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Abstract. Many blockchain researches focus on the privacy protec-
tion. However, criminals can leverage strong privacy protection of the
blockchain to do illegal crimes (such as ransomware) without being pun-
ished. These crimes have caused huge losses to society and users. Im-
plementing identity tracing is an important step in dealing with issues
arising from privacy protection. In this paper, we propose a blockchain
traceable scheme with oversight function (BTSOF). The design of BT-
SOF builds on SkyEye (Tianjun Ma et al., Cryptology ePrint Archive
2020). In BTSOF, the regulator must obtain the consent of the com-
mittee to enable tracing. Moreover, we construct a non-interactive verifi-
able multi-secret sharing scheme (VMSS scheme) and leverage the VMSS
scheme to design a distributed multi-key generation (DMKG) protocol
for the Cramer-Shoup public key encryption scheme. The DMKG proto-
col is used in the design of BTSOF. We provide the security definition
and security proof of the VMSS scheme and DMKG protocol.

Keywords: blockchain traceable scheme · oversight function · verifiable
multi-secret sharing scheme · distributed multi-key generation protocol

1 Introduction

Nowadays, the blockchain that originated in Bitcoin [23] has attracted great
attention from industry and academia. The reason of high concern is mainly
the large-scale application scenarios of blockchain. That is, the blockchain is no
longer limited to the decentralized cryptocurrencies (e.g. PPcoin [17], Litecoin
[1]), and can also be applied to other fields, such as military, insurance, supply
chain, and smart contracts.

In a nutshell, the blockchain can be seen as a distributed, decentralized,
anonymous, and data-immutable database. The blockchain stores data in blocks.
A block contains a block header and a block body. The block body stores data
in the form of a Merkle tree. The block header contains the hash value of the
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block header of the previous block to form a chain. Moreover, the block header
also stores information such as the time stamp, version number, and root of
the Merkle tree. The blockchain uses consensus mechanism (such as proof of
work (POW) [23], proof of stake (POS) [4, 9, 16], or practical byzantine fault
tolerance (PBFT) [6]) to guarantee nodes to reach consensus on some block. In
other words, the consensus mechanism ensures that the entire network reaches
a consensus on a unique blockchain.

There are many researches on the blockchain privacy protection [5,8,22,26].
However, criminals can leverage strong privacy protection of the blockchain to do
illegal crimes (such as ransomware, money laundering) without being punished.
These crimes have caused huge losses to society and users. CipherTraces third
quarter 2019 cryptocurrency anti-money laundering report shows that the total
amount of fraud and theft related to cryptocurrencies are $4.4 billion in aggregate
for 2019.

In blockchain applications, implementing identity tracing is an importan-
t step in dealing with issues arising from privacy protection. Tianjun Ma et
al. proposed SkyEye [20], a blockchain traceable scheme. SkyEye can be ap-
plied in the SkyEye-friendly blockchain applications, that is, each user in these
blockchain applications has the public information generated from the private
information, and the users’ public information can be displayed in the blockchain
data. SkyEye allows the regulator to trace the users’ identities of the blockchain
data. However, in SkyEye, there are no restrictions and oversight measures for
the regulator, and the regulator can arbitrarily trace the blockchain data.

In this paper, we propose a blockchain traceable scheme with oversight func-
tion (BTSOF) to limit the tracing right of the regulator. Our main contributions
are as follows:

1. We construct a non-interactive verifiable multi-secret sharing (VMSS) scheme
based on the non-interactive verifiable secret sharing scheme proposed by
Pedersen (Pedersen-VSS) [25]. We leverage the Franklin-Yung multi-secret
sharing scheme [13] in the design of the VMSS scheme. In addition, we pro-
vide the security definition and security proof of the VMSS scheme.

2. We use the VMSS scheme to construct a distributed multi-key generation
(DMKG) protocol for the Cramer-Shoup public key encryption scheme [7].
The construction of the DMKG protocol builds on the techniques of dis-
tributed key generation (DKG) protocol proposed by Gennaro et al [15]. We
define the security of the DMKG protocol and prove the security of this
protocol.

3. We propose a blockchain traceable scheme with oversight function. The de-
sign of BTSOF builds on SkyEye [20]. There is a committee in BTSOF.
The regulator must obtain the consent of the committee to enable tracing.
The regulator can trace one data, multiple data or data in multiple period.
Moreover, the design of the BTSOF scheme leverages some cryptographic
primitives, including the DMKG protocol, non-interactive zero-knowledge,
and digital signature scheme.
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1.1 Notation

Let p and q denote two large primes such that q − 1|p. We use Zp to denote a
group of order p and Zq to denote a group of order q. Unless otherwise noted,
the exponential operation performs modulo p operation by default. For example,
gx denotes gx mod p, where g ∈ Zp and x ∈ Zq. Let || denote the concatenate
symbol, such as a||b denotes the concatenation of a and b. Let | · | denote the
size of some set, such as |A| represents the number of elements in the set A.

1.2 Paper organization

The remainder of this paper is organized as follows. Section 2 provides the back-
ground. Section 3 provides an overview of the blockchain traceable scheme with
oversight function. Section 4 describes the VMSS scheme. Section 5 details the
DMKG protocol. Section 6 describes the blockchain traceable scheme with over-
sight function. We discuss related work in Section 7 and summarize this paper
in Section 8.

2 Background

2.1 SkyEye

SkyEye, a traceable scheme for blockchain, was introduced by Tianjun Ma et
al [20]. SkyEye uses some cryptographic primitives (e.g., chameleon hash scheme
[18]) in the design. SkyEye consists of a tuple of polynomial-time algorithms
(Setup,Geninfo, V erinfo, Genproof , V erproof , T race), where Setup generates the
public parameters pp for the system, Geninfo and V erinfo create and verify the
user registration information respectively, Genproof and V erproof generate and
verify the user’s identity proof respectively, and Trace algorithm traces the users’
true identities in the blockchain data. A complete formal definition about these
algorithms can be found in [20].

The regulator’s encryption public-private key pair (pkreg, skreg), that is called
the traceable public-private key pair, is generated by Setup algorithm, where
pkreg is included in the pp and skreg is obtained by the regulator. The identity
proof of each user includes the ciphertext of the user’s chameleon hash public key
under pkreg. We use u to denote a user, idu to denote the u’s true identity and
pkcu to denote the chameleon hash public key of the user u. Let CHidu denote
the chameleon hash value of identity idu and MT denote the Merkle tree. Each
leaf node of MT stores the value of each successfully registered user, which is the
concatenation of the chameleon hash public key and the chameleon hash value
of the identity.

Figure 1 shows an overview of the blockchain application using SkyEye. The
user u generates the registration information reginfo and sends reginfo to the
regulator. If the verification of reginfo is successful, the regulator can extract
some information recordu = (pkcu , idu, CHidu) from reginfo, store recordu to
the database, add pkcu ||CHidu to MT , and publish the Merkle tree MT. If
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Fig. 1. An overview of the blockchain application using SkyEye.

the u’s (pkcu ||CHidu) appears in the Merkle tree MT , the user u successfully
registers in the regulator. Then, the user u can generate the blockchain data
datau consisting of data contents and the identity proofs of users involved in data
creation. The user sends datau to the node network which includes ordinary users
and verification nodes. Unlike traditional verification process in the blockchain,
the verification process works as follows: (i) verifying data contents; (ii) verifying
identity proofs in the data. If the verification of datau is successful, datau is added
to the block that is generated by the verification node (e.g., miner). According
to a consensus mechanism, the nodes in the network select a final block and add
it to the blockchain. The tracing process is shown as follows: the regulator
obtains datau from the blockchain, and gets the chameleon hash public key set
PKC by decrypting each ciphertext of chameleon hash public key in datau using
the private key skreg. Finally, the regulator can obtain the users’ true identity
set ID in datau by searching the database according to PKC .

2.2 Cryptographic Building Blocks

The cryptographic building blocks include the following: Cramer-Shoup encryp-
tion scheme, non-interactive zero-knowledge, digital signature scheme, and multi-
secret sharing scheme. Below, we informally describe these notions.

Cramer-Shoup Encryption Scheme. The Cramer-Shoup Encryption Scheme
CS = (Setup,KeyGen,Enc,Dec) is described below (more details are described
in [7]).

• Setup(λ) → ppenc. Given a security parameter λ, this algorithm samples
g1, g2 ∈ Zp at random, where the order of g1 and g2 is q. Then, this algorithm
chooses a hash function H form the family of universal one-way hash functions.
Finally, Setup returns the public parameters ppenc = (p, q,H, g1, g2).

• KeyGen(ppenc) → (pk, sk). Given the public parameters ppenc, this al-
gorithm randomly samples x1, x2, y1, y2, z ∈ Zq, and computes c1 = gx1

1 gx2
2 ,
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c2 = gy1

1 gy2

2 , and c3 = gz1 . Finally, KeyGen returns a pair of public/private keys
(pk, sk) = ((c1, c2, c3), (x1, x2, y1, y2, z)).

• Enc(pk,m) → C. Given the public key pk and a message m, this algorithm
first randomly samples r ∈ Zq. Then it computes

u1 = gr1, u2 = gr2, e = cr3m,α = H(u1, u2, e), v = cr1c
rα
2 .

Finally, this algorithm returns C = (u1, u2, e, v).
• Dec(sk, C) → m/⊥. Given the private key sk and the ciphertext C, this

algorithm computes α = H(u1, u2, e), and checks if

ux1+y1α
1 ux2+y2α

2 = v.

If the check fails, this algorithm outputs ⊥; otherwise, it outputs m = e/uz
1.

Non-Interactive Zero-Knowledge. Let R : {0, 1}∗×{0, 1}∗ −→ {0, 1} be an
NP relation. The language for R is L = {x ∈ {0, 1}∗|∃w ∈ {0, 1}∗ s.t. R(x,w) =
1}. A non-interactive zero-knowledge scheme NIZK = (K,P,V) corresponds to
the language L, which is described below:

• K(λ) → crs. Given a security parameter λ, K returns a common reference
string crs.

• P(crs, x, w) → π. Given the common reference string crs, a statement x,
and a witness w, P returns a proof π.

• V(crs, x, π) → {0, 1}. Given the common reference string crs, the statement
x, and the proof π, V returns 1 if verification succeeds, or 0 if verification fails.

A non-interactive zero-knowledge scheme satisfies three secure properties: (i)
completeness; (ii) soundness; and (iii) perfectly zero knowledge. More details are
available in [2].
Digital Signature Scheme. A digital signature scheme Sig = (KeyGen, Sign
, V er) is described below:

• KeyGen(λ) → (pksig, sksig). Given a security parameter λ, KeyGen re-
turns a pair of public/private keys (pksig, sksig).

• Sign(sksig,m) → σ. Given the private key sksig and a message m, Sign
returns the signature σ of the message m.

• V er(pksig,m, σ) → b. Given the public key pksig, the message m, and the
signature σ, V er returns b = 1 if the signature σ is valid; otherwise, it outputs
b = 0.
Multi-Secret Sharing Scheme. We use the Franklin-Yung multi-secret shar-
ing scheme [13]. A (t − l + 1, t + 1; l, n)-multi-secret sharing scheme has two
phases: distribution phase and recovery phase, where l denotes the number of
secrets, t denotes the threshold, and n denotes the number of participants.

Distribution phase. The dealer D distributes a secret set S = {s1, ..., sl} ∈ Zl
q

to n participants, P1, ..., Pn. D first chooses a random polynomial f of degree t
such that f(−k) = sk for k = 1, ..., l and f(−k) is random for k = l+1, ..., t+1.
and then sends sti = f(i) secretly to Pi for i = 1, ..., n.

Recovery phase. Any at least t+1 participants can compute the polynomial
f via the Lagrange interpolation formula, and then reconstruct the secret set S.
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The above scheme satisfies two properties: (1) any at least t+1 participants
can reconstruct the secret set S; (2). Any at most t− l+ 1 participants can not
find anything about the secret set S from their shares in an information-theoretic
sense.

3 An Overview of the Blockchain Traceable Scheme with
Oversight Function

C
PK

u
data

ID

u u
( data ,wit )

Fig. 2. An Overview of the Blockchain Traceable Scheme with Oversight Function.

We design oversight measures for the regulator on the basis of SkyEye, so
as to construct the blockchain traceable scheme with oversight function. The
main design idea is shown in the Figure 2. If the regulator wants to trace the
blockchain data datau, it must send the data datau and corresponding evidence
witu to the committee. And if the committee agrees this tracing, it sends the
information for tracing to the regulator. Finally, the regulator can trace the data
datau according to the information sent by the committee. The specific ideas are
described as follows.

From Section 2.1, it can be seen that in SkyEye, the prerequisite for tracing
by the regulator is to use the traceable private key skreg to decrypt all the
chameleon hash public key ciphertexts in the blockchain data datau to obtain
the chameleon hash public key set PKC . For the encryption scheme in SkyEye,
we use the Cramer-Shoup encryption scheme, and let the committee periodically
generates the traceable public-private key pair of the Cramer-Shoup encryption
scheme. In other words, the regulator must obtain the consent of the committee
to enable tracing. We design a DMKG protocol suitable for the Cramer-Shoup
encryption scheme based on the DKG protocol [15] (more details are described
in Section 5). Without loss of generality, in this paper, we analyze the interaction
between the committee and regulator in one period. Let T denote one period
and (pkreg, skreg) denote the traceable public-private key pair that is generated
by the committee using the DMKG protocol in this period.
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For ease of describing the next design ideas, we assume that the committee
has n participants P1, ..., Pn where each member Pi is honest for i ∈ {1, ...n}
(and in Section 6, we analyze the case of corrupted participants in the com-
mittee). Assuming that each committee member Pi has the encryption private
key component (x1i, x2i, y1i, y2i, zi) and the encryption public key component
(c1i, c2i, c3i) = (gx1i

1 gx2i
2 , gy1i

1 gy2i

2 , gzi1 ), then the private key skreg is equal to (x1 =∑
i∈{1,...n} x1i mod q, x2 =

∑
i∈{1,...n} x2i mod q, y1 =

∑
i∈{1,...n} y1i mod q, y2 =∑

i∈{1,...n} y2i mod q, z =
∑

i∈{1,...n} zi mod q). and the public key pk is equal to

(c1 =
∏

i∈{1,...n} c1i = gx1
1 gx2

2 , c2 =
∏

i∈{1,...n} c2i = gy1

1 gy2

2 , c3 =
∏

i∈{1,...n} c3i =

gz1).

Although the traceable public-private key pair (pkreg, skreg) has been gen-
erated by the committee, an issue remains. When the regulator sends the data
set and corresponding evidence to the committee and the committee agrees this
tracing, if the committee sends the private key skreg directly to the regulator,
this will cause the regulator to trace not only the data set that it sends, but also
the data of other participants using pkreg during the T period.

To address the above issue, we ask the committee to send the private key
skreg to the regulator only when the regulator needs to trace all data of the T
period. In other cases, the committee sends some information to the regulator,
which allows the regulator to trace only the data set sent to the committee. Next,
we describe the design idea for the other cases. We assume that datau only has a
chameleon hash public key ciphertext Cu = (u1, u2, e, v) = (gr1, g

r
2, c

r
3pkcu , c

r
1c

rα
2 ),

where r is a random number used for encryption and α = H(u1, u2, e). When
the regulator sends (datau, witu) to the committee, if the committee agrees this
tracing, for each i ∈ {1, ...n}, Pi processes the ciphertext Cu as follows .

ui1 = u
(x1i+y1iα)
1 = g

r(x1i+y1iα)
1 ,

ui2 = u
(x2i+y2iα)
2 = g

r(x2i+y2iα)
2 , ui3 = uzi

1 = grzi1 .

Pi broadcasts the (ui1, ui2, ui3) to other members. Finally, for each i ∈
{1, ...n}, Pi can compute

ui12 = Πj∈{1,...n}uj1uj2 = Πj∈{1,...n}g
r(x1j+y1jα)
1 g

r(x2j+y2jα)
2

= g
r(Σj∈{1,...n}x1j+αΣj∈{1,...n}y1j)
1 g

r(Σj∈{1,...n}x2j+αΣj∈{1,...n}y2j)
2

= g
r(x1+y1α)
1 g

r(x2+y2α)
2 = ux1+y1α

1 ux2+y2α
2 ;

ui13 = Πj∈{1,...n}uj3 = g
rΣj∈{1,...n}zj
1 = grz1 = uz

1.

Then, Pi sends (ui12, ui13) to regulator for each i ∈ {1, ...n}.
Because all committee members are honest, the regulator can choose the

(ui12, ui13) for some i ∈ {1, ...n} to decrypt Cu. The regulator first checks if
ui12 = v. If the check passes, the regulator computes pkcu = e/ui13, and then
searches his database to determine the true identity idu corresponding to the
chameleon hash pubic key pkcu .
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4 Non-Interactive Verifiable Multi-Secret Sharing
Scheme

In this section, we describe the definitions, construction, and security of the
VMSS scheme.

4.1 Definitions

A VMSS scheme consists of the distribution phase, verification phase, and re-
covery phase. In the distribution phase, the dealer distributes the secret set and
sends shares to the participants. In verification phase, the participants verify
the shares sent by the dealer. In recovery phase, the participants reconstruct the
secret set.

We assume that a dealer D distributes a secret set S = {s1, ..., sl} ∈ Zl
q

to n participants, P1, ..., Pn. Let V erpro denote the verification protocol that
runs on the dealer D and participants P1, ..., Pn. A VMSS scheme is secure with
threshold t if it satisfies the following two definitions (cf. [25]).

Definition 1 The V erpro must satisfy the following two requirements:

1. If the dealer and Pi follow V erpro for i ∈ {1, ..., n}, and the dealer follows
the distribution agreement, Pi accepts the dealer’s share with a probability of
1.

2. For all subsets U1, U2 of the set U = {1, ..., n} (|U1| = |U2| = t + 1), if all
participants in U1 and U2 have accepted their respective share sent by the
dealer in V erpro, the secret set Si that is reconstructed by Ui (i ∈ {0, 1})
satisfies S1 = S2.

Definition 2 For any A ⊆ {1, ..., n} (|A| <= t − l + 1) and any V iewA, the
VMSS protocol has:

P [D has a secret set S | V iewA] = P [D has a secret set S],

where S = {s1, ...sl} and V iewA denotes the view of the set A.

4.2 Construction

We assume that the dealer D has a secret set S = {s1, ..., sl} ∈ Zl
q , and a

trusted authority has chosen g, h ∈ Zp, where h = gγ , γ ∈ Zq. The VMSS
scheme is described as following.

Distribution phase. The dealer D samples β1, ..., βl ∈ Zq at random, and
broadcasts Ei = gsihβi for i = 1, ..., l.

Then, Pi randomly chooses two polynomials f(x), f ′(x) ∈ Zq[x] of degree t
such that f(−k) = sk and f ′(−k) = βk for k = 1, ..., l. Let f(x) = a0 + a1x +
... + atx

t and f ′(x) = b0 + b1x + ... + btx
t. Then, D broadcasts cmj = gajhbj

for j = 0, 1, ..., t. Finally, D computes sti = f(i), shi = f ′(i) and sends (sti, shi)
secretly to Pi for i = 1, ..., n.
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Verification phase. For each i ∈ {1, ..., n}, Pi first verifies Ek for k = 1, ...l
and checks if

Ek = gsihβi =
t∏

j=0

cm
(−k)j

j . (1)

If the check fails for an index k, Pi declines (sti, shi); otherwise, Pi verifies
(sti, shi) and checks if

gstihshi =

t∏
j=0

cmij

j . (2)

If the check fails, Pi declines (sti, shi); otherwise, Pi accepts (sti, shi).

Recovery phase. Any at least t + 1 participants that have accepted their
shares can compute the polynomial f via the Lagrange interpolation formula,
and then reconstruct the secret set S.

4.3 Security

Theorem 1. If the dealer D can not compute γ, the VMSS scheme described
in Section 4.2 is secure. That is, the VMSS scheme satisfies Definition 1 and
Definition 2.

We provide the proof of Theorem 1 in Appendix A. According to Theorem 1,
we can get the following lemma.

Lemma 1. The VMSS scheme satisfies the following properties in the presence
of an adversary that corrupts at most t− l+1 participants and can not compute
γ:

1. If the dealer is honest in the protocol, all shares owned by the honest partic-
ipants can interpolate to a unique polynomial of degree t. In particular, any
t + 1 shares of the honest participants can effectively reconstruct the secret
set S = {s1, ...sl}.

2. The public information generated in the protocol can be used to check the
correctness of each share. Therefore, even in the presence of a malicious ad-
versary that corrupts at most t−l+1 participants, it is possible to reconstruct
the secret set S from any subset that contains at least t+ 1 correct shares.

3. The view of the adversary and the secret set S are independent of each other.

5 Distributed Multi-key Generation for the
Cramer-Shoup Encryption Scheme

In this section, we describe the threat model, security requirements, construction,
and security proof of the DMKG protocol.
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5.1 Threat Model and Security Requirements

Threat Model. We assume that there are n probabilistic polynomial-time
participants P1, ...Pn in the DMKG protocol. These participants are in a fully
synchronous network. All participants have a common broadcast channel, and
there is a private point-to-point channel between the participants. The adversary
A is static. That is, the corrupted participants must be chosen by the adversary
A at the beginning of the DMKG protocol. The adversary can corrupt at most
t− 1 participants in any way, where t− 1 < n/2.

Security Requirements The DMKG protocol is used to generate the public-
private key pair (pk, sk) in the Cramer-Shoup encryption scheme, where pk =
(c1, c2, c3) = (gx1

1 gx2
2 , gy1

1 gy2

2 , gz1) and sk = (x1, x2, y1, y2, z). The DMKG protocol
is secure with threshold t if it satisfies the following requirements in the presence
of the adversary A that corrupts at most t− 1 participants (cf. [15]).

1. Correctness
(P1). Any subset of t + 1 shares provided by honest participants can deter-
mine the same private key sk = (x1, x2, y1, y2, z).
(P2). There is an effective algorithm that on input the participants’ n shares
and public messages generated by the DMKG protocol, outputs the unique
private key sk, even if at most t − 1 shares are generated by the corrupted
participants.
(P3). All honest participants have the same public key pk = (c1, c2, c3) =
(gx1

1 gx2
2 , gy1

1 gy2

2 , gz1), where (x1, x2, y1, y2, z) is determined by P1.
(P4). The values x1, x2, y1, y2, and z of the private key are uniformly dis-
tributed in Zq.

2. Secrecy
The adversary gets nothing about sk except for the pubic key pk. More for-
mally, for each probabilistic polynomial-time adversary A that can corrupt
at most t − 1 participants, there is a simulator O such that on input the
public key pk, the output distribution produced by the simulator O is in-
distinguishable from the adversary’s view in the real DMKG protocol that
outputs the public key pk.

5.2 Construction

We assume that a trusted authority has chosen g1, h1, g2, h2 ∈ Zp, where h1 =
gγ1

1 and h2 = gγ2

2 for γ1, γ2 ∈ Zq. The DMKG protocol consists of two phases of
generating the private key sk = (x1, x2, y1, y2, z) and generating the public key
pk = (c1 = gx1

1 gx2
2 , c2 = gy1

1 gy2

2 , c3 = gz1). The above two phases are presented in
detail in Figure 3 and Figure 4. The key ideas are described below.

In generating the private key sk phase, for each i = 1, ..., n, Pi randomly
chooses the components x1i, x2i, y1i, y2i, zi of sk in Zq. The distribution process
of zi uses the Pedersen-VSS scheme [25], which is the same as the DKG proto-
col [15]. Pi randomly chooses a t-degree polynomial Hi(x) satisfying Hi(0) = zi
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to distribute zi. We use the VMSS protocol to distribute (x1i, x2i, y1i, y2i). Specif-
ically, Pi first broadcasts the commitments of x1i, x2i, y1i, and y2i. Then, Pi

commits to two polynomials Fi(x), Gi(x) of degree t such that Fi(−1) = x1i,
Fi(−2) = y1i, Gi(−1) = x2i, and Gi(−2) = y2i. Finally, Pi broadcasts the prod-
uct of two polynomial commitments so that other participants can verify the
shares sent by Pi and the commitments on x1i, x2i, y1i, and y2i (Eq. 3 and Eq.
4 in Figure 3). At the end of this phase, Pi obtains a set of qualified participants
Qfinal, and holds the values Fj(i), Gj(i), and Hj(i) for j ∈ Qfinal.

In generating the public key pk phase, each participant Pi broadcasts the

components c1i = gx1i
1 gx2i

2 , c2i = gy1i

1 gy2i

2 , and c3i = gzi1 = g
Hi(0)
1 of pk for

i ∈ Qfinal. The verification process of c3i is the same as the DKG protocol [15].
Pi broadcasts the public values Aik for k = 0, ..., t, so that other participants
can verify (c1i, c2i) through Aik, and verify Aik via the shares sent by Pi (Eq. 5
and Eq. 6 in Figure 4).

5.3 Security

Theorem 2. The DMKG protocol described in Figure 3 and Figure 4 is a secure
protocol for distributed multi-key generation in the Cramer-Shoup encryption
scheme. That is, it satisfies correctness and secrecy requirements in the presence
of an adversary that corrupts at most t− 1 participants for any t− 1 < n/2.

A simulator O is provided in Figure 5. We provide the proof of Theorem 2 in
Appendix B.

6 A Blockchain Traceable Scheme with Oversight
Function

In this section, we describe the threat model, goal, construction and security of
BTSOF.

6.1 Threat Model and Goal

From Section 3, it can be seen that BTSOF is constructed by adding oversight
measures to SkyEye [20]. That is, the traceable public-private key pair is gen-
erated by the committee through the DMKG protocol, and the regulator must
obtain the consent of the committee to enable tracing. These measures are rela-
tively independent of SkyEye. Therefore, in BTSOF, we only consider the threat
model that is same as the threat model in the DMKG protocol except that the
set (P1, ..., Pn) is called a committee and n is equal to 3t − 2. Because the ad-
versary controls at most t− 1 committee members, the honest members are the
majority on the committee. Moreover, we assume that the regulator can receive
each committee member’ reply at time trep. The goal of BTSOF is to ensure
that the regulator must obtain the consent of the committee to enable tracing,
and can only trace the data set sent to the committee.
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1. Each participant Pi performs the following operations for i = 1, ..., n:

(a) Pi randomly chooses x1i, x2i, y1i, y2i, zi ∈ Zq, and β0i, β1i, β2i, β3i, β4i ∈ Zq.
Then, Pi broadcasts E1i = gx1i

1 hβ1i
1 , E2i = gy1i1 hβ2i

1 , E3i = gx2i
2 hβ3i

2 , and
E4i = gy2i2 hβ4i

2 .
(b) Pi randomly chooses two polynomials Fi(x), F

′
i (x) ∈ Zq[x] of degree t such

that Fi(−1) = x1i, Fi(−2) = y1i, F
′
i (−1) = β1i and F ′

i (−2) = β2i. Let Fi(x) =
ai0 + ai1x+ ...+ aitx

t and F ′
i (x) = bi0 + bi1x+ ...+ bitx

t.
Then, Pi randomly chooses two polynomials Gi(x), G

′
i(x) ∈ Zq[x] of degree t

such that Gi(−1) = x2i, Gi(−2) = y2i, G
′
i(−1) = β3i and G′

i(−2) = β4i. Let
Gi(x) = a′

i0 + a′
i1x+ ...+ a′

itx
t and G′

i(x) = b′i0 + b′i1x+ ...+ b′itx
t.

Finally, Pi randomly chooses two polynomials Hi(x), H
′
i(x) ∈ Zq[x] of degree

t such that Hi(0) = zi and H ′
i(0) = β0i. Let Hi(x) = a′′

i0 + a′′
i1x + ... + a′′

itx
t

and H ′
i(x) = b′′i0 + b′′i1x+ ...+ b′′itx

t, where a′′
i0 = zi and b′′i0 = β0i.

Pi broadcasts CMik = g
aik
1 h

bik
1 g

a′
ik

2 h
b′ik
2 and cmik = g

a′′
ik

1 h
b′′ik
1 for k = 0, ...t,

where cmi0 = g
a′′
i0

1 h
b′′i0
1 = gzi1 hβ0i

1 .
(c) For each i = 1, ..., n, Each participant Pj verifies Eτi for τ = 1, 2, 3, 4 and

tests if

EτiEτ+2,i =
t∏

k=0

(CM
(−τ)k

ik ) for τ = 1, 2 (3)

If this check does not hold for an index i, Pi is marked as disqualified. Because
Eτi is public for τ = 1, 2, 3, 4, each participant can build the set of qualified
participants Qtem. In particular, all honest participants build the same set
Qtem.

(d) For each i ∈ Qtem, Pi computes the shares sfij = Fi(j), sf
′
ij = F ′

i (j), sgij =
Gi(j), sg

′
ij = G′

i(j), shij = Hi(j), and sh′
ij = H ′

i(j) for j = 1, ..., n. Then, Pi

sends (sfij , sf
′
ij , sgij , sg

′
ij , shij , sh

′
ij) secretly to participant Pj for j = 1, ..., n.

(All honest participants refuse to accept the shares of these participants who
are not in Qtem)

(e) Each participant Pj verifies the shares received from the other participants.
For each i ∈ Qtem, Pj checks if{

g
sfij
1 h

sf ′
ij

1 g
sgij
2 h

sg′ij
2 =

∏t
k=0(CMik)

jk

g
shij

1 h
sh′

ij

1 =
∏t

k=0(cmik)
jk

(4)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
(f) For each i ∈ Qtem, if Pi received a complaint from Pj , Pi broadcasts the values

sfij , sf
′
ij , sgij , sg

′
ij , shij , sh

′
ij that satisfy Eq. 4.

(g) A participant Pi is marked as disqualified for i ∈ Qtem, if either of the following
two conditions is satisfied:
– the number of complaints against Pi is more than t− 1 in Step 1e.
– The values broadcast by Pi in Step 1f do not satisfy Eq. 4.

2. Each participant in Qtem builds the final set of qualified participants Qfinal. In
particular, all honest participants build the same set Qfinal.
3. For each i = 1, ..., n, Pi computes the shares sfi =

∑
j∈Qfinal

sfji mod q, sf ′
i =∑

j∈Qfinal
sf ′

ji mod q, sgi =
∑

j∈Qfinal
sgji mod q, sg′i =

∑
j∈Qfinal

sg′ji mod q,

shi =
∑

j∈Qfinal
shji mod q, and sh′

i =
∑

j∈Qfinal
sh′

ji mod q. The private key sk

is not computed by any party, but sk is equals to (x1 =
∑

i∈Qfinal
x1i mod q, x2 =∑

i∈Qfinal
x2i mod q, y1 =

∑
i∈Qfinal

y1i mod q, y2 =
∑

i∈Qfinal
y2i mod q, z =∑

i∈Qfinal
zi mod q).

Fig. 3. Generating the private key sk = (x1, x2, y1, y2, z)
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4. For each i ∈ Qfinal, Pi broadcasts Aik = g
aik
1 g

a′
ik

2 , A′
ik = g

a′′
ik

1 for k = 0, ..., t,

c1i = gx1i
1 gx2i

2 , and c2i = gy1i1 gy2i2 . Let c3i = A′
i0 = g

a′′
i0

1 = gzi1 .
5. For each j ∈ Qfinal, Pj goes through the following two steps to check whether
the values broadcast by other participants in Qfinal are correct.

(a) For each i ∈ Qfinal, Pj checks if

cτi =

t∏
k=0

(A
(−τ)k

ik ) for τ = 1, 2 (5)

If the check fails for an index i, Pj broadcasts the shares (sfij , sgij , shij).
Because Aik and cτi for τ = 1, 2 are public, all honest participants broadcast
the shares sent by Pi. Therefore, the number of shares exceeds the threshold
t, and all honest participants can reconstruct (x1i, x2i, y1i, y2i, zi).

(b) If the check succeeds in 5a for an index i, Pj then checks if{
g
sfij
1 g

sgij
2 =

∏t
k=0(Aik)

jk

g
shij

1 =
∏t

k=0(A
′
ik)

jk
(6)

If the check fails for an index i, Pj complains against Pi by broadcasting the
shares sfij , sf

′
ij , sgij , sg

′
ij , shij , sh

′
ij that satisfy Eq. 4 but do not satisfy Eq.

6.

6. If there is at least one valid complaint about Pi, then the other participants in
Qfinal reconstruct (x1i, x2i, y1i, y2i, zi), Aik, and A′

ik for k = 0, ..., t.
Finally, the participants in Qfinal can obtain pk = (c1 =

∏
i∈Qfinal

c1i =

gx1
1 gx2

2 , c2 =
∏

i∈Qfinal
c2i = gy11 gy22 , c3 =

∏
i∈Qfinal

c3i = gz1).

Fig. 4. Generating the public key pk = (c1 = gx1
1 gx2

2 , c2 = gy11 gy22 , c3 = gz1)
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Let corr = {1, ..., t′} denote the set of corrupted participants controlled by the
adversary where t′ ≤ t − 1 and uncorr = {t′ + 1, ..., n} denote the set of honest
participants controlled by the simulator O.
Input: c1 = gx1

1 gx2
2 , c2 = gy11 gy22 , c3 = gz1

1. O performs the steps 1-2 in Figure 3 on behalf of the honest participants in the
set uncorr. At the end of step 2, the following results are satisfied:

(a) Qfinal is correctly defined, and uncorr ⊆ Qfinal. Moreover, Fi(x), F ′
i (x),

Gi(x), G
′
i(x), Hi(x), and H ′

i(x) for i ∈ uncorr are randomly chosen.
(b) The view of the adversary contains Fi(x),F

′
i (x),Gi(x),G

′
i(x),Hi(x),H

′
i(x) for

i ∈ corr, the shares (sfij , sf
′
ij , sgij , sg

′
ij , shij , sh

′
ij) for i ∈ Qfinal, j ∈ corr,

and all public values Eτi, CMik, cmik for i ∈ Qfinal, τ = 1, 2, 3, 4, k = 0, ..., t.
(c) Because O receives enough consistent shares from the adversary, then O

can computes all polynomials of the participants in Qfinal. Therefore, the
view of O consists of all shares (sfij , sf

′
ij , sgij , sg

′
ij , shij , sh

′
ij), all coefficients

aik, bik, a
′
ik, b

′
ik, a

′′
ik, b

′′
ik and all public values Eτi, CMik, cmik for i ∈ Qfinal,

j = 1, ...n, τ = 1, 2, 3, 4, k = 0, ..., t.

2. Then, O performs the following steps:

(a) O sets A∗
ik = Aik = g

aik
1 g

a′
ik

2 , A′∗
ik = A′

ik = g
a′′
ik

1 , c∗1i = c1i = gx1i
1 gx2i

2 ,

c∗2i = c2i = gy1i1 gy2i2 , and c∗3i = A′
i0 = g

a′′
i0

1 for i ∈ Qfinal \ {n}, k = 0, ..., t.
(b) O computes c∗3n = c3

∏
i∈Qfinal\{n} c

−1
3i = gẑn1 , c∗1n = c1

∏
i∈Qfinal\{n} c

−1
1i =

gx̂1n
1 gx̂2n

2 , and c∗2n = c2
∏

i∈Qfinal\{n} c
−1
2i = gŷ1n1 gŷ2n2 . (O does not know the

values ẑn, x̂1n, x̂2n, ŷ1n, ŷ2n)
(c) O sets sf∗

nj = sfnj , sg
∗
nj = sgnj for j = 1, ..., t − 1, and sh∗

nj = shnj for
j = 1, ..., t.

(d) The point set ((−1, x̂1n), (−2, ŷ1n), (1, sf
∗
n1), ..., (t − 1, sf∗

n,t−1)) can
determine a polynomial F ∗

n(x) of degree t, and the point set
((−1, x̂2n), (−2, ŷ2n), (1, sg

∗
n1), ..., (t − 1, sg∗n,t−1)) can also determine a

polynomial G∗
n(x) of degree t. Let F ∗

n(x) = a∗
n0 + a∗

n1x + ... + a∗
ntx

t and
G∗

n(x) = a′∗
n0 + a′∗

n1x+ ...+ a′∗
ntx

t.
According to the Lagrange interpolation formula, each coefficient of
the polynomials F ∗

n(x) and G∗
n(x) is the linear combination of

(x̂1n, ŷ1n, sf
∗
n1, ..., sf

∗
n,t−1) and (x̂2n, ŷ2n, sg

∗
n1, ..., sg

∗
n,t−1), respectively. Be-

cause the abscissas of the above two point sets are the same, the scalars
of the two linear combinations of (ank, a

′∗
nk) are the same for k = 0, ...t.

That is, if ank = λk,−1x̂1n + λk,−2ŷ1n + λk1sf
∗
n1 + ...+ λk,t−1sf

∗
n,t−1 , where

λk,−1, λk,−2, λk1, ..., λk,t−1 are corresponding scalars for k = 0, ..., t, then
a′∗
nk = λk,−1x̂2n + λk,−2ŷ2n + λk1sg

∗
n1 + ...+ λk,t−1sg

∗
n,t−1.

Therefore, O can computes A∗
nk =

∏2
τ=1(c

∗
τn)

λk,−τ
∏t−1

j=1(g
sf∗

nj

1 g
sg∗nj

2 )λkj for
k = 0, ..., t.
The point set ((0, ẑn), (1, sh

∗
n1), ..., (t, sh

∗
nt)) can determine a polynomial

H∗
n(x). According to the Lagrange interpolation formula, each coefficient of

the polynomial H∗
n(x) is a linear combination of (ẑn, sh

∗
n1, ..., sf

∗
nt). There-

fore, O sets A′∗
n0 = c∗3n, and computes A′∗

nk = (c∗3n)
λ′
k0

∏t
j=1(g

sh∗
nj

1 )λ
′
kj where

λ′
k0, ..., λ

′
kt are corresponding scalars for k = 1, ..., t.

(e) O broadcasts Aik, A
′
ik for i ∈ Qfinal \ {n} and A∗

nk, A
′∗
nk for k = 0, ..., t.

(f) O performs the verifications of Eq. 5 on the values c1i, c2i, Aik for i ∈ corr,
k = 0, ..., t on behalf of all honest participants. If the verification fails for some
i ∈ corr, O reconstructs the secrets (x1i, x2i, y1i, y2i, zi).

(g) O performs the verifications of Eq. 6 on the values Aik, A
′
ik for i ∈ corr,

k = 0, ..., t on behalf of each honest participant. If the verification fails for some
i ∈ corr, j ∈ uncorr, O broadcasts a complaint sfij , sf

′
ij , sgij , sg

′
ij , shij , sh

′
ij

that satisfy Eq. 4 but do not satisfy Eq. 6.
(h) O performs the step 6 in Figure 4 on behalf of the honest participants.

Fig. 5. Simulator O
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6.2 Construction

We modify the Setup and Trace algorithms in SkyEye and keep the other algo-
rithms unchanged. We add the step of generating the common reference string
crs for non-interactive zero-knowledge proof to the Setup algorithm, and leave
the process of generating the traceable public-private key pair in the Setup
algorithm to the committee. Let the committee use the DMKG protocol to pe-
riodically generate the traceable public-private key pair. We modify the Trace
algorithm to the interaction between the committee and the regulator to ensure
that the regulator only trace the data set sent to the committee.

Without loss of generality, we analyze the interaction between the committee
and regulator in one period. Let T denote one period and (pkreg, skreg) denote
the traceable public-private key pair in this period. Let Qfinal denote the set of
qualified members in the committee’s process of generating (pkreg, skreg) in this
period. For each i ∈ Qfinal, Pi has the public-private key pair (pksigi , sksigi) of
the signature scheme, the traceable private key component (x1i, x2i, y1i, y2i, zi),
and the traceable public key component (c1i, c2i, c3i) = (gx1i

1 gx2i
2 , gy1i

1 gy2i

2 , gzi1 ).
The operations of the committee and the regulator are presented in detail in
Figure 6 and Figure 7. The key ideas are described below.

The regulator broadcasts a message to the committee to indicate the data
set it wants to trace. The message has two types:

• The message mrtc = (R, dw) = (R, (datal, witl)l∈{1,...,len}) indicates that
the regulator wants to trace the data set with len elements, where R denotes
the identifier of the regulator, and (datal, witl) denotes the l-th data and the
corresponding evidence for l ∈ {1, ..., len}.

• The message mrtc = (R, dw) = (R, (T,witT )) indicates that the regulator
wants to trace all data of the T period, where R denotes the identifier of the
regulator and witT denotes the corresponding evidence.

After receiving the above message mrtc, for each i ∈ Qfinal, Pi verifies the
correctness of the corresponding evidence in mrtc. If the verification is successful,
Pi signs dw in the message mrtc, and sends the signature to the regulator.

Every time a signature is received from a committee member, the regulator
verifies the signature and keeps it in the set sigall if the verification is successful.
Finally, if the size of sigall is greater than or equal to t, the regulator broadcasts
the message mrtc = (R, dw, sigall) to the committee.

After receiving the above message mrtc = (R, dw, sigall), each committee
member in Qfinal first verifies each signature in the set sigall, and counts the
number of valid signature. If the number is greater than or equal to t, the com-
mittee members in Qfinal perform the following processing.

– If mrtc = (R, (T,witT ), sigall), the members in Qfinal construct the private
key skreg. For each i ∈ Qfinal, Pi sends the message mi = skreg to the
regulator.

– If mrtc = (R, (datal, witl)l∈{1,...,len}, sigall), let C denote the ciphertext set
about the users’ chameleon hash public keys in the data set. For each ci-

phertext Ck = (uk1, uk2, ek, vk) ∈ C, Pi computes uik1 = u
(x1i+y1iαk)
k1 =
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For each i ∈ Qfinal, Pi performs the following steps upon receiving mrtc sent by
the regulator.

1. Pi sets num = 0;
2. If mrtc = (R, dw) = (R, (datal, witl)l∈{1,...,len}) or mrtc = (R, dw) =

(R, (T,witT )), Pi first checks the correctness of dw. If this check is successful,
Pi then computes the signature σi = Sig.sign(sksigi , dw), sets mi = (dw, σi)
and sends mi to the regulator.

3. If mrtc = (R, (T,witT ), sigall), for each σj ∈ sigall, Pi first computes b =
Sig.verify(pksigj , dw, σj), and sets num = num+1 if b=1. Finally, if num >=
t, Pi publishes the share (sfi, sgi, shi). Because the number of the honest
participants is in the majority in the set Qfinal, according to the second
property of correctness of the DMKG protocol, Pi can receive enough correct
shares to construct the private key skreg and send the message mi = skreg to
the regulator.

4. If mrtc = (R, (datal, witl)l∈{1,...,len}, sigall), for each σj ∈ sigall, Pi first
computes b = Sig.verify(pksigj , dw, σj), and sets num = num + 1 if b=1.
Finally, if num >= t, Pi performs the following steps.
(a) Pi extracts the ciphertext of each user’s chameleon hash public key from

the (datal)l∈{1,...,len} and obtains the ciphertext set C.
(b) For each Ck = (uk1, uk2, ek, vk) = (g

rk
1 , g

rk
2 , c

rkm
3 , c

rk
1 c

rkαk
2 ) ∈ C where

rk is a random number used for encryption and αk = H(uk1, uk2, ek), Pi

computes:

uik1 = u
(x1i+y1iαk)
k1 = g

rk(x1i+y1iαk)
1 ,

uik2 = u
(x2i+y2iαk)
k2 = g

rk(x2i+y2iαk)
2 ,

uik3 = uzi
k1 = g

rkzi
1

Then, Pi computes πi = NIZK.P ((uik1, uik2, uik3, Ck, c1i, c2i, c3i), (x1i, x2i,
y1i, y2i, zi)), and broadcasts (statementi, πi), where statementi =
(uik1, uik2, uik3, Ck, c1i, c2i, c3i).

(c) For (statementj , πj) broadcast by Pj for each j ∈ Qfinal, Pi first
checks if (c1j , c2j , c3j) ∈ statementi matches the values received in
the DMKG protocol. If the check passes, Pi then computes b =
NIZK.V (statementj , πj). If b = 0 for an index j, Pi broadcasts the shares
(sfji, sgji, shji). Because each committee member in Qfinal checks the
(ujk1, ujk2, ujk3, Ck, c1j , c2j , c3j , πj), then if Pi is honest, the number of
shares about Pj exceeds the threshold t, and all honest participants can
reconstruct (x1j , x2j , y1j , y2j , zj).

(d) For each Ck ∈ C, Pi computes

uik12 = Πj∈Qfinalujk1ujk2 = Πj∈Qfinalg
rk(x1j+y1jαk)

1 g
rk(x2j+y2jαk)

2

= g
rk(Σj∈Qfinal

x1j+αkΣj∈Qfinal
y1j)

1 g
rk(Σj∈Qfinal

x2j+αkΣj∈Qfinal
y2j)

2

= g
rk(x1+y1αk)
1 g

rk(x2+y2αk)
2 = u

x1+y1αk
k1 u

x2+y2αk
k2 ;

uik13 = Πj∈Qfinalujk3 = g
rkΣj∈Qfinal

zj

1 = g
rkz
1 = uz

k1.

(e) Finally, Pi sends mi = (uik12, uik13)k∈(1,...,|C|) to the regulator.

Fig. 6. Committee Member Operations
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g
rk(x1i+y1iαk)
1 , uik2 = u

(x2i+y2iαk)
k2 = g

rk(x2i+y2iαk)
2 , and uik3 = uzi

k1 = grkzi1 ,
where rk is a random number used for encryption and αk = H(uk1, uk2, ek).
In order to allow the other committee members to verify that uik1, uik2,
and uik3 are indeed generated by (x1i, x2i, y1i, y2i, zi), we use non-interactive
zero-knowledge technology to produce the proof πi, which proves that ”I
know (x1i, x2i, y1i, y2i, zi) that can generate (uik1, uik2, uik3) and (c1i, c2i, c3i)”.
Finally, Pi broadcasts (statmenti, πi), where statmenti = (uik1, uik2, uik3, Ck,
c1i, c2i, c3i).
For each j ∈ Qfinal, Pi verifies (statmentj , πj). If the verification fail-
s for some index j and Pi is honest, all honest members can reconstruct
(x1j , x2j , y1j , y2j , zj).
Therefore, Pi can compute uik12 = Πj∈Qfinal

ujk1ujk2 = ux1+y1αk

k1 ux2+y2αk

k2

and uik13 = Πj∈Qfinal
ujk3 = uz

k1. Finally, Pi sendsmi = (uik12, uik13)k∈(1,...,|C|)
to the regulator.

After receiving the message mi sent by Pi for i ∈ Qfinal, the regulator
chooses the value that is in the majority in these messages, and achieves tracing
according to the value.

6.3 Security

We briefly describe the security of the scheme. If the size of the signature set
sigall provided by the regulator to the committee is greater than or equal to t
(the adversary controls at most t-1 participants), this means that at least one
honest participant agrees the message mrtc = (R, dw) that is previously sent by
the regulator. Because the message mrtc = (R, dw) is public, this means that all
honest participants that are in the majority on the committee have also agreed.
That is, the majority of the members of the committee agree with the regulator
tracing the data set in mrtc.

When the regulator does not trace all data of the T period, for each i ∈
Qfinal, after generating (uik1, uik2, uik3), Pi use non-interactive zero-knowledge
technique to guarantee that other committee members can verify the correctness
of (uik1, uik2, uik3) and can not obtain the (x1i, x2i, y1i, y2i, zi).

Finally, the message mi = (uik12, uik13)k∈(1,...,|C|) sent by each member does
not contain any information about the private key sk. Therefore, the regulator
only trace the data set that it sends. Moreover, because the honest members
are in the majority of the committee, the value that is in the majority in these
messages can ensure that the regulator can trace the data set.

7 Related Work

Blockchain research focuses primarily on privacy [5, 8, 22, 26], efficiency [11, 28],
security [12, 19], and its applications in other fields [21, 27]. However, research
on traceable mechanisms is limited, and is mainly concentrated in the field of
cryptocurrencies.
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The regulator performs the following steps:

1. The regulator sets num = 0, ID = ∅, Qrsig = ∅, Qrsk = ∅, and sigall = ∅.
2. The regulator creates mrtc = (R, dw), where dw is equal to (T,witT ) or

(datal, witl)l∈{1,...,len}, and broadcasts mrtc to the committee.
3. The regulator receives each committee member’s reply about mrtc = (R, dw)

at time trep, and adds each reply to the set Qrsig.
4. For each committee member’s reply mi = (dw, σi) ∈ Qrsig where dw is equal

to (T,witT ) or (datal, witl)l∈{1,...,len}, and σi denotes the signature of dw,
the regulator verifies the signature b = Sig.verify(pksigi , dw, σi). If b = 1, the
regulator sets num = num+ 1 and sigall = sigall

∪
σi.

5. If num >= t, the regulator sets mrtc = (R, dw, sigall), and broadcasts mrtc

to the committee; otherwise, the regulator aborts operation.
6. The regulator receives each committee member’s reply about mrtc =

(R, dw, sigall) at time trep, and adds each reply to the set Qrsk.
7. If the number of some same value is in the majority in Qrsk where the same

value is denoted by mf , the regulator continues with the following steps.
8. If mf = (uik12, uik13)k∈(1,...,|C|) for some i ∈ Qfinal, for each ck =

(uk1, uk2, ek, vk) ∈ C, the regulator checks if uik12 = vk. If the check passes,
the regulator computes pkck = ek/uik13, searches his database to determine
the true identity idk corresponding to the chameleon hash pubic key pkck , and
sets ID = ID

∪
idk.

9. If mf = skreg = (x1, x2, y1, y2, z), for each ck = (uk1, uk2, ek, vk) ∈ C, the
regulator computes αk = H(uk1, uk2, ek) and checks if ux1+y1αk

k1 ux2+y2αk
k2 =

vk. If the check passes, the regulator computes pkck = ek/u
z
k1, searches his

database to determine the true identity idk corresponding to the chameleon
hash pubic key pkck , and sets ID = ID

∪
idk.

10. Finally the regulator obtains the users’ identity set ID.

Fig. 7. Regulator Operations
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Ateniese and Faonio [3] proposed a scheme for Bitcoin. In their scheme, a
user is certifiable if it obtains certified Bitcoin address from a trusted certifi-
cate authority. The regulator can determine the certifiable users’ identities in
the Bitcoin transactions via the certificate authority. Garman, Green and Mier-
s [14] constructed a new decentralized anonymous payment system based on
Zerocash [5]. Their scheme achieves tracing by adding privacy preserving policy-
enforcement mechanisms.

Narula, Vasquez, and Virza [24] designed the first distributed ledger system,
which is called zkLedger. zkLedger can provide strong privacy protection, public
verifiability, and practical auditing. Their scheme is mainly used for auditing
digital asset transactions over some banks. The ledger exists in the form of
a table in zkLedger. Each user’s identity corresponds to each column in the
table. Therefore, the regulator can determine each users identity according to
the correspondence between each column and the identity of each user in the
table.

Defrawy and Lampkins [10] proposed a proactively-private digital currency
(PDC) scheme. In their scheme, the ledger is kept by a group of ledger servers.
Each ledger server has two ledgers: a balance ledger and a transaction ledger. The
balance ledger contains a share of each user’s identity. Therefore, the regulator
can trace the users’ identities in transactions via these ledger servers.

Tianjun Ma et al. proposed SkyEye [20], a traceable scheme for blockchain.
their scheme can be applied to a class of blockchain applications. SkyEye allows
the regulator to trace the users’ identities of the blockchain data. However, the
regulator can arbitrarily trace the users’ identities of the blockchain data without
any restrictions and oversight measures in SkyEye. We propose a blockchain
traceable scheme with oversight function based on SkyEye to limit the tracing
right of the regulator. The regulator must obtain the consent of the committee
to enable tracing.

8 Conclusion

In this paper, we propose BTSOF, a blockchain traceable scheme with oversight
function, based on SkyEye. In BTSOF, The regulator must obtain the consent of
the committee to enable tracing. The regulator can trace one data, multiple data
or data in multiple period. Moreover, we construct a non-interactive verifiable
multi-secret sharing scheme (VMSS scheme) and leverage the VMSS scheme to
design a distributed multi-key generation (DMKG) protocol for the Cramer-
Shoup public key encryption scheme. The DMKG protocol is used in the design
of BTSOF. We provide the security definition and security proof of the VMSS
scheme and DMKG protocol.
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A Proof of Theorem 1

Lemma 2. Let A ⊆ {1, ..., n} denote the participant set, where |A| = t + 1. If
the commitment of each secret in S broadcast by the dealer D satisfies Eq. 1,
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and the share of each participant in A satisfies Eq. 2, then all participants in A
can determine the set ST ′ = {(s′1, β′

1), ..., (s
′
l, β

′
l)} that satisfies Ei = gs

′
ihβ′

i for
i = 1, ..., l.

Proof. According to the conditions, all participants in A can compute two unique
polynomials f∗, f ′∗ of degree t via the Lagrange interpolation formula. For each
i ∈ A, f∗ and f ′∗ satisfy: {

f∗(i) = sti

f ′∗(i) = shi

The following result can be obtained from Eq. 2.

gf
∗(i)+γf ′∗(i) = gsti+γshi , i ∈ A

That is, (f∗ + γf ′∗)(x) is the unique t-degree polynomial that maps i to
sti + γshi.

Because cmj = gajhbj = gaj+γbj for j = 0, ..., t, then e(x) =
∑t

j=0(aj +

γbj)x
j satisfies e(i) = sti + γshi for i ∈ A.

Therefore, e(x) = (f∗ + γf ′∗)(x) and Ei = ge(−i) = gf
∗(−i)+γf ′∗(−i) =

gf
∗(−i)hf ′∗(−i).
Finally, s′i = f∗(−i), β′

i = f ′∗(−i) for i = 1, ..., l.

Theorem 3. Assuming that the dealer D can not compute γ, the verification
protocol V erpro satisfies Definition 1.

Proof. If the dealer D and all participants follow the VMSS scheme, the secrets
set S and all participants’s shares satisfy Eq. 1 and 2. This means that the VMSS
scheme satisfies the first requirement in Definition 1.

Let A,A′ ⊆ {1, ..., n}, where |A| = |A′| = t+ 1. All participants in A and A′

have accepted their shares. Therefore, according to Lemma 2, the participants
of A and A′ can find ST = ((s1, β1), ..., (sl, βl)) and ST ′ = ((s′1, β

′
1), ..., (s

′
l, β

′
l)),

respectively, such that Ei = gsihβi = gs
′
ihβ′

i for i = 1, ..., l.
All shares are consistent if and only if there is a polynomial f of degree t

such that f(i) = sti for i = 1, ..., n. Here, ST = ST ′.
If the shares are inconsistent, there is k ∈ {1, ...n} such that f(k) ̸= stk.

Thus, the dealer can construct two sets A = {1, ..., t + 1} and A′ = {1, ...t, k}.
This situation causes ST ̸= ST ′. Assuming that (sj , βj) ̸= (s′j , β

′
j) for some

j ∈ {1, ..., l}, the dealer can compute γ = (sj − s′j)/(β
′
j − βj) according to

Ej = gsjhβj = gsj+γβj = gs
′
jhβ′

j = gs
′
j+γβ′

j . This contradicts the assumption.

Theorem 4. The VMSS scheme satisfies Definition 2.

Proof. Let the size of A is t − l + 1. If A does not find anything about S, then
neither does the set that the size is fewer than t− l + 1.

Let A = {1, ..., k−l+1} and V iewA = {E1, ..., El, cm0, ..., cmt, (sti, shi)i∈A}.
There are two polynomials f, f ′ of degree t satisfying{

f(−i) = si, for i = 1, ..., l

f(i) = sti, for i = 1, ..., t− l + 1
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{
f ′(−i) = βi, for i = 1, ..., l

f ′(i) = shi, for i = 1, ..., t− l + 1

Let f(x) = a0 + a1x+ ...+ atx
t and f ′(x) = b0 + b1x+ ...+ btx

t. According
to the verification protocol, f and f ′ are chosen by the dealer, if f and f ′ satisfy{

Ei = gf(−i)hf ′(−i) for i = 1, ..., l

cmi = gaihbi for i = 0, ..., t

According to Lemma 2, There is a unique polynomial e satisfy ge(−i) =
gf(−i)hf ′(−i) = gsihβi for i = 1, ..., l. And according to the second property of
Franklin-Yung multi-secret sharing scheme, A can not get anything about the
polynomial f . That is, A can not find anything about S.

B Proof of Theorem 2

We need to use the following lemma about the Pedersen-VSS scheme [25] (cf.
[15]) to prove Theorem 2. In the Pedersen-VSS scheme with threshold t, the
dealer distributes the secret s to n participants P1, ..., Pn. We assume that a
trusted authority has chosen g, h ∈ Zp, where h = gγ , γ ∈ Zq for the Pedersen-
VSS scheme.

Lemma 3. Pedersen-VSS scheme satisfies the following properties in the pres-
ence of an adversary that corrupts at most t participants and can not compute
γ:

1. If the dealer is honest in the protocol, all shares owned by the honest partic-
ipants can interpolate to a unique polynomial of degree t. In particular, any
t + 1 shares of the honest participants can effectively reconstruct the secret
s.

2. The public information generated in the protocol can be used to check the
correctness of each share. Therefore, even in the presence of a malicious
adversary that corrupts at most t participants, it is possible to reconstruct
secret s from any subset that contains at least t+ 1 correct shares.

3. The view of the adversary and the secret s are independent of each other.

Proof of Correctness. It can been seen that according to the public broad-
cast information that is used to determine whether every participant is qualified,
all honest participants can get the same set Qfinal, which is defined at the end
of the step 2 in Figure 3.

(P1). Pi as a dealer honestly performs the Pedersen-VSS and VMSS proto-
col for i ∈ Qfinal. Therefore, according to the first property of Lemma 1 and
Lemma 3, all honest participants use their shares of Pi to compute three poly-
nomials Fi(x), Gi(x), Hi(x) such that Fi(−1) = x1i, Fi(−2) = y1i, Gi(−1) =
x2i, Gi(−2) = y2i, and Hi(0) = zi. Therefore, for any set R of t + 1 cor-
rect shares, x1i =

∑
j∈R γ1jsfij , x2i =

∑
j∈R γ1jsgij , y1i =

∑
j∈R γ2jsfij ,
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y2i =
∑

j∈R γ2jsgij , and zi =
∑

j∈R γ0jshij where γ0j = Πk∈R,k ̸=j
−k
j−k , γ1j =

Πk∈R,k ̸=j
−1−k
j−k , and γ2j = Πk∈R,k ̸=j

−2−k
j−k are the Lagrange interpolation coef-

ficients. Finally, x1 can be generated from the shares of R as follows:

x1 =
∑

i∈Qfinal

x1i =
∑

i∈Qfinal

∑
j∈R

γ1jsfij =
∑
j∈R

γ1j
∑

i∈Qfinal

sfij =
∑
j∈R

γ1jsfj .

Similarly, x2 =
∑

j∈R γ1jsgj , y1 =
∑

j∈R γ2jsfj , y2 =
∑

j∈R γ2jsgj , and
z =

∑
j∈R γ0jshj .

(P2). The shares (sfi, sgi, shi) of Pi for i ∈ Qfinal can be verified via the
following equations.

gsfi1 gsgi2 = g

∑
i∈Qfinal

sfij

1 g

∑
i∈Qfinal

sgij

2 =
∏

i∈Qfinal

g
sfij
1 g

sgij
2 =

∏
i∈Qfinal

t∏
k=0

(Aik)
jk ,

gshi
1 = g

∑
i∈Qfinal

shij

1 =
∏

i∈Qfinal

g
shij

1 =
∏

i∈Qfinal

t∏
k=0

(A′
ik)

jk .

The last equality of the above two equations follows Eq. 6. Therefore, Eq. 6
makes each participant to verify the correctness of share (sfi, sgi, shi).

(P3). The public key pk is equal to (c1, c2, c3), where c1 =
∏

i∈Qfinal
c1i =

gx1
1 gx2

2 , c2 =
∏

i∈Qfinal
c2i = gy1

1 gy2

2 , and c3 =
∏

i∈Qfinal
c3i = gz1 . Thus, We need

to prove that c1i = gx1i
1 gx2i

2 , c2i = gy1i

1 gy2i

2 , and c3i = gzi1 for each i ∈ Qfinal.
If the public values Aik, A

′
ik, c1i, and c2i do not satisfy Eq. 5 or Eq. 6 for

some i ∈ Qfinal and k = 0, ..., t, other participants in Qfinal can reconstruct
the values x1i, x2i, y1i, y2i, zi of Pi according to the steps 5a and 6 in Figure
4; otherwise, these public values satisfy Eq. 5 and Eq. 6, and the values Aik

for k = 0, ..., t define two polynomials F̂i(x), Ĝi(x) of degree t. We use Fi(x)
and Gi(x) to denote the polynomials defined by any t+1 shares of the honest

participants. Then, according to the Eq. 6, it can be seen that F̂i(x) and Fi(x)

have at least t + 1 common points, as do Ĝi(x) and Gi(x). Because they are

t-degree polynomials, F̂i(x) and Fi(x) are same and so are Ĝi(x) and Gi(x).

That is, c1i = g
Fi(−1)
1 g

Gi(−1)
2 = gx1i

1 gx2i
2 , and c2i = g

Fi(−2)
1 g

Gi(−2)
2 = gy1i

1 gy2i

2 .

Similarly, ci3 = g
Hi(0)
1 = gzi1 .

(P4). For x1 =
∑

i∈Qfinal
x1i, as long as x1i for some i ∈ Qfinal is randomly

selected, then it can be guaranteed that x1 is randomly chosen. According to
the DMKG protocol, x1 and x1i are determined by the set Qfinal. Let Pi be a
honest participant for i ∈ Qfinal. x1i is distributed by the Pi via VMSS protocol.
According to the third property of Lemma 1, x1i is uniformly random. Thus, x1 is
uniformly distributed. Similarly, x2, y1, y2, and z are also uniformly distributed.

Proof of Secrecy. According to the Figure 5, it can be seen that the ad-
versary’s view about the data produced by the honest participants in the real
DMKG protocol consists of the shares (sfij , sf

′
ij) = (Fi(j), F

′
i (j)), (sgij , sg

′
ij) =

(Gi(j), G
′
i(j)), (shij , sh

′
ij) = (Hi(j), H

′
i(j)) for i ∈ uncorr, j ∈ corr, and Eτi,

CMik, cmik, Aik, A
′
ik, c1i, c2i for i ∈ uncorr, τ = 1, 2, 3, 4, k = 0, ..., t.
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The above distribution of the values depends on the choice of the polyno-
mials Fi(x), F

′
i (x), Gi(x), G

′
i(x),Hi(x),H

′
i(x) for i ∈ uncorr. These polynomials

satisfy 

c1 =
∏

i∈Qfinal

c1i =
∏

i∈Qfinal

g
Fi(−1)
1 g

Gi(−1)
2 = gx1

1 gx2
2 ,

c2 =
∏

i∈Qfinal

c2i =
∏

i∈Qfinal

g
Fi(−2)
1 g

Gi(−2)
2 = gy1

1 gy2

2 ,

c3 =
∏

i∈Qfinal

c3i =
∏

i∈Qfinal

g
Hi(0)
1 = gz1 .

(7)

In other words, this distribution is induced by the choice of the polynomials
Fi(x), F

′
i (x), Gi(x), G

′
i(x), Hi(x), and H ′

i(x) for i ∈ uncorr \ {n} and Fn(x),
F ′
n(x), Gn(x), G

′
n(x), Hn(x), H

′
n(x). The polynomials Fn(x), Gn(x),Hn(x) sat-

isfy c1n = g
Fn(−1)
1 g

Gn(−1)
2 = c1

∏
i∈Qfinal\{n} c

−1
1i , c2n = g

Fn(−2)
1 g

Gn(−2)
2 =

c2
∏

i∈Qfinal\{n} c
−1
2i , and c3n = g

Hn(0)
1 = c3

∏
i∈Qf inal\{n} c

−1
3i . Moveover, this

distribution depends on the set Qfinal that is defined at the end of Step 2 in
Figure 3.

Next, We prove that the probability distribution that is output by the simu-
lator is equal to the above distribution. It can be seen that the steps 1 and 2 of
the simulator O are identical to the steps 1 and 2 of the real DMKG protocol.
Therefore, the Qfinal that is defined in the simulator O is identical to the Qfinal

that is defined in the real DMKG protocol.
As show in Figure 5, the polynomials F ∗

i (x), F
′∗
i (x), G∗

i (x), G
′∗
i (x), H

∗
i (x),

and H ′∗
i (x) are identical to the polynomials Fi(x), F

′
i (x), Gi(x), G

′
i(x), Hi(x),

and H ′
i(x), respectively, for i ∈ uncorr \ {n}. For i = n, from the construction

process of A∗
nk, A

′∗
nk of the simulator, it can be seen that F ∗

n(x) is defined by
these values F ∗

n(−1) = x̂1n, F
∗
n(−2) = ŷ1n, F

∗
n(j) = sf∗

nj = Fn(j) for j =
1, ..., t − 1, G∗

n(x) is defined by these values G∗
n(−1) = x̂2n, G

∗
n(−2) = ŷ2n,

G∗
n(j) = sg∗nj = Gn(j) for j = 1, ..., t − 1, and H∗

n(x) is defined by these values
H∗

n(0) = ẑn, H
∗
n(j) = sh∗

nj = Hn(j) for j = 1, ..., t. Because h1 = gγ1 , h2 =
gγ2

2 , then the polynomials F ′∗
n (x), G′∗

n (x) and H∗
n(x) are defined by the relation

F ∗
n(x)+γ1F

′∗
n (x) = Fn(x)+γ1F

′
n(x), G

∗
n(x)+γ2G

′∗
n (x) = Gn(x)+γ2G

′
n(x) and

H∗
n(x) + γ1H

′∗
n (x) = Hn(x) + γ1H

′
n(x), respectively.

According to the above definition of these polynomials, we can know that
the values F ∗

i (j), F
′∗
i (j), G∗

i (j), G
′∗
i (j), H

∗
i (j), and H ′∗

i (j) are identical to the
values Fi(j), F

′
i (j), Gi(j), G

′
i(j), Hi(j), and H ′

i(j) for i ∈ uncorr, j ∈ corr, and
the coefficients of these polynomials agree with the public values CMik, cmik,
A∗

ik, A
′∗
ik for i ∈ corr, k = 0, ...t. Therefore, the values received by the adversary

satisfy Eq. 3, Eq. 4, Eq. 5, and Eq. 6.
The remaining task is to prove that the polynomials F ∗

i (x), F
′∗
i (x), G∗

i (x),
G′∗

i (x), H
∗
i (x), H

′∗
i (x) for i ∈ uncorr are randomly chosen. Because the poly-

nomials Fi(x), F
′
i (x), Gi(x), G

′
i(x), Hi(x), and H ′

i(x) are randomly chosen for
i ∈ uncorr \ {n}, So are the polynomials F ∗

i (x), F
′∗
i (x), G∗

i (x), G
′∗
i (x), H

∗
i (x),

and H ′∗
i (x) for i ∈ uncorr \{n}. For F ∗

n(x), G
∗
n(x) and H∗

n(x), the values F
∗
n(j),

G∗
n(j), and H∗

n(k) are random for j = 1, ...t − 1, k = 1, ..., t, and the values
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F ∗
n(−1), F ∗

n(−2), G∗
n(−1), G∗

n(−2) and H∗
n(0) satisfy Eq. 7. Therefore, F ∗

n(x),
G∗

n(x) and H∗
n(x) are randomly chosen. Moreover, because F ′

n(x), G
′
n(x) and

H ′
n(x) are random polynomials, so are F ′∗

n (x), G′∗
n (x) and H ′∗

n (x) according to
the definition of these polynomials.


