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1 INTRODUCTION 

 Off-Chain transactions allow for the immediate transfer of Cryptocurrency between two 

parties, without delays or unavoidable transaction fees. Such capabilities are critical for 

mainstream Cryptocurrency adaption. They allow for the “Coffee-Coin Criteria”; under which a 

customer orders a coffee and pays for that coffee in bitcoins. This is not possible with On-Chain 

transactions today. No customer is willing to wait for 20 minutes for their coffee transaction to 

receive six public confirmations. Neither will the customer pay a 20 cent transaction fee when 

the coffee costs approximately $2. Only a quick and free Off-Chain transaction will satisfy our 

coffee-guzzling consumer. Otherwise, the customer will stick to credit cards and cash,  and 

Bitcoin will face a limited future with regards to everyday use.   

 Unfortunately, all existing Off-Chain transaction protocols are notoriously unreliable 

[https://en.bitcoin.it/wiki/Off-Chain_Transactions#Trusted_Third_Parties]. The current 

generation of third-party facilitators are vulnerable to hacker-based attacks. As Mt. Gox 

tragically demonstrated, centralized-transaction institutions are easy targets for Cryptocurrency 

thieves. The slightest security flaw in a third-party system will pounced on by hackers, who will 

proceed to devour it like ants devouring a crab. Furthermore, the possible issue of fraud is 

constantly paramount;  third-party facilitators offer little proof that they actually hold the 

bitcoins of their clients [https://en.bitcoin.it/wiki/Off-Chain_Transactions#Auditing]. Under 

such circumstances, it no wonder that the Public treats most Cryptocurrency services with a 

constant shadow of suspicion. 

 Fortunately for users, trusted third-parties do exist; Coinbase is one such company. 

Coinbase takes a series of concrete and careful steps to circumvent the weak points in its 

protocol. These steps include employee background checks, decentralized cold storage in bank 

vaults scattered across the globe, and a team of security experts on-hand to mitigate against 

cyber-attack [https://coinbase.com/security]. With a multi-million dollar effort, Coinbase was 

able to construct a massive stronghold in order to defend its vulnerable interior from the 

barbaric hacker hordes. Given these resources, Coinbase is well on its way to becoming the 

“Gmail” of the Cryptocurrency community [http://www.coindesk.com/coinbase-gmail-bitcoin/]. 

 The onset of Coinbase has brought benefits to amateur Bitcoin users. Entrepreneurial 

developers on the other hand, have not fared nearly as well.  Many organizations lack the 

financial resources required to run secure Off-Chain transactions.  An entrepreneur struggling 

to design his own Bitcoin coffee-purchasing app will be unable to safely do so on his own. He 



must rely on the Coinbase transfer API, with all its licensed restrictions and limitations 

[https://coinbase.com/legal/user_agreement]. This centralized reliance on a single third-party 

provider severely reduces the freedoms of the Bitcoin developer community. Furthermore, 

such vast centralization poses a singular threat to the Bitcoin paradigm as a whole. Suppose a 

hacker finds a crack in Coinbase-armor; all Off-Chain accounts will then be compromised! That 

hack would undermine all Coinbase-dependent tools and apps, thereby obliterating the trust of 

the casual Cryptocurrency enthusiast. 

 For Bitcoin to flourish, its anti-hierarchy principles must be applied to safe Off-Chain 

transactions. First and foremost, we need a new HACKER-PROOF protocol that can easily be 

executed by any experienced developer. Preferably, the protocol will be open-sourced for full 

reliability and transparency. The developer community must come to the consensus that the 

protocol itself remains unbreakable.  

 In this paper we present one such solution; the CryptoCubic (CC) Protocol. The CC 

Protocol employs MultiSig technology to safely transfer ownership of actual bitcoin addresses 

between individual users. In the following documentation we will describe in iterative detail the 

science behind our CryptoCubic technique, as well as all its individual steps. We will also discuss 

all possible theft-driven attacks against our system, and the how protocol intrinsically defends 

itself against such BlackHat exploitations. It is our aim to meticulously show how the 

CryptoCubic Protocol is hacker-proof in all significant ways.    

2 DEFINING A HACKER-PROOF PROTOCOL 

How does one rigorously demonstrate that a protocol is actually hacker-poof? Any 

non-trivial system may potentially be manipulated in a seemingly infinite number of 

permutations. Therefore, in order to confidently claim that a protocol is safe, one must first 

define the settings under which that safety is guaranteed. One must lay down the rules of the 

game, so to speak, in order to then demonstrate that these rules are inherently unbreakable.  

We begin to define the rules through a series of simple assumptions. First and foremost, 

we assume that the server is benign, and not malicious. The server does not purposefully 

attempt to cheat or manipulate its users. Second of all, we assume that the server executes the 

protocol exactly as specified; no unauthorized alterations or modifications are allowed. 

Furthermore, we assume the presence of a security apparatus capable of immediately 

detecting any deviations from the protocol. That is, if a malicious agent gains server access and 

modifies the code, then protocol execution will immediately terminate until the intrusion is 

resolved. Finally, we assume any calculated variables occurring within an running program are 

wholly inaccessible outside the boundary of that program. For example, if an on-server program 



dynamical computes some secret variable X, then that variable shall remain hidden from the 

world until it is specifically outputted to a memory-location on the server. 

Additionally, let us consider one other significant supposition. We conjecture it is 

possible to design a simple so-called “self-destructive” storage mechanism that is 100% secure. 

What is a self-destructive storage mechanism? Imagine a database table whose content is 

limited to a certain pre-specified Source X. Output requests to the rows in that table may come 

from multiple unspecified sources. We may ping a particular row from the table to check if its 

empty or not. However, accessing the data in that row leads to the data’s immediate deletion. 

Afterwards, the data may not be replaced without the deliberate permission of Source X. Let us 

consider an actual example; X produces Y, and stores Y in a self-destructive database. That 

action is represented as  X-- [Y]. We ping the database to determine that Y is indeed present, 

though we do not know its contents. Next, we input a retrieval request for Y in order to obtain 

its true identity . Y is immediately retrieved, and is automatically deleted from the database. 

We may try to manipulate the system in order to subtly put  Y back its original location, but we 

will not succeed without the direct permission of  resource X. That, in a nutshell, is the function 

of a self-destructive database. Though its maximal level of proven security remains to be 

determined, we venture to conjecture that a totally secure self-destructive mechanism is 

mathematically possible.   

Based on the above-stated assumptions, the server acts as a trusted third-party to its 

users. The server is also a potential target for malicious hackers and thieves. In fact, we shall 

directly associate hacking with theft. Hackers will willfully attack the server for the purpose of 

financial gain. Under such conditions, wanton and profit-less destruction  is not considering 

hacking. Deletion of a server's contents is not a hack. Neither is smashing that server with a 

sledgehammer. We define such destructive activities as acts of vandalism. Defending against 

vandalism requires a secure system of storage and backup, which will not be discussed in this 

paper. We will focus instead on for-profit attacks. Our concern is the thief breaking into the 

vault, not the arsonist trying to burn down the bank. 

Thus we define a hacking attack as a deliberate attempt  to manipulate the protocol for 

the purpose of illicit financial gain. A successful hack entails that an attacker illicitly obtains all 

necessary crypo-keys needed to execute an On-Chain Bitcoin transaction. These keys may be 

obtained in a variety of ways; ranging from the direct replication of server-stored data to the 

more subtle counterfeit emulation of protocol-specific signals. A hacker-proof protocol must 

successfully defend against all these myriad attacks. We shall hence develop one such protocol 

in the subsequent sections of our paper. 

3  MULTISIG OFF-CHAIN TRANSACTIONS 



 In a standard Bitcoin transaction, a single private key is required to transfer funds from 

User_A to User_B. Whoever holds that key controls the funds, therby making it a dangerous 

single-point target for digital attacks. The onset of Bitcoin-based MultiSig cryptography greatly 

helps alleviate that threat. Let us a consider simple 2-of-2 MultiSig system. Two unique private 

keys, Sig_U and Sig_S, are associated with a single public address ADD. Both keys are required 

to control the funds within that address. Illicitly obtaining one but not the other private key is 

not enough to instigate the hack. 

 Suppose that we instigate a new relationship between User_A and Server_S. The Server 

then creates a 2-of-2 MultiSig key-pair associated with an address ADD. The key-pair and the 

address exist within a dynamic running process. They have not yet been stored in server 

memory, and are not accessible to predatory hackers, based on our predefined criteria. We 

represent this transitory state using notation <Sig_U,Sig_S,ADD>. At this point in our execution, 

the memory states of User_A and Server_S exist as follows: 

USER_A SERVER_S 

 <Sig_U,Sig_S,ADD> 

  

Next, Server_S establishes a secure connection with User_A. Sig_U and ADD are transferred 

over to User_A, to be stored in his protocol client’s memory. 

USER_A SERVER_S 

Sig_U <Sig_U,Sig_S,ADD> 

ADD  

 

Afterwards, Sig_S is transferred to the memory of the Server. Given the sensitive nature of 

Sig_S, we choose to treat its storage very careful. As a result, we load Sig_S into a 

self-destructive database; of the sort that is discussed in Section 2. That transfer is represented 

as <Sig_U,Sig_S,ADD> -- [Sig_S], where  <Sig_U,Sig_S,ADD> is a permited self-destructive 

database input source. 

USER_A SERVER_S 

Sig_U <Sig_U,Sig_S,ADD> -- [Sig_S] 

ADD  

 

Finally, the dynamic procedure containing the variables <Sig_U,Sig_S,ADD> reaches 

termination. The temporary variables cease to exist in any form within the Server. Server_S is 

left completely unaware of the contents of private key Sig_U. 



 

USER_A SERVER_S 

Sig_U [Sig_S] 

ADD  

 

At this point, User_A executes an On-Chain Bitcoin transaction from an exterior wallet, thereby 

transferring $10 to address ADD. 

USER_A SERVER_S 

Sig_U [Sig_S] 

ADD ($10)  

 

Now User_A encounters User_B, who has no connection to the Server. 

USER_A SERVER_S USER_B 

Sig_U [Sig_S]  

ADD ($10)   

 

User_A and User_B initialize a data-exchange transaction, where User_B receives both ADD 

($10) and  Sig_U from User_A. 

USER_A SERVER_S USER_B 

Sig_U [Sig_S] Sig_U 

ADD ($10)  ADD ($10) 

 

At this juncture, User_B has multiple options. He can transfer Sig_U back to User_A. He can 

transfer Sig_U to some other User_C. Finally, he can request Sig_S directly from the Server, 

resulting in its immediate deletion from the self-destructive database. 

USER_A SERVER_S USER_B 

Sig_U  Sig_U 

ADD ($10)  Sig_S 

  ADD ($10) 

 

Once User_B obtains Sig_S, he will gain instantaneous control of the $10 in address ADD. What 

we have just described is MultiSig Off-Chain transaction. Of course, the aforementioned 

transaction is exceedingly insecure. There are many reasons for this, but the foremost cause of 

insecurity is the unreliability of User_A. What if User_A grabs Sig_S from Server_S after the 



transaction is completed? What if User_A posted the value of Sig_U on some shady Darknet 

hacker forum? What if User_A is just one of many previous Off-Chain Sig_U recipients, any of 

which could have comprised its contents? User_B remains consistently aware that one or more 

Sig_U-possessing individuals could in theory hack the Server, thereby stealing all his funds. This 

is unacceptable; we must employ cryptography to make our MultiSig transactions more secure. 

4  ENCRYPTED MULTISIG OFF-CHAIN TRANSACTIONS 

 Let us consider the following MultiSig encrypted schema; Server_S interacts with 

User_A. User_A immediately produces an asymmetrical public/private pair of keys; 

(Ka,Ka_Public). Ka_Public can encrypt a string that may only be decrypted using Ka.  

USER_A SERVER_S 

Ka  
Ka_Public  

 

User_A transfers the public key to Server_S. The Server then creates a symmetric key Ks, which 

can be used to both encrypt and decrypt data. 

USER_A SERVER_S 

Ka Ks 
Ka_Public Ka_Public 

 

Server_S proceeds to input both keys into a dynamic procedure that is not accessible from 

memory. 

USER_A SERVER_S 

Ka <Ks,Ka_Public> 
Ka_Public Ks 
 Ka_Public 

 

The dynamic procedure generates three MultiSig components; Sig_U, Sig_S, and ADD. 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD> 
Ka_Public Ks 
 Ka_Public 

 



The dynamic procedure encrypts Sig_U using Ka_Public, in order to create cypher Ea. In 

addition, the procedure encrypts Sig_S using Ks, in order to produce cypher Es. 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD,Ea,Es> 
Ka_Public Ks 
 Ka_Public 

 

The running procedure on Server_S securely transfers Es and ADD to User_A. 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD,Ea,Es> 
Es Ks 
ADD Ka_Public 
Ka_Public  

 

The running procedure on Server_S transfers Ea into a self-destructive database 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD,Ea,Es> -- [Ea] 
Es Ks 
ADD Ka_Public 
Ka_Public  

 

The running procedure finally terminates, thereby destroying all its inaccessible contents. 

USER_A SERVER_S 

Ka [Ea] 
Es Ks 
ADD Ka_Public 
Ka_Public  

 

The combined data contents of User_A and Server_S form a “CryptoSquare”, which is 

highlighted in following table. 

USER_A SERVER_S 

Ka [Ea] 
Es Ks 
ADD Ka_Public 
Ka_Public  



 

The CryptoSquare ensures that neither User_A nor Server_S are able to obtain either of the 

unecrypted signature-keys (Sig_U,Sig_S) without mutual collaboration. User_A retains no 

knowledge of these variables. In order to make transfers from address ADD, User_A needs to 

request both cypher Ea and key Ks from Server_S, which will result in the immediate deletion of 

[Ea] within the server’s self-destructive database. 

 The significance of the CryptoSquare first becomes apparent when User_A encounters 

User_B, after adding funds to address ADD. 

USER_A SERVER_S USER_B 

Ka [Ea]  
Es Ks  

ADD ($10) Ka_Public  
Ka_Public   

 

User_A initiates an encrypted Off-Chain transaction by transferring Es and ADD ($10) to User_B 

USER_A SERVER_S USER_B 

Ka [Ea] Es 
Es Ks ADD ($10) 

ADD ($10) Ka_Public  
Ka_Public   

 

User_B responds by creating the asymmetric key-pair (Kb, Kb_Public). 

USER_A SERVER_S USER_B 

Ka [Ea] Kb 
Es Ks Es 

ADD ($10) Ka_Public Kb_Public 
Ka_Public  ADD ($10) 

 

User_B transfers Kb_Public to Server_S. 

USER_A SERVER_S USER_B 

Ka [Ea] Kb 
Es Ks Es 

ADD ($10) Kb_Public Kb_Public 
Ka_Public Ka_Public ADD ($10) 

 



The Server requests and receives permission from User_A to initiate the transaction. 

Afterwards, the server initializes a dynamic procedure that accesses Ea from the 

self-destructive database. Cypher Ea is eliminated from memory; it now exists solely within the 

inaccessible dynamic procedure. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka_Public Kb_Public 

 

Server_S requests a copy of key Ka from User_A. It then confirms the key Ka is a proper match 

for Ka_Public. If Ka is not received, or a proper confirmation is not made, then Ea will once 

again be placed into a self-destructive database, and the transaction will be determined. 

Otherwise, the transaction will continue. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

The dynamic procedure on Server_S loads the value of Ka from server memory.  

USER_A SERVER_S USER_B 

Ka <Ea,Ka> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

The dynamic procedure on Server_S decrypts Sig_U from Ea using Ka. 

USER_A SERVER_S USER_B 

Ka <Ea,Ka,Sig_U> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  



 

The dynamic procedure on Server_S loads the value of Kb_Public from server memory.  

USER_A SERVER_S USER_B 

Ka <Ea,Ka,Sig_U,Kb_Public> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

The dynamic procedure on Server_S encrypts Eb from Sig_U using Kb_Public. 

USER_A SERVER_S USER_B 

Ka <Ea,Ka,Sig_U,Kb_Public,Eb> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

The dynamic procedure on Server_S stores Eb within a self-destructive database. 

USER_A SERVER_S USER_B 

Ka <Ea,Ka,Sig_U,Kb_Public,Eb> -- 
[Eb] 

Kb 

Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

The dynamic procedure is finally terminated. User_A and User_B are both notified that the 

transaction has been successfully fully completed. 

USER_A SERVER_S USER_B 

Ka [Eb] Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 



The final result of the transaction is a newly-generated CryptoSquare for User_B.  

USER_A SERVER_S USER_B 

Ka [Eb] Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  

 

 User_B, in tandem with the Server, now controls the resources associated with address ADD. 

Furthermore, User_B, as well as User_A and Server_S, all remain completely unaware of the 

ADD-associated signatures. Finally, User_A lacks the means to obtain both signature keys 

without direct  permission from User_B. 

 It appears that CryptoSquare-based transformations allow us to efficiently transfer 

funds between two users without relying on the BlockChain. We may geometrically display 

these transformations by visualizing the movements of cryptographic variables across the eight 

corners of a cube. The two transforming CryptoSquares for Users A and B are present on two 

faces of this three-dimensional “CryptoCube.” Thusly, we shall refer to all 

CyptoSquare-dependent Off-Chain transactions as “CryptoCubic Transactions.” These 

CryptoCubic transactions form the core of our CryptoCubic Protocol. 

5 AUTHENTICATION IN THE CRYPTOCUBIC PROTOCAL 

 The following additions to our CryptoCubic Protocol will guarantee direct authentication 

Between User_A, Server_S, and User_B. Let us consider the early stage of the initial relationship 

between User_A and Server_S, when the two MutiSig signatures are first generated. 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD> 
Ka_Public Ks 
 Ka_Public 

 

Server_S stores an SHA-outputted Hash of Sig_S within its memory contents. 

USER_A SERVER_S 

Ka <Ks,Ka_Public,Sig_U,Sig_S,ADD> 
Ka_Public Ks 
 Ka_Public 
  
 Hash 



The Hash remains within the Server’s memory after the CryptoSquare relationship is 

established. 

USER_A SERVER_S 

Ka [Ea] 
Es Ks 
ADD Ka_Public 
Ka_Public  
  
 Hash 

 

Later, User_A and User_B initialize a CryptoCubic transaction. 

USER_A SERVER_S USER_B 

Ka [Ea] Kb 
Es Ks Es 

ADD ($10) Ka_Public Kb_Public 
Ka_Public  ADD ($10) 
   
 Hash  

 

At this point in the transaction, User_B transfers Kb_Public to User_A. 

USER_A SERVER_S USER_B 

Ka [Ea] Kb 
Es Ks Es 

ADD ($10) Ka_Public Kb_Public 
Ka_Public  ADD ($10) 
   
Kb_Public Hash  

 

Afterwards, User_A transfers Kb_Public to Server_S. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  



Server_S must now authenticate the true identity of User_A. The Server does so by creating a 

randomized token-string; Token_A. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  
 Token_A  

 

The Server encrypts the contents of Token_A with Ka_Public, thereby producing cypher Et_A. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  
 Token_A  
 Et_A  

 

Et_A is transferred back to User_A. User_A decrypts it; outputting the variable Token_A2. 

Token_A2 is transferred to the Server. Server_S confirms that Token_A is equivalent to 

Token_A2. User_A authentication is now complete, and the transaction may continue. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  
Et_A Token_A  
Token_A2 Et_A  
 Token_A2  



Server_S makes preparations to authenticate the identity of User_B. It does so by creating 

Token_B and the cypher Et_B. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  
Et_A Token_A  
Token_A2 Et_A  
 Token_A2  
 Token_B  
 Et_B  

 

Afterwards, the Server receives a contact request from User_B. Server_S establishes the 

identity of User_B using the aforementioned token-exchange schema. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash  
Et_A Token_A  
Token_A2 Et_A  
 Token_A2  
 Token_B Et_B 
 Et_B Token_B2 
 Token_B2  

 



Server_S proceeds to transfer the value of Hash to User_B. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash Hash 
Et_A Token_A  
Token_A2 Et_A  
 Token_A2  
 Token_B Et_B 
 Et_B Token_B2 
 Token_B2  

 

User_B executes an SHA-hash on cypher Es, outputting the variable Hash2. 

USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash Hash 
Et_A Token_A Hash2 
Token_A2 Et_A  
 Token_A2  
 Token_B Et_B 
 Et_B Token_B2 
 Token_B2  

 

User_B authenticates that Hash is identical to Hash2. This confirms that User_A has transferred 

over a non-counterfeit Es. 

  



USER_A SERVER_S USER_B 

Ka <Ea> Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash Hash 
Et_A Token_A Hash2 
Token_A2 Et_A  
 Token_A2  
 Token_B Et_B 
 Et_B Token_B2 
 Token_B2  

 

Authentication is officially completed. The CryptoCubic transaction proceeds as specified; 

leading to the creation of a CryptoSquare associated with User_B. 

 

USER_A SERVER_S USER_B 

Ka [Eb] Kb 
Es Ks Es 

ADD ($10) Kb_Public ADD ($10) 
Ka_Public Ka Kb_Public 
 Ka_Public  
   
Kb_Public Hash Hash 
Et_A Token_A Hash2 
Token_A2 Et_A  
 Token_A2  
 Token_B Et_B 
 Et_B Token_B2 
 Token_B2  

 


