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Abstract -The decoding capabilities of algebraic algorithms, mainly 
the Berlekamp-Massey algorithm, the Euclidean algorithm and our 
generalizations of these algorithms, are basically constrained by the 
minimum distance bounds of the codes. Thus, when the actual minimum 
distance of the codes is greater than that given by the bounds, these 
algorithms usually cannot fully utilize the error-correcting capability of 
the codes. The limitation is seen to be rooted in the original Peterson 
decoding procedure adhered to by these algorithms. Thus, these algo- 
rithms all require the determination of the error-locator polynomial 
from Newton’s identities which in turn require that the syndromes be 
contiguous in forming a set or multiple sets of linear recurrences. A 
procedure is introduced that breaks away from this restriction and can 
determine the error locations from nonrecurrent syndrome dependence 
relations. This procedure employs an algorithm that has recently been 
introduced as a basis for the derivation of the Berlekamp-Massey 
algorithm and its generalization. It can decode many cyclic and BCH 
codes up to their actual minimum distance and is seen to he a general- 
ization of Peterson’s procedure. 

Index Terms -Cyclic coding, BCH coding, generalization of Peterson 
decoding procedure, decoding up to actual minimum distance. 

I. INTRODUC~ION 

Algorithms for algebraic decoding of cyclic and BCH codes, 
mainly the Berlekamp-Massey algorithm [l], 121, the Euclidean 
algorithm [3], as well as our generalizations of these algorithms 
[4], [SI basically suffer from a restriction imposed by the mini- 
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mum distance bounds of the codes. For the Berlekamp-Massey 
algorithm and the Euclidean algorithm, this restriction comes 
from the BCH bound as these algorithms can normally decode 
only up to this bound. Likewise, our generalizations of these 
algorithms usually cannot decode beyond the Hartmann-Tzeng 
(HT) bound and the Roos bound [4], [6]-[8]. Several authors 
[9]-[15] have attempted to stretch the capability of the 
Berlekamp-Massey algorithm for decoding beyond the BCH 
bound and have succeeded in various degrees for particular 
cases. But, generally speaking, when the actual minimum dis- 
tance of the codes is greater than that given by such bounds, 
these algebraic algorithms usually are not able to utilize the full 
error-correcting capability of the codes. The limitations are seen 
to be originated in the Peterson procedure for decoding BCH 
codes [16] adhered to by these algorithms. As such, these 
algorithms all require the determination of the error-locator 
polynomial from Newton’s identities which in turn require that 
the syndromes be contiguous in forming a set or multiple sets of 
linear recurrence relations. This, of course, is a consequence of 
the contiguity required on the roots of the generator polynomial 
by these bounds. 

In this correspondence, we introduce a more general proce- 
dure which breaks away from this restriction imposed by the 
minimum distance bounds and can determine the error loca- 
tions from nonrecurrent dependence relations among the syn- 
dromes. This procedure employs an algorithm, referred to as the 
Fundamental Iterative Algorithm, which we have recently intro- 
duced as a basis for the derivation of the Berlekamp-Massey 
algorithm and its generalization [4]. The procedure can decode 
many cyclic and BCH codes up to their actual minimum distance 
and is seen to be a generalization of Peterson’s procedure. 

11. PRELIMINARIES 

In this section, we give a brief review of the Peterson decod- 
ing procedure and the Fundamental Iterative Algorithm for 
ease of later reference. 

Let g(x)  be the generator polynomial of a cyclic code of 
length n over GF(q) and let d be the actual minimum distance 
of this code. The code is then capable of correcting up to 
t = [ ( d  - 11/21 errors. Let e(x) = CL=,Y,Xau with v I l ,  0 I a ,  
< a 2 <  . . .  < a v < n  and Y,#O for p = 1 , 2 ; . . , v ,  be an error 
polynomial resulted from some transmitted code polynomial 
~ ( x ) .  Then the received polynomial is r ( x ) =  u(x>+ e h ) .  Sup- 
pose, for some primitive nth root of unity p E GF(q”), g ( p k )  = 
0. Then u ( p k > =  0 and r ( p k ) =  e@,>. Thus the syndrome term 
S, = can be computed from the received polynomial. 
Furthermore, we have Sqk = S,4 and S, + k  = s k .  

For BCH codes, and cyclic codes in general, d o  - 1 “consecu- 
tive” syndrome terms are known where do denotes the BCH 
bound. Suppose g ( p b + ” ) =  0 where b is any integer, c is an 
integer relatively prime to n and i = 0,l; . . ,do -2. Then 
S b , S b + c , .  ’ . , S b + ( d o - 2 ) c  are known, where 

s ~ + , ~  = e(  P’+~“) 

with X ,  = pa@ and i = 0,1,. . . , d o  - 2. 
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The problem of decoding BCH codes is to determine the 
error locations X,’s and the error magnitudes Yw’s from the 
d o  - 1 syndromes. The procedure devised by Peterson and gen- 
eralized to the nonbinary cases by Gorenstein and Zierler [16] is 
to separate the issues of determining the error locations and the 
error magnitudes by first defining the error-locator polynomial 

developed in [4]. A brief review of this algorithm is given in the 
following. 

+ a j , l ~  + . . . + u , , ~ x ~ ,  where co = 1 and = 1, for i = 1,2; . ., M .  
For I +1 I n I N ,  let [C(x)a(’)(x)], be the coefficient of X” in 
C(x)a( ‘ ) (x) ,  namely 

Let C(x) = co +‘c,x + . . . + cIx‘  and a( ’ ) (x)  = 

U 

a@)= n (2 -x i )  
p = 1  

= Z Y  + a1zy-1 + . . . + avy-12 +a,. 

Then, 

These recurrence relations have been referred to as the general- 
ized Newton identities. 

The problem is now transformed to the determination of a ( z )  
from the d o  - 1 syndromes through (2). After a ( z )  is deter- 
mined, the error locations will be given by the roots of a ( z ) .  
Then the error magnitudes can be determined easily. The proce- 
dure thus consists of the following steps: 

1) calculate the syndromes S , ,  
2) determine d z )  from (21, 
3 )  determine the error locations X,, 
4) determine the error magnitudes Y,. 

The second step is now best accomplished by the 
Berlekamp-Massey algorithm. The third step can be handled 
efficiently by the Chien search and the last step is completed by 
using Forney’s formula [16]. Alternatively, after the a,’s are 
determined, the unknown syndromes can be determined through 
(2). When So, SI,. . . , S, - all become known, then, as shown by 
Blahut [19], an inverse Fourier transform will determine all the 
error locations and all the error magnitudes. 

However, this procedure can only decode up to t = 

l (do  - 11/21 errors. Similarly, when the lower bound on the 
minimum distance of the code is given by the HT bound d, ,  or 
the Roos bound dRoos, the generalized algorithms can only 
decode up to Id,, - 1/21 or [dRoos - 1/21 errors [4], [8]. To 
make it clear, we shall also use d,,, to denote the BCH bound. 

In the next section, we shall present a more general proce- 
dure for decoding up to the actual minimum distance. The main 
feature of this procedure is the incorporation of the fundamen- 
tal iterative algorithm in determining the error locator polyno- 
mial from a nonrecurrent syndrome dependence relation. 

This algorithm is for finding the smallest initial set of depen- 
dent columns in an M X N matrix over any field F with rank 
less than N. 

Let 

a11 a12 . . .  a l N  . . .  
. . .  

‘M1 ‘ M 2  ” ‘  LIMN 

be such a matrix. 
For 0 I 1 < N ,  the first 1 + 1 columns of A are said to be 

linearly dependent if there exist c1,. . ., cl in F,  not all zero, 
such that, 

a , , l + l + c l a , , , +  . . .  + ~ / a ~ , ~ = 0 ,  f o r i = 1 , 2 ; . . , M .  (3) 

Given matrix A ,  the algorithm is to determine the minimum 1 
and c1; . . , c I  such that ( 3 )  holds. This algorithm has been 

(4) 

where 1 5  i I M ,  be defined as the polynomial with the property 
that 

[ C ( r - l ” ) ( X ) a ( h ) ( X ) ] J = a h , J  +ct-12J)ah,,-1 + “ ‘  

+ ~ ~ ~ - ~ , l ) a ~ , ~ = O ,  for h s i - 1 .  

Let 

d l , ,  = [C(’-l?I)(x)a(‘)(x)] 

= + c ~ - ’ ~ ~ ) u ~ , , - ~  + . . . + C ~ - - ~ ’ ~ J ) U ~ , ~ .  (6) 

Then we have the following. 
Fundamental Iterative Algorithm: 

Step 1) Empty Tables D and C, 1 =. s, 1 * r ,  1 =. C(o*s)(x). 
Step 2)  Compute d r , ,  = [Ccr - ’~” , (x>ucr) (x ) ] , .  
Step 3) If dr , s  = 0, then 

a) If r = M ,  then s =. 1 + 1, C(r -13s) (x )  * C(x), 

b) otherwise C(‘.’)(x) = C(’-’,’)(x) and r + 1 - r 
stop; 

and return to Step 2). 

Step 4) If d , ,  # 0, then 

a) If there exists d r , u  E D for some 1 I U < s, then 

and return to Step 3a); 
b) otherwise, d r , 3  is stored in D, C(03s+1)(x)= 

C(”)(x) = C(r-l,s)(x) and C(’)(X) is stored in C, then 
s + 1 * s,  1 =. r and return to Step 2). 

The final s and C(‘-’2s)(x) obtained from applying the Fun- 
damental Iterative Algorithm is the solution of the general 
problem with minimum possible s. 

111. DECODING PROCEDURE BASED ON NONRECURRENT 

We now proceed to derive the procedure that is capable of 
decoding many cyclic and BCH codes up to their actual mini- 
mum distance. The main departure in concept from the Peter- 
son procedure is to examine the whole set of known syndromes 
and properly select, for full utilization in decoding, a set of 
syndromes that are not necessarily consecutive. 

SYNDROME DEPENDENCE RELATIONS 
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S =  

Let us consider a cyclic or BCH code for which g(pb’Lcl+1c2) 
=0 ,  where ( n , c , ) = l ,  ( n , c , ) = l , i = O ,  i l , i2; . . , i l ,  j = O ,  

j1,j2;..,j, with t s p + l ,  a n d O < i , < i 2 <  . . .  < i , , 0 < j l < j 2  
< . . ’ < j,. Then, among the known syndromes, we have 

= ,.( pb+ ’c i+ jcz )  
S b + i c l + ~ c 2  

s2 s 3  s 4  SY SI0 

s 3  s 4  s5 Sl” SI, 

and 

x, x2 . . .  X“ 
x,’ x =  x: x;?’ . . .  

For the procedure described in this section, we consider codes 
for which S can be so chosen that X will be of full rank, i.e., 
rank(X) = v. As a consequence, the column rank of S will be 
the same as the column rank of Z .  Furthermore, the same linear 
dependence relations will exist among the corresponding 
columns of S and among those of Z .  Since v I t ,  the column 
rank of Z will be at most v. Then the column rank of S will also 
be at most v. Suppose the column rank of S is A I U. Then the 
first A + 1 columns of S will be linearly dependent and there 
will exist f , ,  f2;. .,f, such that 

,2717 ,1980 a133Y ,3015 a2899 

,1980 ,1339 ,3497 ,2899 ,1898 S =  and 

Y 2 X 2  . . .  
Y=l 0 

1 0  0 . .  

11 x, x: x: x:\ 
11 x, x; x; xq z = .  . . . . 

: J  1; X” x: x: x,” ” x 5  

. . .  . 
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- - 1 + a3406x + a3051 x 2 + a731x3. 

Next 

Then 

d3S C(3,5)( x )  = C(2.5) ( x )  - -C(3'(x)x553 
4 3  

d 35 - - 

- - 1 + a1060x + a3413x2 + a1699x3 + a33S8 x .  4 

Next 

d -a26Y5 c(435)(x) =c(3.s)(x)- - c ( 4 ) ( x ) x 5 - 4  d4s 
4s - 9 

d44 

- - 1 + a321x + a3246x2 + a27Y1x3 + a1463 x .  4 

Since r = 4 = M ,  the algorithm stops. Thus, the five columns 
of S are linearly dependent and f 4  = c4 = ( Y ~ ~ ~ ~ ,  f 3  = c3 = 

f 2  = c2 = a3246, f l  = c1 = a321 and we have 
f ( 2 )  = a1463 + a27912 + a324622 + a32127 + 2 8 .  

Once f ( z )  is obtained, we may also use the Chien search to 
determine the set U of nth roots of unity that are roots of f(z). 

Suppose U = {U:l, Uil;  . ., U,Cl}, where v I 6 I i,, then 

{ Xf 1 , X i l ,  . . . , xyc I }  L { ut1 , U;] , . . . , Us'l} . 
Since Sb+rc,+Jc,  = C ~ = 1 Y p X ~ + r c l + J c 2 ,  then there exist 

W,, W2; . ., W, such that 
a 

Sb+lc,+,c2 = w 7 7  Ub+rcl+Jc2 .  (8) 
q = 1  

For ~ = 1 , 2 ; . . , S ,  if U,,=X,, for some p = 1 , 2 ; . . , v ,  then 
W,, = Y, # 0, otherwise W,, = 0. 

The problem now becomes that of determining 6, instead of v 
error magnitudes where 6 = IU/. Clearly this can still be accom- 
plished through the Forney formula if 6 consecutive syndromes 
are known. If S < d o ,  then there are enough syndromes avail- 
able to accomplish this. If not, then we may determine the 
required additional syndromes through (7) as well as using the 
fact that Sqk = Sz. This step then gives not only the error 
locations but also the corresponding error magnitudes. 

Example I (continued): For the obtained f (z )  = a1463 + 
a27912 + a3246 z 2 + a3'lz7+ z 8 ,  using the Chien search we find 
that X - a105 = p,  X - (y3I5 = p3, X - (y4'0 = p4 and X 4  = 

1 -  2 -  3 -  
a630=p6 are all 39th roots of unity of f(z). In this case 
6 = 4 < do ,  we can apply the Forney formula to (8) and have 
Yl = 1, Y2 = 1, Y3 = 1, and Y4 = 1. Thus this received vector has 
four errors and the errors are in 2nd, 4th, 5th, and 7th positions. 

To summarize, the steps in our procedure are: 

1) computes, f o r k = b + i c l + j c 2 , i = O , i l , i 2 ; . . , i t a n d  j =  

2) determine f ( z >  from (7) using the Fundamental Iterative 

3) find the roots of f(z) that are nth roots of unity through a 

4) determine the error magnitudes and the error locations 

0, AA2,. . *,.ip, 

Algorithm, 

Chien search, 

from (8) using Forney's formula. 

It should be noted that when the syndromes used are consec- 
utive, namely, when i ,  = k and j ,  = 1 for k = 1,2,. . ., t and 
1 = 1,2; . . , p ,  then (7) becomes a set of recursive equations, the 
generalized Newton identities. In this case, the Fundamental 
Iterative Algorithm will become the Berlekamp-Massey algo- 
rithm as shown in [4]. Thus this procedure is seen as a general- 
ization of the Peterson procedure. 

Another example to illustrate this procedure follows. In this 
example, we will introduce some notation, which will be used 
often later. 
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s =  sll s21 s31 s2 s12 s22 

’21 ’31 ’8 s12 ’22 ’ 3 2  
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S = 

IV. ADDITIONAL EXAMPLES AND TABLE 

Example 3: We consider the (21,7) binary code with g ( x ) =  
m , ( ~ ) ~ ~ ( x ) m ~ ( x ) m , ( x ) .  For this code d = 8, dRoos = 8, and 
d,, = 6. But the method in [4], [8] cannot correct three errors. 
From the received vector, we can calculate S, for k = 1,2,4,8, 
16, l l ;  3,6,12; 7,14; 9,18,15. We can decode up to three errors 

,638 ,682 ,841 CY671 ,253 CY341 

CY682 ,841 CY935 ,253 ,341 ,314 . 
CY841 ,935 ,1012 ,341 CY314 CY979 

using the following syndrome pattern, 

Sl s, S6 s7 

namely, S is (1,2,6,7 and 0,1,2), where b = 1, c, = c2 = 1, i, = 1, 
i, = 5,  i, = 6, and j ,  = 1, j ,  = 2. 

If f,, f,, f 3  are nonzero, then from f3S7 + f 2 s 8  + f l S 1 2  + SI, 
= 0, where only S,, is unknown, we can find S,, (7,8,12 + 13). 
Then S, = S:, (13 -5). Since S I i, = 6, using $,, S,, S,, s4, 
S5,S6 and the Forney formula we can determine the errors and 
the magnitudes from (8) (F(1-6)). 

Example 4: Now we consider in detail the (23,12) Golay code 
with n = 23, g ( x )  = m,(x) ,  d = 7, and dscH = 5. Since the gen- 
erator g ( x )  has roots pl, P2,  p4, p8, p’,, p9, PIs ,  p13, P 3 ,  P6 
and p12, where p is a primitive 23rd root of unity in GF(211), we 
can determine S,,  S,, S4, S,, S,,, S,, S,,, Si,, S,, S,, and S12. 

Since So = 0 when the number of errors is even and So = 1 
otherwise, we can assume that So is known. From the syndromes 
we have 

s16 ’ 6  ’4 

s=  [ SI3 s 9  s3 =Hz, 
’12 ’8 ’2 ’0 

where 

and 1 5 ~ 5 3 .  
Then b = 16, c1 = -2, c2 = -1, i, = 2, i, = 5,  i ,=6 ,  and 

j ,  = 3, j 2  = 4. Since rank(X) = U (See Lemma 3 in [17]), then the 
column rank of S is the same as the column rank of Z and the 
same linear dependence relations exist among the correspond- 
ing columns of S and Z. We consider the following cases. 

a) If U = 1, then the first two columns of Z are linearly 
dependent and those of S are also linearly dependent. 
Thus from the linear dependence relation of the first two 
columns of S we can find X,. 

b) If U = 2, then the first three columns of Z are linearly 
dependent and those of S are also linearly dependent. 
Suppose that the coefficients for this linear dependence 
are f2 ,  f , ,  and 1. Thus from the linear dependence rela- 
tion we know that x;’ and XT2 must be roots of f 2 +  

f l z 2  + z 5  = 0. This equation has at most five 23rd roots of 
unity in GF(211). From these roots we can find X, and X, 
using the Forney formula and So, S,, S2, S,, and S4, with 
so = 0. 

c) If U = 3, then we consider two cases. 
1) The first three columns of Z are linearly dependent 

and those of S are linearly dependent. Then let So = 1, 
following the same procedure as in Case b). 
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n k d t dn G Svndrome Patterns Decoding Procedure 

17 
21 

23 

31 

33 

35 

39 

43 
45 

45 

51 

55 

9 
9 
7 
6 
12 
11 
21 

21 
20 
20 
16 

15 

11 

10 

16 
15 
13 
12 
7 

26 
24 
15 
14 
29 
23 
22 
16 
15 
15 

14 

14 

12 
11 

9 

8 

35 
34 
34 
32 
27 
27 
26 
25 
24 
19 

17 

16 

35 

5 
8 
8 
8 
7 
8 
5 

5 
6 
6 
7 

8 

11 

12 

7 
8 
8 
8 
14 

6 
6 
10 
10 
6 
7 
8 
10 
9 
10 

10 

10 

10 
9 

12 

12 

5 
6 
6 
6 
5 
8 
8 
8 
8 
10 

12 

12 

5 

2 
3 
3 
3 
3 
3 
2 

2 
2 
2 
3 

3 

5 

5 

3 
3 
3 
3 
6 

2 
2 
4 
4 
2 
3 
3 
4 
4 
4 

4 

4 

4 
4 

5 

5 

2 
2 
2 
2 
2 
3 
3 
3 
3 
4 

5 

5 

2 

4 
6 
5 
6 
5 
6 
4 

4 
4 
4 
5 

5 

8 

10 

6 
6 
6 
6 
12 

4 
4 
7 
8 
4 
6 
6 
8 
8 
8 

8 

8 

8 
8 

9 

9 

4 
4 
4 
4 
4 
5 
6 
5 
6 
6 

6 

10 

4 

1* * 
0,1,3,7 
1,3,7,9 
0,L 3,7,9 
1* * 
0,1** 
1,5 

1,7 
O,L 5 
O,L7 
1,597 

0,1,5,7 

1,3,11 

0,1,3,11 

L5,7 
0,1,5,7 
1,5,7,15 
0, 1,5,7,15 
0,1,3,5** 

0,1** 
0, 1,13 
1,3** 
0,1,3** 
1* * 
1,5,21 
0,1,5,21 
0,1,3,7 
1,3,7,15 
1,7,9,15 

0,1,7,9,15 

0,1,3,7,15 

0, U ,  7,9 
1,3,7,15,21 

1,5,7,9,15 

0, 1,5,7,9,15 

1,9 
O,L9 
0,1,5 
0,1,5,17 
1,9,19 
L3,9 
0,1,3,9 
1,3,9,17 
0,1,3,9,17 
1,3,9,19 

1,3,9,17,19 

0, 1,3,9,17,19 

1* * 

1,8,15 and 0,l 
0,1,2,6 and 0,1,2 
1,2,6,7 and 0,1,2 
1,2,6,7 and 0,1,2 
12,8,2,0 and 4,3,0 
12,8,2,0 and 4,3,0 
4,8,9 and 0,l 

4,16,1 and 0,3 
0,1,2 and 0,8 
1,4,7 and 0,24 
0,7,8,18 and 0,1,2 

0,7,8,18 and 0,1,2 

24,1,11,15,25,2 
and 0, 10,20,30,40 
12,17,22,24,29,1 
and 0,5,10,15,20 
1,2,4,5 and 0,3,6 
1,2,4,5 and 0,3,6 
1,2,4,5 and 0,3,6 
1,2,4,5 and 0,3,6 
31,32,33,34,0,1,8 
and 0, 1,2,3,4,5 
0,1,4andO,l 
0, 1,4 and 0,l 
1,2,3,8,9 and 0,1,2,3 
1,2,3,8,9 and 0,1,2,3 
1,21,41 and 0,l 
31,32,33,38 and 0,1,2 

A F(1,8) 

A 7,8,12 -+ 13 -+ 5; F(1-6); Exa. 3 

A‘ 1,8,16 + 5; F(1-6); Exa. 4 

A 16,20 + 21 -+ 22; 

A6,7,11+5; F(1-6) 

A 7,8,12 -+ 13 -+ 5; F(1-6) 

A 1,8,16 -+ 5i F(1-6) 

18,22 + 23 + 29 + 30; F(29-2) 
A 2,14 -+ 30 -+ 29 -+ 27; F(27-2) 
A F(O, 1) 
A F(1,4) 
A’ 7,14,25 + 15; 9,16,27 + 17; 

A 7,14,25 -+ 15; 9,16,27 -+ 17; 

A 15,25,2,6,16 -+ 26 -+ 5 -+ 10 -+ 7; 
F(1-11). Exa. 2 

5,12,23 + 11; F(0-17) 

5,12,23 -+ 11; F(0-17) 

A 15,25,27,32,4 -+ 20; F(1-9) 

A F(7-10) 
A F(7-10) 
A F(7-10) 
A F(7-10) 
A 8,9,10,11,12,19+7; F(1-12) 
Exa. 5 
A 10,ll + 14 + 37 + 38; F(37-2) 

A 9,10,11,16 + 17 + 7; F(1-7). Exa. 1 

A F(1,21) 

A 10,ll + 14 + 37 -+ 38; F(37-2) 

A 9,10,11,16 + 17; F(1-7) 

A 19,20,21 + 26 + 41 + 43 + 44; F(38-44) 
0,19,38,76 and 0,1,2 A 19,20,21-+ 26 + 41 + 43 + 44; F(38-44) 
43,44,0,1,11 and 0,1,2,3 A 3,4,6,16 + 5 + 10; F(43-8) 
11,12,13,14,28 and 0,1,2,3 A 1,2,3,4 + 18 + 9; 2.3.4.19 + 5; F(1-17) 
13,14,15,16,17 and 
0,1,2,13,14,15 
13,14,15,16,17 and 
0,1,2,13,14,15 
13,14,15,16,17 and 
0,1,2,13,14,15 
43,44,0,1,6 and 0,1,2,3 
11,12,13,14,15 and 
0,1,2,17,18,19 
13,14,15,16,25,26 and 
0,1,2,3,4 
13,14,15,16,25,26 and 
0,L 2,3,4 
1,8,15 and 0,1 
1,8,15 and 0,l 
0,1,4 and 0,1 
0,1,4 and 0,l  
1,8,15 and 0,l 
0,2,8,12 and 0,1,4 
0,2,8,12 and 0,1,4 
1,2,15,16and 0,1,2 
0,1,2,15 and 0,1,2 
33,38,42,45,49 and 
0,5,10,15 
32,47,48,49,50,0 and 
0,1,2,3,4 
32,47,48,49,50,0 and 
0,1,2,3,4 
7,8,9 and 0,9 

A F(13-16). Exa. 7 

A F(13-16) 

A F(13-16) 

A 23,24,26,31 -+ 25; F(0-8) 
A F(l1-14) 

A 22,23,25,34,35 -+ 24 + 3 + 6 + 12; 

A 22,23,25,34,35 -+ 24 -+ 3 -+ 6 -+ 12; 

A F(1,8) 
A F(1,8) 

F(1-12) 

F( 1 - 12) 

A 4,7 -+ 3; F(1-4) 
A 4,7 + 3; F(1-4) 

A’ 16,18,24 -+ 28 + 5; F(1-6) 
A 16,18,24 -+ 28 -+ 5; F(1-6) 

A F(1,8) 

A 6,7,21 + 20; F(1-15) 
A 3,4,18 + 5; F(1-15) 
A 47,1,8,12 -+ 5 + 10; 2,7,14,18 -+ 11; 

A’ 1,6,17,18,19 -+ 20; 
3,18,19,20,21 + 22; F(1-19) 
A 1,6,17,18,19 -+ 20; 

A F(7,8) 

F(1-16) 

3,18,19,20,21 + 22; F(1-19) 

Indicates that the code is a BCH code. 
d Actual minimum distance. 
t Maximum number of errors correctable. 
doBCH bound. 
A Indicates that the code can be decoded by the indicated syndrome pattern following the procedure in Section 111. 
A’ Indicates that the decoding syndrome pattern contains unknown So (So = 0 or 1). 

** 
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s =  

2) The first three columns of 2 are linearly independent 
and those of S are linearly independent. However, the 
four columns of Z must be linearly dependent and so 
are those of S. Suppose that the coefficients for this 
linear dependence are f,, f,, f l ,  and 1. From the linear 
dependence relation we know that XY2,  X;’ and X y 2  
must be roots of f3 + f 2 z 2  + f l z S  + z 6  = 0. This equa- 
tion has at  most six 23rd mots of unity in GF(2I1). If the 
number of roots is 5 or less, then follow the same 
procedure as in Case cl). If the number of roots is 6, 
then f, # 0, and we can find Ss using the relation 
f3S5 + f2,S1 + f,S,, + S,, = 0. Using the Forney for- 
mula and s,, s,, s,, s,, s,, and s,, we can find X , ,  
X,, and X,. 

Example 5: We consider the (35,7) binary code, where n = 35, 
g(x) = m,(x)m,(x>m,(x)m,(x), d = 14 and dBCH = 12 and 
dRooa = 12[18]. From the received vector we can calculate S, for 
k = 0; I, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18; 3, 6, 12, 24, 13, 26, 
17,34,33,31,27,19; 5,10,20. Using the following syndrome pat- 
tern and the previous decoding procedure, we can decode up to 
six errors. Let 

s9 s10 s43 s44 sSl s52‘ 

s,, Sll s 4 4  s 4 ,  ss, ss, 
SI, s,, s 4 s  S 4 6  s 5 3  ss4 . 
SI, s13 s4, s 4 7  s 5 4  s,, 

\ s13 s14 s47 s48 sSS sS6 

S =  

k = 39,78,57,15,30,60,21,42,84,69 and 37, 74, 49, 98, 97, 95, 
91,83,67, 35, 70,41,82,65, 31,62, 25,50,1,2,4,8,16,32,64,29,58, 
17,34,68. Using the Forney formula on S,-S,, (F(1-43)), we 
can determine the error locations and the magnitudes. Relevant 
information for decoding many cyclic and BCH codes of length 
up to 55 are presented in Table I. 

V. CONCLUSION 

In this correspondence, we have derived a procedure that can 
determine the error locations from nonrecurrent syndrome de- 
pendence relations. This procedure employs an algorithm that 
we have recently introduced as a basis for the derivation of the 
Berlekamp-Massey algorithm and its generalization. It can de- 
code many cyclic and BCH codes up to their actual minimum 
distance and is seen to be a generalization of Peterson’s proce- 
dure. It should be noted that not every cyclic code can be 
decoded up to its actual minimum distance by this procedure. 
However, Table I clearly indicates that a large percentage of 
cyclic codes can be so decoded. For a code with actual minimum 
distance d,  the computation complexity of this procedure is 
0(d3) .  When matrix S consists of recurrent rows, the complexity 
reduces to 0 ( d 2 )  as the Fundamental Iterative Algorithm can 
be refined to become the Berlekamp-Massey algorithm or its 
generalization. 
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On Indecomposable Abelian Codes and Their Vertices 

Karl-Heinz Zimmermann 

Abstract -1ndecomposable nonsemisimple Abelian codes are investi- 
gated. It is illustrated that the minimal distance of every indecompos- 
able Abelian code depends upon its associated vertex. 

Index Terms -1ndecomposable codes, Abelian group codes, minimum 
distance, relative projectivity, vertex. 

I. PRELIMINARIES 

In this article, we study linear codes with a given Abelian 
automorphism group. Codes of this kind were anticipated by 
Camion [3] in a more general point of view. We shall describe all 
indecomposable Abelian group codes and show that the minimal 
distance of such a code M is the product of the minimal 
distance of a semisimple Abelian group code and the minimal 
distance of the source module of M. 

We first recall some basic facts about linear codes and partic- 
ularly group codes. For this let F = GF(q) be a finite field with 
q = p” elements ( p  prime). A linear code M of block length n is 
a subspace of F”. A linear code with F-dimension k and block 
length n is denoted as ( n ,  k)-code. 

We shall show that all indecomposable Abelian group codes 
are product codes [ l l ,  pp. 568-5701. A (two-dimensional) prod- 
uct code M of two linear codes M ,  and M2 is the code whose 
codewords are all the two-dimensional arrays for which columns 
are codewords in M ,  and rows are codewords in M2. If Mi is a 
linear (n i ,  k,)-code with minimal distance d i  ( i  = 1,2), then M is 
a linear (n,n,, k,k,)-code with minimal distance d,d, .  

Throughout the article, let F denote a field of characteristic 
p > 0. All groups under consideration are assumed to be finite. 
A central role plays in the following the notion of group algebra 
[7, pp. 43-44]. 

For this let G be a finite group. The group algebra FG is the 
free F-module over G where G is regarded as an F-basis for 
FG. More explicitly, FG consists of all linear combinations 

g € G  
c kgg, 
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where k ,  E F for all g E G. Addition and multiplication with 
scalars k E F are defined as usual: 

c k,g+  c l ,g=  c ( k g + l g ) g ,  
g = G  g E G  , € G  

k c 1,g = c (“,>ET. 1 g € G  

c k & ) (  c P )  = c ( c kU+. 
(,€, h € G  g € G  u c = g  

Moreover, multiplication in G induces multiplication in FG as 
follows: 

Hence, FG is an associative F-algebra with identity 1 = 1,1, 
where 1, and 1, are the identity elements of G and F, 
respectively. 

It is well known that every cyclic code of length n over a field 
F may be viewed as an ideal of the group algebra FG of the 
cyclic group G of order n [ l l ,  pp. 188-2001. This observation 
suggests the following generalization [4]: 

Definition 1: Let G be a finite group of order n. Each right 
ideal M of the group algebra FG is called a code of length n 
over F. The right ideal M is also simply referred to as FG-code. 
If G is cyclic or Abelian, then every ideal M of FG is denoted 
as cyclic or Abelian code, respectively. An FG-code M is called 
indecomposable if M is an indecomposable right FG-module. 

For each element a = Cgtca,g E FG let supp ( a )  := 

{ g  E Gla, # 0) denote the support of a. The number Isupp(a)l is 
called the weight of a (w.r.t. F-basis G). The minimal distance 
of an FG-code M (w.r.t. F-basis G) is given by 

dist ( M )  := min { I supp ( a )  I la E M \ {  0}} . 
We will often refer to the following trivial result [13, p. 61. 

Proposition 1: Let H be a subgroup of G, and let p be a 
complete set of representatives of the right cosets of H in G. 
Then every element a E FG can be uniquely written as a finite 
sum of the form 

a =  c a,g, 
g t 6 J  

with a ,  E FH for all g E p. Thus, FG is a left FH-module with 
F-basis p. 

An FG-code M is called semisimple if the radical Rad M of 
M is the zero-module (0). The radical of M is the intersection 
of all maximal right FG-submodules of M .  If G is a cyclic group 
of order n, then an FG-code M is semisimple iff p 4 n. The 
class of semisimple cyclic codes has been exhaustively studied by 
many authors. See [ l l ]  for a list of references. We first make a 
few remarks about cyclic codes of length n where p 4 n or n is a 
power of p .  For this let G = (glg” = 1) be a cyclic group of 
order n. 

1) If p + n ,  then FG is a semisimple group algebra by 
Maschke’s Theorem [7, p. 411, and, therefore, decomposes 
into a direct sum 

S 

FG = @ e,FG 

of minimal (simple) ideals e,FG. {e,; . . ,e , }  is a complete 
set of primitive idempotents of FG, which can be con- 
structed in the following way 16, p. 561. 

a) Determine a splitting field 

r = l  

for G,  i.e., a finite exten- 
sion field of F containing the nth roots of unity. 
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