
APO Vault
Covenants For Dummies



Goals

● Explore how BIP-118 could be used to enable covenants.
● Build a simplified Vault system derived from current Vault proposals combined 

with BIP-118 sighashes and Taproot tapscripts.
● Get feedback on how this approach compares with other covenant proposals 

and if it can be improved - possibly through tweaks to BIP-118.

DISCLAIMER: I am not an expert, or even well versed in the covenant 
and vaults literature! 

The vault scheme I describe here is for research and educational 
purposes only. Links to more information are given at the end of this 
presentation.

https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki


How It Works

1. Funds are sent to a Taproot output that can only ever be spent by an Unvault 
Tx.

2. The Unvault Tx is a covenant that has a Taproot output that can only ever be 
spent by a Spend Tx or a Cancel Tx.

3. The Spend Tx can only be spent after a delay from when the Unvault Tx is 
committed.

4. During this delay, the Cancel Tx can instead be spent from the Unvault Tx, 
without any delay.

5. The Cancel Tx Taproot output can only ever be spent by the Unvault Tx.
6. The Spend Tx output can be any external address.

Loosely Based on github.com/revault/practical-revault/blob/master/revault.pdf

http://github.com/revault/practical-revault/blob/master/revault.pdf


Overview

Deposit 
Tx

Unvault 
Tx

Unvault
Tx

Spend 
Tx

Cancel 
Tx

External 
UTXO

External 
UTXO

🔒 👀

⏲ 🔓

🔒

�� �� ��

👀

Loosely Based on github.com/revault/practical-revault/blob/master/revault.pdf

http://github.com/revault/practical-revault/blob/master/revault.pdf


Covenant Key 🗝
(X,x) is a Schnorr public/private key pair used to sign covenant transactions

Pubkey X could be created with Musig2(A,B,C…)

Privkey x could be deleted after the vault transactions are created

Pubkey X is the internal public key used to create all Taproot covenant outputs

Privkey x is used to sign all Taproot covenant transactions 

Signatures created with privkey x are included in the actual tapscripts themselves 
instead of the witness script. This enables covenants because outputs commit to a 
specific transaction, including the transaction’s outputs and CSV spending 
delay.



Covenant Script

1. Check that Tx was signed with internal 
covenant pubkey X

2. APO Tapscript replaces 0x01 with the internal 
Taproot pubkey X

3. [Signature] is created from a Tx signed with 
the covenant privkey x using 
ANYPREVOUTANYSCRIPT

4. A covenant Tx prepends [Signature] to the 
script itself instead of revealing in the witness

5. Because of ANYPREVOUTANYSCRIPT, the 
[Signature] is valid for any Tx with the 
same outputs, timelocks and Taproot internal 
pubkey, even though the taproot scripts are 
different. [Signature]

0x01
OP_CHECKSIGVERIFY

Covenant Taproot Leaf Script

0x01
OP_CHECKSIGVERIFY

Taproot Leaf Script

[Signature]
[Leaf Script] 
[Leaf Control Block]

Taproot Witness

[Covenant Leaf Script] 
[Leaf Control Block]

Covenant Taproot Witness



Spending Key 

(Y,y) is a Schnorr public/private key pair used to spend value out of the vault

Pubkey Y could be created with Musig2(A,B)

Privkey y only needs a hot-wallet level of security used for routine spending

Privkey y is only used to sign transactions that spend from the vault to an 
externally owned UTXO

Signatures created with privkey y are added to the witness script at spending 
time, not when the vault is setup and are not included in the script itself like the 
vault covenant signature.



Fund Vault 
🔒

Funding UTXO
nSequence: default

spk: Unvault Taproot
amt: 50

Signature(Pk(F), Deposit 
Tx, sighash=ALL )

scriptWitness:

Pubkey(F)scriptPubkey

Vin:

Funding UTXO

50Amount

Vout:

Deposit TX nlocktime: 0



Unvault 
👀

Deposit UTXO
nSequence: default

spk: Spend Taproot
amt: 50

[Unvault Script] 
[Unvault Control Block]

scriptWitness:

Unvault TaprootscriptPubkey

Vin:

Deposit UTXO

50Amount

Vout:

Unvault Tx nlocktime: 0

[Signature(X, Unvault Tx, SINGLE | 
ANYPREVOUTANYSCRIPT)]
0x01
OP_CHECKSIGVERIFY

Covenant Taproot Leaf Script 
(Unvault)



Spend 
⏲ 🔓

Unvault UTXO
nSequence: CSV delay

spk: External
amt: 50

[Signature(Y, Spend Tx, 
SINGLE | 
ANYPREVOUT)]
[Spend Script] 
[Spend Control Block]

scriptWitness:

Spend TaprootscriptPubkey

Vin:

Unvault UTXO

50Amount

Vout:

Spend Tx nlocktime: 0

[Signature(X, Spend Tx, SINGLE | 
ANYPREVOUTANYSCRIPT)]
0x01
OP_CHECKSIGVERIFY
[Pubkey(Y)]
OP_CHECKSIGVERIFY
CSV_DELAY
OP_CHECKSEQUENCEVERIFY

Covenant Taproot Leaf Script 
(Spend)



Cancel 
🔒

Unvault UTXO
nSequence: default

spk: Unvault Taproot
amt: 50

[Cancel Script] 
[Cancel Control Block]

scriptWitness:

Spend TaprootscriptPubkey

Vin:

Vault UTXO

50Amount

Vout:

Cancel Tx nlocktime: 0

[Signature(X, Cancel Tx, SINGLE | 
ANYPREVOUTANYSCRIPT)]
0x01
OP_CHECKSIGVERIFY

Covenant Taproot Leaf Script 
(Cancel)



Further Reading

● Kanzure described a scheme in 2019 on the bitcoin-dev mailing list for 
creating vaults that do not require, but would benefit from, 
SIGHASH_NOINPUT.

● The Revault team has proposed a similar scheme for vaults that do not 
require covenants, but could potentially benefit from them.

● You can read more about covenants in the 2020 paper, Bitcoin Covenants: 
Three Ways to Control the Future.

● Python code to test this scheme can be found here (incomplete, still in 
progress!) 

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017229.html
https://github.com/revault/practical-revault/blob/master/revault.pdf
https://arxiv.org/pdf/2006.16714.pdf
https://arxiv.org/pdf/2006.16714.pdf
https://github.com/remyers/bitcoin/blob/covenant-anyprevout/test/functional/feature_apocovenant.py

