
A Security Framework for Distributed Ledgers

Christoph Egger1, Mike Graf2, Ralf Küsters2, Daniel Rausch2, Viktoria Ronge1, and Dominique Schröder1

1 Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Email: {christoph.egger,viktoria.ronge,dominique.schroeder}@fau.de

2 University of Stuttgart, Stuttgart, Germany
Email:{mike.graf,ralf.kuesters,daniel.rausch}@sec.uni-stuttgart.de

Abstract. In the past few years blockchains have been a major focus for security research, resulting
in significant progress in the design, formalization, and analysis of blockchain protocols. However, the
more general class of distributed ledgers, which includes not just blockchains but also prominent non-
blockchain protocols, such as Corda and OmniLedger, cannot be covered by the state-of-the-art in the
security literature yet: these distributed ledgers often break with traditional blockchain paradigms, such
as block structures to store data, system-wide consensus, or global consistency.
In this paper, we close this gap by proposing the first framework for defining and analyzing the security
of general distributed ledgers, with an ideal distributed ledger functionality, called Fledger, at the core
of our contribution. This functionality covers not only classical blockchains but also non-blockchain
distributed ledgers in a unified way.
To illustrate Fledger, we first show that the prominent ideal blockchain functionalities Gledger and GPL

realize (suitable instantiations of) Fledger, which precisely captures their security properties. This im-
mediately implies that their respective implementations, including Bitcoin, Ouroboros Genesis, and
Ouroboros Crypsinous, realize Fledger as well. Secondly, we demonstrate that Fledger is capable of pre-
cisely modeling also non-blockchain distributed ledgers by performing the first formal security analysis
of such a distributed ledger, namely the prominent Corda protocol. Due to the wide spread use of Corda
in the industry, in particular the financial sector, this analysis is of independent interest.
These results also illustrate that Fledger not just generalizes the modular treatment of blockchains to
distributed ledgers, but moreover helps to unify existing results.

1 Introduction

In the past few years, researchers made significant progress in formalizing and analyzing the security of
blockchain protocols [2,3,15,20,24]. Initially based on trace properties [14,19,32], blockchain security research
has moved to simulation-based security which leverages modularity and strong security guarantees offered
by universal composability (UC) frameworks [8, 10, 28]. Several ideal blockchain functionalities have been
proposed – most notably the functionality by Badertscher et al. [3], called Gledger, and its privacy-preserving
derivative GPL [24]. They have successfully been applied to prove the security of various, partly newly designed
blockchains (see, e.g., [2,3,24]). However, the more general class of distributed ledgers has been out of reach
so far:

Distributed ledgers are a generalization of blockchains. A distributed ledger allows for establishing con-
sensus on and distribution of data. While the class of distributed ledgers includes blockchains as a special
case, there are several prominent non-blockchain distributed ledgers, such as Corda [6], OmniLedger [27], and
Canton [37], which break with several central blockchain paradigms. For example, some of these ledgers do
not establish a system-wide consensus, do not use a block structure to store data, and/or do not provide cen-
tral security goals of traditional blockchains, such as global consistency. By departing from such blockchain
paradigms, these systems aim for higher transaction throughput and security properties like transaction
privacy that are not easily provided by blockchains. Both of these aspects are highly desired by industry,
thereby making non-blockchain distributed ledgers very attractive for practical use [13,18,21,22,33].

Due to the conceptual differences between traditional blockchains and non-blockchain distributed ledgers,
existing security definitions and results for blockchains do not apply to the class of distributed ledger protocols
in general, and non-blockchain distributed ledgers in particular (cf. Section 3 and Section 4).

1

In this work, we close this gap by proposing the ideal distributed ledger functionality Fledger. This
functionality provides a highly flexible tool set that allows for the modular security analysis of virtually
arbitrary distributed ledgers, thereby, for the first time, covering not only classical blockchains but also
non-blockchain distributed ledgers. It does so in a single unified framework.

1.1 The Ideal Ledger Functionality Fledger

As explained above, the main goal of our ideal distributed ledger functionality Fledger is to be able to capture
and analyze the security of essentially arbitrary distributed ledger protocols, including classical blockchains,
as well as higher-level protocols built thereupon. The design of and features offered by Fledger follow this
main goal:

Firstly, Fledger is highly flexible due to various parameters, modeled as generic subroutines. This not only
allows for capturing a wide range of distributed ledgers, but also a broad spectrum of security properties
without having to change the ideal functionality itself. Such security properties include both established
(blockchain) security notions, such as consistency and chain-growth, but also entirely new security properties
such as partial consistency, which we propose and formalize in this work for the first time (see our case study
below).

Secondly, the interface and core logic of Fledger abstract from technical details of the envisioned imple-
mentations/realizations, such as purely internal roles (miners or notaries), maintenance operations such as
mining, consensus mechanisms (proof-of-work, proof-of-stake, Byzantine agreement, . . .), and setup assump-
tions (networks with bounded delay, honest majorities, trusted parties, . . .). All of these details are left to
realizations/implementations. Hence, Fledger can not only be implemented using vastly different, e.g., con-
sensus mechanisms, but Fledger also offers a very simple, clean, and implementation-independent interface
to higher-level protocols which should facilitate their specification, modeling, and analysis.

Thirdly, Fledger is built for a very general interpretation of corruption: parties in a realization cannot
only be corrupted directly, and hence controlled by the adversary but whether or not they are considered
corrupted may also depend on the security assumptions, such as an honest majority. For example, if the
honest majority assumption, say in Bitcoin, is violated, one would consider all participants to be corrupted,
even if they are not directly controlled by the adversary, since it is impossible for honest parties to provide
any security guarantees in this case. We believe that this technique, which has already been successfully
employed in the non-blockchain UC literature before (e.g., in [29]), will improve security analyses in the
field of distributed ledgers. For example, and as also illustrated by our case study, the commonly used
environment-restricting wrapper is typically obsolete when using this general corruption model.

We show the power and generality of Fledger via two core results, as further explained below: Firstly, as
a fundamental result, we show that existing results for the modular security of blockchains carry over to
Fledger. Secondly, as a case study, we provide the first formal model and security analysis of a non-blockchain
distributed ledger, namely the important Corda system.

1.2 Covering Blockchains

To demonstrate that Fledger generalizes the existing literature on blockchains, we first show that Fledger is
indeed able to capture blockchains as a special case. Instead of illustrating this via a classical case study,
which would typically prove that, e.g., Bitcoin realizes Fledger, we choose a more general approach: We show
that the so-far most commonly used blockchain functionality Gledger [3] realizes a suitable instantiation of
Fledger, which precisely captures the security properties provided by Gledger, and demonstrate that this result
also holds for its privacy-preserving variant GPL [24]. Hence, any realization of Gledger and GPL also realizes
Fledger, which covers all published UC analyses of blockchains, including Bitcoin [3], Ouroboros Genesis [2],
and Ouroboros Crypsinous [24].

We want to emphasize that, while Gledger realizes Fledger, both functionalities differ fundamentally in
several core design choices. For example, Gledger is designed for the special case of blockchains and hence,
among others, requires the security property of consistency for realizations. In contrast, Fledger only requires

2

the existence of a totally ordered set of transactions. To give another example, Gledger provides a lower-level
interface to higher-level protocols than Fledger. Among others, Gledger includes an explicit “mining” operation
that has to be called manually by higher-level protocols. In contrast, Fledger keeps such operations implicit
and purely on the implementation side since higher-level protocols usually do not participate in mining (see
Section 3 for details). Similarly, the design rationales for GPL and Fledger are quite different as well.

We also discuss how other published ideal blockchain functionalities are captured by Fledger. Unlike Gledger
and GPL these functionalities, however, have only been used as setup assumptions for higher-level protocols.

Altogether, these results do not only show that Fledger can cover the blockchain literature, but also helps
to unify existing models and results.

1.3 Case study: Corda

We demonstrate that Fledger can capture non-blockchain distributed ledgers, making Fledger the first such
functionality. We do so via a case study. That is, we provide the first formal analysis of a non-blockchain
distributed ledger: Corda [5, 6, 34, 35]. We emphasize that existing ideal blockchain functionalities are not
suitable for capturing Corda (cf. Section 3 and Section 4).

Corda is one of the most widely used distributed ledgers. It is currently used by more than 60 companies,
including Hewlett Packard Enterprise, Intel, Microsoft, and also by NASDAQ [13, 18, 21, 33]. The main
application of Corda is within the financial industry, with many of the most important banks being part
of the R3 consortium that develops Corda, including Bank of America, Barclays, Commerzbank, Credit
Suisse, Deutsche Bank, HSBC, Royal Bank of Canada, Royal Bank of Scotland, and many more [23, 36].
Also SWIFT, which is used by literally every bank in the world, partners with R3 [12]. Her Majesty’s Land
Registry uses Corda [22] and several consulting groups identify Corda as the most prominent distributed
ledger technology and attest Corda to bring common standards to distributed ledgers [1, 4, 31].

Understanding the security and privacy of Corda is not only interesting due to its wide spread use
in practice, but also from a scientific perspective because of its conceptual differences to other distributed
ledger technologies, including blockchains. Compared to traditional blockchains, such as Bitcoin, three major
differences strike immediately. First, Corda does not structure transactions in blocks. The second one is the
lapse of a common state, i. e., no party has a full view of the state, which in turn improves privacy of
transactions. In particular, while blockchains strive to achieve the notion of consistency, where every party
is supposed to have the same full view of the global state, Corda aims to provide a weaker security notion,
which we call partial consistency. In partial consistency, which we formalize for the first time in this work,
parties see only part of the state but where these views put together should result in a consistent global
state. The third major difference is the inclusion of a number of trusted parties in Corda, so-called notaries,
which are used to prevent double-spending (see Section 4 for details).

In our case study, we model Corda and formalize its security properties via an instantiation of Fledger. We
then analyze the security of Corda, i.e., we show that it realizes Fledger. Our analysis uncovers and defines the
level of privacy provided for transactions in Corda, including several meta-information leakages that Corda
does not protect against. Furthermore, while the official specification of Corda requires security only under
the assumption that all of the notaries are honest, our analysis shows that Corda achieves security even in
the presence of some corrupted notaries, thereby improving on the official security claims.

1.4 Our Contributions

In summary, our contributions are as follows:

• We propose, in Section 2, an ideal functionality – called Fledger – for general distributed ledgers. It is the
first functionality that can be applied to non-blockchains distributed ledgers. As demonstrated in this
work, it covers both traditional blockchains and non-blockchain distributed ledgers. Our functionality
offers high flexibility to support a wide variety of different implementations with various security prop-
erties while simultaneously exposing a simple and implementation independent interface to higher-level
protocols. Thereby Fledger not only generalizes but also unifies the landscape of existing functionalities
for blockchains.

3

• We show in Section 3 that our functionality subsumes Gledger and GPL. In particular, this allows for
directly transferring all published results on the modular security of blockchains, such as Bitcoin and
the Ouroboros family, to our functionality. We further discuss that other published ideal blockchain
functionalities, which have so far only been used to model setup assumptions, are also captured by
Fledger.

• In Section 4, we provide the first formal model and security analysis of a non-blockchain distributed
ledger, Corda. As part of this, we develop and formalize the novel security notion of partial consistency.
Our analysis precisely defines the level of privacy achieved by Corda where, on the one hand, we find
that partly weaker security assumptions are necessary than officially required, and, on the other hand,
we find some subtle information leaks. Due to Corda’s wide-spread use in practice, this case study is a
significant contribution in its own right.

2 An Ideal Functionality for General Distributed Ledgers

In this section, we present the main contribution of our paper: our ideal functionality Fledger for distributed
ledgers, which includes “common” blockchains as a special case. At a high level, Fledger is designed around
a read and write operation offered to higher-level protocols. This captures the two common operations of
distributed ledgers, which allow parties from higher-level protocols to submit data to the ledger and get
access to data from other parties. As already mentioned in the introduction, Fledger further employs several
core concepts to keep this interface highly general and in particular independent of a specific realization. In
what follows, we explain Fledger in detail.

Description of Fledger: Our functionality Fledger is defined in the iUC framework [8], which is a re-
cently proposed, expressive, and convenient general framework for universal composability similar in spirit
to Canetti’s UC model [10]. We explain our functionality in such a way that readers familiar with the
UC model are able to understand it even without knowing the iUC framework (for interested readers see
Appendix A for a brief introduction).

The functionality Fledger is a single machine containing the core logic for handling incoming read and write
requests. In addition to this main machine, there are also several subroutine machines that serve as parameters
which must be instantiated by a protocol designer to customize the exact security guarantees provided by
Fledger. Figure 1 illustrates the static structure of the functionality.3 Intuitively, Fledger’s subroutines have the
following purposes: Fsubmit handles write requests and, e. g., ensures the validity of submitted transactions,
Fread processes read requests and, e. g., models situations that not all clients are up-to-date or ensures
privacy properties, Fupdate handles updates to Fledger’s global state, FupdRnd controls updates to Fledger’s
in-built clock, Finit determines the initial state of Fledger, and Fleak defines the information that leaks upon
corruption of a party in Fledger. As we exemplify in our Corda analysis in Section 4, these parameterized
subroutines can, in principle, also specify and even share their own additional subroutines. For example, all
of the parameterized subroutines could share and access an additional (potentially global) random oracle
subroutine in order to obtain consistent hashes for transactions throughout all operations. We note, however,
that only the fixed parameterized subroutines can directly access, influence, and change the state of Fledger.
Any additional subroutines are transparent to Fledger and only serve to further structure, modularize, and/or
synchronize the fixed parameterized subroutines. The rest of this section describes and discusses the static
parameters/subroutines in more detail.

During a run of Fledger, there can be multiple instances of the ideal functionality, each of which models
a single session of a distributed ledger that can be uniquely addressed by a session ID (SID). Each of these
instances/sessions handles an unbounded number of parties that can read and write from the ledger, where
a party ID identifies each party (PID). A party (in a session) can either be honest or corrupted, where only
honest parties obtain any form of security guarantees. In what follows, we explain – from the point of view
of honest parties – the process of submitting new transactions, adding those transactions to the global state,

3 We choose machines, instead of just algorithms, as parameters since they are more flexible in terms of storing and
sharing state, and since they can interact with the adversary.

4

Fledger

Fsubmit Fread Fupdate FupdRnd Finit Fleak

E

A

I/O Connection

Fig. 1. Overview of Fledger and its subroutines. The open headed arrow indicates that A also connects to all of
Fledger’s subroutines

and then reading from that state (cf. Figure 2 for a formal definition of these operations). Dishonest parties
and further details are discussed afterward.

Submitting transactions. During the run of Fledger, a higher-level protocol can instruct an honest party
pid in session sid of the distributed ledger to submit a transaction tx . Upon receiving such a request, Fledger

forwards the request to the subroutine Fsubmit,
4 which then decides whether the transaction is accepted, i.e.,

is “valid”, and which exact information of tx should leak to the adversary. As a result, Fledger expects to
receive a boolean value from Fsubmit indicating whether the transaction is accepted as well as an arbitrary
leakage. If the transaction tx is accepted, Fledger adds tx together with the submitting party pid and a time
stamp (see below) to a buffer list requestQueue that keeps track of transactions from honest parties which
have not yet been added to the global transaction list. In any case, both the acceptance result as well as the
leakage are then forwarded to the adversary.

As mentioned above, the specification of Fsubmit is a parameter that is left to the protocol designer to
instantiate. This allows for customizing how the format of a “valid transaction” looks like and whether sub-
mitted transactions are supposed to remain (partially) private or fully leak to the adversary on the network.
For example, most blockchains do not provide any privacy for transactions, and hence, for those blockchains
the leakage generated by Fsubmit would be the full transaction tx . We provide example instantiations of
Fsubmit as well as of all other subroutines in Sections 3 and 4.

Adding transactions to the global transaction list. At the core of Fledger is a global list of trans-
actions msglist, representing the global state of the ledger. These transactions are ordered, i.e., they are
numbered without gaps starting from 0, and form the basis for reading requests of honest parties. Further-
more, they are stored along with some additional information: the ID of the party which submitted the
transaction and two-time stamps indicating when the transaction was submitted, and when it was added
to the global state (we discuss the modeling of time further below). In addition to transactions submitted
by parties, we also allow the ledger to contain ordered meta-information represented as a special type of
transaction without a submitting party and without submitting a time stamp. This meta transaction can
be useful, e.g., to store block boundaries of a blockchain in those cases where this should be captured as an
explicit property of a realization. Similar to ideal functionalities for blockchains, the global transaction list
of Fledger is determined and updated by the adversary, subject to restrictions that ensure expected security
properties.

More specifically, at any point in time, the adversary on the network can send an update request to
Fledger. This request, which contains an arbitrary bit string, is then forwarded (together with a copy of
the internal state of Fledger) to the subroutine Fupdate. The exact format of the bit string provided by the
adversary is not a priori fixed and can be freely interpreted by Fupdate. This subroutine then computes and
returns to Fledger an extension of the current global state, an update to the list requestQueue of submitted
transactions that specify transactions which should be removed (as those have now become part of the global
state, or they became invalid concerning the updated global state), and leakage for the network adversary.

4 Requests forwarded to subroutines always also contain a copy of the full internal state of Fledger to allow subroutines
to make decisions based on, e.g., the current list of corrupted parties. In what follows, we keep this implicit for
better readability.

5

Main (excerpt):

recv (Submit,msg) from I/O: {Submission request from an honest identity
send (Submit,msg, internalState) to (pidcur, sidcur,Fsubmit : submit)
wait for (Submit, response, leakage) s.t. response ∈ {true, false}
if response = true:

reqCtr ← reqCtr + 1
requestQueue.add(reqCtr, round, pidcur,msg)

send (Submit, response, leakage) to NET

recv (Update,msg) from NET: {Update request triggered by the adversary.
send (Update,msg, internalState) to (ε, sidcur,Fupdate : update)
wait for (Update, listAdd, updRequestQueue, leakage)

s.t. listAdd ⊂ N× {round} × {tx, meta} × {0, 1}∗ × N× {0, 1}∗
max ← max{i|(i, , , , ,) ∈ msglist}
check ← listAdd 6= ∅ ∨ updRequestQueue 6= ∅
for i = max + 1 to max + |listAdd| do:

if @1(i, , , , ,) ∈ listAdd :
check ← false

if ∃(i, , meta, , a, b) ∈ listAdd ∧ (a 6= ⊥ ∨ b 6= ⊥):
check ← false

if check :
msglist.add(listAdd)
for all item ∈ updRequestQueue do:

requestQueue.remove(item)

reply (Update, check, leakage)

recv (Read,msg) from I/O: {Read request from an honest identity
send (InitRead,msg, internalState) to (pidcur, sidcur,Fread : read)
wait for (InitRead, local, leakage) s.t. local ∈ {true, false}
if local :

send responsively (InitRead, leakage) to NET (?)
wait for (InitRead, suggestedOutput)
send (FinishRead,msg, suggestedOutput, internalState)

to(pidcur, sidcur,Fread : read)
wait for (FinishRead, output, leakage′)
if output = ⊥:

Go back to (?) and repeat the request (local variables suggestedOutput, output, and leakage′ are
cleared)

send responsively (FinishRead, leakage′) to NET

wait for ack

reply (Read, output)
else:

readCtr ← readCtr + 1; readQueue.add(pid, readCtr, round,msg)
send (Read, readCtr, leakage) to NET

recv (DeliverRead, readCtr, suggestedOutput) from NET s.t.
(pid, readCtr, r,msg) ∈ readQueue: {Deliver network read

send (FinishRead,msg, suggestedOutput, internalState)
to(pidcur, sidcur,Fread : read)

wait for (FinishRead, output, leakage′)
if output 6= ⊥:

send responsively (FinishRead, readCtr, leakage′) to NET

wait for ack

readQueue.remove(pid, readCtr, r,msg)
send (Read, output) to (pid, sidcur, I/O)

else:
send nack to NET

Fig. 2. Excerpt of Fledger’s specification handling submit, read, and update operations. See Figure 5 to 7 in Ap-
pendix B for the full specification. pidcur identifies the current party and sidcur the current session of the ledger. round
models the current time.

Upon receiving the response from Fupdate, Fledger ensures that appending the proposed extension to msglist
still results in an ordered list of transactions. If this is the case, then Fledger applies the proposed changes to
both lists. In any case, Fledger sends the leakage from Fupdate as well as a boolean indicating whether any
changes have been applied to the adversary.

The functionality Fledger, by default, only guarantees that there exists a unique and ordered global list
of transactions. Further security properties which should be enforced for the global state can be specified by
appropriately instantiating Fupdate. For example, Fupdate can be used to enforce the security properties of
double spending protection and no creation. On a technical level, such an instantiation of Fupdate would be
defined in such a way that it expects the incoming update requests from the adversary to contain a proposed
extension of the global state that does not cause double-spending and does not contain transactions for honest
parties that were not previously submitted. If the incoming request does not meet this criterion, Fupdate

denies the update request by returning an empty extension to Fledger. Otherwise, the changes proposed by
the adversary are returned to and then consequently applied by Fledger.

6

We note that the default guarantee provided by Fledger (existence of a unique and ordered global list of
transactions) is somewhat weaker than the security notion of consistency for blockchains, which additionally
requires that all honest parties also obtain the same (prefix of) that global state. Indeed, many distributed
ledgers, such as Corda, are not designed to and do not meet this notion of consistency in its traditional sense
(cf. our case study in Section 4). If desired, the property of consistency can, of course, also be captured in
Fledger, namely via a suitable instantiation of Fread (see below).

Reading from the global state. A higher-level protocol can instruct a party of Fledger to read from the
global state. There are two types of reading requests that we distinguish, namely, local and non-local read
requests: a local read request generates an immediate output based on the current global state, whereas a
non-local read request might result in a delayed output, potentially based on an updated global transaction
list, or even no output at all (as determined by the adversary on the network). Local reads capture cases
where a client already has a copy of the ledger stored within a local buffer and reads from that buffer. In
contrast, a non-local read would instead model a thin client that first has to retrieve the data contained in
the ledger via the network, and hence, cannot make any guarantees on when (and if at all) the read request
finishes. Transferring the property of local reads from the realization also to the idealization is very convenient
for higher-level protocols built on top of the idealization: such higher-level protocols get the guarantee of
an immediate response to all read requests, instead of having to manually deal with arbitrarily delayed and
dropped responses as well as intermediate state changes.

More specifically, when Fledger receives a read request, the subroutine Fread is used in Fledger to decide
whether the read request is performed locally or non-locally (this decision might depend on, e.g., party names
or certain prefixes contained in the read-request) and which exact information leaks to the adversary by the
read operation. Fledger provides the adversary with the responses of Fread; the adversary is then supposed
to provide a bit string used to determine the output for the read request. This response is forwarded back
to Fread, which uses the bit string to generate the read request’s final output. The exact format of the bit
string provided by the adversary is not a priori fixed and can be freely interpreted by Fread. Finally, the
resulting output is forwarded by Fledger to the higher-level protocol.

On a technical level, for properly modeling local read requests, we use a feature of the iUC framework
that allows for forcing the adversary to provide an immediate response to certain network messages, i.e., the
adversary has to decide upon immediately and return an output for the read request and without modifying
the global state beforehand (in Figure 2 the operation “send responsively” indicates such network messages
with immediate responses). As shown in [7], this mechanism can, in principle, also be added to Canetti’s
UC model. Non-local read requests are split into two separate activations of Fread, with the adversary being
activated in-between: the adversary has to be able to delay a response to such requests and potentially also
update the global state.

Besides local and non-local reads, any further security properties regarding reading requests can be
specified by instantiating Fread appropriately. For example, Fread can be used to enforce the traditional
notion of consistency, where all honest parties read (prefixes of) the same global state (cf. Appendix C for
an example specification). In this case, the adversary’s response would be interpreted as a pointer to some
transaction in the global state. The resulting output generated by Fread would then be the prefix of the
global state up to and including the transaction that the pointer indicates. Fread can also be used to model
access and privacy properties of the global state where, e.g., parties may read only those transactions from
the global state where they have been involved in. We use the latter in our analysis of Corda (cf. Section 4).

Having explained the basic operations of submitting transactions, updating the global state, and reading
from that state, we now explain several further details and features of Fledger.

Initialization of Fledger. Distributed ledgers often rely on some initial setup information – in blockchains
often encoded in a so-called genesis block – that is shared between all participants, such as an initial stake
distribution or an initial set of PIDs that are allowed to participate in the ledger. To allow for capturing
such initially shared state Fledger includes an ideal initialization subroutine Finit that can be defined by a
protocol designer and is used to initialize the starting values of all internal variables of Fledger, including
transactions that are already part of the global transaction list (say, due to a genesis block that is assumed
to be shared by all parties).

7

Built-in clock. Our functionality Fledger includes a clock for capturing security properties that rely on
time. More specifically, Fledger maintains a counter starting at zero used as a timer. One can interpret this
counter as an arbitrary atomic time unit or the number of communication rounds determined by an ideal
network functionality. As mentioned above, both the transactions submitted to the buffer requestQueue and
transactions included in the global ordered transaction list msglist are stored with timestamps represent-
ing the time they were submitted respectively added to the global state. This allows for defining security
properties, which can depend on this information.

Higher-level protocols/the environment can request the current value of the timer, which not only allows
for checking that passed time was simulated correctly but also allows for building higher-level protocols that
use the same (potentially global) timer for their protocol logic. The adversary on the network is responsible
for increasing the timer. More specifically, he can send a request to Fledger to increase the timer by 1. This
request is forwarded to and processed by a subroutine FupdRnd, which gets to decide whether the request
is accepted and whether potentially some information is to be leaked to the adversary. If the request is
accepted, then Fledger increments the timer by 1. In any case, both the decision and the (potentially empty)
leakage are returned to the adversary.

The subroutine FupdRnd can be instantiated to model various time-dependent security properties, such
as various forms of liveness. If one wants to model, say, that a submitted transaction is included in the global
transaction list after at most time t has passed, then FupdRnd forbids the adversary from advancing time if
there are any transactions that have been in the buffer for time t and must therefore first be moved into the
global transaction list. We note that the timer in Fledger is optional and can be ignored entirely if no security
properties that rely on time should be modeled. In this case, FupdRnd can reject (or accept) all requests from
the adversary without performing any checks.

Roles in Fledger. By default, Fledger does not distinguish between different roles of participants. Every
party is a client with the same read and write access to the ledger, while any additional internal non-client
roles, such as miners and notaries, only exist in the realization. If one needs to further differentiate clients
into different client roles, e.g., to capture that in a realization certain clients can read only part of the global
transaction list while others can read the full list, then this can be done via a suitable instantiation of the
subroutines of Fledger: such client-roles can easily be added as prefixes within PIDs. The subroutines that
specify security properties, such as Fread, can then depend on this prefix and, e.g., offer a more or less
restricted access to the global transaction list.

Dynamic party registration. The ideal functionality Fledger keeps track of all currently registered
honest parties, including the time when they registered. An honest party is considered registered once it
issues its first read or write request, modeling that participants in a distributed ledger first register themselves
before interacting with the ledger. A higher-level protocol can also deregister a party by sending a deregister
command. Such a party is removed from the set of registered parties (and will be added again with a new
registration time if it ever issues another read or write request).

This mechanism allows for capturing security properties that depend on the (time of) registration. For
example, an honest party might only obtain consistency guarantees after it has been registered for a certain
amount of time (due to network delays in the realization). We note that, just like a clock, party registration is
an entirely optional concept that can be ignored by not letting any subroutines depend on this information.
This is useful to capture realizations that, e.g., do not model an explicit registration phase but rather assume
this information to be static and fixed at the start of the protocol run.

Corrupted parties. At any point in time, the adversary can corrupt an honest party in a certain session
of a distributed ledger. This is done by sending a special corrupt request to the corresponding instance of
Fledger. Upon receiving such a request, the ideal functionality uses a subroutine Fleak to determine the leakage
upon a party’s corruption. In the case of ledgers without private data where the adversary already knows all
transactions’ content, this leakage can be empty. However, in cases where privacy should be modeled and
hence the adversary does not already know all transactions, this leakage typically includes those transactions
that the corrupted party has access to.

As is standard for ideal functionalities, we give the adversary full control over corrupted parties. More
specifically, Fledger acts as a pure message forwarder between higher-level protocols/the environment and the

8

network adversary for all corrupted parties. Also, the adversary may also send a special request to Fledger to
perform a read operation in the name of a corrupted party; this request is then forwarded to and processed
by the subroutine Fread, and the response is returned to the adversary. Just as for Fleak, this operation is
mainly included for instantiations of Fledger that include some form of privacy for transactions, as in all
other cases, the adversary already knows the full contents of all transactions.

Novel interpretation of corruption in realizations. Typically, realizations of ideal functionalities
use the same corruption model as explained above. That is, a party in a realization considers itself to be
corrupted if it (or one of its subroutines) is under direct control of the adversary. While realizations with this
corruption model are supported by Fledger, we propose to use a more general interpretation of corruption in
realizations instead: parties in a realization of Fledger should consider themselves to be corrupted not just if
the adversary directly controls them, but also if an underlying security assumption, such as honest majority
or bounded network delay, is no longer met.

This interpretation of corruption, which is a novel concept in the field of universally composable security
for blockchains and distributed ledgers avoids having to encode specific security assumptions into Fledger

(and more generally ideal functionalities for blockchains and distributed ledgers), and hence, makes such
functions applicable to a wide range of security assumptions and corruption settings: the corruption status
of a party is sufficient to determine whether Fledger must provide security guarantees for that party. It is not
necessary to include any additional security assumptions of an intended realization in Fledger explicitly (e.g.,
by providing consistency only as long as there is an honest majority of parties) or to add a wrapper on top
of Fledger that forces the environment to adhere to the security assumptions. Such security assumptions can
rather be specified by and stay at the level of the realization, which in turn reduces the complexity of the
ideal functionality while enabling a wide variety of realizations based on potentially vastly different security
assumptions. We use this more general concept of corruption in our case study of Corda (cf. Section 4.2),
where a client considers itself to be corrupted not only if he is under the direct control of the adversary but
also if he relies on a corrupted notary. This models that Corda assumes (and indeed requires) notaries to be
honest in order to provide security guarantees. Importantly, this is possible without explicitly incorporating
notaries and their corruption status in Fledger. In fact, following the above rationale, Fledger still only has to
take care of the corruption status of clients.5

Public and private ledgers. Existing functionalities for blockchains have so far been modeled as so-
called global functionalities using the GUC extension [9] of the UC model. The difference between a global
and a normal/local ideal functionality is that, when a global functionality is used as a subroutine of a higher-
level protocol, then also the environment/arbitrary other (unknown) protocols running in parallel can access
and use the same subroutine. This is often the most reasonable modeling for public blockchains: here, the
same blockchain can be accessed by arbitrarily many higher-level protocols running in parallel. However,
such global functionalities do not allow for capturing the case of, e.g., a permissioned blockchain that is used
only within a restricted context. This situation rather corresponds to a local ideal blockchain functionality.

The iUC framework that we use here provides seamless support for both local and global functionalities,
and in particular allows for arbitrarily changing one to the other. Hence, our functionality Fledger can be
used both as a global or as a local subroutine for higher-level protocols, allowing for faithfully capturing
both public and private subroutine ledgers. This is possible without proving any of the realizations again,
i.e., once security of a specific realization has been shown, this can be used in both a public and private
context. As already explained at the beginning of this section, it is also possible to instantiate subroutines
of Fledger in such a way that they also are (partially) globally accessible, e.g., to provide a global random
oracle to other protocols. This can be done even in cases where Fledger itself is used as a private subroutine.

5 We note that this concept can easily be extended to capture multiple different levels of “broken” assumptions, e.g.,
to handle cases where the assumption for the security property of liveness is broken, but another assumption that
guarantees the property of consistency still holds. The main requirement here is that the environment can check
that real and ideal world are consistent in their “corruption levels”, e.g., by allowing the environment to request
the current corruption level. This extended mechanism can also be used with Fledger.

9

3 Covering Blockchain with Fledger

In this section, we demonstrate that Fledger is able to capture traditional blockchains as a special case.
Instead of illustrating this result via a specific case study in which we prove that, for example, Bitcoin
realizes Fledger, we choose a more general approach: Firstly, we show that the so far most commonly used
blockchain functionality Gledger [3] realizes a suitable instantiation of Fledger, which precisely captures the
security guarantees of Gledger, and demonstrate that this result also holds for its privacy-preserving variant
GPL [24]. Hence, any realization of Gledger and GPL also realizes Fledger. This in fact covers all published
UC analyses of blockchains, including Bitcoin [3], Ouroboros Genesis [2], and Ouroboros Crypsinous [24].
Secondly, we discuss that Fledger can also capture other published ideal blockchain functionalities, which so
far have been used only to model setup assumptions for higher-level protocols. Altogether, this illustrates
that Fledger not only generalizes but also unifies the landscape of ideal blockchain functionalities from the
literature.

The ideal blockchain functionality Gledger. Let us start by briefly summarizing the ideal blockchain
functionality Gledger (further information, including a formal specification of Gledger in the iUC framework,
is available in Appendix C). Gledger offers a write and read interface for parties and is parameterized with
several algorithms, namely validate, extendPolicy,Blockify, and predictTime, which have to be instantiated
by a protocol designer to capture various security properties. By default, Gledger provides only the security
property of consistency which is standard for blockchains. An honest party can submit a transaction to Gledger.
If this transaction is valid, as decided by the validate algorithm, then it is added to a buffer list. Gledger has
a global list of blocks containing transactions. This list is updated (based on a bit string that the adversary
has previously provided) in a preprocessing phase of honest parties. More specifically, whenever an honest
party activates Gledger, the extendPolicy algorithm is executed to decide whether new blocks are appended
to the global list of blocks, with the Blockify algorithm defining the exact format of those new blocks. Then,
the validate algorithm is called to remove all transactions from the buffer that are now, after the update
of the global blockchain, considered invalid. An honest party can then read from the global blockchain.
If the honest party has been registered for a sufficiently long amount of time (larger than parameter δ),
then it is guaranteed to obtain a prefix of the chain that contains all but the last at most windowSize ∈ N
blocks. This captures the security property of consistency. In addition to these basic operations, Gledger
also supports dynamic (de-)registration of parties and offers a clock, modeled via a subroutine Gclock, that
advances depending on the output of the predictTime algorithm (and some additional constraints).

As becomes clear from the above short description of Gledger, Fledger draws inspiration from Gledger.
However, there are several fundamental differences:

– Gledger is designed for capturing blockchains and therefore, e.g., requires that transactions are stored in
a block format (via the Blockify algorithm) and always provides the security property of consistency. In
order to capture also non-blockchain distributed ledgers, like Corda, which neither uses blocks nor provides
consistency, Fledger instead only requires the existence of a global ordered list of transactions, which is a
property that is common to distributed ledgers in general.

– Read operations in Gledger always output a full prefix of Gledger’s blockchain in plain, i.e., Gledger is built for
blockchains without privacy guarantees and those that do not modify/interpret data in any way. Fledger

includes a parameter Fread to modify and also restrict the contents of outputs for read requests, which in
turn allows for capturing, e.g., privacy properties (as illustrated by our Corda case study).

– Gledger takes a lower level of abstraction compared to Fledger. That is, Gledger has several details of the
envisioned realization built into the functionality and higher-level protocols have to take these details into
account. In other words, the rationale of how higher-level protocols see and deal with blockchains is different
to Fledger: Gledger requires active participation of higher-level protocols, while Fledger models blockchains
(and distributed ledgers) essentially as black boxes that higher-level protocols use. More specifically, Gledger
includes a mining or maintenance operation MaintainLedger that higher-level protocols/the environment
have to call regularly, modeling that higher-level protocols have to manually trigger mining or state
update operations in the blockchain for security to hold true. Similarly, the clock used by Gledger also
has to be regularly and manually triggered by higher-level protocols/the environment for the run of the

10

blockchain to proceed. In contrast, Fledger abstracts from such details and leaves them to the realization.
The motivation for this is that higher-level protocols usually do not (want to) actively participate in, e.g.,
mining operations and rather expect this to be handled internally by the underlying distributed ledger.

– Gledger includes a predictTime parameter that, based on the number of past activations (but not based
on the current global state/blockchain), determines whether time should advance. This parameter can be
synchronized with suitable definitions of the extendPolicy, which has access to and determines the global
state, to model time dependent security properties such as liveness. Fledger instead allows the adversary to
choose arbitrarily when time should advance. The single parameter FupdRnd, which has access to the full
global state, can then directly enforce time dependent security properties without requiring synchronization
with other parameters.

– Gledger uses algorithms as parameters, whereas Fledger uses subroutines. Our reasoning for choosing sub-
routines was explained in Footnote 3 on Page 4.

In summary, the main differences between Gledger and Fledger are due to (i) different levels of abstraction
to higher-level protocols and (ii) the fact that Gledger is built specifically for traditional blockchains. Both
of these aspects have to be addressed to show that Gledger is a realization of a suitable instantiation of
Fledger. To address (i), we use a wrapper Wledger that we add on top of the I/O interface of Gledger and
which handles messages from/to the environment. This wrapper not only translates the format of data
output by Gledger to the format used by Fledger (e.g., from a blockchain to a list of transactions). It also
handles the fact that Fledger does not include certain operations on the I/O interface by instead allowing the
adversary A to run the maintenance operation MaintainLedger and perform clock updates in Gclock even in
the name of honest parties. That is, A acts as a scheduler capturing real world behavior where blockchain
participants perform mining based on external events, such as incoming network messages, without first
waiting to receive an explicit instruction from a higher-level protocol to do so (see also the remarks following
Corollary 1). Issue (ii) is addressed via a suitable instantiation of the parameters of Fledger in order to
capture the same (blockchain) properties provided by Gledger respectively the parameterized algorithms of
Gledger. This instantiation roughly works as follows, with full definitions and details provided in Appendix C:

– Finit is defined to run the extendPolicy algorithm to generate the initial transaction list (that is read from
the blocks output by the algorithm). This is because extendPolicy might already generate a genesis block
during the preprocessing of the first activation of the functionality before any transactions have even been
submitted.

– Fsubmit executes the validate algorithm to check validity of incoming transactions.
– Fupdate executes the extendPolicy and Blockify algorithms to generate new blocks from the update proposed

by the adversary. These blocks are transformed into individual transactions which are appended to the
global transaction list of Fledger together with a special meta transaction that indicates a block boundary.
Additionally, the validate algorithm is used to decide which transactions are removed from the transaction
buffer.

– Fread checks whether a party has already been registered for an amount of time larger than δ and then
either requests the adversary to provide a pointer to a transaction within the last windowSize blocks or
lets the adversary determine the full output of the party. We note that Fread has to always use non-local
reads: this is because a read operation in Gledger might change the global state during the preprocessing
phase and before generating an output, i.e., read operations are generally not immediate (in the sense
defined in Section 2).

– If the parameters of Gledger are such that they guarantee the property of liveness, then FupdRnd can be
defined to also encode this property (cf. Section 2); similarly for the time dependent security property of
chain-growth and other time-related security properties.

– Fleak does not leak (additional) information as all information is leaked during submitting and reading.

Let FGledger
ledger be the protocol stack consisting of Fledger with all of its subroutines instantiated as sketched

above. Then we can indeed show that Gledger (with the wrapper Wledger) realizes FGledger
ledger (cf. Figure 3):

11

GledgerGclock

Wledger

≤ FGledger
ledger

interface
of Gledger

interface
of Gclock

interface
to E

interface
to E

Fig. 3. Realization relation of Gledger and FGledger
ledger as stated in Theorem 1. The system E denotes the environment,

modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally connected to the
network adversary.

Theorem 1 (informal). Let FGledger
ledger be as above and let Wledger be the wrapper for Gledger and its sub-

routine clock Gclock. Then:
(Wledger | Gledger,Gclock) ≤ FGledger

ledger

We formalize this theorem, including precise specifications of FGledger
ledger , Wledger, Gledger, and Gclock as well as

a full proof, in Appendix C. Using this theorem, we obtain that existing realizations of Gledger also apply to
and can be re-used with Fledger:

Corollary 1 (informal). Let Pblockchain be a realization of Gledger, e.g., Bitcoin or Ouroboros Genesis.

Furthermore, let QFGledger
ledger be a higher-level protocol using FGledger

ledger and let QP be the same protocol as Q but

using Pblockchain (plus the wrapper Wledger and Gclock) instead of FGledger
ledger . Then

QP realizes QFGledgerledger

Proof. This directly follows from Theorem 1, transitivity of the realization relation, and the composition
theorem of the iUC framework. ut

The corollary intuitively states that if we have analyzed and proven secure a higher-level protocol Q based
on FGledger

ledger , then Q remains secure even if we run it with an actual blockchain Pblockchain that realizes

Gledger. We emphasize again that the higher-level protocol Q modeled on top of FGledger
ledger does not gain

manual control over, e.g., the mining operations. However, we are not aware of any higher-level protocols
that require/make use of such manual control. This includes the lightning network which Kiayias et al. [25]
modeled and analyzed as a higher-level protocol on top of Gledger.

The ideal blockchain functionality GPL with privacy. Kerber et al. proposed a derivative of Gledger,
called GPL [24], to analyze and prove security, including transaction privacy, of the proof-of-stake protocol
Ouroboros Crypsinous: GPL is designed for and tailored towards proof-of-stake blockchain protocols while
also including mechanisms that allow for modeling privacy of transactions and during block generation. Using
similar techniques as used in Theorem 1, we can instantiate Fledger (denoted by FGPL

ledger) in such a way that
it captures the same security properties as the private blockchain functionality GPL:

Theorem 2 (informal). Let FGPL

ledger be the instantiation of Fledger that encodes the security properties

provided by GPL. Then we have that GPL (plus a wrapper) realizes FGPL

ledger.

We provide further details regarding GPL, its relation to Fledger, and provide a proof sketch in Appendix D.

Analogously to Corollary 1, this theorem directly implies that Ouroboros Crypsinous realizes FGPL

ledger.

Other ideal blockchain functionalities. Besides Gledger and GPL, there are also various other ideal
functionalities for blockchains [16, 17, 26], all of which are similar to the first ideal functionality introduced
by Kiayias et al. [26]. These functionalities have in common that they are relatively simple compared to
Gledger and GPL: They offer just a submission and read interface. Once a party submits a transaction, it is

12

immediately added to the global state. Furthermore, parties reading from that state always obtain the full
global state. Badertscher et al. explain in [3] that “the proposed ledger-functionality (introduced in [26]) is
too strong to be implementable by Bitcoin”, which holds true also for other blockchains from practice as well
as for the closely related functionalities from [16,17]. In other words, the main purpose of these functionalities
is to serve as idealized setup assumptions for building and analyzing higher-level protocols. Clearly, one can
instantiate Fledger appropriately to offer the exact same setup assumptions.

4 Case Study: Security and Privacy of the Corda Ledger

As already mentioned in the introduction, Corda is one of the most widely employed distributed ledgers. It
is a privacy-preserving distributed ledger where parties share some information about the ledger but not the
full view. It is mainly used to model business processes within the financial sector. In this section, we first
give a description of Corda. We then provide a detailed security and privacy analysis by proving that Corda
realizes a carefully designed instantiation of Fledger.

4.1 Description of the Corda Protocol

There are two types of participants in Corda: (i) Nodes or clients, which are the clients of Corda, i.e., they can
submit transactions to and read from the ledger, and (ii) notary services (called just notaries in what follows)
which are trusted services that are responsible for preventing double spending. Each participant is identified
via its public signing key, which is certified via one or more certificate agencies and then distributed via a
so-called network service provider to all participants. All participants communicate via secure authenticated
channels.

Clients own states (sometimes also called facts) in Corda. A state typically represents an asset that the
party owns in reality, e.g., money, bonds, or physical goods, like a car. States can be “spent” via a transaction,
which consumes a set of input states and creates a set of new output states. These transactions are validated
by notaries to prevent double spending of states.

States, transactions, attachments. On a technical level, a state is represented via a tuple consisting
of at least one owner of the state (identified via public signature keys) and an arbitrary bit string that encodes
the asset. States are stored as the outputs of transactions in Corda, similar to how Bitcoin stores ownership
of currency as an output of a transaction. Transactions in Corda consist of a (potentially empty) set of
pointers to input states,6 a (potentially empty) set of pointers to reference states (see below), a set of output
states, a non-empty set of participants (clients), a notary that is responsible for validating this transaction
and for preventing double spending of its inputs, a (potentially empty) set of pointers to smart contracts,
an arbitrary bit string that can encode parameters for the transaction, and an ID that is computed as a
hash over the transaction. The participants contain at least all owners of input and output states, who are
expected to confirm the transaction by a signature. One of the participants takes the role of an initiator, who
starts and processes the transaction, while the other participants, if any, act as so-called signees who, if they
agree with the transaction, only add their signatures to confirm the transaction. The set of input states can
be empty, which allows for adding new assets to Corda by creating new output states. The referenced smart
contracts are stored in so-called attachments with a unique ID (computed via the hash of the attachment)
and can be used to impose further conditions for the transaction to be performed. These conditions may
in particular depend on reference states, which, unlike input states, are not consumed by the transaction
but rather only provide some additional information for the smart contracts. For example, a smart contract
might state that an initiator’s car is bought by a signee only if its age is below a certain threshold. A reference
state might contain the manufacturing date of the car, including a signature of the manufacturer, which can
then be validated by the smart contract.7

6 Technically, such a pointer includes the ID of the transaction that created the state as an output as well as a
counter that determines which output state of that transaction is to be used.

7 In addition to reference states, smart contracts can also access so-called oracles, which are trusted third parties, to
provide data points. Since the same can also be achieved by reference states, we did not explicitly include oracles
in our analysis.

13

In the following, we call the set of input states, reference states, and smart contracts the direct depen-
dencies of a transaction. The (full) dependencies of a transaction is a set of all direct dependencies, their
respective direct dependencies, and so on. A transaction is called valid if the format of the transaction is cor-
rect, the set of participants includes all owners of input and output states, and all smart contracts referenced
by the transaction allow the transaction.

Partial views. In a Corda instance, the set of all transactions and attachments used by those transactions
forms a global directed graph (which is not necessarily a tree or a forest). However, clients do not obtain a
full view of this graph. Instead, each client has only a partial view of the global graph consisting of those
transactions they are involved in as an initiator/signee as well as the full dependencies of those transactions.
Generally speaking, a client forwards one of its known transactions tx (or one of its known attachments) to
another client only if both clients are involved in a transaction t̂x that (directly or also indirectly) depends
on tx, i.e., where both clients are allowed to and need to learn tx in order to validate t̂x.

This decentralized graph structure, where clients are supposed to learn only those parts that they actually
are involved in, facilitates privacy but makes it impossible for an individual client to detect and protect itself
against double spending attacks: Assume Alice has an input state representing a car and she uses this state
in a transaction with Bob. Now, Alice might use the same state again in a transaction with Carol. Both
Bob and Carol would assume that they now own Alice’s car, however, neither of them can detect that Alice
has sold her car twice since neither of them is able to see both transactions. To solve this problem, Corda,
as already briefly mentioned, introduces the concept of notaries, which are trustees that are responsible for
validating transactions and preventing double spending, as discussed in more detail in what follows.

Each transaction tx is assigned one notary N who is responsible for this transaction; N , just as the
participants, also learns the full dependencies of tx. To be able to detect double spending of input states, it
is required that tx only uses inputs for which N is also responsible for, i. e., the input state was produced as
an output state of a transaction with N as a notary. The notary then checks that tx is valid (which entails
checking that the set of participants of tx contains all owners of input states), there are valid signatures of
all participants, and also that no input state has already been used by another transaction. If this is the
case, the notary signs tx, which effectively adds tx to the global graph of Corda. To change the notary N
responsible for a certain state to a different one, say N ′, Corda offers a special notary change transaction:
This transaction takes a single input state, generates a single output state that is identical to the input, and
is validated by the notary N who is responsible for the input state. The responsibility for the output is then
transferred to N ′, i.e., future transactions need to rely on that notary instead.

Submitting transactions. A new transaction is first signed by the initiator, who then forwards the
transaction to all signees to collect their signatures. The initiator then sends the transaction together with
the signatures to the notary, who adds his own signature to confirm validity of the transaction. The initiator
finally informs all signees that the transaction was successful. The initiator is required to know the full
dependencies of the transaction such that he can distribute this information to signees and the notary. To
obtain this knowledge in the first place, which might include input states known only to, say, one of the
signees, clients/signees can proactively send known transactions to other clients. In what follows, we say that
a client pushes a transaction (see Appendix E.1 for details).

Customization and security goals. All protocol operations in Corda, such as the process of submitting
a transaction, can be customized and tailored towards the specific needs of a deployment of Corda. For
example, one could decide to simply accept transactions without signatures of a notary, with all of its
implications for security and double spending. Our description given above (and our analysis carried out
below) of Corda follows the predefined standard behavior which captures the most typical deployment as
specified by the documentation [35]. The white paper of Corda [6] states three major security goals:

Partial consistency: Whenever parties share some transaction, they agree on the content of the trans-
action as well as on (contents of) all dependencies. In this work we propose and formalize the novel notion
of partial consistency to capture this goal, which is stated only on an intuitive level in the white paper.
Double spending protection: Output states cannot be spent twice.
Privacy: A transaction between a group of parties is only visible to them and all parties that need to

validate this transaction as part of validating another (dependent) transaction in the future.

14

client

notary

Fro FcertFunicast

≤ Fc
ledger

Pc

interface
to E

interface
to E

Fig. 4. The Corda protocol Pc and the realization statement.

According to the Corda white paper, these goals should be achieved under the assumption that all notaries
behave honestly. Jumping slightly ahead, while some level of trust into notaries is clearly necessary, our
analysis refines this requirement by showing that participants enjoy security guarantees as long as they do
not rely on a dishonest notary (even if other notaries are dishonest).

4.2 Model of Corda in the iUC Framework

Our model Pc of Corda in the iUC framework closely follows the above description. Formally, Pc is the
protocol (client | notary,Funicast,Fcert,Fro) consisting of a client machine that is accessible to other
(higher-level) protocols/the environment, an internal notary machine, and three ideal subroutines Funicast,
Fcert, and Fro modeling secure authenticated channels, certificate based signatures using a EUF-CMA signa-
ture scheme, and idealized hash functions respectively (cf. Figure 4). In a run, there can be multiple instance
of machines, modeling different participants of the protocol. We consider a static but unbounded number of
participants, i.e., clients and notaries. We discuss technical details of our modeling in what follows.

Recall from above that signees are free to agree or decline an incoming transaction, depending on whether
their higher-level protocol wants to perform that transaction. We model agreement to a transaction by
letting the higher-level protocol submit the transaction (but not its dependencies) to the signee first. Upon
receiving a new transaction from an initiator, the signee then checks whether it has previously received
the same transaction from the higher-level protocol and accepts or declines accordingly. This modeling is
realistic: in practice, the users of the initiator and signee clients would typically have to first agree on some
transaction out of band, and can then input this information into the protocol. Since this modeling means
that transactions are submitted to both clients in the initiator and the signee roles, we assume w.l.o.g. that
transactions indicate which party is supposed to perform the initiation process (e.g., by listing this party
first in the list of participants).

In addition to explicit agreement of signees, we also model the process of pushing a transaction to another
client. On a technical level, this is modeled via a special submit request that instructs a client to push one
of its known transactions to some client with a certain PID. Explicitly modeling agreement of signees and
the process pushing of transactions, instead of assuming that this is somehow done out-of-band, allows for
obtaining more realistic privacy results.

A notary in Corda may not just be a single machine but a service distributed across multiple machines. In
our modeling, for simplicity of presentation, we model a notary as a single machine. However, the composition
theorem of the iUC framework then allows for replacing this single machine with a distributed system that
provides the same guarantees, thereby extending our results also to distributed notaries.

All network communication between parties of Corda is via an ideal functionality Funicast, modeling
authenticated secure unicast channels between all participants. This functionality also offers a notion of time
and guarantees eventual message delivery, i.e., time may not advance if there is any message that still needs
to be delivered and has been sent at least δ time units ago.

15

We allow dynamic corruption of clients and notaries. The adversary gains full control over corrupted
clients and notaries and can receive/send messages in their name from/to other parts of the protocol/higher-
level protocols. While the ideal subroutines are not directly corruptible, the adversary can simply corrupt
the client/notary using the subroutine to, e.g., sign messages in the name of that client/notary.

In addition to being explicitly corruptible by the adversary, clients also consider themselves to be (im-
plicitly) corrupted if they know a transaction that relies on (signatures of) a corrupted notary. This captures
the fact that Corda needs to assume honesty of notaries to be able to provide its security guarantees. Con-
sequently, if a client relies on a corrupted notary, then they cannot obtain the intended security guarantees
such as double spending protection anymore. Note that this modeling actually captures a somewhat weaker
security assumption than Corda: Corda officially requires all notaries to be honest in order to provide se-
curity guarantees. Our modeling only assumes that those notaries that a specific client actually relies on
are honest, i.e., our analysis shows that security guarantees can be given to clients even in the presence
of corrupted notaries as long as these notaries are not used by the clients. Note that here we use the more
general corruption model that we proposed in Section 2 to capture the security assumption of honest notaries
in Corda. Using this modeling we do not have to encode this assumption explicitly into Fledger.

4.3 Corda Realizes Fc
ledger

In this section, we present our security analysis of Corda. On a high-level, we will show the following security
properties for Corda:

Partial consistency: All honest parties read subsets of the same global transaction graph. Hence, for
every transaction ID they in particular also agree on the contents and dependencies of the corresponding
transaction.
Double spending protection: The global graph, which honest parties read from, does not contain double

spending.
Liveness: If a transaction involves honest clients only, then, once it has been approved by all clients, it

will end up in the global graph within a bounded time frame. Furthermore, after another bounded time
frame, all participating clients will consider this transaction to be part of their own partial view of the local
state, i.e., this transaction will be part of the output of read requests from those participants.
Privacy: A dishonest party (or an outside attacker) does not learn the body of a transaction tx8 unless

he is involved in tx (e.g., (i) because he is an initiator, signee, or the notary of tx, or (ii) because one of the
honest clients who has access to tx pushes tx or a transaction that depends on tx to the dishonest party).

Formally, we first define Fc
ledger, an instantiation of Fledger, which formalizes and enforces the above security

properties. This is the first formalization of the novel notion of partial consistency. As part of defining
this instantiation, we also identify the precise privacy level provided by Corda, including several (partly
unexpected) privacy leakages. That is, we define Fc

ledger to leak only the information that an attacker on
Corda can indeed obtain but not anything else, as discussed at the end of this section. We then show that
Corda indeed realizes Fc

ledger and discuss why this result implies that Corda itself in fact enjoys the above
mentioned properties. Finally, we discuss some other common security properties from the literature and
why they are not applicable to Corda.

On a technical level, we define the subroutines of Fledger to obtain the instantiation Fc
ledger = (Fledger |

Fc
submit,Fc

read,Fc
update,Fc

updRnd,Fc
init,Fc

leak,Fc
storage) as follows (cf. Figure 1, the additional subroutine Fc

storage

is explained below). We provide the formal specification of Fc
ledger in Appendix E.

In what follows, we call the set of transaction and attachment IDs a party pid may have access to in
plain its potential knowledge. More specifically, the potential knowledge of pid includes all transactions from
its buffer and global graph that involve only honest clients and which either directly involve pid , or which

8 We consider the “transaction body” to consist of the bit string contained in the transaction (and which might
contain, e.g., inputs for the smart contracts) as well as the bit strings contained in output states (encoding, e.g.,
assets modeled by those states). We consider everything else to be meta-information of the transaction, including
its ID, references to input states and smart contracts, and the set of participants.

16

have been pushed to pid by another honest party that knows the transaction. In addition, it also contains
arbitrary transactions that involve at least one corrupted client, with the exact set of transactions determined
by A.

– Fc
init is parameterized by a set of participants. It provides this set to Fledger.

– Fc
submit handles (i) transaction submission, (ii) attachment submission, and (iii) pushing transac-

tions/sending transactions proactively from one party to another party. In Case (i), Fc
submit ensures that

an incoming transaction tx of some party pid has the expected format, which includes checking that all
parties involved in the transaction are part of the predetermined set of participants. In addition, if pid
is the initiator of the transaction, then Fc

submit also performs two additional checks: firstly, it checks that
pid ’s current knowledge (provided by A) is a subset of its potential knowledge and that pid ’s current
knowledge contains all inputs used by tx, including inputs for inputs of tx and so on. Secondly, it checks
that tx is valid with respect to pid ’s current knowledge (this state is a subset of the potential knowledge
as determined by the adversary).

If a transaction passes all checks, then Fc
submit generates a new unique ID for that transaction and leaks

the metadata of the transaction, including the ID, references to the IDs of other transactions, the set
of involved parties, and length of the transaction body (cf. Footnote 8). If any of the involved clients
is corrupted, then the full transaction body is leaked as well. Further, if the (honest) initiator of the
transaction successfully validated the transaction that involves a corrupted client, the whole transaction
subgraph below the submitted transaction is leaked.9

If a party pid submits an attachments (Case (ii)), Fsubmit checks the validity of the attachment. If the
attachment passes the validity checks, Fc

submit queues it for pid ’s state and leaks the attachment ID and
the length of the attachment. In Case (iii), if a party pida (tries to) push a transaction identified by
txID to a party pidb, Fc

submit enforces that pida has access to all dependencies used in txID , i. e., Fsubmit

validates that all dependencies of tx are in the current knowledge of pida (and that the current knowledge
is a subset of pida’s potential knowledge, cf. Case (i)) and leaks that pida shared txID with pidb.

– Fc
update mainly handles the following operations: (i) expects updates to the global graph (proposed by

the adversary A) to contain two sets: a set of IDs of transactions/attachments from honest parties that
are in the transaction buffer (i.e., have previously been submitted by the honest party), and a set of
transactions/attachments from dishonest parties. Upon receiving this information, Fc

update checks that
transactions/attachments from dishonest clients match the expected format of transactions/attachments,
including unique IDs. Furthermore, Fc

update checks for all transactions in the extension that all honest
signees of the transaction have already agreed to the transaction. Finally, Fc

update also checks that the
resulting extended global graph does not contain double spending and is “complete”, i.e., for all trans-
actions in the global graph its inputs are also in the global graph. If any of the checks fails, the proposed
extension is rejected. Otherwise, it is applied to the global state, with transactions of honest parties that
have now been added to the global state being removed from the buffer set. Further, Fc

update allows to
finalize transaction push operations (cf. Case (iii) above).

– Fc
read always enforces local read operations. Upon receiving such a read request for an honest party

pid , the adversary is expected to provide a subgraph g of the global graph. This subgraph g must also
be a subgraph of the potential knowledge of pid , must be self-consistent, i.e., it must contain at least
the previous outputs to read requests of that party, it must be a subset of pid ’s current knowledge
(which needs to be a subset of pid ’s potential knowledge), and it must be complete (cf. Fc

update above).
Furthermore, if there is a transaction with an honest initiator in the potential knowledge of pid which
has been submitted at least 2δ time units ago, where δ is a parameter specifying the network delay, then
it must be included in g. The graph g is then returned as response to the read request.

Fread does not provide any information upon read requests of corrupted parties (this is because all of
the information that would be contained in the response to such a request has already been leaked by
Fsubmit and Fleak).

9 Observe that the initiator allows the involved parties of a transaction to query missing dependencies. Thus, this
operation grants a corrupted party access to this information.

17

– Fc
updRnd performs the following check upon receiving a time increment request. It looks for a transaction

tx in the buffer where all involved clients are honest, which has been submitted by the initiator and ac-
knowledged by all signees, and the last acknowledgment/the initiation (whatever came last) was received
at least ω(tx) time units ago.10 If such a transaction exists, then the time increment request is denied.
Otherwise, it is accepted.

– In Fc
ledger, we use the additional (technical) subroutines Fc

storage. Fc
storage provides an interface for all

other Fc
ledger subroutines to query the potential knowledge of a party. Further, it is used to process the

generation of unique IDs, to store them, to distribute them, and to access transaction/attachments by
ID. As explained in Section 2, being able to add additional subroutines such as Fc

storage is a feature of
Fledger. Here we use this feature to easily synchronize internal state used for bookkeeping purposes across
the subroutines of Fledger. Note that this addition does not require changing Fledger, which still only uses
the fixed set of parameterized subroutines.

– On corruption of a client, Fc
leak computes its potential knowledge (cf. Fc

submit above) and forwards this
information to A.

– To model Pc’s random oracle, the adversary A is also allowed to query Fc
update for transaction and

attachment IDs. A obtains the corresponding unique ID (which was potentially freshly generated if the
transaction did not exist in Fc

ledger yet).
– Due to potential leakage of transaction validity during the Corda protocol, Fc

read allows the adversary to
query the validity of transactions regarding a parties pid current state. Fc

read enforces that the current
state is a subset of the parties potential knowledge.

Using this instantiation of Fledger, we can state our main theorem:

Theorem 3. Let Pc and Fc
ledger be as described above. Then, Pc ≤ Fc

ledger.

Here we provide a proof sketch with the core intuition. The full proof is given in Appendix E.

Proof (sketch). We show that Fc
ledger leaks just enough details for a simulator to internally simulate a blinded

version of the Corda protocol. As mentioned and discussed at the end of this section, all leakages defined by
Fc

ledger are indeed necessary for a successful simulation since the same information is also leaked by Corda.
Hence, Fc

ledger precisely captures the actual privacy level of Corda. As explained above, all meta-information
of transactions leak, only transaction bodies stay private. The meta data information already allows to
execute all checks in the Corda protocol except for the validity check of the transaction body. For honest
participants, we can directly derive the validity of the transaction body from the leakage during transaction
submission of the transaction’s initiator and use this during the simulation.

Our simulator S (cf. proof of Theorem 6 in Appendix E for a full definition) internally simulates a blinded
instance of Pc, in the following called Pc. During the simulation, S uses dummy transactions generated from
the submission leakage. The dummy transaction is identified by the original transaction ID, contains all
leaked data, as explained above, and pads the transaction body such that the dummy version has the same
length as the original transaction. As S can extract the knowledge of honest parties, the transaction graph
structure, and the validity of transactions, S can derive all steps in Pc without having access to the full
data. In particular, S knows for all honest parties which transaction/attachment IDs are in the parties
knowledge. This allows it to perfectly simulate all network interaction of Pc as S knows when a party needs
to trigger, e. g., SendTransactionFlow or GetAttachment flows instead of directly simulating the approval
to a transaction. Further, S can keep states of honest parties in Pc and Fc

ledger synchronous such that read
requests lead to the same output in real and ideal world. Note that the output from S to Fc

ledger never fails.

Pc ensures that knowledge does not violate the boundaries of Fc
ledger, e. g., Pc’s build-in network Funicast

ensures delivery boundaries.
Regarding S interaction with the network: As corrupted parties send transactions and attachments in

plain to S and S can evaluate the validity of transactions (according to a parties knowledge), S has access

10 ω(tx) is a function that linearly depends on the network delay δ and the size of the subgraph defined by the
transaction tx and all of its inputs (including their respective inputs, etc.). Such a function is necessary due to the
way parties in Corda retrieve unknown dependencies for transactions.

18

to all relevant information to answer request/handle operations indistinguishably between Pc and Fc
ledger.

This is due to the fact that S replaces the dummy transaction by original transaction as soon as they leak
(and regenerate dependent data, especially signatures, to make both worlds indistinguishable).

We highlight two edge cases: Firstly, an attacker may try to break privacy of transactions by brute
forcing the hashes. As S queries Fc

ledger for IDs, this attack would be successful in both real and ideal world.
Secondly, when corrupted parties push arbitrary transactions to honest parties, S might not know whether
the validity check succeeds (since this transaction might reference input states that the corrupted party and
hence S does not know). In this case (and only in this case), S directly queries Fc

ledger for the validity of
the transaction according to the honest party’s knowledge. We will discuss both cases in more detail in the
following discussion. ut

We now discuss the implications of Theorem 3 for the security properties of Corda:

Partial consistency. By definition of Fc
read, the responses to read requests of honest parties are subsets

of the global graph. This directly implies that honest clients (i.e., clients that are neither controlled by the
adversary nor rely on a malicious notary) of Corda obtain consistent partial views of the same global state.

Double spending protection. By definition of Fc
update, the global graph does not contain any double

spending. Since this global graph is a superset of read outputs of honest parties (as per Fc
read), this implies

that Corda protects honest clients from double spending.

Liveness. Fc
updRnd guarantees that transactions which involve only honest clients end up in the global

graph after an upper bounded delay (once all clients have acknowledged the transaction). Furthermore,
Fc

read ensures that transactions with honest initiators end up in the local state of all honest signees after
another bounded time delay. By Theorem 3, these properties directly translate to Corda. A stronger liveness
statement is not possible for Corda. Firstly, if a notary is corrupted (and by extension all clients that rely
on this notary also consider themselves to be corrupted), then a transaction might never be signed by that
notary and hence not enter the global graph. Secondly, since the initiator is solely responsible for forwarding
responses from the notary, such a response might not end up in the local state of a signee if the initiator
misbehaves.

Privacy. Privacy needs a bit more explanation than the other properties. Firstly, observe that Fc
read

ensures that honest parties can only read transactions that are part of their potential knowledge, i.e., those
they are directly involved in or that have been forwarded by someone that already knew the transaction.
Furthermore, by definition of Fc

submit, if no dishonest client is involved in a new transaction, then only the
length of the body is leaked. For Corda, this implies that the body of a transaction that involves only honest
clients (and in extension an honest notary) stays secret from everyone, unless one of those clients intentionally
forwards the transaction to another party.

We can also derive what a dishonest client or dishonest notary in Corda can learn at most, thereby
determining the level of privacy that Corda provides: By definition of Fc

submit and Fleak, all of the metadata
of transactions is leaked. In contrast, the message bodies of transactions leak only if they involve a dishonest
client. Hence, an adversary on Corda learns at most the metadata of transactions, all transaction bodies that
use a dishonest notary, and all transaction bodies that involve a dishonest client. An adversary cannot learn
anything else since otherwise the simulation of dishonest clients/notaries would fail, i.e., Theorem 3 could
not be shown.

We note that Corda indeed leaks (some) meta-information of transactions. This is because an outside
adversary can observe the network communication, which in itself strongly depends and changes based on the
meta-information of a transaction. For example, the initiator of an honest transaction collects the approvals
of all signees, which makes it trivial to derive the set of participating clients. Similarly, the notary is obvious
from watching where a transaction is sent by the initiator after collecting approvals from signees. Even the set
of inputs to a transaction is partially visible as, e.g., the signees and the notary request missing inputs from
the initiator. While we slightly over approximate this information leakage by leaking the full meta-information
in Fc

ledger, it is not possible to obtain a reasonably stronger privacy statement for meta-information in Corda.

Furthermore, observe that the adversary on Fc
ledger is allowed to obtain IDs for arbitrary transactions. This

captures that the IDs of transactions in Corda are computed as hashes over the full transaction, including

19

the body of the transaction in plain. Hence, if an attacker gets hold of such an ID, then he can use it to try
and brute force the content of the transaction.

Finally, observe that an adversary on Fc
ledger is also allowed to validate arbitrary transactions with respect

to the current partial view of some honest client, which might in particular leak information about input
states. This captures the following attack on Corda: If an adversary is in control of a notary and he knows
an ID of a (currently secret) transaction tx from an honest client, then he can create (and let the notary
sign) a new transaction tx′ that uses one or more output states from the secret transaction tx as input. Now,
the adversary can push this transaction via a corrupted client to the honest client, which then verifies the
transaction and, depending on whether verification succeeds, adds tx′ to his partial view of the global state.
Since this is generally observable, the adversary learns the result of the verification, which, depending on the
smart contracts involved, might leak parts of tx.

We emphasize that both of the above leakages, respectively attacks, on Corda are possible only if an ID of
a transaction is leaked by a higher-level protocol, illustrating the importance of the IDs for secrecy. Since we
consider arbitrary higher-level protocols (simulated by the environment) in our proof, we cannot circumvent
these leakages. However, if we were to consider a specific higher-level protocol, say, Q using Corda/the ideal
ledger such that Q keeps the transaction IDs secret (at least for honest parties), then one can actually prove
that Corda in this specific context realizes a variant of Fc

ledger that does not leak transaction IDs, does not
give access to a hash oracle, and does not leak verification results. But, again, our results show that this is
not true in general.

Other security properties. As already explained in the introduction, Corda does not provide the
security property of consistency that is typically expected from blockchains. This is because consistency
requires all clients to obtain (a prefix of) the full global state of the ledger, whereas clients in Corda generally
obtain only a part of that global state.

In addition to consistency, the security literature for blockchains also often considers the security proper-
ties of chain-quality and chain-growth. These properties do not make sense for the case of Corda, which does
not have the concept of blocks. For example, chain-growth essentially collapses to the property of liveness
when interpreted on the level of individual transactions instead of blocks. Hence, we did not formalize and
analyze these properties.

5 Acknowledgments

This research was partially funded by the Ministry of Science of Baden-Württemberg, Germany, for the
Doctoral Program “Services Computing”.11

This work is also supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
as part of the Research and Training Group 2475 “Cybercrime and Forensic Computing” (grant number
393541319/GRK2475/1-2019) and by the state of Bavaria at the Nuremberg Campus of Technology (NCT).
NCT is a research cooperation between the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
the Technische Hochschule Nürnberg Georg Simon Ohm (THN).

References

1. Accenture: Accenture and SAP build prototype that uses distributed ledger technology to enable more efficient,
secure and reliable payments between banks and customers. https://newsroom.accenture.com/news/accenture-
and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-
payments-between-banks-and-customers.htm (10 2019), (Accessed on 05/26/2020)

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros Genesis: Composable Proof-of-Stake
Blockchains with Dynamic Availability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 913–930. ACM (2018)

11 http://www.services-computing.de/?lang=en

20

https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-payments-between-banks-and-customers.htm
https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-payments-between-banks-and-customers.htm
https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-payments-between-banks-and-customers.htm
http://www.services-computing.de/?lang=en

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a Transaction Ledger: A Composable Treatment.
In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10401, pp. 324–356.
Springer (2017)

4. BCG: Digital ecosystems in trade finance. https://image-src.bcg.com/Images/BCG Digital
Ecosystems in Trade Finance tcm38-229964.pdf (9 2019), (Accessed on 05/26/2020)

5. Brown, M., Brown, R.G.: Corda: A distributed ledger. https://www.r3.com/reports/corda-technical-
whitepaper/ (2019), (Accessed on 11/11/2019)

6. Brown, R.G.: The Corda platform: An introduction. https://www.r3.com/wp-content/uploads/2019/06/corda-
platform-whitepaper.pdf (2020), (Accessed on 28/05/2020)

7. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal Composition with Responsive
Environments. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security. Lecture Notes in Computer
Science, vol. 10032, pp. 807–840. Springer (2016), a full version is available at https://eprint.iacr.org/2016/
034.

8. Camenisch, J., Krenn, S., Küsters, R., Rausch, D.: iUC: Flexible Universal Composability Made Simple. In:
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 11923, pp. 191–221. Springer (2019), the full version is available at http:

//eprint.iacr.org/2019/1073
9. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with Global Setup. In: Vadhan,

S.P. (ed.) Theory of Cryptography, Proceedings of TCC 2007. Lecture Notes in Computer Science, vol. 4392, pp.
61–85. Springer (2007)

10. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Proceedings of
the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001). pp. 136–145. IEEE Computer
Society (2001)

11. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a Global Random Oracle. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014. pp. 597–608. ACM (2014)

12. CNBC: Swift announces tie-up with blockchain firm R3 at paris fintech forum.
https://www.cnbc.com/2019/01/30/swift-announces-tie-up-with-blockchain-firm-r3-at-paris-fintech-forum.html
(1 2019), (Accessed on 05/26/2020)

13. coindesk: Over 50 banks, firms trial trade finance app built with R3’s corda blockchain.
https://www.coindesk.com/over-50-banks-firms-trial-trade-finance-app-built-with-r3s-corda-blockchain (5
2019), (Accessed on 06/02/2020)

14. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and applications to provably secure
proof of stake. In: Financial Cryptography and Data Security 2019. LNCS, vol. 11598, pp. 23–41. Springer (2019)

15. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-
of-Stake Blockchain. In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10821, pp. 66–98. Springer (2018)

16. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party Virtual State Channels. In: Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 11476, pp. 625–656. Springer (2019)

17. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic Multi-Channel Updates with Constant Collateral in Bitcoin-
Compatible Payment-Channel Networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019. pp. 801–815. ACM (2019)

18. Forbes: NASDAQ partnership with blockchain firm R3 is great for crypto.
https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-with-r3-is-great-for-digital-
asset-adoption/ (5 2020), (Accessed on 05/26/2020)

19. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and Applications. In: Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9057, pp. 281–310. Springer (2015)

20. Graf, M., Küsters, R., Rausch, D.: Accountability in a Permissioned Blockchain: Formal Analysis of Hyperledger
Fabric. In: IEEE 5th European Symposium on Security and Privacy (EuroS&P 2020). IEEE Computer Society
(2020)

21

https://image-src.bcg.com/Images/BCG_Digital_Ecosystems_in_Trade_Finance_tcm38-229964.pdf
https://image-src.bcg.com/Images/BCG_Digital_Ecosystems_in_Trade_Finance_tcm38-229964.pdf
https://www.r3.com/reports/corda-technical-whitepaper/
https://www.r3.com/reports/corda-technical-whitepaper/
https://eprint.iacr.org/2016/034
https://eprint.iacr.org/2016/034
http://eprint.iacr.org/2019/1073
http://eprint.iacr.org/2019/1073
https://www.cnbc.com/2019/01/30/swift-announces-tie-up-with-blockchain-firm-r3-at-paris-fintech-forum.html
https://www.coindesk.com/over-50-banks-firms-trial-trade-finance-app-built-with-r3s-corda-blockchain
https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-with-r3-is-great-for-digital-asset-adoption/
https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-with-r3-is-great-for-digital-asset-adoption/

21. Hewlett Packard Enterprise: Blockchain unchained. https://www.hpe.com/us/en/newsroom/blog-
post/2018/07/blockchain-unchained.html (7 2018), (Accessed on 05/26/2020)

22. HM Land Registry: HM Land Registry to explore the benefits of blockchain.
https://www.gov.uk/government/news/hm-land-registry-to-explore-the-benefits-of-blockchain (10 2018),
(Accessed on 05/26/2020)

23. International Business Times: Blockchain expert tim swanson talks about R3 partnership of Goldman Sachs,
JP Morgan, UBS, Barclays et al. https://www.ibtimes.co.uk/blockchain-expert-tim-swanson-talks-about-r3-
partnership-goldman-sachs-jp-morgan-ubs-barclays-1519905 (9 2015), (Accessed on 05/26/2020)

24. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake. In:
2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. pp. 157–174.
IEEE (2019)

25. Kiayias, A., Litos, O.S.T.: A Composable Security Treatment of the Lightning Network. In: IEEE 33rd Computer
Security Foundations Symposium, CSF 2020, 22-25 July, 2020. IEEE Computer Society (2020)

26. Kiayias, A., Zhou, H., Zikas, V.: Fair and Robust Multi-party Computation Using a Global Transaction Ledger.
In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9666, pp. 705–734. Springer (2016)

27. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA. pp. 583–598. IEEE Computer Society (2018)

28. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Machines. In: Proceedings of the
19th IEEE Computer Security Foundations Workshop (CSFW-19 2006). pp. 309–320. IEEE Computer Society
(2006), see [30] for a full and revised version.

29. Küsters, R., Rausch, D.: A Framework for Universally Composable Diffie-Hellman Key Exchange. In: IEEE 38th
Symposium on Security and Privacy (S&P 2017). pp. 881–900. IEEE Computer Society (2017)

30. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive model for universal com-
posability. Journal of Cryptology 33(4), 1461–1584 (2020)

31. McKinsey Digital: The strategic business value of the blockchain market. https://www.mckinsey.com/business-
functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-

business-value (6 2018), (Accessed on 05/26/2020)
32. Pass, R., Seeman, L., Shelat, A.: Analysis of the Blockchain Protocol in Asynchronous Networks. In: Advances

in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10211, pp. 643–673 (2017)

33. R3: R3’s corda partner network grows to over 60 companies including Hewlett Packard Enterprise,
Intel and Microsoft. https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-
including-hewlett-packard-enterprise-intel-and-microsoft/ (11 2017), (Accessed on 06/02/2020)

34. R3: Corda source code. https://github.com/corda/corda (2020), (Accessed on 04/24/2020)
35. R3: R3 Corda master documentation. https://docs.corda.net/docs/corda-os/4.4.html (2020), (Accessed on

04/24/2020)
36. Reuters: Nine of world’s biggest banks join to form blockchain partnership. https://www.reuters.com/article/us-

banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
(9 2015), (Accessed on 05/26/2020)

37. Team, D.A.C.: Canton: A private, scalable, and composable smart contract platform. https://www.canton.io/
publications/canton-whitepaper.pdf (06 2019), (Accessed on 11/27/2019)

22

https://www.hpe.com/us/en/newsroom/blog-post/2018/07/blockchain-unchained.html
https://www.hpe.com/us/en/newsroom/blog-post/2018/07/blockchain-unchained.html
https://www.gov.uk/government/news/hm-land-registry-to-explore-the-benefits-of-blockchain
https://www.ibtimes.co.uk/blockchain-expert-tim-swanson-talks-about-r3-partnership-goldman-sachs-jp-morgan-ubs-barclays-1519905
https://www.ibtimes.co.uk/blockchain-expert-tim-swanson-talks-about-r3-partnership-goldman-sachs-jp-morgan-ubs-barclays-1519905
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value
https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/
https://www.r3.com/press-media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/
https://docs.corda.net/docs/corda-os/4.4.html
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://www.canton.io/publications/canton-whitepaper.pdf
https://www.canton.io/publications/canton-whitepaper.pdf

Appendix:

A A Brief Introduction to the iUC Framework

This section provides a brief introduction to the iUC framework, which underlies all results in this paper.
The iUC framework [8] is a highly expressive and user friendly model for universal composability. It allows
for the modular analysis of different types of protocols in various security settings.

The iUC framework uses interactive Turing machines as its underlying computational model. Such inter-
active Turing machines can be connected to each other to be able to exchange messages. A set of machines
Q = {M1, . . .,Mk} is called a system. In a run of Q, there can be one or more instances (copies) of each
machine in Q. One instance can send messages to another instance. At any point in a run, only a single
instance is active, namely, the one to receive the last message; all other instances wait for input. The active
instance becomes inactive once it has sent a message; then the instance that receives the message becomes
active instead and can perform arbitrary computations. The first machine to run is the so-called master.
The master is also triggered if the last active machine did not output a message. In iUC, the environment
(see next) takes the role of the master. In the iUC framework a special user-specified CheckID algorithm
is used to determine which instance of a protocol machine receives a message and whether a new instance is
to be created (see below).

To define the universal composability security experiment (cf. [8]), one distinguishes between three types
of systems: protocols, environments, and adversaries. As is standard in universal composability models, all
of these types of systems have to meet a polynomial runtime notion . Intuitively, the security experiment
in any universal composability model compares a protocol P with another protocol F , where F is typically
an ideal specification of some task, called ideal protocol or ideal functionality. The idea is that if one cannot
distinguish P from F , then P must be “as good as” F . More specifically, the protocol P is considered secure
(written P ≤ F) if for all adversaries A controlling the network of P there exists an (ideal) adversary S,
called simulator, controlling the network of F such that {A,P} and {S,F} are indistinguishable for all
environments E . Indistinguishability means that the probability of the environment outputting 1 in runs of
the system {E ,A,P} is negligibly close to the probability of outputting 1 in runs of the system {E ,S,F}
(written {E ,A,P} ≡ {E ,S,F}). The environment can also subsume the role of the network attacker A, which
yields an equivalent definition in the iUC framework. We usually show this equivalent but simpler statement
in our proofs, i.e., that there exists a simulator S such that {E ,P} ≡ {E ,S,F} for all environments.

A protocol P in the iUC framework is specified via a system of machines {M1, . . .,Ml}; the framework
offers a convenient template for the specification of such systems. Each machine Mi implements one or more
roles of the protocol, where a role describes a piece of code that performs a specific task. For example, a (real)
protocol Psig for digital signatures might contain a signer role for signing messages and a verifier role for
verifying signatures. In a run of a protocol, there can be several instances of every machine, interacting with
each other (and the environment) via I/O interfaces and interacting with the adversary (and possibly the
environment subsuming a network attacker) via network interfaces. An instance of a machine Mi manages
one or more so-called entities. An entity is identified by a tuple (pid , sid , role) and describes a specific party
with party ID (PID) pid running in a session with session ID (SID) sid and executing some code defined
by the role role where this role has to be (one of) the role(s) of Mi according to the specification of Mi.
Entities can send messages to and receive messages from other entities and the adversary using the I/O
and network interfaces of their respective machine instances. More specifically, the I/O interfaces of both
machines need to be connected to each other (because one machine specifies the other as a subroutine) to
enable communication between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only acces-
sible by other (entities belonging to) roles of the same protocol, whereas I/O interfaces of public roles
can also be accessed by other (potentially unknown) protocols/the environment. Hence, a private role
models some internal subroutine that is protected from access outside of the protocol, whereas a public
role models some publicly accessible operation that can be used by other protocols. One uses the syntax
“(pubrole1, . . . , pubrolen | privrole1, . . . , privrolen)” to uniquely determine public and private roles of a

23

protocol. Two protocols P and Q can be combined to form a new more complex protocol as long as their
I/O interfaces connect only via their public roles. In the context of the new combined protocol, previously
private roles remain private while previously public roles may either remain public or be considered private,
as determined by the protocol designer. The set of all possible combinations of P and Q, which differ only
in the set of public roles, is denoted by Comb(Q,P).

An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message
forwarder between the adversary and any connected higher-level protocols as well as subroutines. In addition,
an entity might also consider itself (implicitly) corrupted while still following its own protocol because, e.g.,
a subroutine has been corrupted. Corruption of entities in the iUC framework is highly customizable; one
can, for example, prevent corruption of certain entities during a protected setup phase.

As explained, the iUC framework offers a convenient template for specifying protocols (which can then
also be combined with each other). This template includes many optional parts with sensible defaults such
that protocol designers can customize exactly those parts that they need. The specifications using the iUC
template that we give in this paper are mostly self explanatory, except for a few aspects:

– The CheckID algorithm is used to determine which machine instance is responsible for and hence
manages which entities. Whenever a new message is sent to some entity e whose role is implemented
by a machine M , the CheckID algorithm is run with input e by each instance of M (in order of their
creation) to determine whether e is manages by the current instance. The first instance that accepts e
then gets to process the incoming message. By default, CheckID accepts entities of a single party in
a single session, which captures a traditional formulation of a real protocol. Other common definitions
include accepting all entities from the same session, which captures a traditional formulation of an ideal
functionality.

– The special variable (pidcur, sidcur, rolecur) refers to the currently active entity of the current machine
instance (that was previously accepted by CheckID). If the current activation is due to a message
received from another entity, then (pidcall, sidcall, rolecall) refers to that entity.

– The special macro corr(pidsub, sidsub, rolesub) can be used to obtain the current corruption status (i.e.,
whether this entity is still honest or considers itself to be implicitly/explicitly corrupted) of an entity
belonging to a subroutine.

– The iUC framework supports so-called responsive environments and responsive adversaries [7]. Such envi-
ronments and adversaries can be forced to respond to certain messages on the network, called restricting
messages, immediately and without first activating the protocol in any other way. This is a useful mech-
anism for modeling purposes, e.g., to leak some information to the attacker or to let the attacker decide
upon the corruption status of a new entity but without disrupting the intended execution of the protocol.
Such network messages are marked by writing “send responsively” instead of just “send”.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary 2 (Concurrent composition in iUC; informal). Let P and F be two protocols such that
P ≤ F . Let Q be another protocol such that Q and F can be connected. Let R ∈ Comb(Q,P) and let
I ∈ Comb(Q,F) such that R and I agree on their public roles. Then R ≤ I.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how
it is used later on in the context of a more complex protocol. Once we have shown that P ≤ F (for some
other, typically ideal protocol F), we can then analyze the security of a higher-level protocol Q based on F .
Note that this is simpler than analyzing Q based on P directly as ideal protocols provide absolute security
guarantees while typically also being less complex, reducing the potential for errors in proofs. Once we
have shown that the combined protocol, say, (Q | F) realizes some other protocol, say, F ′, the composition
theorem and transitivity of the ≤ relation then directly implies that this also holds true if we run Q with an
implementation P of F . That is, (Q | P) is also a secure realization of F ′. Please note that the composition
theorem does not impose any restrictions on how the protocols P, F , and Q look like internally. For example,
they might have disjoint sessions, but they could also freely share some state between sessions, or they might
be a mixture of both. They can also freely share some of their subroutines with the environment, modeling

24

so-called globally available state. This is unlike most other models for universal composability, such as the
UC model, which impose several conditions on the structure of protocols for their composition theorem.

Additional Notation

To increase readability, we use the following non-standard notation during the specifications of machines in
the iUC template:

– For a set of tuples K, K.add() adds the tuple to K.
– For a string S, S.add() concatenates the given string to S.
– K.remove() removes always the first appearance of the given element/string from the list/tuple/set/string
K.

– K.contains() checks whether the requested element/string is contained in the list/tuple/set/string K
and returns either true oder false.

– We further assume that each element as a tuple in a list or set can be addressed by each element in that
tuple if it is a unique key.

– Elements in a tuple are ordered can be addressed by index, starting from 0. We write [n] = {1, . . . , n}.
– For tuples, lists, etc. we start index counting at 0.

B The Ideal Ledger Functionality Fledger

In this section, we present the full specification of the ideal ledger functionality Fledger in Figure 5 to 7.
More technical details regarding iUC are available in Section A and the iUC paper [8].

Further details of Fledger: Additionally to the presented description in Section 2:

– Fledger provides a read interface for the adversary (CorruptedRead) on behalf of corrupted parties. This
may allow A to query Fledger on behalf of a corrupted party, e. g., to access private data of the party
which has not been leaked so far.

C Full Details: Gledger Realizes FGledger
ledger

In this section, we provide full details for Theorem 1, including formal specifications of all machines and a
formal proof of the theorem. We start by explaining the ideal blockchain functionality Gledger on an intuitive
level (we recall the formal specification of this functionality formulated in the iUC framework in Figure 8
to 10).

Our ideal functionality Fledger is in the spirit of and adopts some of the underlying ideas from the existing
ideal blockchain functionality Gledger. As a result, both functionalities share similarities at a high level. More
specifically, Gledger also offers a writing and reading interface for parties. It is parameterized with several
algorithms validate, extendPolicy,Blockify, and predictTime that have to be instantiated by a protocol designer
to capture various security properties. By default, Gledger provides only the security property of consistency.
An honest party can submit a transaction to Gledger. If this transaction is valid, as decided by the validate
algorithm, then it is added to a buffer list. Gledger has a global list of blocks containing transactions. This list is
updated (based on a bit string that the adversary has previously provided) in a preprocessing phase of honest
parties. More specifically, whenever an honest party activates Gledger, the extendPolicy algorithm is executed
to decide whether new blocks are appended to the global list of blocks, with the Blockify algorithm defining
the exact format of those new blocks. Then the validate algorithm is called to remove all transactions from the
buffer that are now, after the update of the global blockchain, considered invalid. An honest party can then
read from the global blockchain. More specifically, if the honest party has been registered for a sufficiently
long amount of time (larger than parameter δ), then it obtains a prefix of the chain that contains all but
the last at most windowSize ∈ N blocks. This captures the security property of consistency. In addition to

25

Description of the protocol Fledger = (client):

Participating roles: {client}
Corruption model: dynamic corruption

Description of Mclient:

Implemented role(s): {client}
Subroutines: Fsubmit : submit,Fupdate : update,Fread : read,FupdRnd : updRnd,Finit : init,Fleak : leak
Internal state:

– identities ⊂ {0, 1}∗ × N, identities = ∅ {The set of participants and the round when they occured first.

– round ∈ N≥0, round = 0 {Current (network) round in the protocol execution.

– msglist ⊂ N× N× {tx, meta} × {0, 1}∗ × N× {0, 1}∗,
msglist = ∅.

(Totally ordered) sequence of recorded messages
that is considered as stable/immutable of the form
(id, commitRound, type,msg, submitRound, pid). If
type = meta, pid = submitRound = ⊥.

– requestQueue ⊂ N× {0, 1}∗ × N× {0, 1}∗,
requestQueue = ∅

{
The list of so far not ordered, honest, incoming “transactions”. For-
mat (tmpCtr, tx , submittingRound, submittingParty).

– readQueue ⊂ {0, 1}∗ × N× N× {0, 1}∗,
readQueue = ∅,

{
The queue of read responses that need to be de-
livered (pid, responseId, round,msg)

– readCtr ∈ N, readCtr = 0, {readCtr is temporary ID for transactions in the readQueue.

– reqCtr ∈ N, reqCtr = 0, {reqCtr are temporary IDs for transactions in the requestQueue.

In the following, we pass through the complete internal state of Fledger to its subroutines. Thus, we use the variable internalState
as follows: internalState← (identities, round,msglist, requestQueue, readQueue, δ, CorruptionSet, transcript)

We often use the CorruptionSet as specified in [8]. We often write pid ∈ CorruptionSet instead of (pid, sidcur, rolecur) ∈ CorruptionSet for
brevity.

CheckID(pid , sid , role):
Accept all messages with the same sid.

Corruption behavior:
– LeakedData(pid , sid , role):

if ∃(pid, registrationRound) ∈ identities, registrationRound ∈ N:
identities.remove(pid, registrationRound)

send (corrupt, pid, sid, internalState) to (pidcur, sidcur,Fleak : leak)
wait for (corrupt, leakage)
return(leakage)

{
Depending on the desired properties of Fledger, output after corruption needs
to be specified

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m): A is not allowed to call subroutines on behalf of a corrupted
party.

Initialization:

send InitMe to (pidcur, sidcur,Finit : init) {Finit handels initilaization if necessary.
wait for (Init, identities,msglist, corrupted, leakage) s.t.

1. identities ⊂ {0, 1}∗ × {0}, round ∈ N,msglist ⊂ N× N× {meta} × {0, 1}∗ × N× {0, 1}∗},
2. corrupted ⊂ {0, 1}∗ × {sidcur} × {client},
3. msg ∈ msglist are consecutivley enumarted started at 0,
4. ∃(, , , , a, b) ∈ msglist, s.t. a 6= ⊥ ∨ b 6= ⊥

identities← identities,msglist← msglist, CorruptionSet← corrupted

{
We enforce correct formats and that
msglist is a total ordered sequence.

send responsively (Init, leakage) to NET {Send leaked information from initilaization to A.
wait for ack from NET

MessagePreprocessing:

recv (pidcur, sidcur, rolecur,msg) from I/O:
if (pidcur,) /∈ identities ∧msg starts with Submit or Read:

{Register unknown party before its first submit/read operation
identities.add(pidcur, round)

Fig. 5. The ideal ledger functionality Fledger (Part 1).

26

Description of Mclient (continued):

Main:

recv (Submit,msg) from I/O: {Submission request from a honest identity
send (Submit,msg, internalState) to (pidcur, sidcur,Fsubmit : submit) {Forward request to Fsubmit

wait for (Submit, response, leakage) s.t. response ∈ {true, false}
if response = true:

reqCtr ← reqCtr + 1
requestQueue.add(reqCtr, round, pidcur,msg)

{
requestQueue.add() equals requestQueue ← requestQueue ∪ { }.
Records message, round, identity and its state for “consensus”

send (Submit, response, leakage) to NET

{
If Fsubmit leakes data regarding the submitted transaction, this is
forwarded to A.

recv (Read,msg) from I/O: {Read request from an honest identity
send (InitRead,msg, internalState) to (pidcur, sidcur,Fread : read) {Forward the request to Fread.

wait for (InitRead, local, leakage) s.t. local ∈ {true, false}
{

local = true models a “local” read, clients get
immediate response, otherwise it is a network
read

if local :
send responsively (InitRead, leakage) to NET (?) {Fread leakes data, this is forwarded to A.
wait for (InitRead, suggestedOutput) {A may influence the read processing
send (FinishRead,msg, suggestedOutput, internalState) to (pidcur, sidcur,Fread : read)
wait for (FinishRead, output, leakage′)
if output = ⊥: {If A’s input for Fread is not accepted, he is triggered again.

Go back to (?) and repeat the request (local variables suggestedOutput, output, and leakage′ are cleared)

send responsively (FinishRead, leakage′) to NET {Fread leakes data, this is forwarded to A.
wait for ack

reply (Read, output)
else:

readCtr ← readCtr + 1; readQueue.add(pid, readCtr, round,msg) {In case of network read, store request

send (Read, readCtr, leakage) to NET {If Fread leakes data, this is forwarded to A.

recv (DeliverRead, readCtr, suggestedOutput) from NET s.t. (pid, readCtr, r,msg) ∈ readQueue:{
A tiggers message delivery per message (this may includes reordering of messages, non-delivery of messages, and manipu-
lation of delivered data - if not enforced by FupdRnd).

send (FinishRead,msg, suggestedOutput, internalState) to (pidcur, sidcur,Fread : read)
wait for (FinishRead, output, leakage′)
if output 6= ⊥:

send responsively (FinishRead, readCtr, leakage′) to NET

wait for ack

readQueue.remove(pid, readCtr, r,msg) {Clean up readQueue.
send (Read, output) to (pid, sidcur, I/O)

else:
send nack to NET {Delivery request of A was denied

recv (CorruptedRead, pid,msg) from NET s.t. pid ∈ CorruptionSet: {Read request from a corrupted identity.

send (CorruptedRead, pid,msg, internalState) to (pid, sidcur,Fread : read) {Forward request to Fread

wait for (FinishRead, leakage)
send (Read, pid, leakage) to NET {Forwarded data to A.

recv (Update,msg) from NET: {Update or maintain request triggered by the adversary.

send (Update,msg, internalState) to (ε, sidcur,Fupdate : update)
wait for (Update,msglist, updRequestQueue, leakage)

s.t msglist ⊂ N× {round} × {tx, meta} × {0, 1}∗ × N× {0, 1}∗{
Fupdate outputs which data to append to msglist and an updated requestQueue.

max ← max{i|(i, , , , ,) ∈ msglist}
{

Check that msglist is a totally ordered sequence, extending the
existing msglist. If msglist = ∅ then max defaults to −1

check ← msglist 6= ∅ ∨ updRequestQueue 6= ∅
for i = max + 1 to max + |msglist| do:

if @1(i, , , , ,) ∈ msglist :

{
Check that there exists exactly one entry for every id i
in a continous sequence (no gaps)

check ← false

if ∃(i, , meta, , a, b) ∈ msglist ∧ (a 6= ⊥ ∨ b 6= ⊥): {Check that meta data has correct format
check ← false

if check :

{
If update is totally ordered and no new messages where added to
requestQueue, we accept the update.

msglist.add(msglist)
for all item ∈ updRequestQueue do: {Remove elements “consumed” elements from requestQueue

requestQueue.remove(item)

reply (Update, check, leakage) {Inform A if update was successful and leake data.

Fig. 6. The ideal ledger functionality Fledger (Part 2).

27

Description of Mclient (continued):

Main:

recv UpdateRound from NET:
{
A triggers round update if current round satisfies rules of FupdRnd.

send (UpdateRound, internalState) to (pidcur, sidcur,FupdRnd : updRnd)
wait for (UpdateRound, response, leakage)
if response = true:

round← round + 1

reply (UpdateRound, response, leakage)

recv GetCurRound: {A and E are allowed to query the current round.
reply (GetCurRound, round)

recv DeRegister from I/O: {De-register honest party
Remove the unique tuple (pidcur, r) from identities
send responsively DeRegister to NET {Inform A on the deregistration
wait for ack

reply DeRegister

Fig. 7. The ideal ledger functionality Fledger (Part 3).

these basic operations, Gledger also supports dynamic (de-)registration of parties and offers a clock, modeled
via a subroutine Gclock (see Figure 11 for the formal specification formulated in the iUC framework), that is
advanced by Gledger depending on the output of the predictTime algorithm (and some additional constraints).

While there are many similarities, there are also several key differences between Gledger and our function-
ality Fledger:

– Gledger requires all transactions to be arranged in blocks and then always provides the security property of
consistency for those blocks. As already explained in Section 2, these are strictly stronger requirements
than the ones from Fledger, which only require the existence of a global ordered list of transactions.
In particular, many distributed ledgers, such as Corda, are not designed to generate blocks or provide
consistency, and hence, cannot realize Gledger.

– While Gledger already includes several parameters to customize security properties, there are no parameters
for customizing the reading operation. Hence, Gledger cannot capture access and privacy security properties
for transactions in a blockchain (as all honest participants can always read a full prefix of the chain).12

– The view Gledger provides to higher-level protocols is lower level and closer to the envisioned realization
than the one of Fledger. In particular, Gledger includes an additional operation MaintainLedger which has
to be called by a higher-level protocol in order to allow time to advance, modeling that a higher-level
protocol has to regularly and manually trigger mining operations (or some similar security relevant tasks)
for security to hold true. Similarly, the clock used by Gledger prevents any time advances unless all parties
have notified the clock to allow for time to advance, again forcing a higher-level protocol to manually
deal with this aspect.

– While Gledger includes a predictTime parameter to customize advancing time, this parameter is actually
more restricted than the one from Fledger: the predictTime can depend only on the set of activations from
honest parties but not, e.g., the global state or buffer list of transactions.

As can be seen from the above list, the main differences between Gledger and Fledger are due to i) different
levels of abstraction on the I/O interface to higher-level protocols and ii) the fact that Gledger is tailored
towards publicly accessible blockchains. Hence, intuitively, it should be possible to show that Fledger is a
generalization of Gledger. Indeed, one can instantiate Fledger appropriately to transfer security properties
provided by Gledger to the level of Fledger.

Formally, the instantiation FGledger
ledger is the protocol (Fledger | FGledger

init ,FGledger
submit ,F

Gledger
update ,F

Gledger
read ,FGledger

updRnd,

FGledger
leak). The general idea for the instantiated subroutines (which we formally define in Figures 14 to 20

at the end of this section) is to run the same operations as Gledger, including the parameterized algorithms
of Gledger that determine the precise security properties provided by the global transaction list. By this, the

instantiation FGledger
ledger , just as Gledger, enforces the security property of consistency for all participants while

12 This aspect is actually one of the key differences between Gledger and its variant GPL for privacy in blockchains: the
latter also introduces a parameter for read operations.

28

also inheriting all further security properties provided for the global state, if any, from the parameterized
algorithms. More specifically:

– FGledger
init is defined to run the extendPolicy algorithm to generate the initial transaction list (that is read

from the blocks output by the algorithm). This is because extendPolicy might already generate a genesis
block during the preprocessing of the first activation of the functionality, before any transactions have
even been submitted.

– FGledger
submit executes the validate algorithm to check validity of incoming transactions.

– FGledger
update executes the extendPolicy and Blockify algorithms to generate new blocks from the update pro-

posed by the adversary. These blocks are transformed into individual transactions, which are appended
to the global transaction list of Fledger together with a special meta transaction that indicates a block
boundary. Additionally, the validate algorithm is used to decide which transactions are removed from the
transaction buffer.

– FGledger
read checks whether a party has already been registered for an amount of time larger than δ and then

either requests the adversary to provide a pointer to a transaction within the last windowSize blocks or lets
the adversary determine the full output of the party. We note that FGledger

read has to always use non-local
reads: this is because a read operation in Gledger might change the global state during the preprocessing
phase and before generating an output, i.e., read operations are generally not immediate (in the sense
defined in Section 2).

– If the parameters of Gledger are such that they guarantee the property of liveness, then FGledger
updRnd can be

defined to also encode this property (cf. Section 2); similarly for the time dependent security property of
chain-growth and other time-related security properties.

– FGledger
leak does not leak (additional) information as all information is leaked during submitting and reading.

There are, however, some technical details one has to take care of in order to implement this high-
level idea, mostly due to some conceptual differences in and the higher abstraction level of Fledger. More
specifically:

– A key technical difference between Fledger and Gledger is that updates to the global state in Fledger are
explicitly triggered by the adversary, whereas Gledger performs those updates automatically during a
preprocessing phase whenever an honest party activates the functionality, before then processing the
incoming request of that party.
As a result of this formulation, both read and submit requests might change the global transaction list
in Gledger before the request is answered. In the case of Fledger, this means the simulator has to be given
the option to update the global state before a read/submit request is performed. In the case of read
requests, this directly matches the properties of non-local read requests, i.e., we simply have to define
FGledger

read in such a way that it uses non-local reads only. Such non-local reads then enable the simulator
to first update the global state of Fledger before then finishing the read request, which directly matches
the behavior of Gledger.
In the case of submit requests, Fledger does not directly include a mechanism for updating the state before
processing the request. This is because, for realistic distributed ledger protocols, an incoming submit
request that has not even been processed and shared with the network yet will not cause any changes
to the global state. This, however, might technically occur in Gledger depending on how its parameters,
such as the extendPolicy and validate algorithms, are instantiated. We could address this by limiting the
set of parameters of Gledger to those that update the global state independently of (the content of) future
submit requests, which matches the behavior of realistic ledger protocols from practice. Nevertheless,
since we want to illustrate the generality of Fledger, we choose a different approach.
To model that the global transaction list might change depending on and before processing a new submit
request, we define FGledger

submit such that it internally first performs an update of the global state, based
on some information requested from the simulator via a restricting message, before then validating the
incoming transaction. Since FGledger

submit cannot actually apply this update itself (as this operation is limited

to FGledger
update when it is triggered by update requests from the adversary), the update is then cached in the

29

subroutine Fupdate. The adversary is forced to apply this cached update first whenever he wants to further
update the global transaction list, advance time, or perform a read request. This formulation provides
the simulator with the necessary means to update the global state before an incoming submit request,
if necessary, while not weakening the security guarantees provided by Fledger compared to Gledger. In
particular, read requests will always be answered based on the most recent update of the state, including
any potentially cached updates.

– Due to a lower level of abstraction, the parameterized algorithms used in Gledger take some inputs that are
not directly included in Fledger, such as a list of all honest activations and a future block candidate (which
is an arbitrary message provided by the adversary at some point in the past). We could in principle add
the same parameters to subroutines in Fledger, i.e., essentially encode the full state and logic of Gledger
within our instantiations of subroutines. Observe, however, that a higher-level protocol generally does
not care about (security guarantees provided for) technical details such as cached future block candidates
or lists of honest activations. A higher-level protocol only cares about the security properties that are
provided by the global transaction list, such as consistency, double spending protection, and liveness.
Such security properties can already be defined based on the information that is included in Fledger by
performing suitable checks on the global transaction list, buffer list, and current time. In particular, it
is not actually necessary to include further technical details such as a list of honest activations. This is
true even if a security property within a realization (of Gledger or Fledger) actually also depends on, say,
the number of honest activations. Such a realization can still realize an ideal functionality that requires,
e.g., consistency to always hold true independently of the number of honest activations: one can force the
environment to always activate a sufficient number of honest parties within each time frame, modeling a
setup assumption that is required for security to holds. This is a common technique that has already been
used, e.g., for analyzing Bitcoin [3,19], including an analysis based on Gledger. Alternatively to limiting the
environment, parties can simply consider themselves to be corrupted if the environment did not activate
a sufficient number of honest parties, modeling that they cannot provide any security guarantees such
as consistency once the environment violates the setup assumptions. This modeling technique is novel
in the field of distributed ledgers and blockchains. We use this technique in our modeling of Corda (cf.
Section 4.2 and Appendix E).
Hence, in the spirit of abstraction and simplification, we choose not to include further technical details
of Gledger in FGledger

ledger but rather use the following mechanism to deal with any additional inputs to
parameterized algorithms such as extendPolicy: Whenever one of the parameterized algorithms from
Gledger is run within Fledger, the adversary provides any missing inputs that are not defined in FGledger

ledger ,
such as the next block candidate variable for the extendPolicy algorithm. By this definition, the adversary
can freely determine technical details that are present only in Gledger while FGledger

ledger still inherits all
properties that are enforced for the global transaction list, buffer list, and/or are related to time.

– The functionality Gledger is also parameterized with an algorithm predictTime which determines, based on
the set of activations by honest parties, whether time advances. While we could also add this algorithm
into Fledger, more specifically into FGledger

updRnd, by the same reasoning as above a higher-level protocol
is typically not interested in this property: it has not implications for the security properties of the
global transaction list. Hence, we chose not to include this additional restriction of the adversary via the
predictTime in Fledger.
However, if the parameters of Gledger are such that a certain time-related security property of the global

transaction/block list is met, then FGledger
updRnd enforces the same properties, i.e., prevents the adversary from

advancing time unless all properties are met. We exemplify this for the common security properties of
liveness and chain-growth. That is, we include parameters into FGledger

updRnd that, when they are set, enforce
one or both of these security properties, and then show that this can be realized as long as Gledger is
instantiated in such a way that it also provides these security properties. Clearly the same mechanism
can also be used for capturing arbitrary other time-related security properties.

– There are some slight differences in the format of transactions and the global state between Fledger and
Gledger, with the key difference being that the global state of Gledger is a list of blocks, whereas the
global state in Fledger is a list of individual transactions. We therefore require the existence of an efficient
invertible function toMsglist that maps the output of the Blockify algorithm to a list of transactions

30

contained in that algorithm. Note that such an algorithm always exists: for natural definitions of Blockify
that are used by reasonable blockchains, there will always be a list of well-formed transactions encoded
into each block. For artificial definitions of Blockify that do not provide outputs which can be mapped
to a reasonable definition of a list of transactions, one can always interpret the full block as a single
transaction. In addition, we store the end of each block as a special meta transaction in the global
transaction list of Fledger, so one can define still identify the boundaries of individual blocks. This is
necessary for lifting the security properties of consistency from Gledger to Fledger, namely, honest users
(that have already been registered for a sufficiently long time) are guaranteed obtain a prefix of the global
transaction list except for at most the last windowSize ∈ N blocks.

As already explained, we want to show that Gledger realizes FGledger
ledger . Since Gledger has a slightly different

interface and works on a lower abstraction level than Fledger, we also have to add a wrapperWledger on top of
Gledger that transforms the interface and lifts the abstraction level to the one of Fledger (we provide a formal
definition ofWledger in Figure 12 and Figure 13 at the end of this section. See also Figure 3 for an illustration
of the static structure of the combined protocol). On a technical level, Wledger acts as a message forwarder
between the environment and Gledger/Gclock that translates message formats between those of Fledger and
those of Gledger while also taking care of some low level operations that are not present on Fledger. More
specifically:

– Incoming submit and read requests are simply forwarded by the wrapper.
– The output to read requests provided by Gledger is in the form of a list of blocks.Wledger uses the toMsglist

function mentioned above to translate these blocks to a list of transactions to match the format of outputs
for read requests from Fledger.

– Time in Gledger is modeled via a separate subroutine Gclock, whereas Fledger includes all time management
operations in the same functionality. Hence, the wrapper is also responsible to answering requests for
the current time, which it does by forwarding those requests to the subroutine Gclock of Gledger and then
returning the response.

– As mentioned, the functionality Gledger includes a MaintainLedger operation that can be performed by
higher-level protocol and which models, e.g., a mining operation that must be performed in a realization.
In contrast, Fledger does not include such an operation as higher-level protocols typically do not want
to explicitly perform mining, but rather expect such operations to be performed automatically “under
the hood” of the protocol. This also matches how ideal blockchain functionalities have been used in the
literature so far: we are not aware of a higher-level protocol that uses an ideal blockchain functionality and
which manually takes care of, e.g., triggering mining operations. This is true even for [25], where a higher-
level protocol was built directly on top of Gledger. That protocol simply assumes that the environment
takes care of triggering MaintainLedger via a direct connection from the environment to Gledger.
The wrapper resolves this mismatch by allowing the adversary A on the network to freely perform
MaintainLedger operations, also for honest parties, modeling that parties might or might not execute
a mining operation. This models that parties automatically perform mining without first waiting to
receive an explicit instruction from a higher-level protocol to do so. Since the exact set of parties which
performing mining operations is determined by the network adversary, this safely over approximates all
possible cases that can occur in reality.
Note that this change actually does not alter or weaken the security statement of Gledger. Without a wrap-
per, Gledger already allows the environment to perform (or not perform at all) arbitrary MaintainLedger

operations for both honest and dishonest parties. Hence switching this power from the environment to
the adversary on the network provides the same overall security statement. The only difference is that
now the operation is indeed performed “under the hood” of the protocol, i.e., a higher-level protocol need
not care about manually performing this operation anymore. This also matches how Gledger was used by
a higher-level protocol in [25] (see above).

– Registration of both honest and corrupted parties in Gledger (and the clock Gclock) must be handled
manually by higher-level protocols. In contrast, Fledger considers an honest party to be registered once it
performs the first operation, modeling that a party automatically registers itself before interacting with
the ledger, while not including a registration mechanism for dishonest parties. The former is because

31

higher-level protocols typically expect registration, if even required, to be handled “under the hood”,
while the latter is because a list of registered dishonest parties generally is not necessary to define
expected security properties for the global transaction list (this follows the same reasoning given above
on why we did not include certain technical details from Gledger in our instantiation of Fledger).
To match this behavior, Wledger also automatically registers honest parties in both Gledger and Gclock
when they receive their first request from a higher-level protocol. For dishonest parties,Wledger keeps the
original behavior of Gledger and Gclock, i.e., the network adversary can freely register dishonest parties.

– The subroutine Gclock requires all registered parties to notify the clock during each time unit before time
can advance, modeling that every party must have been able to perform some computations during each
time unit. Following the same reasoning as for the MaintainLedger operation, this is a detail that higher-
level protocols typically expect to be managed “under the hood” of the protocol and generally do not
want to manually take care of. For this reason, this restriction is not included in Fledger.

13 The wrapper
uses the same mechanism as for MaintainLedger operations to map between both abstraction levels, i.e.,
the adversary on the network can freely instruct parties to notify the clock Gclock that time may advance.
Again, this safely over approximates all possible cases in reality while not giving the environment any
more power than it already has.

Having explained both the ideal protocol FGledger
ledger and its intended realization, we can now formally state

the main theorem of this section (cf. Figure 3 for an illustration of this theorem):

Theorem 4. Let Gledger be the ideal blockchain functionality with arbitrary parameters such that all param-

eterized algorithms are deterministic. Let FGledger
ledger be the instantiation of Fledger as described above, where

the internal subroutines use the same parameters as Gledger. Furthermore, if Gledger is parameterized such

that it provides liveness and/or chain-growth, then let the parameters of the subroutine FGledger
updRnd in FGledger

ledger

be set such that it also enforces the same properties. Then:

(Wledger | Gledger,Gclock) ≤ FGledger
ledger

Proof. As part of the proof, we firstly define a responsive simulator S such that the real world running the
protocol R := (Wledger | Gledger,Gclock) is indistinguishable from the ideal world running {S, I}, with the

protocol I := FGledger
ledger , for every ppt environment E .

The simulator S is defined as follows: it is a single machine that is connected to I and the environment
E via their network interfaces. In a run, there is only a single instance of the machine S that accepts and
processes all incoming messages. The simulator S internally simulates the realizationR, including its behavior
on the network interface connected to the environment, and uses this simulation to compute responses to
incoming messages. For ease of presentation, we will refer to this internal simulation by R′. More precisely,
the simulation runs as follows:

Network communication from/to the environment

– Messages that S receives on the network connected to the environment (and which are hence meant for
R) are forwarded to internal simulation R′.

– Any messages sent by R′ on its network interface (that are hence meant for the environment) are for-
warded to the environment E .

– If the global blockchain in R′ is updated (as a result of a request that is not already handled separately
below), then the simulator performs the same update in Fledger before continuing the simulation.

13 We note that, if desired, this restriction could easily be added to Fledger via a suitable instantiation of the FupdRnd

subroutine. Our realization proof would still work for this case. However, as explained, we expect that this is
generally not needed/desired.

32

Corruption handling

– The simulator S keeps the corruption status of entities in R′ and I synchronized. That is, whenever an
entity of Wledger in R′ starts to consider itself corrupted, the simulator first corrupts the corresponding
entity of Fledger in I before continuing its simulation.

– Incoming Messages from corrupted entities of Fledger in I are forwarded on the network to the environment
in the name of the corresponding entity of Wledger in R′. Conversely, whenever a corrupted entity of
Wledger wants to output a message to a higher-level protocol, S instructs the corresponding entity of
Fledger to output the same message to the higher-level protocol.

Transaction submission

– Whenever an honest entity entity = (pid , sid , role) receives a request (Submit,msg) to submit a new

transaction msg , Fledger respectively the subroutine FGledger
update first pre-processes an update to the global

transaction list. During this operation, the simulator is asked to provide some missing information (such
as a list of honest activations) via a message Preprocess that also includes the transaction msg and
Fledger’s current state. Upon receiving this message, S extracts all required information from the inter-
nal simulation R′ and returns this information, except for also extending the set of honest activations
extracted from R′ by an additional submit request submitted by the currently active honest party of
Fledger.

– After the submit request has been processed, Fledger sends the validation result of the transaction as well
as a leakage to S. Upon receiving this information, S first sends a finalizePending update message to
Fledger in order to apply the pre-processed and cached update to the global transaction list of Fledger.
Afterwards, S simulates a submit request (Submit,msg) to the honest entity entity of Wledger in R′,
including the resulting output to the environment.

Read requests
Whenever an honest entity entity receives a request (Read,msg) to read from the global state, Fledger forwards
this (non-local) read request to S and waits to receive a suggested output. Upon receiving this request, S
first triggers a global state update in Fledger using the information from the internally simulated R′ (except
for the set of honest activations, which is extended by one additional read request from party pid). After this
update, S simulates a read (Read,msg) for entity ofWledger in R′. The resulting output out of the simulated
read request from Wledger is used to compute a response for Fledger:

– If the entity entity is de-synchronized, i. e., entity is registered for less than δ time units at Fledger, then
out is forwarded to Fledger as a response to the read request of entity .

– If the entity entity is synchronized,i. e., entity is registered for at least δ time units at Fledger then S
computes a pointer ptr to the last transaction in out . The pointer ptr is returned to Fledger as a response
to the read request of entity .

Further details

– S keeps the clocks/rounds of R′ and Fledger synchronous. That is, S sends UpdateRound to Fledger

whenever a round update in the simulated Gclock is performed and before continuing the simulation.
– Whenever S is notified about the de-registration of an entity, S simulates the de-registration of the

corresponding entity in R. Afterwards S returns control to Fledger.

This concludes the description of the simulator. It is easy to see that (i) {S, I} is environmentally bounded 14

and (ii) S is a responsive simulator for I, i.e., restricting messages from I are answered immediately as long
as {S, I} runs with a responsive environment. We now argue that R and {S, I} are indeed indistinguishable
for any (responsive) environment E ∈ Env(R).

14 This is the polynomial runtime notion employed by the iUC framework.

33

Now, let E ∈ Env(R) be an arbitrary but fixed environment. First, observe that Fledger provides S
with full information about all requests performed by higher-level protocols, such as the actual transactions
submitted to the ledger, and including entity (de-)registration in particular. Hence, the simulated protocol
R′ within S obtains the same inputs and thus performs identical to the real world R. As a result, the
network behavior simulated by S towards the environment is indistinguishable from the network behavior of
R. Observe that state changes triggered via network interface are synchronized between R′ and I. Together
with the state synchronization during I/O interaction (see below), the simulator can keep the states of
R′ and I in synchronization. Furthermore, it also follows that the corruption status of entities in the real
and ideal world is always identical. Since the simulator has full control over corrupted entities, which are
handled via the internal simulation R′, this implies that the I/O behavior of corrupted entities of R/I
towards higher level protocols/the environment is also identical in the real and ideal world. The only way
to potentially distinguish the real and ideal world is the I/O behavior of honest entities of R/I towards
higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by
induction, that all of those interactions result in identical behavior towards the environment, i.e., are also
indistinguishable. At the start of a run, there were no interactions on the I/O interface with honest parties
yet. In the following, assume that all I/O interactions to far have resulted in the same behavior visible
towards the environment in both the real and ideal world.

Submission requests: Submission requests do not directly result into an input to the environment, however,
they might affect the output of future read requests by changing the internal buffer and global transaction
lists of Fledger, respectively the internal buffer and global blockchain of R (and by this also R′; we keep this
implicit in what follows). For read requests to behave identical, we now have to argue that these changes are
“synchronized”, i.e., (i) the buffered set of transactions in Fledger is a subset of the buffered set of transactions
in R, and those transactions that are in the buffer of R but not Fledger are by dishonest parties, and (ii) the
blockchain of R, when transformed via the toMsglist function as executed by the wrapper, matches the global
list of transactions in Fledger.

Observe that, upon receiving a submission request, Fledger behaves just as Gledger: it first updates its
global transaction list. This update is performed based on the internal buffer and global transaction list
variables, which (by induction assumption) are synchronized with those of Gledger. Any missing information,
such as transactions of dishonest parties that are not part of the internal buffer of Fledger, are provided by
the simulator from the internal simulation R′, i.e., they are the same as for R. Those inputs are then used
by Fledger to run the same deterministic algorithms as Gledger in R, resulting in the same block extensions.

Hence, the cached global state stored in FGledger
update is synchronized with R. Afterwards, Fledger uses the same

deterministic algorithm as Gledger to validate the incoming transaction using the cached internal state from

FGledger
update . Again, inputs to this function are synchronized or provided by the simulator from R′, the validation

result is identical in both worlds the in particular the buffer sets remain synchronized. Finally, observe that
the simulator immediately instructs Fledger to apply the cached global state from FGledger

update to the global state
in Fledger. By this, at the end of a submit request both the global state and the buffer of Fledger remain
synchronized with R.

Read requests: Observe that, upon receiving a read request, Fledger gives control to the simulator who
then triggers a state update for the global transaction list in Fledger. This matches the behavior of Gledger,
i.e., the global transaction and global block lists that are used for the following read request (and any later
requests) remain synchronized.

After the state update, there are two cases: if the honest entity receiving the read request has not been
registered for less than δ time units, then the simulator is allowed to determine the exact output. Since this
is done by forwarding the output of R′, the output is identical in both worlds. For parties that are already
registered for at least δ time units, then the simulator may only provide a pointer that determines the prefix
of the global transaction list that is output as a result of the read request. That pointer must be at at least
as large as the previous pointer (if such a pointer exists) and must be within the last windowSize blocks
of the global transaction list (when transformed to Gledger’s state format via toState). Since this pointer is

34

determined by the block that is returned in R′, which by definition of Gledger is such that it meets all the
requirements enforced by I, we have that Fledger accepts the pointer of S and indeed outputs the same
transaction list as in the real world.

Current time requests: As the simulator updates the internal clock of Fledger every time an update to
Gclock in R′ occurs, both worlds always output the same value for the current time. Note that, even if
FGledger

updRnd enforces liveness and/or chain-growth, any round update requests of S will indeed be accepted: by
assumption, R′ guarantees that liveness and/or chain-growth are still preserved whenever the clock in Gclock
advances. As the global state is synchronized, the same thus also holds true for Fledger whenever S updates
the clock.

(De-)Registration: In the ideal world, Fledger registers honest entities whenever they first perform a submit
or read request. This is identical to the behavior of the wrapper Wledger in the real world. Similarly for de-
registration of honest entities. Hence, the sets of honest registered entities are also synchronized in the real
and ideal world.

Updates to the global state caused by requests on the network: Observe that these updates are
also applied to Fledger by the simulator. Note in particular that these updates will be accepted by Fledger

since Gledger has already accepted them based on a synchronized state and using deterministic algorithms.
Hence, the global state stays synchronized even when the adversary, e.g., instructs the wrapper to send a
MaintainLedger command in the name of an honest party and, by this, causes an update to the global state.

Altogether, R and {S, I} behave identical in terms of behavior visible to the environment E and thus
are indistinguishable.

35

Description of the protocol Gledger = (client):

Participating roles: {client}
Corruption model: dynamic
Protocol parameters:

– validate

{
Decides on the validity of a transaction with respect to the current state. Used to
clean the buffer of transactions.

– extendPolicy

{
The function that specifies the ledger’s guarantees in extending the ledger state
(e.g., speed, content etc.).

– Blockify {The function to format the ledger state output.

– predictTime {The function to predict the real-world time advancement.

– delay ∈ N
{

A general delay parameter for the time it takes for a newly joining (after the onset of the
computation) miner to become synchronized.

– windowSize ∈ N {The window size (number of blocks) of the sliding window.

Description of Mclient:

Implemented role(s): {client}
Subroutines: Gclock : clock
Internal state:

– P ⊂ {0, 1}∗, identities = ∅ {The (dynamic) set of registered participants.

– state ⊂ {0, 1}∗, state = ε {The ledger state, i.e., a sequence of blocks containing the content.
– nxtBC ∈ {0, 1}∗, nxtBC = ε. {Stores the current adversarial suggestion for extending the ledger state.

– buffer ∈ N× {0, 1}∗ × N× {0, 1}∗, buffer = ε.

{
The buffer of submitted input values of the form (txId, txContent,
submissionTime, submittingParty).

– τL ∈ N, τL = 0. {The current time as reported by the clock.

– τstate ∈ N× N, τstate = ∅.
{

A vector containing for each state block the time when the block added to the ledger
state.

– ITH ∈ {0, 1}
∗ × {0, 1}∗ × N, ITH = ∅.

{
The timed honest-input sequence with data of the form (msg, submittingParty,
submissionTime).

– PM ⊂ P× {d,s,c} × N× N× {0, 1}∗, PM = ∅

Storage to manage parties. An entry contains the party id, wheter the party
is d - desynchronized, s - synchronized, or c - corrupted. he registration
time, the pointer to the current state (or the block number), and its current
state.CheckID(pid , sid , role):

Accept all messages with same sid.
Corruption behavior:

– LeakedData:

recv (corrupt, pid, sid, role) from NET:
if ∃(pid, ps, τ, pt, state) ∈ PM: {Record corruption in PM

PM.remove(pid, ps, τ, pt, state); PM.add(pid, c, τ, pt, state)
else:

PM.add(pid, c, τ, pt, state)

return ⊥ {We do not leak addtional data during corruption

– AllowAdvMessage: A is not allowed to call subroutines on behalf of a corrupted party.

Fig. 8. The ideal ledger functionality Gledger translated into the iUC model (Part 1).

36

Description of Mclient (continued):

MessagePreprocessing:

recv msg from I/O or NET:
send Read to (pidcur, sidcur,Gclock : clock) {Update the clock
wait for t from Gclock : clock; τL ← t

{
Update the current time in Gledger

send GetRegistered to (pidcur, sidcur,Gclock : clock)

{
Request which parties are properly regis-
tered at Gclockwait for P from Gclock : clock

for p ∈ P do: {Honest parties connected since delay rounds become “synchronized”
if p ∈ P ∧ (p, d, τ, pt, state) ∈ PM ∧ τL − τ > delay:

PM.remove(p, d, τ, pt, state)
PM.add((p, s, τ, pt, state))

for p ∈ P do: {Remove the “synchronized” flag from parties that are not registered to the clock.
if (p, s, τ, pt, state) ∈ PM ∧ p /∈ P :

PM.remove(p, s, τ, pt, state)
PM.add((p, d, τ, pt, state))

if (pid, s, , ,) ∈ PM ∨ (pid, d, , ,) ∈ PM: {Additional handling for messages received by honest parties

ITH.add(msg, pid, τL) {Store transaction as honest.

N ← (N1, . . .Nl)← extendPolicy(ITH, state, nxtBC, buffer, τstate)
{

Check if the state needs to
be extended

if N 6= ε: {Verify whether current chain extension behavior matches extendPolicy

state.add(Blockify(N1), . . . , Blockify(Nl))
{

Add blocks that are necessary to fulfill the extendPolicy to the
state.

for i = 1 to l do:
τstate.add(τL) {Add time stamps for each block to τL

for tx ∈ buffer do: {Clean up transactions in buffer that are not valid according to state.
if validate(tx , state, buffer) = false:

buffer.remove(tx); nxtBC← ε

if ∃(p, s, τ, pt, state) ∈ PM, s.t. |state| − pt > windowSize ∨ pt < |state|:
{Update state of honest and synced participants if necessary

for (p̂, ŝ, τ̂ , p̂t, ˆstate) ∈ PM do:

{
If the pointer of one party is to far away from the current head of the chain
or pointer and state are not synced, update to head (as fallback)

PM.remove((p̂, ŝ, τ̂ , p̂t, ˆstate, p̂t); PM.add((p̂, ŝ, τ̂ , |state|, state.current))

nxtBC← ε {Clear proposed block(s)

Main:

recv Register from I/O s.t. pid /∈ P: {Registration process for honest parties
P.add(pid); PM.add(pid, d, τL, ε, ε)
reply Register

recv (Register, pid, sid) from NET s.t. pid /∈ P: {Registration process for honest parties
P.add(pid); PM.add(pid, c, τL, ε, ε)
reply Register

recv DeRegister from I/O s.t. (pid, s ∨ d, τ, pt, state) ∈ PM: {Deregistration of honest parties
P.remove(pid); PM.remove(pid, ps, τ, pt, state)
reply DeRegister

recv (DeRegister, pid, sid) from NET s.t. (pid, c, τ, pt, state) ∈ PM: {Deregistration of corrupted parties
P.remove(pid); PM.remove(pid, ps, τ, pt, state)
reply DeRegister

recv (GetRegistered, sid) from NET: {A requests the current set of participants
reply (GetRegistered, sid, P)

recv GetRegistered from I/O: {E requests the current set of participants
reply (GetRegistered, P)

Fig. 9. The ideal ledger functionality Gledger translated into the iUC model (Part 2).

37

Description of Mclient (continued):

Main:

recv (Submit, tx) from I/O s.t. (pidcur, s ∨ d, , ,) ∈ PM: {Honest parties submit a transaction
Choose a unique txId; t̂x ← (txId, tx , τL, pid)
if validate(t̂x , state, buffer) = true:

buffer.add(t̂x)
{

Record t̂x as queued for consensus
send (Submit, t̂x) to NET

recv (Submit, pid, tx) from NET s.t. (pid, c, , ,) ∈ PM: {corrupted parties submit a transaction
Choose a unique txId; t̂x ← (txId, tx , τL, pid)
if validate(t̂x , state, buffer) = true:

buffer.add(t̂x)
{

Record t̂x as queued for consensus
send (Submit, t̂x) to NET

recv Read from I/O s.t. (pid, ps, τ, pt, state) ∈ PM, ps ∈ {s,d}:
{

Hanlding of read requests from honest
parties

state′ ← state|min{pt,|state|}
PM.remove(pid, ps, τ, pt, state); PM.add(pid, ps, τ, pt, state′)
reply (Read, state′)

recv (Read, pid) from NET s.t. (pid, d, τ, pt, state) ∈ PM:

reply (Read, state, buffer, ITH) {A gets “full” knowledge of the status of the chain

recv MaintainLedger from I/O s.t. (pid, s ∨ d, , pt, state) ∈ PM:
{
MaintainLedger command for honest par-
ties

if predictTime(ITH) > τL:
send (Update, sid) to (pid, sid,Gclock : clock)

else:
send (MaintainLedger) to NET

recv (NextBlock, hFlag, txid1, . . . , txidl) from NET: {Handling of suggested block candidates by A
nxtBC ← ε
for i = 1 to l do:

if ∃(txidi, txi, τi, pidi) ∈ buffer:
nxtBC .add(txidi, txi, τi, pidi)

nxtBC.add((hFlag, nxtBC)
reply (NextBlock, ack)

recv (SetSlack, (p1, pt′1), . . . , (pl, pt′l)) from NET s.t. ∀pid ∈ {p1, . . . , pl} : (pid, s, , ,) ∈ PM:
{A may set the exact “state” of a synchronized party depending on windowSize

u ← {(p1, pt′1), . . . , (p, pt′l)}

if ∃(pj , pt′j) ∈ u, s.t. |state| − pt′j > windowSize ∨ pt′j < |statej|:
{

In the case that windowSize is violated or
a pointer is moved backwards

for all (pid′, (s), τ ′, pt′, state′) ∈ PM do: {Update all synchronized parties to “longest chain”
PM.remove(pid′, (s), τ ′, pt′, state′)
PM.add(pid′, (s), τ ′, |state|, state)

else:
for i = 1 to l do:

PM.remove(pi, ps i, τi, pt i, state i)
PM.remove(pi, ps i, τi, pt′i , state i)

reply (SetSlack, ack)

recv (DesyncState, (p1, state′1), . . . , (p, state′l)) from NET:
s.t. pid ∈ P ∧ psi = d, ∀i = 1, . . . l, s.t. (pi, psi, τi, pti, statei)PM

{
A may set the “state” of
de-synchronized parties

for i = 1 to l do:
PM.remove(pi, ps i, τi, pt i, state i)
PM.remove(pi, ps i, τi, ε, state′i)

reply (DesyncState, ack)

Fig. 10. The ideal ledger functionality Gledger translated into the iUC model (Part 3).

38

Description of the protocol Gclock = (clock):

Participating roles: {clock}
Corruption model: incorruptible

Description of Mclock:

Implemented role(s): {clock}
Subroutines: Gledger : client
Internal state:

– P ⊂ {0, 1}∗ × {0, 1}, P = ∅ {The set of registered participants of the form (pid, activated).
– τ ∈ N, initially τ = 0 {Current time in the Gclock
– F ∈ {0, 1}, initially F = 0

{
Round update status of Gledger.

CheckID(pid , sid , role):
Accept all messages for the same sid.

Main:

recv (Register, pid): {Handling registration for parties
P.add(pid, 0)
reply (Register, pid)

recv (DeRegister, pid): {Handling deregistration for parties
P.remove(pidcur,)
reply DeRegister

recv GetRegistered: {Output currently registered parties
reply (GetRegistered, P)

recv (ClockUpdate, pid): {Handling clock updates from participants
P.remove(pidcur,)
P.add(pidcur, 1)
if activated = 1, ∀(pid, activated) ∈ P ∧ F = 1: {Update clock if all parties accepted update

τ ← τ + 1
for (pid,) ∈ P do:

P.remove(pid,)
P.add(pid, 0)
F = 0

recv ClockUpdate from (pidcur, sidcur,Gledger):
{

Handling clock updates Gledger
F = 1
if activated = 1, ∀(pid, activated) ∈ P: {Update clock if all parties accepted update

τ ← τ + 1
for (pid,) ∈ P do:

P.remove(pid,)
P.add(pid, 0)
F = 0

recv ClockRead: {Handling reads from the clock
reply (ClockRead, τ)

Fig. 11. The ideal clock functionality Gclock from [2] translated into the iUC model.

39

Description of the wrapper Wledger = (client):

Participating roles: {client}
Corruption model: incorruptiblea

Protocol parameters:
– toMsglist

{
“Algorithm” that transforms output of extendPolicy from Gledger to msglist format (including metadata).
extendPolicy may include format/data transformation.

a A can directly access Gledger for corrupted parties via NET. Thus, we do not have to handle these cases via Wledger

Description of Mwrapper:

Implemented role(s): {client}
Subroutines: Gledger : client,Gclock : clock
CheckID(pid , sid , role):

Accept all messages with the same sid.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role):

corrupted ← corr(pidcur, sidcur, rolecur)
{

Request corruption status at Gledger
return corrupted

Internal state:
identities ⊂ {0, 1}∗ × N, identities = ∅ {The set of participants and the round when they occured first.

MessagePreprocessing:

recv (pidcur, sidcur, rolecur,msg) from I/O: {We ensure for all input via I/O that the entity is registered.

corrupted ← corr(pidcur, sidcur, rolecur)
{

Request corruption status at Gledger
if corrupted ∧ command is dedicated to Gledger:

{
See defined commands for Gledger above

send msg to (pidcur, sidcur,Gledger : client)
{

For corrupted parties: Wledger acts as forwarder

if msg starts with Submit or Read: {Register unknown party before its first submit/read operation
send Register to (pidcur, sidcur,Gclock : clock) {Register party at Gclock
wait for (Register, sid, pid) from Gclock : clock
send Register to (pidcur, sidcur,Gledger : client)

{
Register party at Gledger

wait for (Register, sid, pid) from Gledger : client
for (pid,) ∈ identities do:

send CorruptionStatus? to (pid, sidcur,Gledger : client)
wait for (CorruptionStatus, corrupted)
if corrupted :

identities.remove(pid,) {Remove corrupted identities

if (pidcur,) /∈ identities: {Record unknown parties
send ClockRead to (pidcur, sidcur,Gclock : clock)
wait for (ClockRead, round)
identities.add(pidcur, round)

recv msg from (pidcur, sidcur,Gledger):

In case that Gledger sends a message via I/O, e.g., in the case that A triggers
sending a message via I/O, the message is forwarded to I/O. Note that this
part is not executed ifWledger waits for an answer, e.g., during the reading
process due to the specification of iUC.

send (pidcur, sidcur, rolecur,msg) to I/O

Main:

recv (Submit,msg) from I/O: {Submission of a transaction from an uncorrupted party.
send (Submit,msg) to (pidcur, sidcur,Gledger : client)

{
Forward the request to Gledger

recv (Read,msg) from I/O: {Read from state from an uncorrupted identity.
send Read to (pidcur, sidcur,Gledger : client)

{
Forward the request to Gledger.

wait for (Read, state)
msglist ← toMsglist(state)

{
Translate Gledger’s state format to Fledger’s message list format

reply (Read,msglist)

recv (ClockUpdate, pid, sid) from NET: {A triggers clock updates for honest and corrupted parties
send ClockUpdate to (pid, sid,Gclock : clock) {Trigger clock update.

recv (MaintainLedger, pid, sid) from NET: {A triggers MaintainLedger for honest and corrupted parties
send MaintainLedger to (pid, sid,Gledger : client)

recv (GetCurRound) from NET: {A requests GetCurRound

send ClockRead to (ε, sidcur,Gclock : clock)
wait for (ClockRead, round)
reply (GetCurRound, round)

Fig. 12. The wrapper Wledger for Gledger and Gclock to prove that they realize Fledger (Part 1).

40

Description of the wrapper Wledger = (client) (continued):

Main:

recv GetRegistered from I/O:
send GetRegistered to (pidcur, sidcur,Gledger : ledger)
wait for (GetRegistered, sid,P) from Gledger : ledger
output = {(pid, round) ∈ identities|pid ∈ P}

{
Fledger outputs only honest parties including the round
they registered

reply (GetRegistered, output)

recv DeRegister from I/O:
{
E triggers derigstering of (pid, sid, role) from Gclock and Gledger

send DeRegister to (pidcur, sidcur,Gclock : clock)
wait for DeRegister

send DeRegister to (pidcur, sidcur,Gledger : ledger)
wait for DeRegister

identities.remove(pidcur,)
{

To mimic behavior of Fledger
reply DeRegister

Fig. 13. The wrapper Wledger for Gledger and Gclock to prove that they realize Fledger (Part 2).

Description of the subroutine FGledger
submit

= (submit):

Participating roles: {submit}
Corruption model: incorruptible
Protocol parameters:

– validate

{
Validation “algorithm” (from Gledger) that states whether a transaction is valid according to
already ordered messages.

– toBTX

{
Algorithm that transforms a input tx to the format expected in Gledger, i.e.,

(msg′, txID, τL, pid). It includes housekeeping, e.g, txID is unique.

– toState

{
Algorithm that transforms Fledger’s message list format to Gledger’s state format. It may include
housekeeping, e.g, generating of unique block ids.

Description of Msubmit:

Implemented role(s): {submit}
Subroutines: FGledger

update
: update

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (Submit,msg, internalStatea) from I/O:
{

See Figure 5 for definition of internalState and the local variables it
includes

send (Preprocess,msg, internalState) to (pidcur, sidcur,FGledgerupdate
: update)

{
Trigger Gledger’s prepro-

cessing at FGledger
update

wait for (Preprocess,msglist′, buffer, leakage)

F
Gledger
update

provides the up-to-date/validated data

to FGledger
submit

if validate(toBTX(msg), toState(msglist′), buffer) = true:
{

Emulate Gledger’s validation behavior
reply (validationProcessed, true, [msg, leakage]) {A receives all details on the transaction msg

else:
reply (validationProcessed, false, [msg, leakage]) {A receives all details on msg

a
For brevity we use data from internalState with the local variant of the variable name from Fledger. This includes local variables such
as msglist, requestQueue, readQueue, and round.

Fig. 14. The write/submit functionality FGledger
submit of FGledger

ledger

41

Description of the subroutine FGledger
read

= (read):

Participating roles: {read}
Corruption model: incorruptible
Protocol parameters:

– windowSize ∈ N {The window size (number of blocks) of the sliding window.

– δ ∈ N {The upper bound for network delay in rounds.

Description of Mread:

Implemented role(s): {read}
Subroutines: FGledger

update
: update

pointer : {0, 1}∗ → N ∪ {⊥} {Mapping from identities to last transaction in their state; initially ⊥

CheckID(pid , sid , role):
Accept all messages with same sid.

MessagePreprocessing:

recv msg from I/O:

For all parties pid that have been de-registered since the last call of FGledger
read

according to transcript (included in the incoming

message, resp. internalState), set pointer[pid]← ⊥.

Main:

recv (InitRead,msg, internalStatea) from I/O:
{

See Figure 5 for definition of internalState and the local variables it
includes

reply (InitRead, false,msg)

{
Reads in Gledger may include state updates, thus we trigger A and leak the read
request to A.

recv (FinishRead,msg, outID, internalState) from I/O:

{
outID is the suggestedOutput from A. For de-synced
parties, it is directly the read output, for synced parties,
it is a pointer to the output

Let (pidcur, roundRegistered) for some roundRegistered ∈ N be the unique tuple in identities.

send ProcessingOpen? to (pidcur, sidcur,FGledger
update

: update)

{
Enforce that pending updates are propa-
gated to Fledger

wait for (ProcessingOpen?, response)
if response:

{
If there are pending updates, they need to be propagated to Fledger

reply (FinishRead,⊥, ε)
if roundRegistered + δ ≤ round : {Party is synced

if outID /∈ N ∨ (pointer[pidcur] 6= ⊥ ∧ outID < pointer[pidcur]):

{
A is supposed to send the same or later
pointer

reply (FinishRead,⊥, ε)
Let (outID, committingRound, tx,msg, ,) be the unique transaction from msglist with id outID.

if (outID, committingRound, tx,msg′, ,) does not exist in msglist :

{
A is supposed to send an
existing pointer

reply (FinishRead,⊥, ε)
Let boutID ∈ N the block number of the block that contains the transaction with id outID (according to (meta, cut)
messages in msglist starting from block 1).

Let bcurrent ∈ N the block number of the current/most recent block in msglist.

if boutID + windowSize < bcurrent :
reply (FinishRead,⊥, ε)

pointer[pidcur]← outID {Update last pointer

Let output be the subsequence of msglist (only including the counter ctr , the submission round
submissionRound, submitting party pid′, and the message body msg′′) until (and including)
message outID.

{
Map to output from
Gledger.

reply (FinishRead, output, ε)
else: {Party is de-synced.

reply (FinishRead, outID, ε) {A decides the output. outID is suggestedOutput.

recv (CorruptedRead, pid,msg, internalState) from I/O:
reply (FinishRead, ε) {A already knows the full chain

a
For brevity we use data from internalState with the local variant of the variable name from Fledger. This includes local variables such
as msglist, requestQueue, readQueue, and round.

Fig. 15. The read functionality FGledger
read of FGledger

ledger

42

Description of the subroutine FGledger
update

= (update):

Participating roles: {update}
Corruption model: incorruptible
Protocol parameters:

– validate

{
Validation “algorithm” (from Gledger) that states whether a transaction is valid according to
already ordered messages.

– extendPolicy
{

extendPolicy from Gledger. Defines how state “evolves”.

– toMsglist

{
“Algorithm” that transforms output of extendPolicy from Gledger to msglist format (including
metadata). extendPolicy may include format/data transformation.

– toState

{
Algorithm that transforms Fledger’s message list format to Gledger’s state format. It may include
housekeeping, e.g, generating of unique block ids.

– ToBuffer

{
Algorithm that transforms Fledger’s requestQueue format to Gledger’s buffer format. It may in-
clude housekeeping, e.g, generating of unique ids.

– toBTX

{
Algorithm that transforms a input tx to the format expected in Gledger, i.e.,

(msg′, txID, τL, pid). It includes housekeeping, e.g, txID is unique.

Description of Mupdate:

Implemented role(s): {update}
CheckID(pid , sid , role):

Accept all messages with the same sid.
Internal state:

– recordedActivations : {0, 1}∗
{

Emulated honest activations of Gledger
– msgListAppendp : {0, 1}∗ {Cache for pending update msglist

– UpdRequestQueuep : {0, 1}∗ {Cache for pending update requestQueue

Main:

recv (Update, [pending&new,msg], internalStatea) from I/O:
{

See Figure 5 for definition of internalState and the
local variables it includes

if msg 6= (ITH , nxtBC , corrBuffer, τstate), s.t. ITH , corrBuffer, τstate match the format from Gledger, nxtBC is
a sequence of nxtBC ’s in the format of Gledger

:

{Check message format
reply (Update, ∅, ∅, ε) {Processing aborted

if ∃ a transaction of an uncorrupted pid in corrBuffer :
reply (Update, ∅, ∅, ε) {Processing aborted

recordedActivations.add(ITH) {Update recordedActivations

ProcessUpdate()

See definition of ProcessUpdate() below. The procedure gets the complete internal state of FGledger
update

and

all currently used local variables as input. It may write to local and global variables or create new local
variables.

msgListAppendp ← ∅; UpdRequestQueuep ← ∅ {Clear variables for pending upgrade
reply (Update,msgListAppend, updRequestQueue, leakage) {Return updates.

recv (Update, [finalizePending], internalState) from I/O:
{A may finalize an update without triggering

a new one
msgListAppend ← msgListAppendp; updRequestQueue ← UpdRequestQueuep

leakage ← (msgListAppend, updRequestQueue)
msgListAppendp ← ∅; UpdRequestQueuep ← ∅ {Clear variables for pending upgrade
reply (Update,msgListAppend, updRequestQueue, leakage) {Return updates.

a
For brevity we use data from internalState with the local variant of the variable name from Fledger. This includes local variables such
as msglist, requestQueue, readQueue, and round.

Fig. 16. The update functionality FGledger
update of FGledger

ledger (Part 1)

43

Description of Mupdate (continued):

Main:

recv (Preprocess,msg, internalState) from I/O: {Update preprocessing for Submit

send responsively (Preprocess,msg, internalState) to NET

wait for (Preprocess, ITH , nxtBC , corrBuffer, τstate)

while msg 6= (ITH , nxtBC , corrBuffer, τstate), s.t.

1. ITH , corrBuffer, τstate match the format from
Gledger,
2. nxtBC is a sequence of nxtBC ’s in the for-
mat of Gledger,
3. @ a transaction of an uncorrupted pid in
corrBuffer ,

do

send responsively (Preprocess,msg, internalState) to NET {Query A regarding state update

wait for (Preprocess, ITH , nxtBC , corrBuffer, τstate)

recordedActivations.add(ITH) {Update recordedActivations
ProcessUpdate() {See definition of inspace procedure below
state ← msglist ∪msgListAppend {Output for Fsubmit

msgListAppendp ← (msgListAppend); UpdRequestQueuep ← (updRequestQueue)
{

Record pending up-
dates

reply (Preprocess, state,ToBuffer(updRequestQueue) ∪ corrBuffer, leakage)

{
Return data to
Fsubmit.

recv ProcessingOpen? from I/O: {I/O round can query whether there are pending state updates
if msgListAppendp 6= ∅ ∨ UpdRequestQueuep 6= ∅:

reply (ProcessingOpen?, true)
else:

reply (ProcessingOpen?, true)

Procedures and Functions:

procedure ProcessUpdate() :
if msgListAppendp 6= ∅ ∨ UpdRequestQueuep 6= ∅:

msglist.add(msgListAppendp); requestQueue ← requestQueuec {Include pending updates in update process

updRequestQueue ← ∅

N ← extendPolicy(ITH , toState(msglist), nxtBC ,ToBuffer(requestQueue) ∪ corrBuffer, τstate) {
Emulate Gledger behavior during update

msgListAppend ← msgListAppendp; updRequestQueue ← UpdRequestQueuep

if N 6= ε: {Process update, if extendPolicy produces an update
msgListAppend.add(toMsglist(N,msglist)) {Transform output of extendPolicy to msglist format

for all tx in requestQueue do:
if ¬validate(toBTX(tx), toState(msglist),ToBuffer(updRequestQueue) ∪ corrBuffer): {

Emulate Gledger’s update behavior
Remove entry of tx from requestQueue, add it to updRequestQueue

leakage ← (msgListAppend, updRequestQueue)

Fig. 17. The update functionality FGledger
update of FGledger

ledger (Part 2)

44

Description of the subroutine FGledger
updRnd

= (updRnd):

Participating roles: {updRnd}
Subroutines: FGledger

update
: update

Corruption model: incorruptible
Protocol parameters:

– ρ ∈ N {The upper bound in rounds after which a honest tx should be in the state.

– growthWindow ∈ N {The number of rounds the growthRate is related to

– growthRate ∈ N {The number of “blocks” that should be added at in any growthWindow consecutive rounds

– ensureLiveness ∈ {true, false} {If true, liveness is ensured

– ensureGrowth ∈ {true, false} {If true, chain-growth is ensured

Description of MupdRnd:

Implemented role(s): {updRnd}
Subroutines: FGledger

update
: update,Fstate : state

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (UpdateRound,msg, internalStatea) from I/O:
{

See Figure 5 for definition of internalState and the local vari-
ables it includes

send (ProcessingOpen?) to (pidcur, sidcur,Fupdate : update)
{

Check whether there are pending state up-
datedwait for (ProcessingOpen?, response)

if response: {Round may not perceed if there are pending updates
reply (UpdateRound, false, ε)

if ensureLiveness ∧ ∃(, r,) ∈ requestQueue, s.t. r ∈ N ∧ r < round− ρ:
reply (UpdateRound, false, ε)

if ensureGrowth ∧ round ≥ growthWindow:
if #(, , meta, cut, ,) in the last growthWindow committing rounds in msglist is smaller than growthRate:

reply (UpdateRound, false, ε)

if ∃(pid, responseID, round,msg) ∈ readQueue ∧ (pid,) ∈ identities:

{
Check that all honest read requests
in this round are processed

reply (UpdateRound, false, ε)
else:

reply (UpdateRound, true, ε)

a
For brevity we use data from internalState with the local variant of the variable name from Fledger. This includes local variables such
as msglist, requestQueue, readQueue, and round.

Fig. 18. The round update/time update functionality FGledger
updRnd of FGledger

ledger

Description of the subroutine FGledger
leak

= (leak):

Participating roles: {leak}
Corruption model: incorruptible

Description of Mleak:

Implemented role(s): {leak}
CheckID(pid , sid , role):

Accept all messages with the same sid.
Main:

recv (Corrupt, pid, sid, internalState) from I/O:
{

See Figure 5 for definition of internalState and the local
variables it includes

reply (Corrupt, ε) {A already had full overview of the state

Fig. 19. The leakage subroutine FGledger
leak of FGledger

ledger

45

Description of the protocol FGledgerinit = (init):

Participating roles: {init}
Corruption model: incorruptible
Protocol parameters:

– extendPolicy
{

extendPolicy from Gledger. Defines how state “evolves”.

– toMsglist
{

Algorithm that transferst output from extendPolicy to the format of msglist as specified in Fledger (Figure 5).

Description of Minit:

Implemented role(s): {init}
CheckID(pid , sid , role):

Accept all messages with the same sid.

Main:

recv Init from I/O:
{
FGledgerinit runs extendPolicy wich may produce a genesis block

N ← extendPolicy(∅, ∅, ε, ∅, ε)
msglist ← toMsglist(N)
reply (Init, ∅,msglist, ∅,msglist) {The initial data is leaked to A

Fig. 20. The initialization functionality FGledger
init of FGledger

ledger

D GPL Realizes Fledger (Sketch)

In this section, we sketch how Fledger can be instantiated such that Kerber et al.’s ideal functionality for
privacy in blockchains GPL [24] also realizes that instantiation of Fledger. Since GPL is a variant of Gledger, we
first briefly describe the key differences between GPL and Gledger and how GPL models privacy properties.15

Then, we explain how the subroutines of Fledger need to be instantiated – we call the resulting instantiation

FGPL

ledger in what follows – in order to prove that GPL realizes FGPL

ledger.

D.1 The Private Ledger Functionality GPL

The functionality GPL inherits most of its construction from Gledger while mainly adding two additional
features: (i) GPL allows for modeling privacy properties of blockchains, and (ii) GPL includes (initial) stake
distributions. This is to enable capturing the Proof-of-Stake-based blockchain Ouroboros Crypsinous [24].

On a technical level, Kerber et al. add the following new parameters to GPL to model privacy: (i) Lkg, a
leakage algorithm, (ii) blindTx, an algorithm that blinds transaction content before this is leaked to A, and
(iii) blind, a blinding algorithm that hides private details of the state. To model privacy properties with GPL,
each party gets a blind’ed response to its read requests. That is, it cannot directly access the full global state
of GPL. Similarly, A only gets access to a blind’ed version of GPL’s state and all potential leakages, such as
the leakage during transaction submission, are blinded via one of the additional parameters.

Furthermore, GPL includes an explicit (coin) ID generation interface Generate that allows to generate
private IDs, e.g., private coin IDs which is necessary for Ouroboros Crypsinous to, e. g., handle privacy
during “mining”. Finally, Kerber et al. also change the behavior of some parameters compared to Gledger.
In particular, (i) the activation list ITH stores blinded data as it is leaked later on to A, (ii) validate gets the
states of the participants, honest participants, and the set of generate IDs (coins) as additional input.

D.2 GPL Realizes FGPL

ledger

Now, we sketch the instantiation FGPL

ledger which is realized by GPL. This instantiation is similar to the instan-
tiation used for Gledger in Appendix C and uses the same high-level idea, namely, running the parameters

of GPL inside the subroutines of Fledger. There is, however, one conceptual difference between FGledger
ledger and

FGPL

ledger: In FGledger
ledger , we were able to abstract from some of the (not security relevant) technical details of

15 For a detailed presentation of GPL we refer to the original paper [24].

46

Gledger, such as lists of honest activations, by letting the simulator take care of these aspects. This in turn

resulted in a cleaner and simpler specification of FGledger
ledger . However, this is not possible for FGPL

ledger: The
information that GPL leaks strongly depends on the exact parameters that are used, so it is not fixed which
exact information would be available to a simulator. Hence, the simulator actually cannot take over certain
tasks. Instead, we use an alternative approach that we already mentioned in the discussion of FGledger

ledger in

Appendix C, namely, we encode the full logic of GPL with all technical details within FGPL

ledger. On a technical

level, FGPL

ledger differs from FGledger
ledger mainly in the following points: (i) FGPL

init needs to distribute the initial

stake distribution of GPL, (ii) FGPL

read needs a special handling for the Generate command which matches GPL,
(iii) handling of leakage needs to be enhanced by GPL’s leakage parameters, and (iv) Read needs to blind
outputs before they are delivered to the requestor.

Similarly to Section 3, resp. Appendix C, we then also have to add a wrapper WPL in front of GPL

and Gclock to map interfaces and abstraction levels. WPL mainly works as Wledger with the following major
difference: As WPL maps a Fledger commands to Gledger’s, resp. GPL’s format, WPL maps generate messages

of the form Read, [Generate,msg] (dedicated for FGPL

read) to a Generate for GPL.
Using the instantiation and wrapper as sketched above, we then obtain the following result:

Theorem 5. (informal) Let GPL be the ideal blockchain functionality with arbitrary parameters such that
all parameterized algorithms are deterministic. Let FGPL

ledger be the instantiation of Fledger as described above,
where the internal subroutines use the same parameters as GPL. Furthermore, if GPL is parameterized such
that it provides liveness and/or chain-growth, then let the parameters of the subroutine FGPL

updRnd in FGPL

ledger

be set such that it also enforces the same properties. Then:

(WPL | GPL,Gclock) ≤ FGPL

ledger

We do not provide a formal proof for this theorem. Intuitively, the theorem follows from the fact that
the full logic of GPL is included in FGPL

ledger, i.e., both functionalities behave in the same way (up to different
abstraction levels which are mapped via the wrapper).

E Full Details: Corda Realizes Fc
ledger

In the following, we illustrate a flow between different parties in Corda using the submission of a transaction
as example. This is succeeded by full details for Theorem 3, including formal specifications of all machines
and a formal proof of the theorem.

E.1 Example Run

Figure 21 illustrates the process of submitting a new transaction to Corda. The process is started by an
initiator who submits, validates, and signs the whole transaction, creating a so-called transaction proposal.
In Step 1, this proposal is sent to all signees who also validate the transaction and, if they agree with the
transaction, also sign the proposal to signal consent. These signatures are returned to the initiator (Step 2),
who then forwards the proposal with all signatures to the notary responsible for that transaction (Step 3).
After performing all of the checks mentioned above, the notary adds its own signature and returns the
resulting finialized transaction to the initiator (Step 4). After validating the signature, the initiator adds
this finalized transaction (and its dependencies) to its own partial view of the global transaction graph and
forwards the finalized transaction to all signees (Step 5) who also validate all signatures and then add the
transaction (and its dependencies) to their partial views.

Corda requires by design that the initiator can validate the transaction, i. e., he knows all dependencies
(all of which must also have been validated at some point). This is achieved either by the owner of the
initiating client having the dependency previously submitted to the ledger, or by signees sending the missing
dependencies proactively to the initiator (which are validated and then added to its partial view of the

47

txProposaltxProposal

txProposaltxProposal

txProposaltxProposal

txAgreement1txAgreement1

txAgreement2txAgreement2

txAgreementntxAgreementn

txFinalizetxFinalize

txFinalizedtxFinalized

txFinalizedtxFinalized

txFinalizedtxFinalized

txFinalizedtxFinalized

I S1 S2 Sn N

1

2

3

4

5

I S1 S2 Sn N

. . .

. . .

Fig. 21. Overview of a common transaction in Corda with an initiator of the transaction I, transaction signees
S1, . . . , Sn, and a notary service N .

global graph by the initiator) – for brevity, we say a party pushes a transaction to another party to denote
proactively sending transactions.

Unlike the initiator, signees and the notary might not be aware of the full dependencies of a new trans-
action yet. In order to be able to validate the transaction between Steps 1 and 2 respectively Steps 3 and 4,
they request, as depicted in Figure 22, any missing dependencies from the initiator (who must know the full
dependencies). This process is iterated recursively until all dependencies have been received, validated, and
added to their partial views of the global graph. If any information is missing or invalid, then the transaction
submission protocol is aborted by that party without generating a signature.

E.2 The Corda Model Pc

In this section, we provide additional details and highlights regarding our Corda model Pc introduced in
Section 4.2). We provide the formal definitions of Pc in Figures 24 to 35 at the end of this section.

Remark: To simplify presentation, we introduced Pc as protocol (client | notary,Funicast,Fcert,Fro) in
Section 4.2. Formally, the Corda protocol is defined as Pc = (Pc

ledger : client | Pc
ledger : notary,Funicast,

Fcert,Fro) (more details below).

The core of the Corda model which is mainly specified in the machines for clients and notaries consists of
the resolution and validation methods depicted in Figure 23.16 as well as the sequence of stages a transaction
passes from being first introduced to a client until it is accepted into a party’s local state. These stages are
encoded in bufferTxSig. The largest part of the protocol is then the bookkeeping needed to implement the
state machine. We discuss both the validation function and the sequence of stages in the following.

16 Figure 23 shows the specification excerpt for clients. Notaries have very slight modifications which we describe in
this section as well.

48

txFinalize or txProposaltxFinalize or txProposal

reqUnknownTxreqUnknownTx

reqAttachmentreqAttachment

replyAttachmentreplyAttachment

replyUnknownTxreplyUnknownTx

txFinalized or txAgreementtxFinalized or txAgreement

I P

11

2
tx validation failed
due to missing data

3

repeat 1 until all tx & at-
tachments for tx validation are
known

4

I P

1

Fig. 22. A notary or another client P requests related transactions and attachments from an initiator I if P is not
aware of them.

Path to transaction validity Clients learn about transaction proposals from three paths. They may get the
transaction from the network if a peer wishes to send it to them or from the environment via a call to submit
where they are either initiator or signee of that transaction. Depending on how a client first learned about
a transaction a different sequence of stages are passed until the transaction is finally accepted as valid.

In what follows, we describe the stages of a transaction in Corda more detailed. The simplest case con-
cerns transactions that are send by other protocol members. The transaction is marked as unrequested

or requested depending on whether it was sent as part of dependency resolution (when trying to vali-
date another transaction) or pro-actively. Transactions in requested stage directly pass to the set of valid
transactions verifiedTx once successfully validated.

If a transaction is submitted to a client acting as a signee, the transaction is marked as approved and the
client waits for the initiator to ask for a signature. Once the initiator asks for the signature, the transaction
is resolved, validated and – if successfully validated – marked as sign. In this stage a signature is created
and send to the initiator and the transaction proceeds to the stage expNotarization. Finally, once a notary
signature is received from the initiator, the transaction is accepted into verifiedTx.

On initiator side, submitted transactions are marked as expColSigs and validated. Once validated they
enter into reqSigs and the signees are asked for signatures. The transaction stays in this stage until all
necessary signatures are received at which point it is marked as reqNotarize and send to the notary for
notarization. Once the response from the notary is received and validated, the transaction is accepted into
verifiedTx and forwarded to all signees to notify them about the notary signature.

If in the previously mentioned processes a transaction in the buffer can not be resolved but needs to for
validation the status is set to reqDeps to prevent asking for the dependencies of this particular transaction
several times.

49

Internal state (excerpt):

– bufferTxSig ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × status{
Transaction currently in process as (txId, tx,Σ, pid, status). Σ = {(pidi, σi)}i∈I , status ∈ {⊥, unrequested, requested, approved,
reqSigs, reqDeps, sign, expNotarization, reqNotarization, expColSigs}

Main (excerpt):

function validate(tx,Σ, pid) :
if verifiedTx.contains(, tx, , Σ′,):

if |Σ′| == m + 2:
return alreadyNotarised

else:
if isDoubleSpend(tx, verifiedTx):

return doubleSpend

if ¬
[
∀ i ∈ [m] : isValidId(signeei, client) == true ∧ isValidId(initiator, client) == true ∧

isValidId(formerNotary, notary) == true ∧ isValidId(notary, notary) == true)
]
:

return invalid

if ¬
[(
|Σ| ≤ m + 2 ∧ ∃i ∈ [m] : signeei == pidcur ∨ initiator == pidcur

)
∨
(
∀ i ∈ [m]∃1(σ′, signeei) ∈ Σ ∧ (|Σ| == m + 1 ∨ (|Σ| == m + 2 ∧ ∃(σ′, formerNotary) ∈ Σ))

)]
:

return invalid

for all (σ, pidσ) ∈ Σ do:
send (tx, σ) to (pidσ, sidcur,Fcert : verifier)
wait for (VerResult, res) {Checks all provided signatures
if res == false:

return invalid

if isResolvable(tx) == false ∧ bufferTxSig[tx][4]! = reqDeps:
msg ← resolveTx(tx, pid)
send (Message,msg) to (pidcur, sidcur,Funicast : unicast)

else if isResolvable(tx):
txDependencies ← ε
for all (txId′, outputIndex ′) do:

if verifiedTx.contains((, tx, , ,)):
txDependencies.add(verifiedTx[txId′][1])

else:
txDependencies.add(bufferTxSig[txId′][1])

for all attachmentId ∈ proposal do:
txAttachments.add(attachments[attachmentId])

res ← executeValidation(tx, txDependencies, txAttachments)
return res

function resolveTx(tx, pids) (msg):
bufferTxSig[tx][4]← reqDeps

msg ← ε
for all (txId, outputIndex) ∈ txinputStates ∪ txreferenceStates do:

if @(, tx′,) ∈ verifiedTx ∧ (txId, outputIndex) ∈ tx′outputStates :

bufferTxSig.add((txId,⊥,⊥, pids, requested))
msg.add((pids, (SendTransactionFlow, (txId, outputIndex))))

for all attachmentId ∈ proposal do:
if (attachmentId,) 6∈ attachments:

msg.add((pids, (GetAttachment, (attachmentId))))

return msg

function validateAllLocal() :
identities ← ε,msg ← ε, resolved ← true

while resolved == true do
resolved ← false, res← ε
for all (, tx,Σ, pid, status) ∈ bufferTxSig | status 6∈ {⊥, unrequested, expNotarization, reqNotarization} do:

if isResolvable(tx):
res ← validate(tx,Σ, ε)
if res == valid ∧ (status == sign ∨ status == expColSigs):

send (Sign, tx) to (pidcur, sidcur,Fcert : signer)
wait for (Signature, σ)

else if res == valid ∧ isNotarised(tx):
verifiedTx.add((txId, tx, ∅))

if status == sign:
msg.add((pidcur, (Signature, (tx, σ))))

else if status = expColSigs:
msg.add((pidcur, CollectSignaturesFlow(tx)))

resolved ← true

bufferTxSig.remove(, tx,Σ, pid,)
send (Message,msg) to (pidcur, sidcur,Funicast)

Fig. 23. The Corda model Pc, excerpt of the specification of the Corda client Mclient

Validity testing During the Corda protocol, clients and notaries execute several validations. As part of
this process, the function resolveTx() is responsible for collecting all information necessary to complete
validation of a transaction. Concretely, to validate a transaction all attachments need to be known and all
transactions providing input and reference states need to be known and verified. To resolve unknown data,

50

resolveTx() creates the GetAttachment and SendTransactionFlow messages to be forwarded to the unicast
interface.

validateAllLocal() acts as a housekeeping method. Every time new information is received this may
have consequences for other transactions: If collection of their dependencies is completed they may be vali-
dated, if the signatures have arrived a transaction might be ready for notarization or a notary signature can
settle the stage of a transaction as valid. Concretely the function implements a fixed point iteration where
all resolved transactions (those with enough verified information) are validated and moved to verifiedTx until
no more transaction can be processed. validateAllLocal() may send messages to the unicast channel in
case clients acting as initiator or signee are satisfied with their validity.

The most complex function is validate() which is responsible for assessing the validity of a specific
transaction. It optionally takes a pid in which case it will use resolveTx() to ask for missing dependencies.
Alternatively, if no pid is provided, it only assesses validity if all necessary information is present. In a first
step, validate checks whether the transaction has already been accepted (and is therefore in verifiedTx) or
qualifies as double spend. In both cases no further processing is necessary. Next, all clients mentioned in the
transaction need to exist according to the network map and have the correct roles (e. g., only notaries are
allowed to be mentioned in the notary field). Further, validate checks if the correct number of signatures
exists. We define m to be the number of signees. If pidcur is signee or initiator of the transaction the number
of signatures might be smaller then m + 2 as this transaction might still be in signing process. Otherwise
either there have to be signatures for every signee and the initiator or additionally for the notary. Finally,
if dependencies or attachments are missing, they are optionally requested which ends the activation. If all
checks verify, all inputs to the contract (or attachment) verification algorithm executeValidation are collected
and the contract validated. Contract validation receives all (direct) input and reference states for the current
transaction as well as their attachments but has no access to the full dependency tree or other transactions
in the client’s state.

Differences for notaries Notaries act similar to clients in that they receive transactions which pass several
stages in bufferTxSig until they get accepted into verifiedTx. However there are several noteworthy differences:
Notaries never receive dependencies pro-actively and never take the active role of an initiator but act like a
signee. However notaries always “accept” transactions: They receive transactions for notarization from the
initiator instead of first receiving them as approved transactions from the environment and forwarding them
upon request by the initiator. Finally once they have signed a transaction they can directly add them to
verifiedTx whereas signees need to wait for a notary signature (e. g., to handle double spending). For this
reasons the stages for the notary are only requested and sign, which conceptually correspond to the states
with the same name for the client. Besides this a notary only needs to check in validate if there exists exactly
one signature for every signee and the initiator as otherwise the transaction is invalid for notarisation.

Note that we model Corda transactions as tx = (initiator , [signee1, . . . , signeem],notary , formerNotary ,
proposal) (all of them are bit strings). We denote in proposal input states as txinputStates = (txId , outputIndex)
and output states as txoutputStates . We denote by m ∈ N the number of signees in a transaction.

E.3 Full Details: Corda realizes Fledger instantiation for Corda

As already stated in Section 4.3, the instantiation Fc
ledger of Fledger is the protocol (Fledger | Fc

init,Fc
submit,

Fc
update,Fc

read,Fc
updRnd,Fc

leak,Fc
storage), with formal definitions of the instantiated subroutines provided in

Figures 36 to 49 at the end of this section.

E.4 Final Result: Corda Realizes Fc
ledger

Having explained both the ideal protocol Fc
ledger (cf. Section 4.3) and its intended realization Pc, we can

now formally state the main result of this section (cf. Figure 4 in Section 4.3).
Before going into details, we first define different knowledge notations and the notion of synchronized

states we use later on. Jumping slightly ahead, we use following abbreviations from Theorem 6: R denotes

51

the real protocol, i. e., Pc, I denotes the ideal protocol Fc
ledger, and R′ denotes the version of R which is

simulated in the simulator.

Knowledge and state synchronization during simulation: During the upcoming proof, we often rely to
the induction hypothesis that the “states” ofR′ and I are “synchronized” or simply both are “synchronized”.
The notation of synchronized states of an honest entity expresses that – at a certain point in time during
the run – the “knowledge” of every honest entity regarding its transaction graph and attachments in R′ is a
“subset” of the entities knowledge in I.17 In detail, let entity be an honest entity at some point during a run
of {S, I} and txIDsR the transaction IDs extracted from verifiedTx, attachmentIDsR the set of attachment
IDs extracted from attachments , and txIDsRbuffered the transaction IDs extracted from bufferTxSig from the

entities state in R′. Let txIDsI be the set of transaction IDs such that

– txIDsI is the set of transaction IDs extracted from Fc
ledger’s message list in I as follows: (i) For all trans-

actions in msglist where entity is initiator, signee, or notary of the transaction, add the transaction ID to
txIDsI . (ii) For all push operations where entity = (pid , sid , role) is the receiver of the operation, i. e., for
all message list entities that contain a message of the form (txID , pids, pid), add txID to txIDsI . (iii) For
all transactions in requestQueue where entity is initiator or signee (or notary) of the transaction. If there
exists a submit transaction of this transaction submitted by the transactions initiator in requestQueue,
then add the transaction to txIDsI . (iv) Do recursively: for all transaction IDs in txIDsI , add their input
transaction IDs from msglist to txIDsI . (v) All leaked transactions/transactions generate by A are in
txIDsI as they are not private.

– attachmentIDsI is the set of all attachment IDs extracted from Fc
ledger’s msglist and requestQueue such

that (pid , sid , role) submitted the attachment to Fc
ledger. Additionally, for all transactions in txIDsI ,

extract the attachment IDs the transactions and add them to attachmentIDsI .
– txIDsIbuffered is the set of transaction IDs extracted from Fc

ledger’s requestQueue.

We say R′ and I are synchronized (at a point in time during a run of {S, I} iff for every honest entity
it holds true that:

txIDsR ⊂ txIDsI ∧

attachmentIDsR ⊂ attachmentIDsI

To allow better referencing in what follows: the following sets txIDsR(entity), attachmentIDsR(entity),
resp. txIDsI(entity), attachmentIDsI(entity) are defined as above but explicitly referencing the owner entity .

We call the txIDsR(entity) together with attachmentIDsR(entity) the real knowledge of entity , resp. the
potential knowledge of entity in R′, resp. I (at a point during the run of {S, I}).

We call the intersecting set of a set of known transactions of entity from Fc
read (knowTransactions(entity) =

{txID | (pid , txID) ∈ knownTransaction}) and the intersecting set of an entity ’s set of known attachments
from Fc

read (knowAttachments(entity) = {ida | (pid , ida) ∈ knownAttachments}) as active knowledge of
entity in I.

We call the set of all transactions and attachment id that an entity had access to before and including
the current activation the current knowledge of the entity at this point during the run.

Theorem 6. Let η ∈ N be the security parameter and Σ = (gen(1η), sig, ver) be an EUF-CMA secure
signature scheme. Let Pc be the Corda protocol that uses the signature scheme Σ, using parameters/further
algorithms as defined in Figure 24 and further parameters selected arbitrarily such that all parameterized
algorithms are deterministic and in polynomial time. Let Fc

ledger be the instantiation of Fledger as described
above, where the internal subroutines use the same parameters as Pc. Then:

Pc ≤ Fc
ledger

17 We do not expect equality of both state as I abstracts network delay during communication and might have access
to data which still needs to be delivered in R′.

52

Proof. As part of the proof, we firstly define a responsive simulator S such that the real world running the
protocol R := Pc is indistinguishable from the ideal world running {S, I}, with the protocol I := Fc

ledger,
for every ppt environment E .

The simulator S is defined as follows: it is a single machine that is connected to I and the environment
E via their network interfaces. In a run, there is only a single instance of the machine S that accepts and
processes all incoming messages. The simulator S internally simulates the realizationR, including its behavior
on the network interface connected to the environment, and uses this simulation to compute responses to
incoming messages (see below for details as Corda’s privacy properties hide several details from S). For ease
of presentation, we will refer to this internal simulation by R′. Before we explain the simulator in detail, we
give explain how the simulator deals with Corda’s privacy.

Design rational of S and handling of blinded data Due to Corda’s privacy properties, S does not have full
access/overview regarding submitted transactions and read operations of honest entities. Nevertheless, S
follows the same approach as in Theorem 4: S internally simulates R. In contrast to Theorem 4, S has to use
the data leaked from Fledger to simulate a “blinded” version of R. Fc

ledger leaks many details of a transaction
(except the transaction’s full plain text) including (i) the transaction’s id, (ii) the length of the transaction,
(iii) initiator entity, signee entities, and (former) notary entity, (iv) transaction inputs and outputs (only
ids), and (v) used attachments (only ids). During the simulation, S replaces the original (blinded) transaction
in the simulation by a unique dummy transaction (identified by the original transaction ID) in the expected
format enriched with data from Fc

ledger’s leakage. The dummy transactions includes all the leaked data such
that R′ can directly execute format checks on the dummy transaction. The unknown part of the dummy
transaction is filled with random bit strings such that the length of the dummy transaction matches the length
of the original transaction. For attachments, Fc

ledger leaks the attachment ID and the length of the attachment
itself. Thus, S uses a unique random bit string to replace the attachment definition during the simulation
and identifies the attachment by its original ID. Instead of using the original transaction/attachment in the
simulation, S usually uses this unique dummy transaction.

There are mainly three issues/tasks, S faces due to this “blinded” simulation:
Firstly, after corruption of an entity, S has to provide the appropriate leakage to an adversary A. This

is mainly done by keeping corruption in R′ and I in sync (see below). When corrupting an entity entity
in I, S gets full access to the entity’s internal state which includes (i) the attachments known by entity ,
(ii) transaction subgraphs in which entity is involved in (from the transaction entity is directly involved in
down to all dependencies in the subgraph in the direction of the transactions input transactions until one
reaches the initial issuance transactions), additionally (iii) all subgraphs about which entity was directly
informed via a push message from an other entity (also following the direction of the input transactions in
the subgraph).18 As soon as Fledger leaks details regarding attachments or transactions S already is aware
of (as he knows the ids), he replaces the dummy transaction in R′ by the actual transaction/attachment
data.19 Then, S extracts the leaked data for the corrupted party from R′.

Secondly, S cannot validate blinded transactions. However, an (honest) initiator of a transaction leaks the
information whether he interpreted a transaction as valid. Thus, instead of calling the executeValidation during
the simulation of R′ (if S only has access to blinded transaction data), S reuses the information whether
the submission was accepted by Fc

ledger and replace the execution of executeValidation with this output. If
there is no appropriate leakage provided by Fc

ledger, S queries I regarding the validity of a transaction in the
context of an entity’s current state.

Thirdly, if R′, resp. a corrupted entity, uses the random oracle Fro to generate a fresh transaction or
attachment id to retrieve an id, S checks whether the query is a transaction or an attachment. If it is one of
both, S forwards the request to Fro as Update[GetID] message to Fc

ledger. Fc
ledger will request S for a unique

id if Fc
ledger is not aware of the requested bit string. Otherwise and after setting the id, Fc

ledger will provide
the id to S. The simulator forwards the id as answer of Fro to R′ or to the corrupted entity which queried

18 The leaked data is an over-approximation of the corrupted entity’s knowledge where instant delivery of dependent
transactions and attachments is assumed.

19 Replacing blinded data by original data in particular includes the regeneration and replacement of all signatures
in R′ which were generated based on the blinded data.

53

Fro. If the request to Fro is neither a transaction nor an attachment, S generates a random and unique
hash/id (not clashing with one from the generated ids in Fc

ledger) and forwards it to the requestor.
Based on the above information, the simulation runs as follows:

Network communication from/to the environment

– Messages that S receives on the network connected to the environment (and which are hence meant for
R) are forwarded to internal simulation R′.

– Any messages sent by R′ on its network interface (that are hence meant for the environment) are for-
warded to the environment E .

Corruption handling

– The simulator S keeps the corruption status of entities in R′ and I synchronized. That is, whenever an
entity in R′ starts to consider itself corrupted, the simulator first corrupts the corresponding entity of
Fledger in I before continuing its simulation.

– As explained above, S applies leaked attachment and transaction data to R′ by (i) replacing dummy
values by actual values and (ii) replacing/regenerating signatures on dummy values with signatures of
original values in R′.

– If an entity is explicitly corrupted, S extracts the leakage during corruption after it applied the leakage
from Fc

ledger to R′.
– Incoming Messages from corrupted entities of Fledger in I are forwarded on the network to the environment

in the name of the corresponding entity in R′. Conversely, whenever a corrupted entity of R′ wants to
output a message to a higher-level protocol, S instructs the corresponding entity of Fledger to output the
same message to the higher-level protocol.

– Messages from corrupted parties to Fro are mapped to Update with “flavor” GetID] commands if the
corrupted party queries Fro for transaction or attachment IDs. S forwards them to Fc

ledger. Responses
of Fc

ledger are mapped to the answer format of Fro, and returned to the corrupted party (see above).
Otherwise, the requests are handled by S as explained above.

– Messages from corrupted parties to Funicast are forwarded to the simulation R′.

Current state queries to S
Fc

ledger may frequently ask regarding the current state of an entity. In this case, S extracts the known
transaction and attachment IDs from the entities state in R′. Additionally, S keeps a list for all entities
which transaction/attachment IDs have been in their state before. S forwards all transaction/attachment
IDs that the entity has seen before to Fc

ledger.

Transaction submission Whenever an honest entity entity = (pid , sid , role) receives a request (Submit,msg)
to submit a new transaction msg , the subroutine Fc

submit processes the three possible message formats (i)
a “common” transaction proposal, (ii) submission of an attachment, and (iii) transmission of an existing
transaction from one party to another party and leaks appropriate data for S to distinguish the above
operations.

Case (i): Assuming that none of the entities involved in the submitted transaction is corrupted, S receives
a blinded version of the transaction, generates a dummy version of the transaction as explained above, and
forwards the dummy in a submission request to R′. In the case that the submit was triggered by one of the
involved entities except the initiator and one of the involved entities is corrupted Fc

ledger leaks the transaction

to S.20 In the case that the submit was triggered by initiator (and one of the involved entities is corrupted),
Fc

ledger leaks the transaction graph below the submitted transaction including the used attachments to S.
Then, S replaces blinded data in R′ with leaked data and forwards the submitted transaction (in plain)
to R′. In particular, the input to R may trigger internal communication in R′ via Funicast. See below for
details.

20 As signees/notaries may need to query further knowledge at the initiator, the transaction is the only thing they
have access to for sure.

54

Case (ii): S triggers that the attachment is stored in the submitting entities state by sending the appro-
priate message Update[attachment] to Fc

ledger. When S gets reactivated after the submission, he generates
a (unique) dummy version of the attachment and simulates its input to R′.
Case (iii): When S receives the leakage from the transaction exchange, he triggers the exchange according

to the leaked data in R′. In particular, the input to R may trigger internal communication in R′ via Funicast.
See below for details. In the case that Fc

ledger leaks data during Case (iii), it updates R′ as explained above.

After simulating the (blinded) input to the honest entity entity in R′, S outputs the result of the
activation from R to the environment.

Read requests
Whenever an honest entity entity receives a request (Read,msg) to read from the global state, Fledger forwards
this (local) read request to S and waits to receive a suggested output in the form of a list of transactions. S
simulates the read request to R′. Note that the request is independent of the input within the read request.
S extracts the transaction ids from the simulated read request and forwards the suggested output to Fc

ledger.

Simulation of the internal Pc communication via Funicast and dependencies to the internal communication
In many cases, an activation of R′ leads to messages send via Funicast in R′. To simulate the Corda protocol
properly, S does an internal bookkeeping regarding the status of the different messages regarding the Corda
protocol (already done in R′) and transactions depending on these transactions. If A trigger the delivery of
message via Deliver, S forwards this request to the simulated Funicast and processes it in R′

Further details

– S keeps the clocks/rounds of R′ and Fc
ledger synchronous. That is, S sends UpdateRound to Fc

ledger

whenever a round update in the simulated Funicast is performed and before continuing the simulation.
– If Fc

ledger queries S for id generation via GenerateID, S selects a unique id (length of the id is η) and
returns it to Fc

ledger. Note that S does internal bookkeeping for the ids to keep them unique and to
prevent collisions with other Fro queries.

This concludes the description of the simulator. It is easy to see that (i) {S, I} is environmentally bounded 21

and (ii) S is a responsive simulator for I, i.e., restricting messages from I are answered immediately as long
as {S, I} runs with a responsive environment. We now argue that R and {S, I} are indeed indistinguishable
for any (responsive) environment E ∈ Env(R).

Now, let E ∈ Env(R) be an arbitrary but fixed environment. Before we argue in detail regarding the
indistinguishability of R and I, we briefly analyze the possibility to distinguish R and I based on generated
IDs and signatures.

Collisions of IDs: R uses a random oracle Fro to generate IDs (in the length of the security parameter
η) which may cause a collision in the IDs whereas S generates unique IDs without collisions for I. Observe
that the possibility that E distinguishes between R and I based on an ID collision is negligible in η.
Signatures: Similarly, E could use Fcert to distinguish between R and I, e.g., by guessing transaction,

singer, and signature pairs and verifying then at Fcert. However, due toΣ’s EUF-CMA security, the possibility
to guess such a triple is negligible in η. Thus, the probability that E may distinguish between R and I based
on a signatures is negligible in η as well.

In the following, we only consider runs where the events explained above do not occur. We will go over
all possible interactions on the network and the I/O interface and argue, by induction, that all of those
interactions result in identical behavior towards the environment, i.e., are also indistinguishable. At the start
of a run, there was interactions on the network, resp. I/O, interface yet. Thus, the base case holds true.
In the following, assume that all network, resp. I/O, interactions to far have resulted in the same behavior
visible towards the environment in both the real and ideal world.

21 As all algorithms are in polynomial time and executeValidation ensures that the execution of attachments finishes
in polynomial time.

55

Interaction with honest entities via I/O: Firstly, we show that the I/O behavior simulated by S
towards the environment is indistinguishable from the I/O behavior of R. For brevity and readability, we
often use expressions like “S pushes the attachment/the transaction to I” although we are only aware of the
leakage of the mentioned attachment. The expression usually means that the operation regarding a blinded
transaction/attachment is executed identifying the attachment/transaction by its ID.

Submission requests: By construction of R and I, submission requests do not directly result into an
input to the environment but they might influence future read requests. Thus, the main goal here is to prove
that R′ and I stay synchronized after a submission of a transaction. Note that S can distinguish the three
following cases du to the format of the leakage provided by I.

Submission of a transaction There are two basic cases to distinguish:
(i) the submitting party is the initiator of the submitted transaction or (ii) the submitting party is a

signee of the transaction.22 In Case (ii), I’s leakage informs S whether the submitted transaction was added
to the submitting entity’s buffer, i. e., txIDsIbuffered(entity). If the transaction was added to the entities buffer

at I, the transaction will be added to the entities state in R′ (namely txIDsRbuffered(entity)) as well (as R′

and I execute the same steps during the submission of a transaction from a signee. Further, all necessary
data to perform these checks in the simulation are included in the leakage from I to S). Note that – if the
transactions initiators submission of the transaction is already processed and accepted – this step may add
the transaction, its subgraph, and the used attachments to txIDsI(entity), resp. attachmentIDsI(entity).
However, R′ and I are still synchronized.
Before Case (i) occurs, i. e., if the submitting entity is the transaction’s initiator, I will query S for the
initiator’s current knowledge. S replies the query with the current knowledge of the entity (in form of IDs) as
explained above. As R′ and I were in sync before the operation they stay synchronous after the operation as
well (we will step over the different Corda flows below, which will show that this conclusion is valid) and I
accepts the current knowledge from S: observe that the current state in R′ is monotonically increasing and S
keeps track of declined transactions and attachments: the current state delivered by S to I is always a super
set of the previous current state. Thus, I will accept S’s update. Further, the simulated entity only accepts
pushed transactions from a corrupted entity if the corrupted entity can provide the full (valid) transaction
subgraph below the transaction. That is, these transactions need to generated by corrupted parties or leaked.
Thus, this check also does not fail.
As the knowledge of entity in R′ is by induction hypothesis a subset of I knowledge before the activation
we can thus conclude that R′ ans I are still synchronized after S pushed the current knowledge to I.
Hereafter, I leaks the submitted transaction (with entity as initiator) to S. The leakage includes whether I
accepted the transaction and triggers S.

1. In the case that I rejects the transaction: The submitted transaction is rejected during the simulation of
R′ as well due to the replacement of executeValidation by the validation result from I. Thus, R′ and I are
still synchronized in this case (as real knowledge and potential knowledge does not change). Observe that
the entity inR′ process may push several transactions to other entities (via the CollectSignaturesFlow,
see below). However, the information is not processed for other entities in R′ so far - thus their knowledge
does not change and R′ and I are still synchronized at the end of the simulation in S. Observe that the
update received from S lead to the fact that real knowledge in R′ is now equal to the active knowledge
in I.

2. In the case that I accepts the transaction. Observe that the entities potential knowledge in I does not
change at this point in time. The transaction however is added to txIDsIbuffered . In the simulation of R′

the transaction submission is accepted as well and added to txIDsRbuffered :
As stated above, real knowledge and active knowledge are equal before the transaction is validated in
I. Further, R′ and I execute the same checks on the same active knowledge (and S has access to the
necessary data for the checks as this included in I leakage). Only the check executeValidation in R is
replaced by true (as I accepted). This concludes that R′ and I are still synchronized.

22 S can determine the role of the submitting entity as I’s leakage includes the roles of the involved parties

56

Observe that the entity starts the CollectSignaturesFlow in R′ and starts to distribute the transaction
to the signees. As already explained, at this point, no further knowledge in R′ changes as the information
still waits for delivery. Thus, R′ and I are synchronized after the simulation of R′.

Submission of an attachment The leakage of I indicates whether a submitted attachment is valid. In
case that it is valid, however it is not directly added to attachmentsIDsI(entity), i. e., it is not part of the
entity’s knowledge so far. As R′ and I use the same (deterministic) algorithm to validate the attachments,
R′ will accept the attachment if I accepted it. R′ adds the attachment immediately to the entity’s real
knowledge attachmentsIDsR(entity). In this case, S pushes the attachment immediately via an Update into
the submitting parties knowledge attachmentsIDsI(entity) at I. Thus, R′ and I are synchronized after the
simulation of R′.
One entity shares a transaction with another entity Before I’ leakage indicates that entity entitya

pushed a transaction with ID txID to entityb. It queries S for the current state of entitya. Due to the
same reasoning as above, I accepts S’s proposed current state update for entitya. Thus, R and I are still
synchronized and the real knowledge in R′ is now equal to the active knowledge in I.
Observe that I leaks indicates that it accepted the push operation, the transaction is not directly added to
the entity’s potential knowledge txIDsI(entity).
After I leaks whether it accepted the transaction push operation of txID from entitya to entityb, the sim-
ulation R′ outputs the same result as the same logic and same algorithms are running in the same input
(as real knowledge and active knowledge are equal). In the case that both reject the operation, we have
nothing to show. If both accept the operation, txID is added immediately to the entity’s real knowledge in
R′. In this case, S immediately pushes the transaction (ID) via the command Update[txExchange] to the
entity’s potential knowledge in I. Observe, that this operation adds all transaction from msglist which are
in the transaction subgraph below the transaction txId and all attachments mentioned in this subgraph to
the entities potential knowledge. Thus, R′ and I are synchronized after this operation.

Simulation of internal Corda protocol steps and Funicast: Before arguing that read operations are indistin-
guishable betweenR and I, we prove that E cannot use S’s simulation of Pc in connection with the simulated
network operation via Funicast to distinguish between R and I. By construction of R and I, the simulation
of Funicast does not directly result into an input to the environment via I/O but they might influence future
read requests and produce output to the network. Thus, the main goal here is to prove that R′ and I are
still synchronized after the activation of Funicast and S can generate the “expected” output to the network,
i. e., the behavior on the network during this part of the simulation is indistinguishable.

Note that there is no interaction in I as long as S does not explicitly involve I. Thus, the potential
knowledge in I stays constant until S triggers I.

Note that Funicast does not allow to send messages on behalf of other entities, i. e., Funicast ensures an
authenticated secure channel for communication.

Note that the leakage to the network generated by simulation of Funicast is indistinguishable between R
and I as S’s dummy transactions have the same length as original transaction and all other leaked data is
available to S in the simulation of R′

Further note that honest entities in R′ mostly process transactions/messages which are dedicated from
them, i. e., , they do not reply on invocations where they do not have the matching state or are not involved
as initiator, signee, or notary in the transaction. If a process step has error handling, we will discuss this in
the following. Otherwise, there is no error handling and the entity simply declines further processing of a
transaction/message.

Observe that only the SignTransactionFlow operation is a result of a submit operation To trigger
the simulation of the Corda flow processing in R′, S waits for the Deliver command from network. The
command informs S by an Funicast message id which message is to be delivered in R′. Let entitys be the
sender and entityr be the recipient of the message.

SignTransactionFlow : 1. The delivered message in the simulation was send by an uncorrupted entity
entitys (which was the initiator of the transaction): In this case, there exists a valid submit transaction
from the initiator in txIDsRbuffered(entitys)/txIDsIbuffered(entitys). If there exists a message from entityr in

57

txIDsRbuffered(entityr)/txIDsIbuffered(entityr) indicating that entitys approve the message (and is a signee
of the transaction), the simulation will continue by validating the transaction. Otherwise, the transaction
is directly declined.
In the case that the the transaction proposal is not declined: observe that S actually can simulate the
steps of entityr: the blinded transaction available in R′ contains all necessary information for the checks
and an execution of executeValidation is replaced by true if the transaction already passed the validation
by entitys (otherwise false). In every case, txIDsRbuffered(entitys) does not change as either the transaction
was already in the set or is declined and does not enter the set. In case of an acceptance, there are two
sub cases to consider:
a) a direct acceptance of transaction in the simulation of entityr. In this case, the simulation in R′ signs

the dummy transaction according to the protocol and generates a Signature message that is send
back to entitys.

b) due to missing dependencies, entityr generates SendTransactionFlow, resp. GetAttachment requests
which is send via Funicast back to entityr.

In the case that entityr did not receive an approval of the transaction in advance, i. e., there is no
matching transaction for SignTransactionFlow request in txIDsRbuffered(entityr), entityr declines the
request and sends an appropriate Signature back to entitys (again, S has access to all information that
are necessary to execute the simulation).

2. The delivered message in the simulation was send by a corrupted entity entitys (such that the entity is
the initiator of the transaction, because otherwise entityr directly declines the request). At this point,
there is only one difference in the behavior of entityr compared to the explained above. The execution
of the validation in the simulation is done on transactions in plain – so S executes executeValidation in
the simulation. This is usually possible as the corrupted party need to provide the transactions in plain
to entitys in the execution of R′. If the corrupted entity references transactions such that S is not aware
of the transaction content, S can query I for the output of executeValidation in the context of entityr’s
state.23

Observe that in every case, we still have that R′ and I are synchronized as the knowledge of the parties
does not change.
Signature : 1. In the case that entityr receives the message from an uncorrupted entity entitys, entityr

verifies that it is waiting for the signature of entitys for the transaction mentioned in the message (again
- note that S has access to this information due to leaked data).
a) If the message from entitys indicates (due to the signature check) that entityr accepts the mes-

sage: (i) entityr may wait for further signatures or (ii) entitys collected all expected signatures
and starts the FinalityFlow. Again, S has access to all necessary data to perform the simulation,
executeValidation is replaced by the validity information leaked by I.

b) If the message from entitys indicates that it declines the transaction, entityr removes the transaction
from her buffer txIDsRbuffered(entityr).

2. In the case that entityr receives the message from a corrupted entity entitys, simulation works in the
same way as explained above. Analogously, to the explanations in SignTransactionFlow: As entitys is
the initiator of the transaction, all data is available in plain for simulation.

Observe that in every case, we still have that R′ and I are synchronized as the knowledge of the parties
does not change.
Notarise : Note that the processing of Notarise is analogously to the processing of SignTransactionFlow

with additional checks regarding the signatures of signees.
1. In the case that entityr (a notary in R′) receives the message from an uncorrupted entity entitys (a is the

initiator of the transaction), it processes the messages as explained in the cases above (executeValidation
is replaced by leakage from I, S has access to all necessary data as explained above). The outcome of
the simulation may trigger (i) SendTransactionFlow, resp. GetAttachment : requests to entitys (via
Funicast - see below) (ii) or entityr notarizes the transaction and NotariseRes message to entitys (if all
checks and signatures in the simulation verify).

23 Note that the call at I will not fail during I validation, as the entity’s current state only increases and entityr’s
state is always a subset of the entity’s potential knowledge.

58

In the latter case, the transaction is added to entityr real knowledge. According to the specification of S
for this case, she trigger an update at I that moves the notarised transaction entries from txIDsIbuffered

to txIDsI . Observe that I will accept the update as S does not violate on of I checks:

– S immediately pushes attachments or transaction push messages to I msglist.
– transactions send to notarisation from honest initiators in R′ are checked with a subset of the rules

from the update process in I, such as format, role checks, and double spend prevention.
– If all honest parties agree on a transaction, this is already known in I due to the approval message

via I/O and due to the fact that the initiator of the transaction (entitys) has access to all necessary
information to validate, process, and distribute the information.

– I does not require an approval for a transaction from corrupted parties.

As the update in I is not rejected, the potential knowledge of all entities involved in the notarized
transaction increases: All involved entities in I add to the transaction itself, the transaction subgraph
below the transaction, and all used attachments in the subgraph to their potential knowledge.

2. In the case that entityr (a notary in R′) receives the message from a corrupted entity entitys - note that
S has full access to all transaction necessary to execute the notarisation or she may request the output
of executeValidation at I. Thus, the simulation works as in the case above. Note that corrupted entities
cannot forge signatures of other entities. Thus, we can follow the explanation from above. S will propose
the notarised transaction to I. I will accept it according to the reasoning above.

Observe that in every case, we still have that R′ and I are synchronized as the increase of knowledge in R′

is always a subset of the knowledge in I.

NotariseRes : 1. In the case that entityr (the initiator of the notarized transaction in R′) receives the
message from an uncorrupted entity entitys (the notary): The simulation of entityr process the notari-
sation message. In the case that the simulation accepts the notarisation, the FinalityFlow is triggered.
(Note that S can simulate this operation as the execution of executeValidation is replaced as above.)
Observe that the transaction is added to real knowledge. As the transaction was already before in its
potential knowledge (see previous steps of honest parties), R′ and I are still synchronized.

2. In the case that entityr receives the message from a corrupted entity entitys (and entityr is involved in
the transaction notarized), then entityr is corrupted as well. Thus, S has full access to all transaction
details necessary to perfectly simulate this situation.

Observe that in every case, we still have that R′ and I are synchronized.

RecvFinalityFlow : 1. In the case that entityr receives the message from an uncorrupted entity entitys
(the transaction initiator), there are all information available to simulate this process. If the entity entityr
accepts the RecvFinalityFlow message, it adds the transaction to the entity’s real knowledge. As the
transaction was already before in its potential knowledge (see previous steps of honest parties), R′ and
I are still synchronized.

2. In the case that entityr receives the message from a corrupted entity entitys
24 (and entityr is involved

in the transaction): Note that S has sufficient information to simulate this step. In the case that entityr
accepts the incoming message: As entityr is not corrupted, we can conclude that the notary of the trans-
action in R′ is not corrupted. Thus, S already pushed the transaction to I before this step which includes
that the transaction is already part of entityr potential knowledge. In the simulation, the transaction
is added to entityr real knowledge in this step. In the case that entityr declines the RecvFinalityFlow

message, we have nothing to show.

Observe that in every case, we still have that R′ and I are synchronized.

SendTransactionFlow & RecvTransactionFlow : According to the explanations above, S is able to sim-
ulate this in any case. In the case that the process is executed between honest entities, we can conclude
similarly to above that R′ and I stay synchronized as the submission of the transaction added it already to
entityr potential knowledge. However, in the case that a corrupted party sends a transaction (graph) and the
entity accepts it, the entity becomes corrupted (as this includes that a notary in this subgraph is corrupted).
Thus, R′ and I still stay synchronized (as the entity is not in the set of honest entities any longer).

24 Note that we do not discuss the case when entityr is corrupted as it matches the case above.

59

GetAttachment & RecvAttachment : According to the explanations above, S is able to simulate this in
any case. We emphasize here, that S is able to call executeValidation at I in the context of the receiving
parties current state.25 to validate the transaction in the context of the receiving party. In the case that
the process is executed between honest entities, we can conclude similarly to above that R′ and I stay
synchronized as already a submission added the transaction and its to entityr potential knowledge. Observe
that corrupted entities may push attachment to entityr although they were not requested. As entityr declines
such push message, we can conclude that R′ and I are synchronized.

Read requests: Whenever a honest entity entity receives a request (Read,msg) to read from its restricted
view on the global state , I, resp. Fledger forwards this (local) read request to S and waits to receive a
suggested output. S simulates the read request internally. She extracts the transaction and attachment ids
from the output and forwards them in the appropriate InitRead message to I. In the next step, I requests
the current knowledge of entity from S. S extracts the current knowledge from R′ as explained above. As
already argued above: as R′ and I are synchronized as no operation adds knowledge on one of both sides
here. In particular, S’s suggested output for the read request will not fail I’s validations:

1. The read output of an honest party simulated in R′ is a monotonically increasing set that always contains
the previous read output as subset (due to the specification of Corda).

2. The read output is always a subset of the entities current knowledge in R′ (due to the specification of
Corda).

3. The party is uncorrupted and the output in R′ only consists of transaction notarised by uncorrupted
notaries. Thus, all transactions from in the suggested read output are in msglist in I and can be accessed.

4. As the entity in R′ only accepts pushed transactions (including attachments) of notarized transaction
(subgraphs), potential additional transactions added to the entity’s read output are already in leaked
(see explanation during flow explanations).

5. Observe that R′, resp. Funicast, enforces the upper bound of δ rounds for eventual message delivery.
Further note that all involved entities for the mentioned transactions are honest, we can conclude that
the message delivery (initiator receives notarization δ rounds after notarization, signees after 2δ rounds)
are not violated by S.

6. Honest entities in the simulation will output transactions only if they are aware of their full subgraph
(and output the subgraph as well).

7. If an honest entity shares a transaction (subgraph) with another honest entity, the operation will finish
after: Let subgraph(tx) the subgraph of the exchanged transaction (such that all input references are
part of the graph, down to the issuance transactions). The receiving entity queries the full subgraph of
the transaction before adding the transaction to its verifiedTx and thus outputs it during reading. As in
the worst case, these are |subgraph(tx)| objects to query (if the graph is a chain), the push operation will
be finished at least after |subgraph(tx)|+ 1 rounds.

Observe that entities in R′ are considered corrupted as soon as they have transactions notarized by
corrupted notaries in verifiedTx. Thus, we do not have to consider the case, that the entity should output
transactions/attachments not in txIDsI , resp. attachmentIDsI as the entity is then corrupted.

Corrupting parties: In the following, we argue that (i) S is always able to keep corrupting in R′ and R
synchronous. As there are no restrictions for corruption in I, we have nothing to show here. Observe that
one corruption operation (of a notary in R′) may lead to several corruption operations in I due to our novel
corruption model. Further, (ii) S is always able to generate the appropriate (internal) state of a freshly
corrupted entity such that leakage during corruption cannot be used to distinguish between R and I. This
follows from the specified leakage:

1. S get access to the complete potential knowledge of an entity as soon it is corrupted. S replaces the
dummy transactions in R′ by the original transaction (including regeneration of signatures). In the case

25 Note that I accepts the current knowledge provided by S as the current knowledge in R is a subset of the potential
knowledge.

60

that there are some transactions/attachments provided from a corrupted party to the newly corrupted
party, the simulation in R′ already contains the data in plain.

2. S gets access to transactions, transaction subgraph, and the used attachments if a corrupted party is
involved in the transaction (as initiator, signee, or notary). Again, S includes the leaked data in R′ and
regenerates signatures depending on this data. Thus, S has access to all data in plain and can perfectly
simulate the processing of the transaction including handling of signatures.

Interaction via network: First, observe that I provides S with sufficient information about all requests
performed by higher-level protocols, such as the blinded transactions submitted to the ledger, blinded at-
tachments, transaction exchange operation and read request. Thus, S is able (according to the explanations
above) to simulate the Corda protocol blinded but indistinguishable from a real execution. In particular, S
has access to all necessary data in plain to provide the correct leakage via network or to provide data in
plain in case that corrupted parties are involved in a transaction or S can call I to validate transaction in
the context of an entity. As a result, the network behavior simulated by S towards the environment is indis-
tinguishable from the network behavior of R. As already argued above, it also follows that the corruption
status of entities in the real and ideal world is always identical. Since the simulator has full control over
corrupted entities, which are handled via the internal simulation R′, this implies that the I/O behavior of
corrupted entities of R/I towards higher level protocols/the environment is also identical in the real and
ideal world. The only way to potentially distinguish the real and ideal world is the I/O behavior of honest
entities of R/I towards higher-level protocols.

Current time requests: As the simulator updates the internal clock of Fledger every time an update to
Funicast in R′ occurs, both worlds always output the same value for the current time. Observe that the S’s
time update requests always passes the checks in Fc

updRnd:
Observe that Funicast enforces that all messages are delivered in at most δ rounds inR. Fc

updRnd guarantees
that a transaction tx in requestQueue, where all involved parties are honest, are part of the msglist after at
most (3 + 4 · |subgraph(tx)| · δ) rounds (where subgraph(tx) is the transaction subgraph below tx as explained
above). As in the worst case scenario, the simulated notary does not know any dependencies of tx and the
subgraph is a chain, we conclude that the bound from Fc

updRnd as follows: We assume w.l.o.g. that the
initiator was the last involved party that submitted the transaction to requestQueue (otherwise, if signees
do not add their approval to requestQueue before the initiators CollectSignaturesFlow reaches them, they
will decline the transaction. In this case, the last agreement is later than the one of the initiator but we can
guarantee the bound for the initiator - so we do not violate the bound for the actual last agreement of the
transaction.)

1. It takes at most δ rounds to deliver the CollectSignaturesFlow messages from initiators to signees.
2. signees may request at most |subgraph(tx)| dependencies from the initiator. Thus, delivery/processing

needs at most 2 · |subgraph(tx)| · δ rounds.
3. It takes at most δ rounds for the last signee to deliver her approval messages to the initiator.
4. The initiator needs at most δ rounds to deliver the notarization request to a notary
5. The notary may request at most |subgraph(tx)| dependencies from the initiator. Thus, delivery/processing

needs at most 2·|subgraph(tx)|·δ rounds. Then, S triggers the Update to I in the case that the notarization
succeeded.

Overall, we conclude that S triggers the update in this case after at least (3+4 · |subgraph(tx)| · δ) rounds
after the last agreement was recorded. Thus, I will accept all time updates of S.

Altogether, R and {S, I} behave identical in terms of behavior visible to the environment E and thus
are indistinguishable.

61

Description of parameters/algorithms used in the protocols Mclient and Mnotary:

executeValidation(tx , txDependencies, txAttachments) Among other things,
– it interprets attachments and checks if the transaction is valid with respect to these attachments,
– it ensures that attachments are determenestic and it enforces that the overall runtime of all attach-

ments (and further validations) is in polynomial time
– it checks wether the transaction is contractually valid, i. e., fulfills the requirements given by the

contracts for each state and for the transaction, but not valid signatures
– it checks whether all inputs have the same notary
– it checks whether all outputs have the same notary as the input notary or if the transaction is a

notary change transaction.
– it checks that the owner of the transaction’s input states are a subeset of the transactions participants.
– it checks that the owner of the transaction’s output states are a subeset of the transactions partici-

pants.
validateAttachment(attachment) This algorithm checks whether a single attachments is valid according to

certain system defined rules.
isResolvable(tx) This algorithm checks whether all dependencies and attachments for validating a trans-

action, i. e., needed by executeValidation, are present. The dependencies need to be in the internal state
verifiedTx or bufferTxSig.

isValidId(pid , role) This algorithm checks whether the given pid belongs to a machine of the given role.
isDoubleSpend(tx) This algorithm checks whether the given tx is a double spend compared to transactions

in the internal state verifiedTx, i. e., if there exists a transaction in verifiedTx that is either not the same
transaction without notary signature but uses one of the input states of tx as well or spends a reference
state.

isNotarised(tx) This algorithm checks whether either tx itself is notarised or it is contained in the depen-
dency chain of a notarized transaction.

Fig. 24. Algorithms and parameters used by Mclient and Mnotary

62

Description of the protocol Pc
ledger = (client|notary):

Participating roles: {client, notary}a

Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– executeValidation {Algorithm for verifying a transaction.
– networkmap {Set of identities in network as (type, id)
– validateAttachment {Algorithm for validating attachments according to certain rules

a
To simplify presentation, we introduced Pc as protocol (client | notary,Funicast,Fro) in Section 4.2. Formally, the Corda protocol is
defined as Pc = (Pc

ledger : client | Pc
ledger : notary,Funicast,Fro).

Description of Mclient:

Implemented role(s): {client}
Subroutines: Fcert : cert,Funicast : unicast,Fro : randomOracle,Pc

ledger : notary,

Internal state:
– verifiedTx ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, verifiedTx = ∅ {List of verified transactions, as (txId, tx, σ)

– attachments ⊂ {0, 1}∗ × {0, 1}∗, attachments = ∅
{

Set of known attachments and identifiers as
(attachmentId, attachment)

–
bufferTxSig ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × status, bufferTxSig = ∅

Transaction currently in process as
(txId, tx,Σ, pid, status). Σ is a set of tuples of the
form (pid, σ), status ∈ {⊥, unrequested, requested,
approved, expColSigs, reqSigs, reqDeps, sign,
expNotarization, reqNotarization}

–
bufferReqValid ⊂ {0, 1}∗ × {0, 1}∗, bufferReqValid = ∅

{
Set of transaction and attachments allowed to be queried as
(txId/attachmentId, allowedRequesters). Thereby bufferReqValid is a
ordered set.

CheckID(pid , sid , role):
Accept all messages with the same sid.

Corruption behavior:
DetermineCorrStatus(pid , sid , role):

if corr == true: {Checks whether client itself is corrupted.
return true

corrRes ← corr(pidcur, sidcur, signer) {Request corruption status at Fcert
if corrRes == true: {Checks whether Fcert instance is corrupted

return true

for all (, tx,) ∈ verifiedTx ∪ (, tx, , , reqNotarization) ∈ bufferTxSig ∪ (, tx, , , expNotarization) ∈ bufferTxSig do:
tx← (, , , formerNotary,)
corrRes ← corr(pidcur, sidcur, signer)

{
Checks if at least one of all notaries used for notarisation in a tx either for transactions in
verifiedTx or transactions expected to be notarized in bufferTxSig is corrupted

if corrRes == true:
return true

See Appendix A for notation details. We expect the ITM to enforce the transaction format tx = (initiator, [signee1, . . . , signeem],
notary, formerNotary, proposal) where in proposal input states as txinputStates = (txId, outputIndex) and output states as txoutputStates .
We denote by m the number of signees in a transaction. For tuples, lists, etc. we start index counting at 0.

Main:

recv (Read,msg) from I/O: {Reading from Corda’s transaction graph
shortendVerifiedTx ← ∅
for all (txId, tx, σ) ∈ verifiedTx do:

shortenedVerifiedTx .add((txId, tx))

reply (Read, attachments, shortendVerifiedTx) {Output the transaction graph of pid excluding “internal” signatures

recv (Submit,msg) from I/O s.t. msg = (attachment, attachment): {Client gets a new attachment via I/O

send attachment to (pidcur, sidcur,Fro : randomOracle)

{
Generates an attachment id and stores the new attach-
ments needed for verification of tx

wait for attachmentId′

if bufferReqValid.contains(ATT.add(attachmentId′)) ∧ validateAttachment(attachment) == true:

attachments.add(ATT.add(attachmentId′), attachment)
{

Add (labeled) attachment and attachment
id to attachments

Fig. 25. The Corda model Pc
ledger, specification of the Corda client Mclient (Part 1)

63

Description of Mclient (cont.):

Main:

recv (Submit,msg) from I/O s.t. msg = (tx, tx):
send tx to (pidcur, sidcur,Fro : randomOracle)
wait for (txId′) {Generate tx ID

txId ← TX.add(txId′)
{
TX.add(txId′) concatenates txId′ with a label make the id identifiable as a transaction id.

if initiator == pidcur : {initiator starts Corda’s flow processing

if ∀(txId′, outputIndex ′) ∈ txinputStates :

verifiedTx.contains(txId, tx′,) | outputIndex ′ ∈ tx′outputStates :

{All direct dependencies are known

bufferTxSig.add((txId, tx, ∅, ε, expColSigs))
if validate(tx, ∅, ε) == valid: {For validate definition see below

for all (txId′, outputIndex ′) ∈ txinputStates do:

bufferReqValid[txId′][1].add({signee1, . . . , signeem, formerNotary})
for all attachmentId ∈ proposal do:

bufferReqValid[attachmentId][1].add({signee1, . . . , signeem, formerNotary}){
States and attachments are only marked valid for request if tx itself is valid. Rekursive defintion of objects allowed
to request in SendTransactionFlow.

msg ← CollectSignaturesFlow(tx) {Definition of CollectSignaturesFlow in Figure 28
send (Message,msg) to (pidcur, sidcur,Funicast : unicast)

else:
bufferTxSig.remove((, tx, , ,)) {Clean up declined transaction
validateAllLocal() {Check whether there are open task, e. g., finalizing a transaction

else if ∃i ∈ [m] : signeei == pidcur : {As signee: record tx as “will approve CollectSignaturesFlow”
bufferTxSig.add((txId, tx, ∅, ε, approved))

recv (Submit,msg) from I/O s.t. msg = (tx, txId, pidrecv):

{
pidcur pushes/shares a verified transaction
to/with pidrecvmsg′ ← ε

if verifiedTx.contains((txId, ,)):
msg′ ← (verifiedTx[txId][1], verifiedTx[txId].[2])

{
msg′ = (tx,Σ)

else if bufferTxSig.contains((txId, , , , status)) | status 6∈ {⊥, unrequested, requested, reqDeps}:
msg′ ← (bufferTxSig[txId][1], bufferTxSig[txId][2])

{
msg′ = (tx,Σ)

if msg′ 6= ε:
send (Message,

{
(pidrecv , (RecvTransactionFlow,msg′))

}
) to (pidcur, sidcur,Funicast : unicast)

recv GetCurRound: {A and E are allowed to query the clock

send GetCurRound to (pidcur, sidcur,Funicast : unicast)
{

Forward requests about current round to the uni-
cast channelwait for (GetCurRound, round)

reply (GetCurRound, round)

recv (SignTransactionFlow,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (tx, σ):
On request of a transaction initiator who started a CollectSignaturesFlow, a client signs a transaction if it agrees on the tx.

if bufferTxSig[tx].contains(, tx, ∅, ε, approved) ∧ initiator == pids:
send (Verify, tx, σ) to (initiator, sidcur,Fcert : verifier)
wait for (VerResult, res) {Check initiators signature

if res == valid:
bufferTxSig[tx][3]← initiator

{
Transaction tx is already stored in bufferTxSig. It is now marked as requested
for signature and the request (=initiator) is stored for possibly later answer

bufferTxSig[tx][4]← sign {Update processing status

(txId, tx,Σ, pid, sign)← bufferTxSig[tx]
if validate(tx,Σ, pid) == valid: {For definition of validate, see Figure 28

send (Sign, tx) to (pidcur, sidcur,Fcert : signer)
wait for (Signature, σ) {Generate signature for initiator
bufferTxSig[tx][4]← expNotarization {Update processing status
reply (Message, {(initiator, (Signature, (tx, σ)))})

else:
reply (Message, {(initiator, (Signature, (tx,⊥)))})

recv (Signature,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (tx, σ):
Collect signed responses from the CollectSignaturesFlow. tx format needs to be as defined above

if bufferTxSig.contains(, tx, , , reqSigs)∧
pids ∈ signee[m] ∧ (pids,) 6∈ bufferTxSig[tx][2]:

{
Only requested signatures, i. e., for transactions in
bufferTxSig where this client is initiator, are accepted.

send (Verify, tx, σ) to (pids, sidcur,Fcert : verifier)
wait for (VerResult, verified) {Check signee signature
if verified == true:

bufferTxSig[txId][2].add((σ, pids))
if |bufferTxSig[txId][2]| == m + 1:

{
Every signature is only stored once if valid, thus if numbers match
all needed signatures are present.

FinalityFlow(tx) {Start FinalityFlow if all signees confirmed tx

else:
bufferTxSig.remove((txId, tx, ,)) {Remove rejected tx from buffer

Fig. 26. The Corda model Pc
ledger, specification of the Corda client Mclient (Part 2)

64

Description of Mclient (cont.):

Main:

recv (NotariseRes,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (pids, (tx, σ)):

Handle tx finalization from notary and distribute result among tx signees
if (bufferTxSig[tx].contains(, tx, , formerNotary, reqNotarization)
| pids = formerNotary):

{
Only expected signatures from a
notary are distributed

bufferTxSig[tx][2].add(formerNotary, σ)
res ← validate(tx, bufferTxSig[tx][2], ε)

{
This will go through as an honest client will only trigger this if pidcur
signed and therefore validated tx. For definition of validate see Fig-
ure 28if res == valid:

verifiedTx.add(bufferTxSig[tx][0], bufferTxSig[tx][1], bufferTxSig[tx][2])

bufferTxSig.remove(bufferTxSig[tx])
for all i ∈ [m] do:

msg.add((signeei, (RecvFinalityFlow, (tx,Σ.add(formerNotary, σ))))) {Distribute notarisation to signees

reply (Message,msg)

recv (RecvFinalityFlow,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (pids, (tx,Σ)):
Called from initiator pids after FinalityFlow is finished. Stores tx with signing result from notary

if bufferTxSig[tx].contains(, tx, , pids, expNotarization):

if |Σ| = m + 2 ∧ validate(tx,Σ, ε) == valid:

{
Assure still everything is valid and enough signatures are
provided

verifiedTx.add((txId, tx,Σ))

bufferTxSig.remove(bufferTxSig[txId])

recv (SendTransactionFlow,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (txId):
Client processes/forwards a requested transaction

if bufferReqValid[txId][1].contains(pids): {Checks whether pid is allowed to request transaction tx
bufferReqValid[txId][1].remove(pids) {Decline further access
if verifiedTx.contains(txId, ,):

tx← verifiedTx[txId][1] {verifiedTx[.][1] = tx for answer
else:

tx← bufferTxSig[txId][1]
{

bufferTxSig[.][1] = tx for answer

for all (txId′, outputIndex ′) ∈ txinputStates do: {Grant pids access to dependencies of tx

bufferReqValid[txId′].add(pids)

for all attachmentId′ ∈ tx[4] do:
bufferReqValid[attachmentId′].add(pids)

msg′ = (RecvTransactionFlow, verifiedTx[txId]) {Forward tx details to pids
send (Message,

{
(pids,msg′)

}
) to (pidcur, sidcur,Funicast : unicast)

else:
send (Message, {(pids,⊥)}) to (pidcur, sidcur,Funicast : unicast)

recv (GetAttachment,msg) from (pids, sidcur,Funicast : unicast) s.t. msg = (pids, attachmentId):
Answers request from notary for attachment needed for verification

if bufferReqValid[attachmentId].contains(pids):

msg′ = (RecvAttachment, pids, attachments[attachmentId])
reply (Message,

{
pids,msg′

}
)

else:
reply (Message, {pids,⊥})

recv (RecvTransactionFlow, (pids, (tx,Σ))) from (pids, sidcur,Funicast : unicast):
Entity processes a requested transaction

send tx to (pidcur, sidcur,Fro : randomOracle) {Get transaction id
wait for (txId′)
txId ← TX.add(txId′)
if (¬(bufferTxSig.contains((txId, , , pids,)) ∧ verifiedTx[txId].contains((txId, ,)))):

bufferTxSig.add((txId, tx,Σ, pids, unrequested))
else if bufferTxSig.contains((txId,⊥,⊥, pids, requested)):

res ← validate(tx,Σ, pids) {See definition of validate below
validateAllLocal()

recv (RecvAttachment, attachment) from (pids, sidcur,Funicast : unicast): {Stores received attachments to attachments.
send (attachment) to (pidcur, sidcur,Fro : randomOracle) {Get attachment id
wait for (attachmentId′)
if validateAttachment(attachment):

attachments.add(ATT.add(attachmentId′), attachment) {Store attachment
validateAllLocal()

recv DeRegister from I/O: {“Dummy” interface as deregistration is not part of the Corda model
wait for ack {DeRegister always returns ack
reply DeRegister

Fig. 27. The Corda model Pc
ledger, specification of the Corda client Mclient (Part 3)

65

Description of Mclient (cont.):

Procedures and Functions:

function CollectSignaturesFlow(tx) (tx = (, [signee1, . . . , signeem], , ,)):
Collects signatures for a transaction from all necessary participants

bufferTxSig[tx][4]← reqSigs

{
Transaction is marked in buffer as CollectSignaturesFlow has been started an sig-
natures form co-signees are expected

send (Sign, tx) to (pidcur, sidcur,Fcert : signer) {Initiator signs transaction proposal
wait for σ
bufferTxSig[tx][3].add(pidcur, σ) {Record initiator signature
msg ← ε {Prepare message to Funicast
for all i ∈ [m] do:

msg.add((signeei, (SignTransactionFlow, (tx, σ))))

return msg

function FinalityFlow(tx,Σ) (tx = (, , , formerNotary,)):

{
Corresponds with notary to get signature and distribute
signature to participants

bufferTxSig[tx][4]← reqNotarization
{

Transaction is marked as waiting for notarisation in bufferTxSig
msg ← validateAllLocal()

function validate(tx,Σ, pid) :

{
Validates a transaction and produces message for requesting transactions
and attachments if necessary.

if verifiedTx.contains(, tx, , Σ′,):
if |Σ′| == m + 2:

return alreadyNotarised

else:
if isDoubleSpend(tx, verifiedTx):

{
Checks whether one of the input states is already used in another tx
in verifiedTxreturn doubleSpend

if ¬
[
∀ i ∈ [m] : isValidId(signeei, client) == true ∧

isValidId(initiator, client) == true ∧
isValidId(formerNotary, notary) == true ∧
isValidId(notary, notary) == true)

]
:

{
isValidId checks whether the given pid is regis-
tered with the particular role in networkmap.

return invalid

if ¬
[(
|Σ| ≤ m + 2 ∧ ∃i ∈ [m] : signeei == pidcur∨

initiator == pidcur
)
∨
(
∀ i ∈ [m]∃1(σ′, signeei) ∈ Σ∧

(|Σ| == m + 1 ∨ (|Σ| == m + 2 ∧ ∃(σ′, formerNotary) ∈ Σ))
)]

:

Checks whether for all singees there exists a sig-
nature. If it is notarized it has to be the correct
notary. If less signatures are given it is expected
that this client participates and signing is not
done.return invalid

for all (σ, pidσ) ∈ Σ do:
send (tx, σ) to (pidσ, sidcur,Fcert : verifier)
wait for (VerResult, res) {Checks all provided signatures
if res == false:

return invalid

if isResolvable(tx) == false ∧ bufferTxSig[tx][4]! = reqDeps:

{
Checks whether all dependencies are available in
internalState of the entity

msg ← resolveTx(tx, pid)
{

If transactions or attachments are needed, request is sent to the initiator
of the transaction.

send (Message,msg) to (pidcur, sidcur,Funicast : unicast)
else if isResolvable(tx): {Party has all necessary information for processing the tx in internalState

txDependencies ← ε {Collect dependencies for upcoming validation
for all (txId′, outputIndex ′) do:

if verifiedTx.contains((, tx, , ,)):
txDependencies.add(verifiedTx[txId′][1])

else:
txDependencies.add(bufferTxSig[txId′][1])

for all attachmentId ∈ proposal do:
txAttachments.add(attachments[attachmentId])

res ← executeValidation(tx, txDependencies, txAttachments)

{
Validate the transaction regarding the
given context

return res

function resolveTx(tx, pids) (msg):
bufferTxSig[tx][4]← reqDeps

msg ← ε
for all (txId, outputIndex) ∈ txinputStates do:

{
For definition of txinputStates see above

if @(, tx′,) ∈ verifiedTx ∧ (txId, outputIndex) ∈ tx′outputStates :

{
Accumulates all transaction necessary for verification but not
currently in verifiedTx

bufferTxSig.add((txId,⊥,⊥, pids, requested))
msg.add((pids, (SendTransactionFlow, (txId, outputIndex))))

for all attachmentId ∈ proposal do:
if (attachmentId,) 6∈ attachments:

{
Accumulates all attachments necessary for verifica-
tion but not currently in attachmentsmsg.add((pids, (GetAttachment, (attachmentId))))

return msg

Fig. 28. The Corda model Pc
ledger, specification of the Corda client Mclient (Part 4)

66

Description of Mclient (cont.):

Procedures and Functions:

function validateAllLocal() :

{
Checks for all stored transaction if the inputs and attachments can
be resolved and the transaction therefore validated.

identities ← ε,msg ← ε, resolved ← true

while resolved == true do
resolved ← false, res← ε
for all (, tx,Σ, pid, status) ∈ bufferTxSig | status 6∈ {⊥, unrequested, expNotarization, reqNotarization} do:

if isResolvable(tx):

{
resolvable checks whether all dependencies are verified (i. e., in
verifiedTx) and all attachments available.

res ← validate(tx,Σ, ε)
if res == valid ∧ (status == sign ∨ status == expColSigs):

send (Sign, tx) to (pidcur, sidcur,Fcert : signer)
wait for (Signature, σ)

else if res == valid ∧ isNotarised(tx):
verifiedTx.add((txId, tx, ∅))

if status == sign:
{

If transaction is requested for signing and transaction
has been resolved return an answer.msg.add((pidcur, (Signature, (tx, σ))))

else if status = expColSigs:

{
If pidcur is initiator and transaction is resolvable it
should start the CollectSignaturesFlow.

msg.add((pidcur, CollectSignaturesFlow(tx)))

resolved ← true

bufferTxSig.remove(, tx,Σ, pid,)
send (Message,msg) to (pidcur, sidcur,Funicast)

Fig. 29. The Corda model Pc
ledger, specification of the Corda client Mclient (Part 5)

67

Description of the protocol Mnotary = {notary}:

Participating roles: {notary}
Corruption model: Dynamic corruption with secure erasures
Protocol parameters:

– executeValidation {Algorithm for verifying a transaction.
– networkmap {Set of identities in network
– validateAttachment {Algorithm for validating attachments according to certain rules

Description of Mnotary:

Implemented role(s): {notary}
Subroutines: Fcert : cert,Funicast : unicast,Fro : randomOracle
Internal state:

– verifiedTx ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, verifiedTx = ∅
{

List of verified transactions, either by this notary or
others, as (txId, tx, σ)

– attachments ⊂ {0, 1}∗ × {0, 1}∗, attachments = ∅
{

Set of known attachments and identifiers as
(attachmentId, attachment)

–
bufferTxSig ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × status, bufferTxSig = ∅

{
Transaction currently in process as
(txId, tx,Σ, pid, status). Σ is a set of tuples of
the form (pid, σ), status = {requested, sign}

CheckID(pid , sid , role):
Accept all messages with the same sid.

Corruption behavior:
DetermineCorrStatus(pid , sid , role):

if corr == true: {Checks whether notary itself is corrupted.
return true

corrRes ← corr(pidcur, sidcur, signer) {Checks whether Fcert instance is corrupted.
if corrRes == true:

return true

See Appendix A for notation details. We expect the ITM to enforce the transaction format tx = (initiator, [signee1, . . . , signeem],
notary, formerNotary, proposal) where in proposal input states as txinputStates = (txId, outputIndex) and output states as txoutputStates .
We denote by m the number of signees in a transaction. For tuples, lists, etc. we start index counting at 0.

Main:

recv (Notarise, (tx,Σ)) from (pids, sidcur,Funicast : unicast) s.t. initiator = pids:
Notarises transaction tx if valid and no double spend. tx format specified above

if formerNotary 6= pidcur : {Requested notary is defined in formerNotary, abort processing if wrongly addressed

send (Message, {(initiator, (NotariseRes, (tx, misdirected)))}) to (pidcur, sidcur,Funicast)
else if verifiedTx.contains(, tx,): {If tx already validated and signed, then return stored siganture

(txId, tx, σ)← verifiedTx[tx]
if σ = ⊥: {Generate notary siganture if tx is already validated but siganture is missing

send (Sign, tx) to (pidcur, sidcur,Fcert : signer)
wait for (Signature, σ′)
verifiedTx[tx][2]← σ′

send (Message, {(initiator, (NotariseRes, (tx, σ)))}) to (pidcur, sidcur,Funicast : unicast)

else: {Notary only signs if specified in tx.
send tx to (pidcur, sidcur,Fro : randomOracle)
wait for (txId)
bufferTxSig.add((TX.add(txId), tx,Σ, pids, sign)) {Record tx, processing status, and additional data in bufferTxSig

res ← validate(tx,Σ, initiator) {See definition of function validate below
msg ← validateAllLocal()

Fig. 30. The Corda model Pc
ledger, specification of the Corda notary Mnotary (Part 1)

68

Description Mnotary (cont.):

Main:

recv (RecvTransactionFlow, (pids, (tx,Σ))) from (pids, sidcur,Funicast : unicast):
Entity processes a requested transaction

send tx to (pidcur, sidcur,Fro : randomOracle) {Get transaction id
wait for (txId′)
txId ← TX.add(txId′)
if bufferTxSig.contains((idtx,⊥,⊥, pids, requested)):

res ← validate(tx,Σ, pids) {See definition of validate below
validateAllLocal()

recv (RecvAttachment, attachment) from (pids, sidcur,Funicast : unicast): {Stores received attachments to attachments.
send (attachment) to (pidcur, sidcur,Fro : randomOracle) {Get attachment id
wait for (attachmentId′)
if validateAttachment(attachment):

attachments.add(ATT.add(attachmentId′), attachment) {Store attachment
validateAllLocal()

Procedures and Functions:

function validate(tx,Σ, pid) :

{
Validates a transaction and produces message for requesting transactions
and attachments if necessary.

if (, tx, σ) ∈ verifiedTx: {If tx already finalized, output existing signature
return σ

if verifiedTx.contains(, tx, , Σ′,):
if |Σ′| == m + 2:

return alreadyNotarised

else:
if isDoubleSpend(tx, verifiedTx):

{
Checks whether one of the input states is already used in another tx
in verifiedTxreturn doubleSpend

if ¬
[
∀ i ∈ [m] : isValidId(signeei, client) == true ∧

isValidId(initiator, client) == true ∧
isValidId(formerNotary, notary) == true ∧
isValidId(notary, notary) == true)

]
:

{
isValidId checks whether the given pid is regis-
tered with the particular role in networkmap.

return invalid

if ¬(∀ i ∈ [m]∃1(σ′, signeei) ∈ Σ) :

{
Checks whether for all singees there exists a signature.
If it is notarized it has to be the correct notary.

return invalid

for all (σ, pidσ) ∈ Σ do:
send (tx, σ) to (pidσ, sidcur,Fcert : verifier)
wait for (VerResult, res) {Checks all provided signatures
if res == false:

return invalid

if formerNotary 6= notary:
send (tx, σ) to (formerNotary, sid,Fcert : verifier)
wait for (VerResult, res) {Notary change transaction have always to be signed.
if res == false:

return invalid

if isResolvable(tx) == false ∧ bufferTxSig[tx][4]! = reqDeps:

{
Checks whether all dependencies are available in
internalState of the entity

msg ← resolveTx(tx, pid)
{

If transactions or attachments are needed, request is sent to the initiator
of the transaction.

send (Message,msg) to (pidcur, sidcur,Funicast : unicast)
else if isResolvable(tx): {Party has all necessary information for processing the tx in internalState

txDependencies ← ε {Collect dependencies for upcoming validation
for all (txId′, outputIndex ′) do:

if verifiedTx.contains((, tx, , ,)):
txDependencies.add(verifiedTx[txId′][1])

else:
txDependencies.add(bufferTxSig[txId′][1])

for all attachmentId ∈ proposal do:
txAttachments.add(attachments[attachmentId])

res ← executeValidation(tx, txDependencies, txAttachments)

{
Validate the transaction regarding the
given context

return res

function resolveTx(tx, pids) (msg):
bufferTxSig[tx][4]← reqDeps

msg ← ε
for all (txId, outputIndex) ∈ txinputStates do:

{
For definition of txinputStates see above

if @(, tx′,) ∈ verifiedTx ∧ (txId, outputIndex) ∈ tx′outputStates :

{
Accumulates all transaction necessary for verification but not
currently in verifiedTx

bufferTxSig.add((txId,⊥,⊥, pids, requested))
msg.add((pids, (SendTransactionFlow, (txId, outputIndex))))

for all attachmentId ∈ proposal do:
if (attachmentId,) 6∈ attachments:

{
Accumulates all attachments necessary for verifica-
tion but not currently in attachmentsmsg.add((pids, (GetAttachment, (attachmentId))))

return msg

Fig. 31. The Corda model Pc
ledger, specification of the Corda notary Mnotary (Part 2)

69

Description of Mnotary (cont.):

Procedures and Functions (cont.):

function validateAllLocal() :

{
Checks for all stored transaction if the inputs and attachments can
be resolved and the transaction therefore validated.

identities ← ε,msg ← ε, resolved ← true

while resolved == true do
resolved ← false, res← ε
for all (, tx,Σ, pid, status) ∈ bufferTxSig | status 6∈ {⊥, unrequested} do:

if isResolvable(tx):

{
resolvable checks whether all dependencies are verified (i. e., in
verifiedTx) and all attachments available.

res ← validate(tx,Σ, ε)
if res == valid ∧ status == sign:

send (Sign, tx) to (pidcur, sidcur,Fcert : signer)
wait for (Signature, σ)
verifiedTx.add(txId, tx, σ)

else if res == valid:
verifiedTx.add((txId, tx,⊥))

σ ← res
if status == sign:

{
If transaction is requested for notarisation and trans-
action has been resolved return an answer.msg.add((pidcur, (NotariseRes, (tx, σ))))

resolved ← true

bufferTxSig.remove(, tx,Σ, pid,)
send (Message,msg) to (pidcur, sidcur,Funicast)

Fig. 32. The Corda model Pc
ledger, specification of the Corda notary Mnotary (Part 3)

Description of the protocol Funicast = (unicast):

Participating roles: {unicast}
Corruption model: incorruptible
Protocol parameters:

– δ ∈ N
{

A general delay parameter for the time the adversary is allowed to prevent messages
from being delivered.

Description of Municast:

Implemented role(s): {unicast}
Subroutines: Pc

ledger : client,Pc
ledger : notary

{
Funicast can access the corruption status in Pc

ledger

Internal state:

– buffermsg ⊂ N× N× {0, 1}∗ × {0, 1}∗ × {0, 1}∗, buffermsg = ∅
{

Buffer for messages consisting of tuples
(label, round, sender, receiver, content)

– labels ∈ N, labels = ∅ {Already used identifiers
– round ∈ N, round = 0 {Current round/time unit

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (Message,msg) from I/O s.t. msg ⊂ {(receiver, content)|receiver, content ∈ {0, 1}∗}:
{

Request to deliver a several different mes-
sages to different receivers

leakage ← ε
for all (r,m) ∈ msg do:

label
$← N s.t. label 6∈ labels {Generate an unique lable per message that needs to be delivered

labels.add(label)
leakage.add(label, pidcur, r, |m|) {Record receiver, round, and content length as leakage
buffermsg .add(label, round, pidcur, r,m) {Queue message for delivery

send (MultiMessage, leakage) to NET {Forward leakage to A

recv (Deliver, label) from NET: {A triggers delivery of messages
parse (label, s, r,m) from buffermsg [label] {Fetch data from message queue
parse (Command, content) from m
buffermsg .remove(label, s, r,m) {Remove message from delivery queue
send (Command, (s, content)) to (r, sid, I/O) {Deliver message to receiver

recv (UpdateRound) from NET: {A triggers round update if all messages older than δ rounds are delivered
if ∃(, r′, , ,) ∈ buffermsg : r′ < round− δ: {Ensure all messages are delivered within δ rounds

reply (UpdateRound, false, ε)
else: {Round update accepted

round← round + 1
reply (UpdateRound, true, ε)

recv (GetCurRound): {A and E are allowed to query the current round.
reply (GetCurRound, round)

Fig. 33. The unicast functionality Funicast that models an ideal network for the Corda model Pc
ledger

70

Description of the protocol Fcert = (signer, verifier):

Participating roles: {signer, verifier}
Corruption model: incorruptible {See text below
Protocol parameters:

– p ∈ Z[x].

{
Polynomial that bounds the runtime of the algorithms provided by the
adversary.

– η ∈ N {The security parameter.

– sig

{
Signing algorithm, outputs a signature σ on input (msg, sk). The generated singature has a length
of η bits

– ver {Signature verifying algorithm, outputs verification result on input (msg, σ, pk)
– gen {Key generation algorithm, outputs (pk, sk) on input 1η

Description of Msigner,verifier:

Implemented role(s): {signer, verifier}
Internal state:

– (pk, sk) ∈ ({0, 1}∗ ∪ {⊥})2 = (⊥,⊥). {Key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊂ {0, 1}∗ = ∅. {Set of recorded messages.
– corr ∈ {true, false} = false. {Is signature key corrupted?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{
A single instance manages all parties and roles in a sin-
gle session. A session models one signature key pair be-
longing to party pid′.Corruption behavior:

– DetermineCorrStatus(pid , sid , role): Return corr.
Initialization:

(pk, sk)
$← Gen(1η) {Generate public/secret key pair

Parse sidcur as (pid, sid).
pidowner ← pid.

Main:

recv (Sign,msg) from I/O to (pidowner, , signer):

σ ← sig(p)(msg, sk).
add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ) from I/O to (, , verifier):

b← ver(p)(msg, σ, pk). {Verify signature.
if b = true ∧msg /∈ msglist ∧ corr = false:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

recv corruptSigKey from NET: {Allow network attacker to corrupt signature keys.
corr ← true.
reply (corruptSigKey, ok).

Fig. 34. The ideal signature functionality Fcert.

Description of the protocol Fro = (randomOracle):

Participating roles: {randomOracle}
Corruption model: incorruptible
Protocol parameters:

– η ∈ N {Security parameter, length of the hash

Description of MrandomOracle:

Implemented role(s): {randomOracle}
Internal state:

– hashHistory ⊆ {0, 1}∗ × {0, 1}η , initially hashHistory = ∅ {The set of recorded value/hash pairs
CheckID(pid , sid , role):

Accept all messages with the same sid.

Main:

recv (pid, x): {Requesting the Fro for “hashes”
if ∃h ∈ {0, 1}η s.t. (x, h) ∈ hashHistory: {Extract existing value from hashHistory

reply (pid, h)
else:

h
$← {0, 1}η {Generate “hash value” uniformly at random

hashHistory ← hashHistory.add((x, h)) {Store generated key, value pair in hashHistory
reply (pid, h)

Fig. 35. The random oracle Fro (cf. [11])

71

Description of the subroutine Fc
submit = (submit):

Participating roles: {submit}
Corruption model: incorruptible
Protocol parameters:

– executeValidation {Validation algorithm that verfies whether it is ok to add a transaction to the current corda state

– validateAttachment {Algorithm that validates attachments

Description of Mc
submit:

Implemented role(s): {submit}
Subroutines: Fc

storage : storage,Fc
read : read

CheckID(pid , sid , role):
Accept all messages with the same sid.

In the following, we will use the abberivation (1) for the expression msg = [tx, (initiator, [signee1, . . . , signeem],
notary, formerNotary, proposal)], (2) for msg = (attachment, attachment), and (3) for msg = (tx, txId, pidrecv).

Main:

recv (Submit,msg, internalState) from I/O: {See Figure 5 for definition of internalState and the local variables it includes

if ¬[(1) ∨ (2) ∨ (3)]:

reply (validationProcessed, false, ε)

{
Submitted transactions/attachments need to have the
expected data format

if (1) ∧ pidcur /∈ {initiator, signee1, . . . , signeem}:

reply (validationProcessed, false, ε) {Clients can only submit transactions they are involved in

if (1)∧¬[initiator, signee1, . . . , signeem are clients (role = client, pid prefixed by client)∧notary, formerNotary are notaries
(role = notary, pid prefixed by notary) ∧
∀pid ∈ {initiator, signee1, . . . , signeem, notary, formerNotary} : pid ∈ identities]

:

{Check correct identities and roles

reply (validationProcessed, false, ε)

{
Clients can submit transactions they are involved in transaction, all parties
need to be registered

Fig. 36. The write/submit functionality Fc
submit of Fc

ledger (Part 1)

72

Description of Mc
submit(continued):

Main:

if (1): {In case that a transaction was submitted
send (GetID, tx, (initiator, [signee1, . . . , signeem], notary, formerNotary, proposal)) to (pidcur, sidcur,Fc

storage) {Request txID

wait for (GetID, tx, id)
{
Fc

storage returns an id or false

attachments ← ε
parse (ida1 , . . . , idal) from msg.remove(tx) {We leak the ids of the attachment ids involved in a transaction
for all ida ∈ {ida1 , . . . , idal } do: {Connect attachments to transactions

send (GetContent, attachment, ida) to (pidcur, sidcur,Fc
storage : storage)

{
Get attachment from
Fc

storage
wait for (GetContent, attachment, attachment)
attachments.add(ida, attachment)

parse [(inTxId1, idx1), . . . , (inTxIdh, idxh)](out1, . . . , oute) from proposal{
Extract input tx ids and input index and output index from proposal. This needs to be leaked. If there are no
inputs, this returns ⊥

leakage ← [(ida1 , . . . , idal), ((inTxId1, idx1), . . . , (inTxIdh, idxh)](out1, . . . , oute))]
if initiator = pidcur : {Initiators need to know dependend tx and used attachments

send getCurrentKnowledge to (pidcur, sidcur,Fread : read) {Query pidcur’s current knowledge
wait for (getCurrentKnowledge, transactionscpidcur

, attachmentscpidcur
)

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

Requests pidcur’s current
(maximal) knowledge at
Fc

storagewait for (getKnowledge, txGraphpidcur
, attachmentspidcur)

if missingDependency(msg, transactionscpidcur
, attachmentscpidcur

):
missingDependency(msg, transactionscpidcur

, attachmentscpidcur
) returns false if all input transactions to msg and

their dependencies down to the issuance transactions are available in transactionscpidcur
as well as all attach-

ments used in the subgraph(s) below msg are available in attachmentscpidcur
, otherwise true

reply (validationProcessed, false, ε)

{
Decline submission if pidcur has no access
to data to validate msg

if ¬executeValidation(msg, transactionscpidcur
[inTxId1, . . . , inTxIdh], attachmentscpidcur

[ida1 , . . . , idal):

{
Check validity of
transaction regard-
ing its direct inputsreply (validationProcessed, false, ε)

if isDoubleSpendmsg: {Check double spending
reply (validationProcessed, false, ε) {Decline submission

leakage.add[id, initiator, signee1, . . . , signeem, formerNotary])
{A receives all party expected notary that

are involved in transaction id

if one of the parties initiator, signee1, . . . , signeem, formerNotary is in CorruptionSet :

leakage.add(proposal)

{
If an involved party is corrupted, A gets all details of the tx and the connected subgraph as he
is allowed to query the subgraph for verification

if pidcur = initiator :

{
If the initiator has access to all necessary transactions, the full sub-
graph below the tx leakes

txGraphpidcur
.addToTxGraph(id,msg.remove(tx), ∅)

{
addToTxGraph adds the tx extracted from tx to
txGraph − pidcur

txSubGraph ← getConnectedSubGraph(tx , txGraphpidcur
)

getConnectedSubGraph(msg, txGraphpidcur
) outputs the (maximal) connected subgraph of txGraphpidcur

such that

msg’s outputs are all edges of this subgraph (“maximal” means @ a connected subgraph txGraph containing
msg’s output and that is a superset of getConnectedSubGraph(msg, txGraphs))

for all clients (txID, tx , attachmentstx) in txSubGraph s.t. txId is an input to msg do:
leakage.add(txID, tx , attachmentstx) {Leak tx id, content, and connected attachments

else:
leakage.add(|proposal|)

{
If all involved party are honest, A gets only length of the proposal
data

reply (validationProcessed, true, leakage)

Fig. 37. The write/submit functionality Fc
submit of Fc

ledger (Part 2)

73

Description of Mc
submit(continued):

Main:

if (2): {In case that an attachment was submitted
send (GetID, attachment, attachment) to (pidcur, sidcur,Fc

storage) {Request id of the attachment

wait for (GetID, attachmentid)
{
Fc

storage returns an id or false

leakage.add(id, |attachment|)
{
A receives the length of the attach-
ment as leakage

reply (validationProcessed, validateAttachment(attachment), leakage)

if (3) ∧ pidcur is a client (role = client and pidcur prefixed by client):

{
A client pushes a transac-
tion to another entity

send getCurrentKnowledge to (pidcur, sidcur,Fread : read) {Query pidcur’s current knowledge
wait for (getCurrentKnowledge, transactionscpidcur

, attachmentscpidcur
)

send (GetContent, tx, txID) to {Request tx content
wait for (GetContent, tx, tx)

{
Fc

storage returns an id or false

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

wait for (getKnowledge, txGraphpidcur
, attachmentspidcur)

if tx ∈ transactionscpidcur
∧ ¬missingDependency(tx , transactionscpidcur

, attachmentscpidcur
):

{pidcur has access to tx and can forward it
if pidrecv in CorruptionSet : {tx is pushed to a corrupted party

send (getTxGraph, internalState, incBuffer) to (pidcur, sidcur,Fc
storage : storage){

Generate transaction graph including tx from requestQueue, located in Fc
storage

wait for (getTxGraph, txGraph)

txSubGraph ← getConnectedSubGraph(tx , txGraph)getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such that msg’s
outputs are all edges of this subgraph (“maximal” means @ a connected subgraph txGraph containing msg’s
output and that is a superset of getConnectedSubGraph(msg, txGraphs))

for all clients (txID, tx , attachmentstx) in txSubGraph s.t. txId is an input to msg do:
leakage.add(txID, tx , attachmentstx) {Leak tx id, content, and connected attachments

else:
leakage ← (txId, pidcur, pidrecv)

{
A is informed that party pushed tx
to entity

reply (validationProcessed, true, leakage)

else:
reply (validationProcessed, false, ε) {Input rejected

reply (validationProcessed, false, ε) {Input rejected

Fig. 38. The write/submit functionality Fc
submit of Fc

ledger (Part 3)

Description of the subroutine Fc
read = (read):

Participating roles: {read}
Corruption model: incorruptible

Description of Mc
read:

Implemented role(s): {read}
Subroutines: Fc

storage : storage

Internal state:

– knownTransactions : {0, 1}∗ × {0, 1}∗ {The set of known transactions for a party. Entries of form (pid, txID)

– knownAttachments : {0, 1}∗ × {0, 1}∗ {The set of known attachments for a party. Entries of form (pid, ida)

– knownTransactionsr : {0, 1}∗ × {0, 1}∗
{

The set of known transactions for a party outputted during reading.
Entries of form (pid, txID)

– knownAttachmentsr : {0, 1}∗ × {0, 1}∗
{

The set of known attachments for a party outputted during reading.
Entries of form (pid, ida)

CheckID(pid , sid , role):
Accept all messages with same sid.

In the following, we will use the abberivation (1) for the expression tx = [tx, (initiator, [signee1, . . . , signeem], notary, formerNotary,
proposal)].

Main:

recv (InitRead,msg, internalState) from I/O:
{

See Figure 5 for definition of internalState and the local variables it
includes

reply (InitRead, true, ε) {Reads in Corda are always local, we do not leak anything to A.

Fig. 39. The read functionality Fc
read of Fc

ledger (Part 1)

74

Description of Mc
read (continued):

Main:

recv (FinishRead,msg, input, internalState) from I/O:
s.t. input = ([txID1, . . . , txIDh], [ida1 , . . . , idao]) {Read outputs the tx subgraph pidcur is aware of

Execute code from getCurrentKnowledge here. Write the output into txGraphpidcur
and attachmentspidcur .

knownTXr ← {txID′ |(pidcur, txID′) ∈ knownTransactionsr}
knownTX ← {txID′ |(pidcur, txID′) ∈ knownTransactions}
knownAttr ← {id′ |(pidcur, id′) ∈ knownAttachmentsr}
knownAtt ← {id′ |(pidcur, id′) ∈ knownAttachments}
if knownTXr ⊂ {txID1, . . . , txIDh} ⊂ knownTX ∨ knownAttr ⊂ {ida1 , . . . , idao ⊂ knownAtt}:

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

wait for (getKnowledge, transactions
p
pidcur

, attachments
p
pidcur

)

hasAccess ← true

for all txID′ ∈ knownTXr do:
if txID′ /∈ transactions

p
pidcur

: {Check that the adversary only distributes knowledge she has access to

send (GetContent, tx, txID′) to (pidcur, sidcur,Fc
storage : storage)

wait for (GetContent, tx, tx ′)
if @ corrupted party in tx :

hasAccess ← false

for all id′ ∈ {ida1 , . . . , idao} do:

if id′ /∈ attachments
p
pidcur

: {Check that the adversary only distributes knowledge she has access to

send (GetContent, attachment, id′) to (pidcur, sidcur,Fc
storage : storage)

wait for (GetContent, attachment, attachment′)
if attachment′ in requestQueue or msglist ∧ @ a leakage of attachment in transcript:

hasAccess ← false

if hasAccess:
for all txID′ ∈ {txID1, . . . , txIDh} \ knownTXr do:

knownTransactions.add(pidcur, txID′)
for all id′ ∈ {ida1 , . . . , idao} \ knownAttr do:

knownAttachments.add(pidcur, id′)
else:

reply (FinishRead,⊥, ε) {pidcur does not have access to suggested state

else:
reply (FinishRead,⊥, ε) {pidcur does not have access to suggested state

verifiedTx ← msglist
for all (txID′, tx ′,) ∈ verifiedTx s.t. txID′ /∈ {txID1, . . . , txIDh} do:

{
Remove entries that are not
in the suggested state from
AverfiedTx .remove(txID′, tx ′,)

if ∃tx ′ in msglist, s.t. tx ′ is not in verifiedTx ∧ pidcur is initiator of tx ′∧ all parties involved in tx ′ are not corrupted ∧round is
greater than committing round of tx ′ + δ:

reply (FinishRead,⊥)
{

Initiators of “honest” tx have it after at most δ rounds after notarization in their
states

if ∃tx ′ in msglist s.t. tx ′ not in verifiedTx ∧ pidcur is signee of tx ′∧ all parties involved in tx ′ are not corrupted ∧round is greater
than committing round of tx ′ + 2δ:

reply (FinishRead,⊥)
{

Signees of “honest” tx have it after at most 2δ rounds after notarization in their
states

if ∃tx ′ as push operation to pidcur in msglist s.t. tx ′ not in verifiedTx∧ all parties involved in tx ′ are not corrupted ∧round is
greater than committing round of tx ′ + |subGraph|(tx ′)δ + 1 s.t. subGraph(tx ′) is the subgraph below tx ′:

reply (FinishRead,⊥) {Push of transaction should be finished after δ rounds

cleanedVerifiedTx ← ∅, attachments ← ∅ {Separate attachment data from tx data
for all (txID, tx ,) ∈ verifiedTx do:

cleanedVerifiedTx .add(txID, tx)

for all ida ∈ {ida1 , . . . , idao} do: {Output suggested attachments
Let attachment s.t. (ida, attachment) ∈ attachmentspidcur}
attachments.add(ida, attachment)

if there is a transaction in cleanedVerifiedTx such parts of its transaction inputs or the transaction
subgraph below the transaction are not in cleanedVerifiedTx):
reply (FinishRead,⊥) {Decline input

Add all new entries of newly read transactions/attachments to knownTransactionsr, resp. knownAttachmentsr

reply (FinishRead, (attachments, cleanedVerifiedTx), ε)

Fig. 40. The read functionality Fc
read of Fc

ledger (Part 2)

75

Description of Mc
read (continued):

Main:

recv (CorruptedRead, pid,msg, internalState) from I/O: {A receives all information via leakage
reply (FinishRead, ε)

recv getCurrentKnowledge from I/O:
{

Other subroutines may ask Fc
read for an entities current state

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

{
Request pidcur’s knowledge at Fc

storage

wait for (getKnowledge, txGraphpidcur
, attachmentspidcur)

send responsively (getKnowledge, pidcur) to NET {Query current state of pidcur at A
wait for (getKnowledge, pidcur, (txID1, . . . , txIDh), (ida1 , . . . , idao))

knownTXr ← {txID′ |(pidcur, txID′) ∈ knownTransactions} {Extract previous state of pidcur
knownAttr ← {id′ |(pidcur, id′) ∈ knownAttachments} {

Update pidcur’s knowledge if this is compliant with the view of Fc
ledger

if knownTXr ⊂ {txID1, . . . , txIDh} ∨ knownAttr ⊂ {ida1 , . . . , idao}:
if @txID′ ∈ {txID1, . . . , txIDh} s.t. txID′ /∈ txGraphpidcur

∧ @id′ ∈ {ida1 , . . . , idao} s.t. id′ /∈ attachmentspidcur :

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

wait for (getKnowledge, transactions
p
pidcur

, attachments
p
pidcur

)

hasAccess ← true

for all txID′ ∈ knownTXr do:
if txID′ /∈ transactions

p
pidcur

: {Check that the adversary only distributes knowledge she has access to

send (GetContent, tx, txID′) to (pidcur, sidcur,Fstorage : storage)

wait for (GetContent, tx, tx ′)
if @ corrupted party in tx :

hasAccess ← false

for all id′ ∈ {ida1 , . . . , idao} do:

if id′ /∈ attachments
p
pidcur

: {Check that the adversary only distributes knowledge she has access to

send (GetContent, attachment, id′) to (pidcur, sidcur,Fc
storage : storage)

wait for (GetContent, attachment, attachment′)
if attachment′ in requestQueue or msglist ∧ @ a leakage of attachment in transcript:

hasAccess ← false

if hasAccess:
for all txID′ ∈ {txID1, . . . , txIDh} \ knownTXr do:

knownTransactions.add(pidcur, txID′)
for all id′ ∈ {ida1 , . . . , idao} \ knownAttr do:

knownAttachments.add(pidcur, id′)
knownTransactionspidcur ← {txID |(pidcur, txID) ∈ knownTransactions}

{
Extract previous state of
pidcur

knownAttachmentspidcur ← {id
′ |(pidcur, id′) ∈ knownAttachments}

reply (getCurrentKnowledge, transactionspidcur , attachmentspidcur)

Fig. 41. The read functionality Fc
read for Fledger to represent Corda (Part 3).

76

Description of the subroutine Fc
update = (update):

Participating roles: {update}
Corruption model: incorruptible
Protocol parameters:

– executeValidation
{

Validation algorithm that verfies whether it is ok to add a transaction
to the current corda state

– validateAttachment {Algorithm that validates attachments

Description of Mc
update:

Implemented role(s): {update}
Subroutines: Fc

storage : storage

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (Update, [normal,msg], internalState) from I/O:
{

See Figure 5 for definition of internalState and the local vari-
ables it includes

executeBasicChecks()

{
Definition of executeBasicChecks() below. The procedure gets all local and global variables
of Mc

update as input and may update them and create new variables

msgListAppend ← ∅, updRequestQueue ← ∅, ctr ← max{i|(i, , , , ,) ∈ msglist}
{Build extension of msglist. If msglist = ∅ then max defaults to −1

for all (ida, attachment, pid′) ∈ {(ida1 , attachment1, pid1), . . . , (idam, attachmentm, pidm)} do:
if ¬validateAttachment(attachment): {Reject invalid attachments from A

reply (Update, ∅, ∅, ε) {Processing aborted

ctr ← ctr + 1
msgListAppend.add(ctr, round, tx, attachment, round, pid′) {Add attachments from Adv

for all (id′, pid′) ∈ {(ida1 , pidai), . . . , (ida1 , pidai)} do: {Add attachments from honest parties

send (GetContent, attachment, id′) to (, sidcur,Fc
storage : storage)

{
Get attachment content from
Fc

storage
wait for (GetContent, attachment, attachment′)
ctr ← ctr + 1
msgListAppend.add(ctr, round, tx, attachment′, round, pid′) {Add attachments from Adv
Let (ctr tmp , (attachment, attachment′), r, pid′) the matching entry in requestQueue

updRequestQueue.add(ctr tmp , (attachment, attachment′), r, pid′)

if ∃txID ∈ {txID1, . . . , txIDl} s.t. txID is not in reqQueue or {txIDi1 , . . . , txIDih
}: {Check that input data exists

reply (Update, ∅, ∅, ε) {Processing aborted

msglist′ ← msglist {Used for processing update
for all txID ∈ {txID1, . . . , txIDl} do: {Check that all involved honest parties agreed on the tx

send (GetContent, tx, txID) to (, sidcur,Fc
storage : storage)

{
Get tx content from Fc

storage

wait for (GetContent, tx, tx)
parse (initiator, signee1, . . . , signeeh) from tx

txAgreed ← checkAgreements(tx , requestQueue,CorruptionSet)

checkAgreements outputs true if for
all honest signees, resp. honest
initiator there exists a submit re-
quest of tx in requestQueue

if ¬txAgreed :

reply (Update, ∅, ∅, ε) {Processing aborted

id = |msglist′| + 1 {Start preparing the update
Let r be the highest round in reqQueue and {(txIDi1 , txi1 , pidi1

, ri1), . . . , (txIDih
, txih

, pidih
, rih

)} for txID

msglist′.add(id, round, tx, [tx, tx , true], r, initiator)
if isDoubleSpend(tx): {Prevention of double-spending

reply (Update, ∅, ∅, ε) {Processing aborted

for all txID in msg do: {Remove “processed” tx from requestQueue
for all (ctr temp ,msg′, round′, pid′) identitied by txID is in requestQueue do:

updRequestQueue.add(ctr temp ,msg′, round′, pid′)

for txID ∈ {txID1, . . . , txIDl} do: {In the order of the input msg
ctr ← ctr + 1
Let (ctr temp ,msg′, round′, initiator′) be the first message in requestQueue identified by txID such that initiator′ is the

initiator in msg′

msgListAppend.add(ctr, round, tx,msg′, sRound, initiator′)
if there is a transaction in msglist ∪ msgListAppend such parts of its transaction inputs or the transaction subgraph below the

transaction are not in msglist) ∪msgListAppend
:

reply (Update, ∅, ∅, ε) {Processing aborted

if there is a attachment in requestQueue such that it is not part of updRequestQueue:
reply (Update, ∅, ∅, ε) {Processing aborted

reply (Update,msgListAppend, updRequestQueue, ε) {Return list extension and updated queue.

Fig. 42. The update functionality Fc
update of Fc

ledger (Part 1)

77

Description of Mc
update (continued):

Main:

recv (Update, [txExchange], internalState) from (, sidcur,Fledger : client):

{
Record shared transactions in
msglist

updRequestQueue ← ∅,msgListAppend ← ∅
ctr ← max{i|(i, , , , ,) ∈ msglist}|
for all (ctr temp , [tx, txID, pidrecv], r, pid) ∈ requestQueue do:

{
If tx exchange is done, we add it to the
message list

ctr ← ctr + 1
msgListAppend.add(ctr, round, tx, [tx, txID, pidrecv], r, pid)
updRequestQueue.add(ctr temp , [tx, txID, pidrecv], r, pid)}

reply (Update,msgListAppend, updRequestQueue, ε)
{

Send update to Fledger

recv (Update, [Validate, txID, pid, txID1, . . . , txIDl, ida1 , . . . , idao], internalState) from I/O:

{A is allowed to access validation information of tx for every party involved in the tx and in appropriate context

send getCurrentKnowledge to (pidcur, sidcur,Fc
storage : storage) {Get current knowledge of pidcur

wait for (getCurrentKnowledge, txGraphpidcur
, attachmentspidcur)

send (GetContent, tx, txID) to (pidcur, sidcur,Fc
storage : storage) {Get transaction details.

wait for (GetContent, tx, tx)

if {txID1, . . . , txIDl} not part of txGraphpidcur
∨ {ida1 , . . . , idao} not part of attachmentspidcur :

{
Check that A provides a
valid context

reply (Update, ε, ε, ε) {Validation declined

Remove all entries from txGraphpidcur
that are not in {txID1, . . . , txIDl}

Remove all entries from attachmentspidcur that are not in {ida1 , . . . , idao}
leakage ← executeValidation(tx , txGraphpidcur

, attachmentspidcur) ∧ ¬isDoubleSpend(tx))
{Validity check for tx in the provided context

parse [(inputTx1, idx1), . . . , (inputTx l, idx l)] from tx
reply (Update, ε, ε, leakage) {Return the validity of the transaction to A

recv (Update, (GetID, type,msg), internalState) from I/O:
{
A may query Fc

ledger for ids

send (GetID, type,msg) to , sidcur,Fc
storage : storage)

{
Request Id at Fc

storage

wait for (GetID, type, id)
leakage ← id
reply (Update, ε, ε, leakage) {Return the id of the requested object to A

Fig. 43. The update functionality Fc
update of Fc

ledger (Part 2)

78

Description of Mc
update (continued):

Procedures and Functions:

function executeBasicChecks :
if ∃ a tx push msg in requestQueue:

{
Valid transactions pushed between entities need to be in the state
before further updates

reply (Update, ∅, ∅, ε) {Processing aborted

reqQueue ← ∅
for all [(type,msg′), sRound, pid′] ∈ requestQueue do: {Generate a copy of requestQueue including txID’s

parse tx or attachment from msg′ and store result in content
send (GetID, type, content to (pidcur, sidcur,Fc

storage : storage)
{

Get IDs from Fc
storage

wait for (GetID, id)
reqQueue.add([id,msg′], sRound, pid′)

if msg 6= [(txID1, . . . , txIDl), [(ida1 , pidai), . . . , (ida1 , pidai)],
(txIDi1 , txi1 , pidi1

, ri1), . . . , (txIDih
, txih

, pidih
, rih

),

(ida1 , attachment1, pid1), . . . , (idam, attachmentm, pidm)]:

{Check message format

reply (Update, ∅, ∅, ε) {Processing aborted

if ∃txIDi, txIDj , i, j ∈ [l], i 6= j in (txID1, . . . , txIDl), s.t. txIDi = txIDj :
{

Check that no txID
is inserted twice

reply (Update, ∅, ∅, ε) {Processing aborted

for all (txID, tx , pid′, r) from [d1, . . . , dh] in msg do:

{
Register txIDs for A’s inputs, dj of form
(txIDij , txij , pidij

, rij)

send (SetID, tx, txID, tx) to (pidcur, sidcur,Fc
storage : storage)

wait for (SetID, accepted)
if accepted = false: {Abort processing

reply (Update, ∅, ∅, ε)
for all (txID, tx , pid′, r) from [d1, . . . , dh] in msg do:

{
Check correct format/identies/roles, dj of form
(txIDij , txij , pidij

, rij)

if tx 6= [tx, (initiator, [signee1, . . . , signeem], notary, formerNotary, proposal)]:

{
Check
correct
formatreply (Update, ∅, ∅, ε)

if ¬[initiator, signee1, . . . , signeem are clients (role = client, pid prefixed by client)∧
notary, formerNotary are notaries (role = notary, pid prefixed by notary) ∧
∀pid ∈ {initiator, signee1, . . . , signeem, notary, formerNotary} : pid ∈ identities]:

{
Check correct identi-
ties and roles

reply (Update, ∅, ∅, ε)
if accepted = false: {Abort processing

reply (Update, ∅, ∅, ε)

for all (ida, attachment, pid′) in (d1, . . . , dm) in msg do:

{
Register attachment IDs for A’s inputs, dj are of form
(idaj , attachmentj , pidj)

send (SetID, attachment, ida, attachment) to (pidcur, sidcur,Fc
storage : storage)

wait for (SetID, accepted)
if accepted = false:

reply (Update, ∅, ∅, ε) {Processing aborted

for all (id′, pid′) ∈ {(ida1 , pidai), . . . , (ida1 , pidai)} do:

send (GetContent, attachment, id′) to (, sidcur,Fc
storage : storage)

{
Get attachment content
from Fc

storage
wait for (GetContent, attachment, attachment′)
if (, (attachment′, attachment′), , pid′) /∈ requestQueue:

reply (Update, ∅, ∅, ε) {Processing aborted

Fig. 44. The update functionality Fc
update of Fc

ledger (Part 3)

79

Description of the subroutine Fc
storage = (storage):

Participating roles: {storage}
Corruption model: incorruptible
Protocol parameters:

– η ∈ N {The security parameter, defining the length of a “hash-value”

Description of Mc
storage:

Implemented role(s): {storage}
Internal state:

– labels ⊂ {0, 1}∗ × {tx, attachment} × {0, 1}∗. {Storage for IDs of transactions and attachments
– hasAccess{tx, attachment} × {0, 1}∗ {Bookkeeping for data directly known by A

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (GetID, type,msg) from I/O s.t. type ∈ {tx, attachment}: {Request for IDs

if ∃(id, ,msg) ∈ labels for some id ∈ {0, 1}∗:
reply (GetID, type, id) {If ID exists, return it

else:
send responsively (SetID, type) to NET

wait for (SetID, type, id)
while [|id| 6= η] ∨ [∃(id, ,) ∈ labels] do {Ensure correct length of the id and its uniqueness

send responsively (SetID, type) to NET

wait for (SetID, type, id)

reply (GetID, type, id) {Return newly generated id

recv (SetCorrID, type, idProposal,msg) from NET s.t. type ∈ {tx, attachment}: {Store IDs

if [∃(idProposal, type′,msg′) ∈ labels, s.t. msg′ 6= msg] ∨ |idProposal| 6= η:
{If id is already used for something else or length of the id is not η, reject it

reply (SetCorrID, false)

else: {Otherwise: store Id and return approved Id
labels.add(type, idProposal,msg) {Store id
reply (SetCorrID, true)

recv (GetContent, type, id) from I/O s.t. type ∈ {tx, attachment}: {Request for content

if ∃(id, type, content) ∈ labels: {Check whether requested object exists
reply (GetContent, type, content)

else: {Otherwise: return ε
reply (GetContent, type, ε)

recv (getTxGraph, internalState,mode) from I/O:
msglistID ← ∅
if mode = incBuffer: {In incBuffer mode, include buffer to graph generation

transactions ← {tx |(, , tx,msg, ,) ∈ msglist ∨ (, tx , ,) ∈ requestQueue ∧ tx is of form [tx, (initiator, [signee1, . . . ,
signeem], notary, formerNotary, proposal)]

else: {Only “finalized” messages are in the graph
transactions ← {tx |(, , tx,msg, ,) ∈ msglist ∧ tx is of form [tx, (initiator, [signee1, . . . , signeem], notary, formerNotary,
proposal)]

for all tx ∈ transactions do:
Let txID s.t. (txID, tx,msg) ∈ labels {Extract tx ids
txAttachments ← ∅
parse (ida1 , . . . , idal) from msg {Extract used attachments
for all ida ∈ {ida1 , . . . , idal } do: {Connect attachments to transactions

Let attachment s.t. (ida, attachment, attachment) ∈ labels {Extract attachment content
txAttachments.add(ida, attachment)

msglistID.add(txID,msg, txAttachments)

txGraph ← buildTxGraph(msglistID)

Generate a (most likely disconnected) directed graph over all tx in the state.
Clients are transactions msg (including the full attachment information they
need), identified by txID and edges are from a transaction that consume a tx
to its input, i.e., (txID′, txID), s.t. (txID′, outputID) is a consumed input
in (txID)

reply (getTxGraph, txGraph) {Return full (notarised) tx graph

Fig. 45. Shared storage Fc
storage for subroutines in Fc

ledger (Part 1)

80

Description of Mc
storage (continued):

Main:

recv getKnowledge from I/O:
{
Fc

ledger subroutine may ask for the possible knowledge of pidcur

transactions ← ∅, attachments ← ∅
Execute getTxGraph call above in normal mode and store output in txGraph
for all (, , tx,msg, ,) ∈ msglist do: {Collect knowledge from msglist

parse (initiator, signee1, . . . , signeem, notary, formerNotary) from msg
Let id s.t. (id, tx,msg) ∈ labels {Get txID
if pidcur ∈ {initiator, signee1, . . . , signeem, notary, formerNotary}:

txSubGraph ← getConnectedSubGraph(msg, txGraph)getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such that msg’s
outputs are all edges of this subgraph (“maximal” means @ a connected subgraph txGraph containing msg’s
output and that is a superset of getConnectedSubGraph(msg, txGraph))

for all (txID, tx , attachmentstx) in txSubGraph s.t. txId is an input to msg do:

transactions.add(txId, tx); attachments.add(attachmentstx)
{

Leak txId, content, and
connected attachments

Execute getTxGraph call above in incBuffer mode and store output in txGraph
for all (,msg, , pidcur) ∈ requestQueue do: {Collect knowledge from requestQueue

parse (initiator, signee1, . . . , signeem, notary, formerNotary) from msg
Let id s.t. (id, tx,msg) ∈ labels {Get txID
if pidcur = initiator : {tx initiator has access to the full subgraph “below” a transaction

txSubGraph ← getConnectedSubGraph(msg, txGraph)getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such that msg’s
outputs are all edges of this subgraph (“maximal” means @ a connected subgraph txGraph containing msg’s
output and that is a superset of getConnectedSubGraph(msg, txGraph))

for all (txID, tx , attachmentstx) in txSubGraph s.t. txId is an input to msg do:

transactions.add(txId, tx); attachments.add(attachmentstx)

else if pidcur ∈ {signee1, . . . , signeem, notary, formerNotary}:

Signees and notaries only have
access to the full subgraph “be-
low” a transaction if the initia-
tor has the right to dispatch the
data

transaction.add(id′,msg) {Add tx pidcur is involved in to knowledge
if ∃(,msg, , initiator) ∈ requestQueue ∨ ∃(, , tx,msg, , initiator) ∈ msglist :

txSubGraph ← getConnectedSubGraph(msg, txGraph)getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such that msg’s
outputs are all edges of this subgraph (“maximal” means @ a connected subgraph txGraph containing msg’s
output and that is a superset of getConnectedSubGraph(msg, txGraph))

for all (txID, tx , attachmentstx) in txSubGraph s.t. txId is an input to msg do:
transactions.add(txId, tx); attachments.add(attachmentstx)

for all (ctr temp , attachment, r, pid) ∈ msglist do:
send (GetID, attachment, attachment) to (pidcur, sidcur,Fc

storage)
{

Request id of the attach-
ment

wait for (GetID, attachmentid)
{
Fc

storage returns an id or false

attachments.add(id, attachment)

Add all transaction/attachments from hasAccess and all transactions leaked (according to transcript) to transactions, resp.
attachments

reply (getKnowledge, transactions, attachments) {Return knowledge

recv (hasAccess, type, id,mode) from I/O: {Check whether A knows this object
if mode 6= subgraph:

if type, id ∈ hasAccess ∨ type, id was leaked according to transcript :
reply (hasAccess, true)

else:
reply (hasAccess, false)

else if mode = subgraph ∧ type = tx:
if type, id ∈ hasAccess ∨ type, id was leaked according to transcript and all dependent tx/attachments in the id’s subgraph

are in hasAccess or leaked:
reply (hasAccess, true)

else:
reply (hasAccess, false)

else:
reply (hasAccess, false)

Fig. 46. Shared storage Fc
storage for subroutines in Fc

ledger

81

Description of the subroutine Fc
updRnd = (updRnd):

Participating roles: {updRnd}
Corruption model: incorruptible
Protocol parameters:

– δ ∈ N {The upper bound in rounds after which a honest tx should be in the state.

Description of Mc
updRnd:

Implemented role(s): {updRnd}
Subroutines: Fc

storage : storage

CheckID(pid , sid , role):
Accept all messages with the same sid.

Main:

recv (UpdateRound,msg, internalState) from I/O:
{

See Figure 5 for definition of internalState and the local variables it
includes

send (getTxGraph, internalState, ε) to (pidcur, sidcur,Fc
storage : storage)

Generate transac-
tion graph, located in
Fc

storagewait for (getTxGraph, txGraph)
for all (ctr temp , tx ′, submissionRound, pid′) ∈ requestQueue) do:

send (GetID, tx, tx ′) to (pidcur, sidcur,Fc
storage : storage) {Get tx id

wait for (GetID, txID′)
attachments′ ← ε
parse (ida1 , . . . , idal) from tx ′ {Extract used attachments
for all ida ∈ {ida1 , . . . , idal } do: {Connect attachments to transactions

send (GetContent, attachment, ida) to (pidcur, sidcur,Fc
storage : storage)

{
Get attachment
from Fc

storage
wait for (GetContent, attachment, attachment)
attachments′.add(ida, attachment)

if pid′ /∈ CorruptionSet : {Liveness can only be guaranteed for uncorrupted participants
txGraph′ ← txGraph

txGraph′.addToTxGraph(txID′, tx ′, attachments′)
{
addToTxGraph adds the tx extracted from tx to txGraph′

according to the explanation above

txSubGraph ← getConnectedSubGraph(tx , txGraph′)

getConnectedSubGraph(msg, txGraph) outputs the
(maximal) connected subgraph of txGraph such
that msg’s outputs are all edges of this sub-
graph (“maximal” means @ a connected sub-
graph txGraph containing msg’s output and
that is a superset of getConnectedSubGraph(msg,
txGraphs))

lastAgreement ← findLastAgreement(tx , requestQueue)

{
findLastAgreement(tx , requestQueue) out-
puts the round of the last agreement to
tx in requestQueue.

if participantsAgreed(tx) ∧ lastAgreement + (3 + 4 · |txSubGraph|) · δ > round :{
If initiator and all signees agree on a transaction, it should be part of the state after (1 + |txSubGraph|) · δ rounds.
participantsAgreed(tx) outputs true if all signees and the initiator are not corrupted and for all signees and the
initiator theres exist a submit request for the tx in requestQueue.

reply (UpdateRound, false, ε)

reply (UpdateRound, true, ε)

Fig. 47. The round update/time update functionality Fc
updRnd of Fc

ledger

Description of the subroutine Fc
leak = (leak):

Participating roles: {leak}
Corruption model: incorruptible

Description of Mc
leak:

Implemented role(s): {leak}
CheckID(pid , sid , role):

Accept all messages with the same sid.
Subroutines: Fc

storage : storage

Main:

recv (Corrupt, pid, internalState) from I/O:
{

See Figure 5 for definition of internalState and the local variables it
includes

send getKnowledge to (pidcur, sidcur,Fc
storage : storage)

{
Query pidcur’s “state” at Fc

storage

wait for (getKnowledge, transaction, attachments)
leakage ← (transaction, attachments)

reply (Corrupt, leakage)

{
A receives all transactions from msglist, requestQueue, and readQueue, the newly cor-
rupted party send/is involved in

Fig. 48. The leakage subroutine Fc
leak of Fc

ledger

82

Description of the protocol Fc
init = (Init):

Participating roles: {init}
Corruption model: uncorruptable
Protocol parameters:

– networkmap ⊂ {0, 1}∗ × {client, notary}
{

Map of identities exisiting in the network containing tuples of
(identfier, type). We expect that the role prefixes the pid in
networkmap

Description of Mc
init:

Implemented role(s): {init}
CheckID(pid , sid , role):

Accept all messages with the same sid.

Main:

recv Init:
{

We allow A to query Fc
init as well

identities ← ∅,msglist ← ∅, ctr ← 0
for all (pid, protocolRole) ∈ networkmap do:

identities.add(pid, 0) {Finit provides the network map to requestors
msglist.add(ctr, 0, meta, (pid, protocolRole),⊥,⊥)
ctr ← ctr + 1

reply (Init, identities, ε, ε, ε)

Fig. 49. The initialization functionality Fc
init of Fc

ledger

83

	A Security Framework for Distributed Ledgers

