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Extension of the BCH Decoding Algorithm 
to Decode Binary Cyclic Codes up to Their 

Maximum Error Correction Capacities 
PATRICK STEVENS 

Absrrucr -The BCH algorithm can be extended to correct more errors 
than indicated by the BCH bound. In the first step of the decoding 
procedure, we correct a number of errors, corresponding to a particular 
case of the Hartmann-Tzeng bound. In the second step we aim at full 
error correction. A measure for the worst-case number of field elements of 
an extension field GF(2") that must be tested for this purpose is given for 
binary cyclic linear unequal error protection codes as well as for conven- 
tional binary cyclic codes. 

I. INTRODUCTION 

INARY cyclic codes can be decoded by the well- B known BCH algorithm up to the BCH bound and 
even up to a particular case of the Hartmann-Tzeng (HT) 
bound. We denote by t ,  the number of errors that can be 
straightforwardly decoded in the so-called first step of the 
decoding procedure. In Section I1 we summarize the algo- 
rithm and examine what may happen when more than t ,  
errors occur at the input of the decoder. 

Our main interest is directed towards correcting more 
than t ,  errors in the second step of the decoding algo- 
rithm. When binary cyclic linear unequal error protection 
(LUEP) codes-briefly described in Section 111-are in- 
volved, this touches upon the problem of reaching the 
higher error protection level of such a code. In the case of 
conventional cyclic codes, we actually search for a method 
of correcting a number of errors lying between ( t ,  + 1) and 
t = [ (d  - 1)/2], where d denotes the minimum distance of 
the code. In Section IV we describe how the BCH algo- 
rithm may be extended by a second step and at what cost. 
We define a code parameter p* that measures the price we 
must pay in exchange for full error-correcting capacity. 

In Section V we apply the extended algorithm to the 
class of binary cyclic LUEP codes. We begin by discussing 
briefly a subclass of these codes that allows an immediate 
implementation of the second step of the decoding proce- 
dure. We compute the parameter p* for the class of all 
binary cyclic LUEP codes of length n 5 39, and we list the 
results. In Section VI we proceed in a similar way for all 
conventional binary cyclic codes of length n I 57. Our 
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main conclusion is that decoding via the extended BCH 
algorithm is of considerable practical interest for codes 
with a small value of p*. 

11. GENERALITIES ABOUT CYCLIC CODES 

A binary cyclic code of odd length n is generated by a 
generator polynomial g (  X )  whch is a divisor of X "  + 1. 
When deg g( X )  = n - k ,  g( X )  generates an ( n ,  k )  code C ,  
we write C = ( g (  X ) ) .  

As gcd(n,2) =1, a smallest positive integer m exists 
such that 2" 1 (mod n ) ;  m is the modulo rn multiplica- 
tive order of 2. GF(2") is the splitting field of X "  + 1; its 
nonzero elements are generated by a primitive element p. 

A primitive n th root of unity exists, say a, such that 
n - 1  

X " + 1 =  n ( X + a ' ) .  
r = O  

The minimal polynomial of a', denoted m,(X), is the 
lowest degree polynomial over F = GF(2) having a' as a 
zero. All the zeros of m , ( X )  are a' and its conjugates; 
their exponents form the cyclotomic coset C, modulo n.  
We denote by K ,  the set of all minimal representative 
indices of cyclotomic cosets modulo n .  

Kn  is partitioned into the subsets K and 

I E K if and only if a' is a nonzero of the code C ,  
j E 

such that 

if and only if aJ is a zero of the code C .  

Hence 

dx) = n-m,<x>. 
I E K  

The defining set R of the code is 

R = u C,.  
r c K  

Example: n = 15, a E GF(z4); C is the (15,7) code hav- 
ing g( X) = m,( X).m,( X) and 

K,= {0,1,3,5,7} K =  {0,5,7} 

E =  {1,3} R =  {1,2,4,8,3,6,12,9}. 

BCH Bound 

A cyclic code of length n with zeros ab,ah+', 
. . . a b + ( 6 - 2 ) r  ha s minimum distance at least 6 .  The inte- 
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gers b, 6, and r are such that b 2 0, S 2 1 ,  and gcd(r, n )  = 

1. In other words, when the defining set R of a cyclic code 
contains a string of 6 - 1 integers b + (0, r,2r;. . , ( S  - 
2)r) (mod n )  as a subset, then d 2 6. The parameter 
SBCH = 6 is called the BCH bound or the designed distance 
of the code. 

H T  Bound 

A cyclic code of length n with zeros a h + r 1 r 1 + f 2 r 2  for all 
i, = 0, l ;  . ., 6 - 2 and all i ,  = 0,l; . e ,  s has minimum dis- 
tance at least S + s. The integers h,  S, r,, and r, are such 
that b 2 0, 6 2 1 ,  and gcd(r,, n )  = gcd(r,, n )  =l. Other- 
wise stated, when the defining set contains s +1 strings of 
6 - 1 integers satisfying the abovementioned conditions, 
then d 2 S + s. 

The parameter 6,, = 6 + s is called the HT bound of 
the code. A case of special interest is s + 1 = t, and S - 1 = 

t, + 1; then 6,, = 21, + 1  and thus the code is at least 
t,-error-correcting. Its defining set contains t, strings 
of t, + 1 integers as a subset, which we can arrange in a 
(t, by t, + 1)  array. As this case of the HT bound will 
henceforth be of special importance, we introduce the 
concept of the HT array, corresponding to an error-capac- 
ity of at least T .  

Definition: H T ( T ) = ( w  ),  ZIT, l < j 1 ~ + 1 ;  the 
entries of the array are integers such that w,,>O and 
w , + ~ ,  J + c  = w,, + pr, + hr, (mod n), where gcd(r,, n )  = 

gcd (r,, n) = 1 and n is the length of the code. 
The largest value T for which HT(T) c R is defined as 

t,; the HT bound of the code is then at least 2t, + 1. 
Note that the string of 6 - 1 integers appearing in the 

construction of the BCH bound may also be regarded as 
an array H T ( T ) ,  for ~ = 1 ( 6 - 1 ) / 2 ] ,  wl l=b,  r l = r 2 = r  
(when 6 is even, the last integer in the string is omitted). 
Consequently, [(aBCH - 1)/2] I t,. 

Although the BCH algorithm was originally conceived 
to correct [(SBCH - 1)/2] or fewer errors, in the next para- 
graph we show that it is actually able to correct t, or fewer 
errors. For this reason, we argue that t ,  is the number of 
errors we can straightforwardly correct in the first step of 
what we shall call the extended BCH algorithm. 

'.I 

BCH Algorithm 

The BCH algorithm is described in [1]-[3]; we will 
briefly outline its main features when r =l. Consider a 
vector 2 = (e,, e,, . . . , e ,  - ,) with v nonzero components 
e , ,  e . . ., e,". The associated polynomial is e(  X) = 

, =,e, X'. 
The locators of the vector 2 are the following v elements 

of GF(2"): 

Cf - 1'" 

{, = ($1, l2 = ( y ' 2 , .  . . ,{, = a,". 

We define the power sums 

The locator polynomial a ( z )  of the vector 2 is 
Y Y 

u ( z )  = n ( l - { , Z )  = a,z f ,  a , = l .  
I =1 r = O  

The zeros of u ( z )  are the inverses of the locators. 
The Newton identities are a set of linear equations that 

relate the power sums S, to the coefficients u, of the 
locator polynomial. The recurrence relation is 

S,+, + U1.S,+,-, + * .  * + U;S, = 0, v j .  

When an error pattern of weight v, v I [(SBCH -1)/2], 
occurs, it is corrected by the following steps. 

For all j E R,  compute the power sum S, = e (  a') = 

r(aJ),  where r(X) denotes the polynomial corre- 
sponding to the received word 7. 
Solve the Newton identities for u,, u2,. . . , a,. 
Find the zeros of the locator polynomial u(z) .  
Compute their inverses 11, {,,. . . , 2,; this determines 

T h s  algorithm can, in fact, be applied to correct t ,  
errors, as we shall presently explain. We assume that an 
array HT(t,) is known and that v ( v  I t,) errors occur. 
We do not restrict ourselves to rl = 1; this fact induces the 
following modifications. 

e(  X ) .  

Define 
Y Y 

a(.) = n ( l - { ? Z )  = U f Z f ,  a ,=l .  

SJfvr1 + u 1 4 , + ( Y ~ 1 ) r l  + . . * + u;S, = 0. 

I =1 r = O  

The Newton identities turn out to be 

Consecutively setting j = w,,, w,,,. . . , wyl yields 

Sw,l+ur, + q * S w 8 , + ( Y - , ) r l  + . . . + u,.Sw,l = 0, 1 2  12 JJ 

or 

Sw, + U , . S ~ , ~ +  . . . + a;Sw,, = 0, 1 I i I v. 

The indices of the power sums involved in this set of 
linear equations correspond to the entries of HT(v) C 
HT(t,). As we can prove that the ( v  by v )  matrix ( S , , ) ,  
1 I i, j I v, is nonsingular, we find a unique solution 
( u,, a2,. . . , a,) that determines a( z ) .  

After the zeros of u ( z )  have been computed and 

The locators {, themselves can be easily obtained by recall- 
ing that integers u,  u exist such that ur, + un = 1, because 
gcd(r,,n) =l. Hence ({,'i)'={,. 

inverted, we end up with {,Q, 1 I i I v. 

Output Modes of the BCH Decoder when wt(2) > t ,  

We now describe in more detail what may happen when 
w t ( 2 )  > t,, i.e., the weight of the error pattern exceeds the 
error-correcting capacity of the BCH decoder. Little atten- 
tion has been directed to this question in the literature. 
Usually, the assumption wt(2)  I t, is made a priori. 

1 )  It is possible that the coset of 2, denoted as Coset 
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(e), contains a vector 2' of weight t ,  or less. The decoder 
outputs the codeword C'= F + e'# C. This is an erroneous 
decoding decision as C'# C. We will later see that, with 
respect to LUEP codes, this decoding is nevertheless ade- 
quate, as it allows the correct retrieval of the high-order 
information bits. 

When Coset (e) does not contain a vector 2' of weight t ,  
or less, the decoder outputs a failure. The failure mode can 
have different causes, which are stated below. 

2) The Newton identities do not yield appropriate val- 
ues for the coefficients a,. 

3) The number of distinct zeros of a(z) belonging to 
GF(2")  is less then dega(z). This is the case, for instance, 
when a(z) has no zeros at all in GF(2"). 

4) The decoder computes a potential error pattern 2" of 
weight t ,  or less, but C"= F + 2" turns out to be not a 
codeword (easy to verify by ascertaining that c"( a') # 0 
for some j E R). The decoder then outputs a failure. 

111. BINARY CYCLIC LUEP CODES 

The separation vector i ( G )  of a binary LUEP code is 
defined as follows: 

s ( G ) ,  = min { wt(GG))G € I F k ,  u ,  # 0}, 
U = ( u o ,  ul;. ., u k P l )  denotes the information word which 
is encoded into the codeword C =  UG for G ,  the generator 
matrix of the code. 

The ith information bit is protected against 7(G), = 
l ( s ( G ) ,  - 1)/2]  errors (0 I i I k - 1). We define 7 ( G )  = 
(T(G),,,.. ., T(G),-~) as the protection vector of the code, 
which depends on the encoding chosen. 

We restrict ourselves to the study of binary cyclic LUEP 
codes whose protection vector has only two distinct values 
for its components. We write 

0 I i I k -1. 

F ( G )  = ( t ' ,  t ' , .  - ,  t ' ,  t ,  t , .  . ., r ) ,  11 t < t ' .  

k' 
I I 

k 

This means that all information bits are protected against t 
errors and, in addition, that k' high-order information bits 
are protected against t' errors. 

We assume that t or fewer errors can be corrected by the 
BCH algorithm, Le., t = t,. This assumption is satisfied by 
a considerable number of codes, as can be seen in the table 
of all binary cyclic LUEP codes of length n I 39 [4]. Later 
on, we will examine what can be done when t ,  < t. 

We will now describe the application of the BCH algo- 
rithm as the first step in the decoding procedure of a 
binary cyclic LUEP code. 

a) When an error pattern of weight t or less occurs, it is 
corrected by the decoder. 

b) When an error pattern of weight t < w t ( e )  I t' oc- 
curs and the decoder outputs a codeword C', it is possible 
that C' is not identical to the original codeword C. How- 
ever, the corresponding information words ii' and U, whose 
retrieval requires a transformation of the codeword as the 
code is not systematic (see [5 ] ) ,  do have the same high-order 

bits u: = u,  for 0 I i I k ' -  1; thus with respect to LUEP 
codes, this is quite an adequate decoding algorithm. 

Proof: F = C + 2, C ' =  F + e', wt(2') I t < t' (see Sec- 
tion 11), w t ( e )  I t'. Hence 

w t ( e + e ' )  <2t '  t '= [ ( ~ ( G ) , - 1 ) / 2 ] ,  O s i I k ' - l  

or 

wt(C+ 2') < s ( G ) , ,  

thus u , = u :  f o r O I i s k ' - l .  
From the receiver's point of view, the two cases men- 

tioned are indistinguishable. When a codeword is output 
by the decoder, it may either be the one transmitted or any 
other one that yields the same high-order information bits. 
However, the former possibility is the more likely for two 
reasons: 

0 I i I k ' - l ;  

wt (2 )  I t is more probable than t < wt(2)  I t ' ;  
the latter case only occurs when t < w t ( e )  I t' and 
Coset (e) contains a vector 2' of weight t or less. T h s  
implies that (2 + e') must be a codeword of weight 
( t  + t ' )  or less, i.e., small weight. As codewords of 
small weight are relatively rare, the latter possibility 
occurs far less frequently than the former. 

c) When the decoder outputs a failure, we known with 
certainty that more than t errors have occurred. We take 
for granted that the number of errors is smaller than t' 
because t h s  is the ultimate error correction capacity. 

We now proceed with the second step of the decoding 
procedure, which only attempts to determine the high-order 
information bits. After a general description of the ex- 
tended BCH algorithm, its application to binary cyclic 
LUEP codes is given (Section V). 

IV. DESCRIPTION OF THE EXTENDED 
BCH ALGORITHM 

In Section 11 we observed that t ,  or fewer errors can be 
corrected in the first step of the decoding procedure. If the 
algorithm outputs a failure in its first step, that should 
imply that more than t,, say T, errors have occurred. Yet 
we would still like to apply the BCH algorithm to obtain 
the transmitted codeword (in the case of conventional 
codes) or at least one that contains the same high-order 
information bits (in the case of LUEP codes). 

We still use the Newton identities in relation to the 
entries of some array HT(7) (see Section 11) which is, 
however, no longer a subset of the defining set of the code. 
We denote by N' ( N '  2 1) the number of power sums Sq, 
that now appear as unknown quantities in the Newton 
identities. As S,, = Sz, these Sq, need not all be indepen- 
dent. To obtain a set of independent parameters, we only 
consider power sums whose indices belong to distinct 
cyclotomic cosets modulo n. In doing so, we end up with 
an N-tuple (S,,, SP2; . -, S,,) of power sums that appear as 
independent unknown quantities in the Newton identities. 
In accordance with the notation in Section 11, p ,  E K 
(1 I i 5 N )  implies a p t  is a nonzero of the code. 
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Property: Let p E K ;  the power sum S, = e(. ,)  takes 
2". different values in GF(2") (recall that b, = deg mp( X ) ) .  
Indeed, as (YP E GF(2'p), it follows that 

{ e ( & " ) :  e ( X )  E F [ X ] / X " + l }  =GF(2' . ) .  

We conclude that there exist 2p different N-tuples 
(S,,, SP2; . ., S,,) or "-tuples (S,,,  Sq2,.  . . , SqW) over 
GF(2"), where p is defined as p = X:jV'ldeg mp,( X ) .  

If in the Newton identities we insert all these 2p differ- 
ent values for the parameters, we will find an error pattern 
that meets our purpose. The second step of the decoding 
procedure apparently requires at most 2' tests to correct 7 
errors. 

It is useful to present the fundamental aspect of our 
decoding method. A cyclic code C is considered the direct 
sum of a 7-error-correcting subcode C' and some code C". 
The received word F = C + 2 is decoded as follows. For 
each Z' E C", decode 7 + C" using the BCH algorithm that 
corrects 7 errors in C'. When this decoding results in a 
codeword C' E C', the final output is C'+ C" E C. We are 
concerned with finding subcodes of C such that C" is of 
minimal cardinality. To anticipate the notation of the next 
section, we state that 

IV 

C"= @ M,,. 
i = l  

It is clear that we aim at constructing an array HT(7) 
such that the value of p is minimized. We call this an 
optimal array HT* (7); it is determined by letting a com- 
puter program run exhaustively through the defining set of 
the code and perform the following operations. 

1) V b E { O , l ; . . , n - l } ;  V r l , r z E ( 1 , 2 ; . . , n - l } ,  
gcd ( r , ,  n )  = gcd ( r2 ,  n) = 1: construct the array 
HT( 7)( b ,  rl ,  r,), according to the definition in Sec- 
tion 11, where wll = b. 

2)  For each array HT( 7 ) ( b ,  r,, r2),  
a) consider the distinct qJ E (HT( T)\ R ) ,  and denote 

their cardinality by N';  
b) select those integers that belong to distinct cyclo- 

tomic cosets modulo n ,  always choosing the 
smaller if two integers are in the same cyclotomic 
coset; denote them by pl.. . . , p N ;  

c) determine deg mp,( X )  = card C,, (number of inte- 
gers in the cyclotomic coset C,, modulo n ) ,  1 I i 
- < N; 

d) compute the sum p( 7, b, r,, r2)  = CY=, deg mp,(  X ) .  
3 )  Select the minimum value p* among all p corre- 

sponding to the optimal array HT* ( 7)( b*,  r c ,  r p  ). 
This array is not unique; any one will do-for in- 
stance, the one with the smallest values of r?, r p  
and b*. 

Note: It is not difficult to see that in the first operation 
the ranges of rl and rz may be limited by the additional 
restrictions rl odd, r, < n / 2 .  

We conclude that, to correct 7 errors in the second step 

Among these power sums, there is an unknown N-tuple 
( Spl , .  . . , S,,) over GF (2"), having 2'* distinct possible 
values which must all be tried until the decoder finds an 
error pattern of weight 7. If these possibilities are tried 
sequentially, 2'' is an upper bound on the number of tests. 
If they are performed simultaneously, the computations 
may be stopped when any parallel circuit outputs an error 
pattern of weight 7 .  The results of the computer program 
searching for HT*(T) are presented in the following sec- 
tions. 

v. APPLICATION TO CYCLIC LUEP CODES 

We briefly describe some more concepts and notation in 
relation to cyclic codes, which can be found in more detail 
in [ l ] ,  [4 ] ,  and [5 ] .  This allows us to deal immediately with 
the particular case k'=1, t ' =  t + 1 (ths means that one 
information bit is protected against one more error in 
comparison with the other information bits). The residue 
class ring of polynomials over IF modulo X" + 1 is R ,  = 

A cyclic code C is an ideal in R,; it is the direct sum of 
minimal ideals in R,. One such minimal ideal M is 
generated by a primitive idempotent e( X ) .  

The nonzeros of the minimal ideal M, are { aili E Cs }. 
The generator polynomial of M, is 

F[ X ] / X f l  + 1. 

g , ( x )  = X " + l / m , ( X )  = n m , ( x ) .  
1 E K"\(S) 

The dimension of the minimal ideal M, is dimMs= 
deg m , ( X )  = b,. A basis for M, is e , ( X ) , X O s ( X ) ,  
. . , XbS-'e,( X )  in R,. 

Let C be the direct sum of the minimal ideals 
Mk,, Mk2,. . . , M k  ; dim M k  = bkJ. An information polyno- 
mial u( X )  = C f f d u I X r  is the concatenation of the polyno- 
mials uk,( X )  I u k 2 (  X )  I . . . Iuk, X ) ,  where 

"k, J - 1  

u k J (  x )  = 1 U y J + ~ X h  y, = 1 bk, ,  2 2 j 2 K, y1 = 0. 
X = O  p = O  

The encoding rule is 
K 

c ( x )  = u k J ( x ) * e k J ( x )  
/ = I  

= U , ( X ) . B , ( X )  in R,. 
r c K  

In the particular case we are considering, the one high-order 
bit uo corresponds to the minimal ideal M,, generated by 

n - 1  

eo(x)  = ( x . + i ) / ( x + i ) =  x'. 
I = O  

As 0 E K ,  the encoding rule becomes 

c ( X )  = u o . e 0 ( X ) +  1 U , ( X ) - O , ( X )  in R,. 

When an error pattern e(  X )  of weight ( t  + 1) occurs, then 

I E K\(O) 

of the BCH decoding procedure, the Newton identities r ( X ) = u o . e o ( X ) +  1 U , ( X ) . O , ( X ) + e ( X ) i n  R , .  
have to be filled in by the power sums SWv, w, 6 HT* ( 7). 

I E K \ P )  
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So( X) has odd weight; all other primitive idempotents 
have even weight, as they have a ,  = 0 as a zero. Conse- 
quently, X i  E K,(Olq( X).S,( X) mod (X" + 1) has even 
weight. We may conclude that 

without estimating the (k - 1) low-order bits; the decoding 
is incomplete. 

General Case 

when t is odd 
u, = 0 =j wt r (  X) is even i u , = 1  *wt r (X) i sodd  ' 

when t is even 

u,=O *wt r (X) i sodd  i uo =I * wt r (  X )  is even' 

Thus 
( t o d d ~ ~ ~  w t ( i ; ) e v e n ) ~ ~ ( t e v e n ~ ~ ~ w t ( F ) o d d )  

( t odd AND wt ( i; ) odd) OR ( t  even AND wt ( F )  even) 

- u, = 0, 

- u , = 1 .  

When ( t  + 1) errors occur, we immediately determine u, 

The binary cyclic LUEP codes of length n I 39 are 
considered, except for the codes having t = 0, a protection 
vector with k identical components, or k' = 1 and t' = t + 1 
(see previous paragraph). In Table I each code is indicated 
by a reference number, the length n, the dimension k, the 
number of high-order bits k', the larger and the smaller 
components s1 and sk of the separation vector, the de- 
signed distance 6, the error correcting capacity t ,  of the 
first step of the decoding procedure, the set K of zeros of 
the code, and the set K,, representing the nonzeros associ- 
ated with sl. Furthermore, an optimal array HT*(T) is 
described by ~ ( l ( 6  - 1)/2] < T I t'), r:, r2* (r; is only 
printed when different from r:), and b*. The elements 
p i  E HT* ( T)\R are also listed; if they do not all belong to 
distinct cyclotomic cosets modulo n, the p i  that really do 
appear boldfaced. Finally, the value of p* is given. 

TABLE I 

6 

7 
8 
9 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 
20 

15 7 2 5 3 3 1 
21 6 3 9 7 7 3 

7 1 9 8 5 2  
8 2 8 6 6 2  
9 2 7 3 3 1  

1 0 1 9 4 4 1  

1 1 2 6 4 4 1  
1 2 3 6 4 4 1  
1 3 1 7 4 3 1  

27 7 1 9  6 6 2 

3 1 1 6 1 9 6 6 2  

33 12 2 12 6 6 2 

13 1 11 10 5 3 

13 2 1 1  3 3 1 

21 1 1 1  4 3 1 

2 3 1 2  5 3 3 1 
35 7 3 16 14 12 5 

8 3 1 5 7 7 3  

1 1 4 7 5 5 2  
13 1 1 5  8 6 2 

3.5,7 

3,5 

1,5 

3,11 

5 
0,1,3,15 

1,3,15 

5 2 1  13 
3 4 1  15 
0 3 1  5 
7 3 1  0 
7 2 1  19 

3 1  1 
0 2 1  12 

3 1  1 
4 1  1 

7 2 1  17 
3 2 1  17 
0 2 1  6 

3 1  2 
0 3 1  4 

4 1  4 
0 3 1  9 

4 3  7 
11 3 1 0 

4 1  28 
5 1  25 

0 3 5 4  5 
4 5  13 

11 2 1 31 
3 1  1 
4 1  1 
5 1  1 

0 2 1  9 
3 1  9 
4 1  29 
5 1  3 

1.11 2 5 23 
5 6 1  29 

7 1  22 
5 4 1  29 

5 1  29 
6 1  22 
7 1  21 

7 3 1  31 
0 3 1  10 

4 1  24 
5 1  12 
6 1  12 
7 1  12 

0 1 
0 1 
8 6 
3 3 
0 1 
3.6 3 
15 3 
L2,4 6 
1,2,4,8 6 
18 3 
18 3 
8 6 
2,4,5 12 
6 6 
6 6 
12 5 
16 5 
3 10 
30 10 
21,30 10 

0 
0 1 
0 1 
3,6 10 
3,6 10 
3 . 6 9  10 
10 10 
10.13.14 10 
29,31,32,0,1,2 11 
4,5,7,8,10 20 
0 1 
5 3 
28 4 
0 1 
0 1 
28 4 
21,28 4 
0 1 
11 12 
29 12 
16,18 12 
16,18,22,23 12 
16,18,22,23 12 
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TABLE I 
(continued) 

- 
Number n k k ‘  q sk 6 K Ks, 7 r: r;” h* (P,) P* 

21 

22 

23 

24 
25 
26 
27 
28 
29 

30 

31 

32 

33 

34 
35 

36 

35 15 3 12 8 6 2 

16 1 1 5  4 4  1 

18 3 8 4 4 1  

19 4 5 4 4 1  
19 3 8 6 5 2  
19 4 6 4 4 1  
20 8 7 6 5 2  
22 I 6 4 4 1  
25 1 7 4 3 1  

39 13 1 15 12 7 3 

14 2 14 6 6  2 

15 1 13 10 7 3 

15 2 13 3 3  1 

25 12 6 3 3 1  
25 1 1 3  4 3  1 

27 14 6 3 3 1  

0,3,7,15 

3,5,7 

0,3,7 

3,7 
0,3,15 
0,3,5 
3,15 
0.3 
5,7,15 

3,7,13 

3.7 

1.7 

7,13 
3,13 

7 

5 3 1  
4 1  
5 1  

0 2 1  
3 1  
4 1  
5 1  
6 1  
7 1  

5 2 1  
3 1  

0.5 2 1 
5 3 1  
7 2 1  

0,5,7 3 1 
5,7 2 1 

0 2 1  
3 1  

0 4 1  
5 1  
6 1  
7 1  

13 3 1 
4 1  
5 1  
6 1  

0 4 1  
5 1  
6 1  

13 2 1 
3 1  
4 1  
5 1  
6 1  

1 2 1  
0 2 1  

3 1  
4 1  
5 1  
6 1  

1.13 2 1 

12 
24 
24 
12 
1 
1 
1 
1 
1 

12 
31 
12 
30 
24 
22 
24 

7 
5 

12 
26 
26 
1 
0 

34 
31 
0 

27 
27 
27 
37 
1 
1 
1 
1 

26 
12 

8 
6 
6 
2 

28 

16 12 
29 12 
29,32 12 
15 3 
1 ~ 4  12 
1,2,4,8 12 
1,2,4,8,9 12 
1,2,4,8,9,11 12 
1,2,4,8,9,11 12 
15 3 
32,l 12 
15 3 
32 12 
25 3 
22,23 12 
25 3 
8,9 12 
6,8,9 24 
16 12 
32 12 
32 12 
1,2,4,5,8,10,11 12 
3 12 
36 12 
33.36 12 
3,6,9 12 
32 12 
32 12 
32 12 
0 1 
3,6 12 
3.6 12 
3 . 6 9  12 
3,6,9,12 12 
27 12 
14 12 
8,10,11 12 
7,8,10,11 24 
7,8,10,11,14 24 
2,4,5,7,8,10,11 24 
30 12 

TABLE I1 

cfr - 
Number n k d s K 7 r;“ r;” h+ ( P , l  code p* 

1 17 9 5 4 1 2 3 2 13 0 
2 21 9 8 6 0,L 3,7 3 1 0 5 6 
3 7 8 5 1,3,7,9 3 1 1 5 6 
4 6 8 6 0,1.3,7,9 3 1 0 5 6 
5 23 12 7 5 1 3 1 1 5 11 
6 11 8 6 031 3 1 0 5 11 
7 31 21 5 4 1,5 2 1 8 0 0 1 
8 21 5 4 1,7 2 3 7 25 0 1 
9 20 6 4 0,1,5 2 1 8 0 0 

10 20 6 4 0,1,7 2 3 7 25 0 
11 16 7 5 L5,7 3 1 4 6 5 
12 15 8 5 0,1,5,7 3 1 0 3 5 
13 11 11 7 1,3,5,11 4 5 1 0 1 

5 1 1 7 5 
14 11 11 7 1,3,7,11 4 3 13 0 1 

5 3 1 10 5 
15 10 12 10 0,1,3,5,11 5 1 0 7 5 
16 10 12 10 0,1,3,7,11 5 3 1 10 5 
17 33 13 10 5 L 3  3 1 14 1 0 

4 1 29 0 1 
18 11 11 8 1,3,11 4 1 29 0 1 

5 5 24 26 10 
19 10 12 10 0,1,3,11 5 1 27 28 10 
20 35 16 7 6 1,5,7 3 1 4 6 12 
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TABLE I1 
(continued) 

- 
K 

cfr 
code Number n d P* 

12 
12 
12 
3 

12 
12 
12 
12 

6 

6 
6 
6 

12 
4 
4 
7 
8 
I 

k 

15 
13 
12 
7 

26 
24 
15 
14 
13 

12 
21 

20 

21 
22 
23 
24 
25 
26 
27 
28 
29 

35 

39 

8 
8 
8 

14 
6 
6 

10 
10 
12 

12 
9 

3 1 
3 1 
3 1 
6 1 
2 1 
2 1 
4 1 
4 1 
4 1 
5 1 

0 3 
4 6 
0 3 

29 30 
0 3 
0 3 
1 7 
0 7 
1 7 
1 7 

30 30 
1 3,6,7 

30 30 
36 38 

37 0 
37 0 
37 0 
30 30 

4 42 
11 18 
11 12 

2 39 

0,1,5,7,15 
0,1,3,5 
031 
0,1,13 
1,3 
O,L3 
1,3,13 

0,1,3,13 
1 

12 
12 

8 
6 

30 
31 

29 
20 
20 
20 
20 
0 
1 
1 
1 
2 

3 3 
4 1 
3 3 
4 1 
2 3 
4 1 
5 1 
6 1 
3 1 

4 1 
4 1 
4 1 

32 

33 
34 

10 6 0.1 

29 
15 

6 
13 

4 
7 

1 
1.3 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

23 
22 
16 
15 
15 
14 
14 
12 
11 
9 
8 

24 

7 
8 

10 
9 

10 
1 0 
10 
10 
9 

12 
12 
11 

6 
6 
8 
8 
8 
8 
8 
8 
8 
9 
9 
5 

1,5,21 
0,1,5,21 
0,1,3,7 
1,3,7,15 
1,7,9,15 
0,1,7,9,15 
0,1,3,7,15 
0, 1,3,7,9 
1,3,7,15,21 
1,5,7,9,15 
0,1,5,7,9,15 
1 

35 
4 
4 
4 

39 
38 

2 
1 
4 

4 1 
4 1 
5 1 

11 15 
41 0 

7 12 
44 

47 

51 

3 1 
4 1 
5 1 
3 1 
4 1 
5 1 
2 5 

1 5 
1 5 
1 5,lO 
0 5 
0 5 
0 5 

8 8 

23 
23 
23 
23 
23 
23 
0 

23 12 0.1 47 6 

48 
49 
50 
51 
52 
53 
54 

35 
34 
34 
32 
27 
27 
27 

1.9 
0,1.9 
0,1,5 
0,1,5,17 
1,9,19 
L3,9 
1,5,9 

1,3,19 

0,1,3,9 
0.1.5,9 
1.3.9.17 
1,5,9,17 
1,3,17,19 

0,1,3,9,17 
0,1,5,9,17 
1,3,9,19 
1,3,5,9 
0.1,3,5,9 
1,3,9,17,19 

48 

48 

2 1 
2 1 

0 3 
0 3 

8 
8 

3 1 
3 1 
4 1 
3 1 
4 1 
3 1 

1 5 
13 17 
1 3,6 

47 0 
0 5 

23 1 55 27 

26 
26 
25 
25 
25 

9 5 

56 
57 
58 
59 
60 

8 
10 
8 

10 
10 

54 
53 

4 1 
3 1 
4 1 

13 19 

47 0 
23 1 

8 
0 
1 

61 
62 
63 
64 
65 
66 

24 
24 
19 
19 
18 
17 

8 
10 
10 
14 
14 
12 

6 
7 
6 

11 
12 
6 

53 
59 
55 

6 1 
6 1 
3 1 
4 1 
5 1 
5 1 
6 1 
5 1 
6 5 
6 1 
7 1 
5 1 

1 11 
0 11 

47 0 

47 0 
47 0 
12 12 

5 45 
1 11 
1 11 

45 46 

8 16 

1 5,7,10 

8 
8 
0 
1 
8 
1 
1 
8 
8 
8 
8 
8 

67 17 14 9 1,3,5,17,19 

1,5,9,17,19 

1,3,5,9,17 

0,1,3,9,17,19 
0,1,5,9,17,19 
0,1,3,5,9,17 
1,3,5,11,19 

68 17 14 10 

69 

70 
71 
72 
73 

17 

16 
16 
16 
11 

16 

12 
14 
16 
15 

11 

10 
10 
12 
9 

68 
69 

5 1 
6 1 
7 1 

43 0 
43 0 
43 0 
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TABLE I1 
f continued) 

cfr - 
n 7 Number k d 6 K '1* r? h" (P,) code P* 

74 

75 
76 
77 

78 
79 

80 

81 

82 
83 

84 
85 

86 

87 

88 

51 11 15 

9 15 
9 15 
8 24 

55 35 5 
34 8 

30 10 

25 11 

24 12 
21 15 

20 16 
57 21 14 

20 14 

19 16 

18 16 

9 

12 
12 
20 

4 
4 

5 

7 

7 
8 

8 
6 

10 

9 

10 

1,5,9,11,19 

1,3,5,11,17,19 
1,5,9,11,17,19 
0,1,3,5,9,17,19 

1 
0,1 

0,1,11 

1,5 

0.1.5 
1,5,11 

0,1,5,11 
L 3  

O,L3 

1,3,19 

0,1,3,19 

5 
6 
7 

10 
11 
2 
2 
3 
3 
4 
4 
5 

4 
5 
6 
7 

3 
4 
5 
6 
5 
6 
5 
6 
7 
5 
6 
7 

5 
5 
5 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
5 
1 
1 
5 
1 
1 

11 
11 
11 

0 
0 

9 7 
7 0 

13 
13 
51 
13 
1 

4 
7 
7 
4 

5 48 
53 
1 
1 
0 

48 
18 
1 
1 

18 
48 
48 

0 
0 
0 

73 
74 

11 
11 

15 
15 

19 
3,6 

51,53,54,3 

81 
6 

12 
12 

6,12 
83 

0 
5.10 

5,10,11 
5 

52 
23 

5,10,11 
5,-10,11,13 

23 
52 
52 

1 
1 
1 

8 
8 
0 
0 

10 
10 
20 
20 
20 

20 
20 
20 
20 

0 
1 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 

VI. APPLICATION TO CONVENTIONAL 
CYCLIC CODES 

In Table I1 we list the binary cyclic codes of length 
n I 57, having [( 6 - 1)/2] < [( d - 1)/2]. A complete list of 
binary cyclic codes of length n I 57 and 6 < d is given in 
[6] .  In Table 11, each code is indicated by a reference 
number, the length n, the dimension k ,  the minimum 
distance d ,  the designed distance 6, and the set K of zeros. 

Furthermore, we describe an optimal array HT* (7) by 
.(I( 6 - 1)/2J < T I [( d - 1)/2J) r:, r; (r2* is only printed 
when different from r:), and b*. We list elements pi E 

HT* ( r)\ R and we give the value of p*. 

VII. CONCLUSION AND REMARKS 
When p* = 0 appears in the tables, the corresponding 

value of r is such that [( aBCH - 1)/2] < r I t,. An error 
pattern of weight r can be corrected in the first step of the 
decoding procedure by means of HT(r )  c R. Conse- 
quently, the set { p , }  is empty. 

It often happens that p*( rl) << p*( r2), where r1 < r2. We 
can apply the extended BCH algorithm to correct r1 or 
fewer errors, but the full error-correcting capacity is out of 
reach. 

Some codes have p* = 1, So being the unknown power 
sum. The corresponding number of errors r can be cor- 

rected by applying the BCH algorithm twice. Actually, 
once is sufficient as we do in fact know the value of So. 
Indeed, when r is even, S,,=O; when r is odd, S o = l .  
These codes are certainly of practical interest. 

Up to which value of p* a code may be called practical 
depends on the number of achievable parallel computa- 
tions. We conjecture that the future is in favor of our 
results. We finish by giving an illustrative example. 

Example: Consider the (31,11)d=11, 6=7 code (13, Table 
11). Three or fewer errors can be corrected in the first step 
of the decoding procedure. 

To correct four errors, we use HT& (r: = r2* = 5, b* = 

1). According to the modified algorithm described in Sec- 
tion 11, the Newton identities are 

So is unknown, but we conclude that it must be 0, as we 
are looking for an even number of errors. 

Suppose that the all-zero codeword was sent and that 
r(X) = 1 +  X3 + X4 + X23. With the aid of a table of 
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GF(25), which can be found in [l], we compute S, = a28, 

Solving the Newton identities yields the error-locator 
polynomial a(z) =1+ a’lz + d 6 z 2  + a6z3 + a26z4, having 
zeros 1, a9, a”, a16 with inverses 1 ,  a22, a20, a15. As rl = 5 
and 5u + 31u = 1 for u = - 6 ,  u = 1, we have to raise these 
results to (-6), thus obtaining the error locators 1, 

To correct five errors, we use HT& (r:  = r? = 1, b* = 1). 
The Newton identities are S, +, + a,. S,+, + u2. S, +/ 

+ . . . + u5 .SJ = 0 , l  I j I 5. Here S, is unknown; we have 
to test all the field elements of GF(z5), as p = m = 5. 

Suppose r(  X )  = 1 + X + X 2  + X9 + x ~ ~ .  We compute 
s,, s,,. . -, s,, = a2, a4, a7, 2, a6, a14, s,, a16, a,’, a12. Set- 
ting S ,  = 0, we calculate a ( ~ )  = 1 + a2z + a , , ~ ~  + al1z3 + 
a4z4 + d 3 z 5  = (a2z  + 1). a’(z), where a ’ ( z )  = 1 + a2322 + 
a24z3 + d 1 z 4  has no solutions in GF(25); thus a failure of 
type 3 has occurred (see Section 11). 

do we obtain a ( z )  = 1 + 
a2z + a23z2 + d 1 z 3  + d 1 z 4  + a6z5, having zeros 1, a6, 
a22, aZ9, a,’. The inverses 1, a25, a’, a2, a are the locators of 
the error pattern e(  X )  = 1 + X + X 2  + X9 + X 2 5 .  

s6 = 1, S I 1  = S I 6  = d4, s21 = (Y22,  s26 = a”, s5 = a”. 

2 3 ,  CY4, a,. 

Only when we set S ,  = 
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