verification time is
O(|I| log2 |I|) time.

Aggregating Proofs and Precomputing All Proofs. Aggregating proofs is not discussed and it is unclear if the
scheme can be modified to support it. Precomputing all logarithmic-sized proofs efficiently is possible via the AMT
technique in O(n log n) time.

D.6 Complexity of LY [GRWZ20,LY10] or “Pointproofs”

Gorbunov et al. [GRWZ20] enhance the VC by Libert and Yung [LY10] with the ability to aggregate multiple VC
proofs into a subvector proof. (Additionally, they also enable aggregation of subvector proofs across different vector
commitments, which they show is useful for stateless smart contract validation in cryptocurrencies.) In this scheme,
we assume the vector v = [v1, v2, . . . , vn] is indexed from 1 to n.

Public Parameters. Their scheme works over Type III pairings e : G1 × G2 → GT . Let g1, g2, gT be generators of
G1,G2 and GT respectively. The proving key prk = ((gα

i

1)i∈[0,2n]\{n−1}, (g
αi

2)i∈[0,n], g
αn+1

T). Note that gα
n+1

1 is “missing”

from the proving key, which is essential for security. The verification key vrk = ((gα
i

2)i∈[1,n], g
αn+1

T). The ith update key

upki = gα
i

1 . They only support updating commitments, but proofs could be made updatable at the cost of linear-sized
update keys.

Commitment. A commitment is c =
∏
i∈[n]

(
gα

i

1

)vi
= g

∑
i∈[n] viα

i

1 and can be computed with O(n) exponentiations. If

any vector element vj changes to vj+δ, the commitment can be updated in O(1) time using as c′ = c·(upkj)δ = c·(gαj1)δ.

Proofs for a vi. A proof for vi is obtained by re-committing to v so that vi lands at position n+1 (i.e., has coefficient
αn+1) rather than position i (i.e., has coefficient αi). Furthermore, this commitment will not contain vi: it cannot,

since that would require having gα
n+1

1 . To get position i to n + 1, we must “shift” it (and every other position) by
n+ 1− i. Thus, the proof is:

πi = g
∑
j∈[n] vjα

j+(n+1)−i

1 (77)

= (c/gviα
i

1)α
(n+1)−i

(78)

The proof is constant-sized and can be computed with O(n) exponentiations. It can be verified in O(1) time using

gα
(n+1)−i

2 from vrk:

e(c, gα
(n+1)−i

2) = e(πi, g2)
(
gα

n+1

T

)vi
(79)

Updating the proof is not discussed but is possible in O(1) time the update keys are tweaked to be linear rather than
constant-sized.

Subvector Proofs for (vi)i∈I A O(1)-sized subvector proof for vI is a product of individual, randomized proofs
πi,∀i ∈ I. First, all |I| proofs πi are computed in O(|I|n) exponentiations as described above. Second, for each i ∈ I,
ti = H(c, I, vii∈I) is computed using a random oracle H : {0, 1}∗ → Zp. Third, the subvector proof πI is computed as:

πI =
∏
i∈I

πtii (80)

Thus, the overall time to compute a subvector proof is O(|I|n). The subvector proof can be verified in O(|I|) time

using (gα
(n+1)−i

2)i∈I from vrk as:

e

(
c,
∏
i∈I

(
gα

(n+1)−i

2

)ti)
= e(πI , g2)

(
gα

n+1

T

)∑
i∈I viti ⇔ (81)

e

(
c, g

∑
i∈I tiα

(n+1)−i

2

)
= e

(∏
i∈I

πtii , g2

)
g
αn+1 ∑

i∈I viti
T ⇔ (82)

= e

(∏
i∈I

πtii , g2

)
e

(
g
αn+1 ∑

i∈I viti
1 , g2

)
⇔ (83)

= e

(∏
i∈I

πtii · g
αn+1 ∑

i∈I viti
1 , g2

)
⇔ (84)

= e

(∏
i∈I

πtii ·
∏
i∈I

gα
n+1viti

1 , g2

)
⇔ (85)

= e

(∏
i∈I

(
πi · gα

n+1vi
1

)ti
, g2

)
(86)

Recall that πi = (c/gviα
i

1)α
(n+1)−i

.

e

(
c, g

∑
i∈I tiα

(n+1)−i

2

)
= e

(∏
i∈I

(
(c/gviα

i

1)α
(n+1)−i

· gα
n+1vi

1

)ti
, g2

)
⇔ (87)

= e

∏
i∈I

(
(c/gviα

i

1) · g
αn+1vi

α(n+1)−i
1

)tiα(n+1)−i

, g2

⇔ (88)

= e

(∏
i∈I

(
(c/gviα

i

1) · gviα
i

1

)tiα(n+1)−i

, g2

)
⇔ (89)

= e

(∏
i∈I

ctiα
(n+1)−i

, g2

)
⇔ (90)

= e
(
c
∑
i∈I tiα

(n+1)−i
, g2

)
⇔ (91)

= e

(
c, g

∑
i∈I tiα

(n+1)−i

2

)
(92)

Aggregating Proofs and Precomputing All Proofs. Recall that a subvector proof works only through aggregating
individual proofs and that the cost of aggregation was computing |I| hashes and an O(|I|)-sized multi-exponentiation.
Thus, aggregation takes O(|I|) time. Finally, precomputing all proofs efficiently is not discussed. Naively, it can be
done in O(n2) time.

D.7 Complexity of our Lagrange-based aSVC from Section 3.3

Our scheme builds upon previous VCs using KZG commitments [CDHK15,KZG10]. Since we give its full algorithmic
description in Section 3.4.4, this section will be briefer than previous ones.

Public Parameters. The proving key, verification key and ith update key are O(n), O(|I|) and O(1)-sized, respec-

tively. Similar to Appendix D.5, n is assumed to be a power of two, and Li(X) =
∏
j∈[0,n),j 6=i

X−ωj
ωi−ωj where ω is a

primitive nth root of unity [vzGG13a].

Commitment. A commitment is c =
∏
i∈[0,n) `

vi
i = gφ(τ) where φ(X) =

∑
i∈[0,n) Li(X)vi and φ(ωi) = vi. If any

vector element vj changes to vj + δ, the commitment can be updated in O(1) time using as c′ = c · (upkj)δ = c · (`j)δ.

Proofs for a vi. A proof for vi is:

πi = g
φ(τ)−vi
τ−ωi = gqi(τ) (93)

However, note that:

φ(τ)− φ(ωi)

τ − ωi
=

∑
j∈[0,n) Lj(τ)vj − vi

τ − ωi
(94)

=

∑
j∈[0,n)\{i} Lj(τ)vj

τ − ωi
+
Li(τ)vi − vi
τ − ωi

(95)

=
∑

j∈[0,n)\{i}

vj
Lj(τ)

τ − ωi
+ vi
Li(τ)− 1

τ − ωi
(96)

Recall from Section 3.4.2 that (1) the ith update key contains a KZG commitment ui to Li(τ)−1τ−ωi and that (2) the ai’s

and aj ’s from upki and upkj can be used to compute in O(1) time a KZG commitment ui,j to
Lj(τ)
τ−ωi . (Note that the

partial fraction decomposition only requires evaluating a degree-1 polynomial at two points. Also, computing A′(ωj)
can be done in O(1) time as explained in Appendix A.) Thus, the proof πi can be computed in O(n) field operations
and O(n) exponentiations as:

πi = gqi(τ) =
∏

j∈[0,n)\{i}

(ui,j)
vj · (ui)vi (97)

Table 4. Asymptotic comparison of our aSVC with (aS)VCs based on hidden-order groups. n is the vector size, b is the subvector
size, ` is the length in bits of vector elements, N = n` and λ is the security parameter. For schemes based on hidden-order
groups, the complexities in the table are asymptotic in terms group operations rather than exponentiations. This gives a better
sense of performance, since exponents cannot be “reduced” in hidden-order groups as they can in known-order groups. We try
to account for field operations (of size 2λ bits), but quantifying them precisely in these schemes can be very cumbersome. Also,
since they are much faster, for the most part they can be safely ignored. For our aSVC scheme, we give the same complexities
in terms of group exponentiations, pairings and field operations (see Appendix D.7 for details). Because of this, the reader must
be careful when comparing our scheme with the other schemes in this table: a group exponentiation in our scheme is roughly
equivalent to O(λ) group operations in the hidden-order group schemes.

(aS)VC scheme |prk| |vrk| |upki| Com.
Com.
upd.

|πi|
Prove
one
vi

Verify
one
vi

Proof
upd.

Prove
subv.
(vi)i∈I

Verify
subv.
(vi)i∈I

Aggr-
egate

Prove
each

(vi)i∈[n]

BBF` [BBF19] 1 1 1 N lgN ` lgN ` lgN N lgN ` lgN + λ × N lgN b` lgN + λ b` lgN N lg2N

CFG1
` [CFG+20] 1 1 × N lgN × 1 N lgN ` lgN + λ × `(n− b) lgN b` lgN + λ b lg b lgN N lg2N

CFG2
` [LM19,CFG+20] 1 1 × N lgn × 1 N lgn ` × `(n− b) lg (n− b) `b lg b `b lg2 b N lg2 n

Our aSVC n b 1 n 1 1 n 1 1 b lg2 b+ n lgn b lg2 b b lg2 b n lgn

The proof can be verified in O(1) time using gτ from the vrk by computing two pairings:

e(c/gvi , g) = e(πi, g
τ/gω

i

) (98)

Proof Updates. If any vector element vj , j 6= i changes to vj + δ, the proof πi can be updated in O(1) time using
ai, aj from upki, upkj . First, one computes ui,j in O(1) time as described in the previous paragraph. Then, one updates

π′i = πi · (ui,j)δ in O(1) time. This new π′i will verify against the updated c′ commitment defined earlier. If vi changes

to vi + δ, the proof πi is updated in O(1) time using ui from upki as π′i = πi · (ui)δ (see Section 3.4.2).

Subvector Proofs for (vi)i∈I We use the same style of subvector proofs as in Appendix D.2. Thus, the subvector
proving time is O(n log n+ |I| log2 |I|) and the subvector proof verification time is O(|I| log2 |I|) time.

Aggregating Proofs and Precomputing All Proofs. Aggregating all proofs (πi)i∈I requires computing coefficients
ci = 1/A′I(ω

i),∀i ∈ I using partial fraction decomposition (see Section 3.4.1). This can be done by (1) computing
AI(X) =

∏
i∈I(X−ωi) in O(|I| log2 |I|) field operations, (2) computing its derivative A′I(X) in O(|I|) field operations

and (3) evaluating A′I(X) at all (ωi)i∈I using a multipoint evaluation in O(|I| log2 |I|) field operations [vzGG13b].
Then, the subvector proof can be aggregated with O(|I|) exponentiations as:

πI =
∏
i∈I

πcii (99)

Thus, aggregation takes O(|I| log2 |I|) time.
Finally, precomputing all proofs can be done efficiently in O(n log n) time using the FK technique [FK20].

Slower Commitment Time for Faster Subvector Prove Time. When comitting to a vector, we can use the FK
technique to precompute all n proofs in O(n log n) time and store them as auxiliary information. Then, we can serve
any individual proof πi in O(1) time and any subvector proof in O(|I| log2 |I|) time by aggregating it from the πi’s.

E Complexity of VCs Based on Hidden-order Groups

We give complexities of VCs based on hidden-order groups in Table 4. These can be challenging to describe succinctly
due to the many variable-length integer operations that arise. In an effort to keep complexities simple without leaving
out too much detail, we often measure (and even approximate) complexities in terms of operations in a finite field of size
22λ (e.g., additions, multiplications, computing Bézout coefficients, Shamir tricks), where λ is our security parameter.
Another reason to do so is for fairness with VC schemes in known-order groups, which also count operations in finite
fields of size 22λ. Otherwise a 2λ-bit multiplication would be counted as O(λ log λ) in schemes such as BBF` [BBF18]3

and as O(1) time for schemes like KZG (see Appendix D.2).

The Shamir Trick. The “Shamir Trick” [Sha81, BBF18] can be used to compute an eth root of g given an e1th
root and an e2th root where e = e1e2 and gcd(e1, e2) = 1. The idea is to compute Bézout coefficients a, b such that

ae1 + be2 = 1. Then,
(
g

1
e1

)b (
g

1
e2

)a
= g

be2
e1e2 g

ae1
e1e2 = g

ae1+be2
e1e2 = g

1
e1e2 . Note that |a| ≈ |e2 and |b| ≈ |e1|.

3 Assuming recent progress on multiplying b-bit integers in O(b log b) time.

E.1 Complexity of BBF` [BBF18,BBF19]

In this scheme, we assume the vector v = [v1, v2, . . . , vn] is indexed from 1 to n.

Public Parameters. Let ` denote the size of vector elements in bits. Let n denote the number of vector elements.
Let N = `n. Let G? denote a hidden-order group and g be a random group element in G?. Let H : [N] → Primes be
a bijective function that on input i outputs the ith prime number pi. (Note that |pN | = log (`n) bits.) The prk,vrk
consists of g. This scheme does not support “fixed” update keys compatible with our definitions. Instead, the ith
update key w.r.t. a commitment c is “dynamic” and consists of a VC proof for vi that verifies against c. This does not
appear to be problematic as our VC.VerifyUPK definition (see Section 3.1) can be updated to verify the upk against
the commitment c.

Commitment. An `-bit vector element vi can be written as a vector of ` bits (vi,j)j∈[0,`−1] Then, each bit vi,j is mapped
to the unique prime p(i−1)·`+j . Put differently, each vi is mapped to ` unique primes (p(i−1)·`, p(i−1)·`+1, . . . , p(i−1)·`+(`−1)).

Then, for each vi, take the product of all primes corresponding to non-zero bits as Pi =
∏
j∈[0,`−1] vi,j ·

(
p(i−1)·`+j

)
.

Note that |Pi| = O(` log (`n)). A commitment to the vector v = (vi)i∈[n] will be an RSA accumulator over these Pi’s:

c = g
∏
i∈[n]

∏
j∈[0,`−1] vi,j ·(p(i−1)·`+j) (100)

= g
∏
i∈[n] Pi (101)

The exponent of c is a product of at most `n primes, with the biggest prime having size O(log (`n)). Thus,
computing the O(1)-sized commitment c takes O(`n log (`n)) group operations. (Note that, for hidden-order groups,
we are counting group operations rather than exponentiations. This is to give a better sense of performance, which
varies with the exponent size, since exponents cannot be “reduced” in hidden-order groups.)

Before discussing updating commitments, we must first discuss how a VC proof for vi works.

E.1.1 Proofs for a vi

A proof πi for vi must show two things:

1. That Pi corresponding to all non-zero bits is accumulated in c.
2. That Zi =

∏
j∈[0,`−1] (1− vi,j) ·

(
p(i−1)·`+j

)
corresponding to all zero bits is not accumulated in c. (Note that

|Zi| = |Pi| = O(` log (`n)).)

Proving One Bits are Accumulated. To prove Pi is “in”, an O(1)-sized RSA accumulator subset proof w.r.t. c
can be computed with O(`n log (`n)) group operations (via A.NonMemWitCreate∗ in [BBF18, Sec 4.2, pg. 15]):

π
[1]
i = g

∏
j∈[n],j 6=i Pj = c1/Pi (102)

To speed up the verification of this (part of) the proof, a constant-sized proof of exponentiation (PoE) [BBF18] is
computed in O(` log (`n)) field and group operations. We discuss this later in Appendix E.1.2.

Proving Zero Bits are Accumulated. To prove Zi is “out”, an O(` log (`n))-sized disjointness proof π
[0]
i can be

computed w.r.t. c (via A.NonMemWitCreate in [BBF18, Sec 4.1, pg. 14]). First, Zi must be computed, but we assume
this can be done in O(` log (`n)) field operations. Second, Bézout coefficients are computed such that α

∏
i∈n Pi+βZi =

1. Then, the disjointness proof is π
[0]
i = (gβ , α). Since |α| ≈ |Zi|, the proof is O(` log (`n))-sized. Although this

disjointness proof can be made O(1)-sized via proofs of knowledge of exponent (PoKE) proofs, this seems to break the
ability to aggregate VC proofs in BBF` [BBF18, Sec 5.2, pg. 20]. However, the prover can still include two constant-
sized PoE proofs for (gβ)Zi and for cα to make the verifier’s job easier, which costs him only O(` log (`n)) field and
group operations.

To analyze the time complexity of computing π
[0]
i , recall that:

1. The asymptotic complexity of computing Bézout coefficients on b-bit numbers is O(b log2 b) time.
2. b =

∣∣∏
i∈n Pi

∣∣ = O(n` log (`n)).

As a result, the Bézout coefficients takeO((n` log (`n)) log2 (n` log (`n)) = O(n` log (`n)(log n`+ log log (`n))2) = O(n` log3(`n))
time. However, since these are bit operations, we will count them as O(n` log (`n)) field operations. Furthermore, com-
puting gβ , where |β| ≈ |

∏
i∈[n] Pi| = O(n` log (`n)) takes O(n` log (`n)) group operations.

Overall, the time to compute πi is O(`n log (`n)) = O(`n log n).

E.1.2 Verifying a Proof for vi

To verify πi = (π
[0]
i , π

[1]
i), the verifier proceeds as follows. First, he computes Pi in O(` log (`n)) field operations. Second,

he checks that
(
π
[1]
i

)Pi
= c via the PoE proof in π

[1]
i using O(λ) group operations and O(` log n) field operations.

First, he parses (gβ , α) from π
[0]
i and checks if (gβ)Zicα = g. Since the prover included PoE proofs, this can be verified

with O(λ) group operations and O(` log (`n)) field operations.

E.1.3 Updates

Updating Commitments. Suppose vi changes v′i. For message bits that are changed from 0 to 1, updating the
commitment c involves “accumulating” new primes associated with those bits in c. For message bits that are changed
from 1 to 0, updating c involves removing the primes associated with those bits from c. Recall that, unlike other VC

schemes, the update key upki is set to be the VC proof πi that verifies against c. Also recall that π
[1]
i = c1/Pi from πi

is exactly the commitment c without any of the primes associated with vi. Thus, to update the commitment, we can

compute P ′i =
∏
j∈[0,`−1] v

′
i,jp(i−1)·`+j in O(`) field operations and set c′ =

(
π
[1]
i

)P ′i
in O(` log (`n)) group operations.

To process several updates for many updated elements (vi)i∈I with upki’s that all verify w.r.t. c, we have to take

an additional step. First, we use O(|I|) Shamir tricks [BBF18] on all the π
[1]
i ’s to obtain the commitment c1/

∏
i∈I Pi .

This commitment does not have any primes associated with the old elements (vi)i∈I . Then, we can add back the new
primes P ′i associated with the new elements (v′i)i∈I in O(|I|` log (`n)) group operations. We assume the O(|I|) Shamir
tricks can be done in O(|I|) field operations.

Updating Proofs. Proof updates are not discussed in [BBF19], but seem possible. We leave it to future work to
describe them and their complexity.

E.1.4 Subvector Proofs for (vi)i∈I

Recall that a normal VC proof for vi reasons about which primes associated with vi are (not) accumulated in c.
A subvector proof will do the same, except it will reason about primes associated with all (vi)i∈I . Thus, instead of
reasoning about two O(` log (`n))-sized Pi and Zi, it will reason about two O(|I|` log (`n))-sized

∏
i∈I Pi and

∏
i∈I Zi.

This does not affect the proof size, but affects the proving time in two ways.

First, computing π
[1]
i can be done faster in O(`(n−|I|) log (`n)) group operations. However, this speedup is negated

by an increase in the time to compute its associated PoE to O(|I|` log (`n)) field and group operations. Second,

computing π
[0]
i maintains the same asymptotic complexity, since it is dominated by computing gβ , which remains just

as expensive. However, π
[0]
i ’s size will increase to O(|I|` log (`n)), since the Bézout coefficient α will be roughly of size

|
∏
i∈I Zi|. Fortunately, the prover can avoid this by giving cα rather than α along with a PoKE proof (i.e., one group

element and one 2λ-bit integer), while maintaining the same asymptotic complexity. As before, the prover also gives

a PoE proof for
(
gβ
)Zi

to speed up the verifier’s job.

Because of the PoE proof, verification of π
[1]
i only requires O(λ) group operations as before but the number of field

operations increases to O(|I|` log (`n)). Similarly, the PoKE proofs will speed up verification of π
[0]
i to O(λ) group

operations but the O(|I|` log (`n)) field operations remain for verifying the PoE proof for
(
gβ
)Zi

.

E.1.5 Aggregating Proofs

Since aggregating RSA membership and non-membership witnesses is possible [BBF18], and BBF` VC proofs consist
of one RSA membership (subset) proof and one non-membership (disjointness) proof, it follows that aggregating proofs
is possible. We leave it to future work to analyze the complexity of aggregation, which has to be at least Ω(|I|` log (`n))
since it must read all |I| VC proofs as input, which are each O(` log (`n))-sized.

E.1.6 Precomputing All Proofs

Computing all membership and non-membership witnesses for an RSA accumulators over N elements is possible in
O(N logN) exponentiations [BBF18,STSY01]. Since for BBF` we have N = `n and an exponentiation costs O(log (`n))
group operations, this would take O(`n log2 (`n)) group operations. We are ignoring (1) the overhead of aggregating
membership and non-membership witnesses and (2) the overhead of computing PoE proofs, which we assume is
dominated by the cost to compute the witnesses.

E.2 Complexity of CFG1
` [CFG+20] and CFG2

` [CF13,LM18,LM19,CFG+20]

We refer the reader to [CFG+20, Table 1, pg. 35] for most of these these complexities.

Aggregating Proofs. For CFG1
` , aggregating |I| proofs into an I-subvector proof takes O(|I| log |I| logN) group

operations [CFG+20, Sec 5.1, pg. 23]. For CFG2
` , this takes O(`|I| log2 |I|) group operations [CFG+20, Sec 5.2, pg. 32].

Updating Proofs and Commitments. The paper does not discuss updating proofs and commitments, although
this seems possible.

Precomputing All Proofs. Unfortunately, [CFG+20] does not address precomputing all proofs efficiently. Nonethe-
less, this seems possible in CFG1

` . We believe the time will be dominated by the complexity of computing all N = `n
RSA accumulator membership witnesses in O(N log2N) group operations. Furthermore, since CFG2

` supports dis-
aggregation, all proofs can be computed efficiently using a disaggregation-based divide-and-conquer approach. We
estimate this will take O(`n log2 n) group operations.

	Aggregatable Subvector Commitments for Stateless Cryptocurrencies

